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ABSTRACT

Multi-modal multi-task learning holds significant promise in tackling complex
diagnostic tasks and many significant medical problems. It fulfills the needs in
real-world diagnosis protocol to leverage information from different data sources
and simultaneously perform mutually informative tasks. However, current ap-
proaches often struggle with two key challenges: 1)sample-dynamic modality fu-
sion, where the specific and shared information from different modalities vary
across patients, and 2) modality-task dependence, where different tasks may re-
quire dynamic feature selection and combination from various data modalities. To
address these issues, we propose M4oE, a novel Multi-modal Multi-task Mixture
of Experts framework for precise Medical diagnosis. M4oE comprises Modality-
Specific (MSoE) modules and a Modality-shared Modality-Task MoE (MToE)
module. With collaboration from both modules, our model dynamically decom-
poses and learns distinct and shared information from different modalities and
achieves sample-adaptive dynamic fusion. MToE provides a joint probability
model of modalities and tasks by using experts as a link and encourages experts
to learn modality-task dependence via conditional mutual information loss. By
doing so, M4oE offers sample and population-level interpretability of modality
contributions. We evaluate M4oE on four public multi-modal medical benchmark
datasets for solving two important medical diagnostic problems including breast
cancer screening and retinal disease diagnosis. Results demonstrate our method’s
superiority over state-of-the-art methods under different metrics of classification
and segmentation tasks like Accuracy, AUROC, AUPRC, and DICE.

1 INTRODUCTION

Multi-modal and multi-task learning holds strong potential for tackling many significant and chal-
lenging medical problems (Tu et al., 2024), as it mimics real-world clinical protocols of disease
diagnosis, where clinicians leverage all available data sources and simultaneously perform multiple
assessments that are inherently interrelated and informative of each other (Stahlschmidt et al., 2022;
Acosta et al., 2022). For example, radiologists combine full-field digital mammography (FFDM)
containing high-resolution details and 2D synthesized (2DS) images indicating high-contrast tissue
structures for breast density prediction and cancer risk screening (Brown et al., 2023); Ophthal-
mologists integrate color fundus photographs with optical coherence tomography (OCT) that uses
near-infrared light and interferometry for diabetic retinopathy diagnosis and pan-retinal leakage de-
tection (Korot et al., 2021). All these applications request a model that can understand the comple-
mentary information from these different input modalities for predicting various tasks, drawing a lot
of research attention (Yang, 2024; Zhao et al., 2022).

Modeling the complex cross-modal and cross-task relationships of medical imaging modalities is
a non-trivial challenge. Different modalities can maintain both modality-specific and modality-
shared information: for example, while MRI and PET can both be used for Alzheimer’s disease
analysis, MRI allows for higher soft-tissue contrast and PET for metabolic activity visuals (Pichler
et al., 2008; Zhang et al., 2023). Such information should be inherently dynamic across patient
samples due to different patient subgroups and environmental variances. This is analogous to the
well-known dynamic fusion of infrared and RGB images in the natural domain. In RGB-Infared
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Figure 1: Introduction: Traditional multi-modal multi-task modeling vs M4oE in medical imaging

fusion, the relative importance of each modality naturally varies with environmental conditions -
RGB provides better information in daylight while Infrared excels in low-light conditions. In breast
cancer screening, parenchymal tissues in younger women often appear similar and confuse with
tumor tissues in FFDM images, whereas it can be visualized more clearly by 2DS, due to reduced
tissue overlaps (Khara et al., 2024). For older patients, where calcifications are a key sign of early
cancer, FFDMs are more reliable in showing these small spots (Aujero et al., 2017; Brown et al.,
2023). These insights from practical medical applications inspire us to raise the first research ques-
tion: How can we capture the patient-dynamic modality-shared and modality-specific information
in multimodal data fusion?

Existing multi-modal fusion methods for medical images can be mainly categorized into early fu-
sion (Jiang et al., 2019), late fusion (Donnelly et al., 2024; Weisman et al., 2022), and information-
theory-based methods (Zhang et al., 2024; Chen et al., 2023a). However, most of these approaches
are developed based on the assumption that different modalities contain fixed information distribu-
tion across different samples, which rarely holds true in the real world. We conjecture that ignoring
such reality leads to the problem of “Modality Competition,”(Huang et al., 2022) where only a single
modality dominates the joint latent space, suppressing distinct domain-specific features that should
commonly exist in all modalities. This can result in severely compromised predictions when crucial
disease information is only present in an underrepresented modality. We hypothesize that models
should be able to dynamically integrate effective information from the respective modalities while
not losing generalizable information shared in different modalities. That is, dynamically learning
sample-adaptive modality-specific and modality-shared information.

Another challenge comes with the various interrelated target tasks. Different diagnostic tasks require
a task-specific way to select and fuse features from different imaging modalities, depending on the
modality-task relevance. For instance, in a comprehensive breast cancer screening utilizing top and
side views of both FFDM and 2DS images (4 modalities) (Khara et al., 2024), density assessment
relies more on FFDM due to its ability to provide higher-resolution details, while the disease de-
tection task, particularly for calcified cancers and lesions in dense tissue, benefits significantly from
2DS with better visibility scores (Aujero et al., 2017; Destounis et al., 2020). This implies the sec-
ond important research question: How do we model the dynamic modality dependence on different
tasks? Current multi-task learning methods either aim to learn a shared set of features that generalize
across different tasks (Swamy et al., 2024) or focus on separating task gradients or task modules for
a single modality (Chen et al., 2023b), ignoring the dynamic nature of task-relevant modality-shared
information. We hypothesize that models should be able to adaptively leverage the most relevant
features from each modality to fuse for each specific task while not compromising the diversity of
shared multi-modal features generalizable across different tasks. In other words, the goal is to learn
the task-specific and task-shared manifolds in the multi-modal latent space.

In short, as illustrated in Figure 1, effective fusion of multi-modalities should be both sample-
adaptive and task-dependent. Motivated by this, in this work, we propose M4oE, a new Multi-modal
Multi-task Mixture of Experts (MoE) framework for Medical imaging, dynamically linking modal-
ities, samples and tasks via soft mixture of expert (Puigcerver et al., 2023) networks. M4oE consists
of two main modules: Modality-Specific MoE (MSoE) and Modality-Shared Modality-Task MoE
(MToE). The combination of modality-shared and modality-specific experts offers a promising so-
lution to the modality competition problem, achieving sample-adaptive dynamic fusion. By leverag-
ing the input-dependent nature of MoE, our proposed model dynamically learns distinct and shared
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information from different modalities. Besides, MToE explicitly models the modality-task depen-
dence by learning a joint distribution of modalities, experts, and tasks. By optimizing conditional
mutual information loss, we encourage experts to learn diverse patterns of task-specific modality-
shared information. Our experiments and analysis show that M4oE can be well generalized to solve
different multimodal medical problems in various applications. More importantly, we show that our
proposed MToE module can be flexibly combined with existing multi-modal fusion strategies to
further improve performance.

Our main contributions can be summarized as follows:

1) We propose a novel framework for multi-modal multi-task learning, achieving both dynamic
sample-adaptive modality fusion and dynamic modality-task dependence modeling. It provides
sample-level and dataset-level interpretation of modality contribution to different prediction tasks.

2) Our proposed MToE module provides a simple yet effective way to jointly model and interpret
modality, expert, and task dependency. We devise a new conditional mutual information loss to en-
courage experts to adaptively learn diverse patterns of task-dependent modality-shared information
for different target tasks, respectively.

3) Extensive experiments are conducted on four multi-modal medical benchmark datasets to address
two important multi-modal and multi-task medical problems: breast cancer screening and retinal
diagnosis. Results show that M4oE outperforms the baselines from both medical and natural image
domains, demonstrating the effectiveness and generalization of our approach.

2 RELATED WORK

Multi-modal learning in Medical Imaging. Multi-modal learning in medical imaging focuses on
improving prediction and mimics the multi-modal nature of clinical expert decision-making by fus-
ing disparate data sources (Kline et al., 2022). It has wide applications in fields such as breast cancer
screening (two views of FFDM and two views of 2DS) (Yala et al., 2022), retinal diagnoses (Reti-
nal Fundus images and OCTs) (Zou et al., 2024b), and head-neck cancer survival analyses (Meng
et al., 2023) (Computed Tomography(CT), Positron Emission Tomography (PET), and Magnetic
resonance imaging (MRI)). Existing works can be categorized into early fusion, late fusion (usually
attention-based), and intermediate fusion methods. Late fusion focuses on learning a combined or
joint latent space: Donnelly et al. (2024) learns local and global features from multi-modal breast
cancer images via a combination of convolutional and transformer networks; Oyelade et al. (2024)
extracts both low and high-level features using twin-CNNs and uses binary optimization method
to eliminate non-discriminant features in the search space. However, late fusion is prone to lose
modality-specific information (Zhang et al., 2024). Early fusion concatenates different modalities
into a single input and is shown to outperform late and middle fusion for brain tumor segmentation
from MRI/PET/CT data (Marinov et al., 2023). For example, Xue et al. (2021) segments liver le-
sions by combining predictions from low and high-level feature maps in separate PET/CT decoders.
In intermediate fusion, the features, respective to each modality, are joined in intermediate layers
before feeding to the final prediction head (Huang et al., 2022). This type of model allows for more
convenient modeling of modality-specific and shared information. Chen et al. (2019); Yao et al.
(2024b); Wang et al. (2023) disentangles the features shared across modalities and those unique
within each modality to address challenges like modality inconsistency and modality missingness.
Marinov et al. (2023) disentangles unimodal and multi-modal features using modality-specific de-
coders and a multi-modal decoder. Zhang et al. (2024) uses a mutual information disentangled
transformer to decompose modality information into shared and specific latent space to predict can-
cer risks with multi-modal histopathology data. Apart from prediction tasks, recent works like Yao
et al. (2024a) have also extended similar fusion techniques for individualized chest X-ray generation
via latent diffusion models. However, all these existing methods are either limited to single-task
prediction or do not consider the dynamic dependence of modality-shared information on specific
tasks, trying to learn a shared set of features for different clinical outcomes. Moreover, they all
ignore the dynamic changes of modality quality in reality, which diminishes the patient-conditioned
advantages of each modality, e.g., the high structural contrast from 2DS for patients with denser
breasts and high-resolution details in FFDM for patients with less-dense breasts.

Multi-task learning in Medical Imaging. In medical imaging, multi-task learning (MTL) has wide
applications as it aims to enhance the performance on interrelated tasks by leveraging shared in-

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

formation between them, given limited data availability (Malhotra et al., 2022). Existing medical
MTL methods typically utilize hard parameter sharing methods, designing task-shared networks to
capture common patterns and task-specific networks to learn individual task features (Meng et al.,
2022; Ju et al., 2021). However, these methods require strong correlations among tasks (Zhang
& Yang, 2018), which are not necessarily satisfied in medical scenarios. Another type of methods
consider soft-parameter sharing, which utilize regularization loss terms to implicitly seperate param-
eters for each task (Graham et al., 2023; Zhou et al., 2021). Recent works (Shao et al., 2024) have
also considered associating multi-instance medical image data with multiple tasks using attention-
based fusion blocks. However, these methods assume a fixed association between tasks and input
data modalities (Zhang & Yang, 2018), making them unable to dynamically capture the modality-
task dependencies, and thus limiting their applicability in multi-modal, multi-task medical imaging
scenarios.

3 METHOD

3.1 PRELIMINARY

Problem Formulation. We start with the definition of multi-modal multi-task learning. Suppose
we are given m image modalities M1, . . . ,Mm and p tasks t1, . . . , tp, where the tasks are related
but distinct. Each modality contains its own unique information, and the combination of different
modalities elicits task-specific shared information. Multi-modal multi-task learning seeks to im-
prove model performance by integrating the information from the m modalities and leveraging the
knowledge across the p tasks. Each task tk can be viewed as a function Tk that maps multi-modal
image pairs I to the label for each task ytk = Tk(I). For each tk, we have a corresponding labeled
dataset Dk, each data point of which has m paired images I = (I1, ..., Im) and a task label Ytk (e.g.,
paired 4 images, 2 from FFDM, 2 from 2DS, and a label of risk of breast cancer). For simplicity
of analysis, we assume that each image pair I is associated with a task-specific label Ytk for each
task tk, forming the task dataset Dk as (I, Ytk). Our approach generalizes to the more real-world
scenario where each Dk consists of different image pairs.

Soft Mixture-of-Expert(MoE). MoE enables adaptive fusion of multi-modal data and create data-
dependent flows during inference (Cao et al., 2023). Soft MoE (Puigcerver et al., 2023) replaces the
top-K selection in the sparse MoE (Mustafa et al., 2022) with a softmax-based assignment in the
token-expert mapping, allowing for a soft weighted combination of input tokens. Specifically, for a
Soft-MoE layer with n experts, given input tokens X ∈ Rl×d, where l is the number of tokens and
d is their dimension, the Soft MoE assigns a weighted combination of these tokens to each expert
using a dispatch matrix D ∈ Rl×n. Each expert then projects the input tokens into output tokens,
and the final output is obtained as the weighted combination of the output tokens, with the weights
provided by a combine matrix C. The matrix D and C are created based on the input X and a
learned matrix Φ of the MoE layer.

Hypothesis. We propose our hypotheses for medical multi-modal multi-task learning, which will
be verified by our analysis experiments in the Sec. 4.3.

Dynamic modality-shared and specific information: Information between multi-modalities can
be decomposed into modality-specific and modality-shared. This interaction should be dynamic,
e.g., the high structural contrast from 2DS for patients with denser breasts and high-resolution details
in FFDM for patients with less-dense breast. Ignoring this fact will cause multi-modal multi-task
models to focus on optimizing parameters of a specific modality while neglecting the others, aka
’Modality-Competition’.

Dynamic modality-task dependence: In multi-modal multi-task learning, the shared information
between different modalities should be modeled differently to a given task instead of using a static
shared set of features, forming a modality-task dependence.

3.2 OVERALL FRAMEWORK

In this section, we will demonstrate our M4oE framework for multi-modal multi-task learning and
illustrate how it dynamically links the input modalities to different tasks. Our M4oE design com-
prises modality-specific feature embedders, modality-specific Soft MoEs, and shared Modality-Task
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Figure 2: (a) The framework first embeds different input modalities with feature embedders, then
goes through MSoE to learn and retain the modality-specific features, MToE to model shared modal-
ity information and modality-task dependence, and a final fusion block connected with task heads.
(b) The MToE block creates data-dependent pathways for each multi-modal input, dispatching
modality tokens to experts and combining the expert outputs to generate task-specific features. (c)
Modality-specific MoEs are used to extract and retain input-dependent modality-specific features.
(d). We apply a basic Soft MoE block after M4oE to fuse all features.

Soft MoEs. We customize the MoEs into Vision Transformer blocks so that it creates a data-
dependent path for each input. This enables more flexible modeling of dynamic modality depen-
dence and dynamic multi-modal fusion in a multi-modal multi-task learning setting. Specifically,
as shown in Fig. 2 a), we first utilize a feature embedder to project input modalities to embeddings
X1, ..., Xm ∈ Rl×d. To mitigate the modality competition phenomenon, where modality-specific
information is lost for most modalities, for each modality Mi we use modality-specific MoE blocks
to extract and retain input-dependent modality-specific features Zi ∈ Rl×d from Xi. Meanwhile,
we feed X1, . . . , Xm into our proposed MToE block and obtain the task-dependent fused modality
features, producing task-specific features pool G1, . . . , Gp. Finally, each task-specific feature pool
from G1, ..., Gp is fused with modality-specific, task-shared feature pool Z1, ..., Zm to form task-
specific and shared pool H1, ...,Hp. For each task Tk, Hk is passed to the task heads after a basic
soft MoE block for final predictions. The overall framework can be seen in Fig. 2.

The modality-specific MoE is a Soft MoE, as described in Sec. 3.1. As shown in Fig. 2 b), each
MSoE gi for modality i contains n experts and a learnable matrix Φi ∈ Rd×n, where d represents the
embedding dimension. Given input tokens X ∈ Rl×d, we compute the dispatch matrix D ∈ Rl×n

by applying softmax along the columns of XΦi, and the combine matrix C ∈ Rl×n by applying
softmax along the rows of XΦi. We pass the linearly weighted input X̃j , where X̃ = DX , to each
expert j and obtain the output Ỹj . Finally, we apply a linear combination of Ỹj based on C to obtain
the final output Y = CỸ for the MSoE module.

As shown in Fig. 2 c), the MToE block connects tasks to input modalities by using experts as a
link. It is distinct from the basic soft MoE in that it takes in mixed inputs from multi-modalities,
directs the mixture of their information through task-specific slots, and differentiates with learnable
task embeddings. The MoE layer of the MToE consists of n experts and a learnable matrix Φtask ∈
Rd×n×p, and each expert processes p input task slots corresponding to different tasks. Given the
input token-type modality features X1, . . . , Xm ∈ Rl×d, there is a total of M = l × m feature
tokens. And then they are assigned to the task slots of each expert through a convex combination
of X1, . . . , Xm, using dispatch weights D ∈ RM×n×p. The dispatch weight is given by applying a
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softmax over columns of XΦ, where X ∈ RM×d is the concatenation of X1, ..., Xm:

Dijk =
exp((XΦ)ijk)∑M
i=1 exp((XΦ)ijk)

, X̃ = DX. (1)

Each task slot k of expert j is processed by the expert j’s neural network fj , to produce the output
slots: Ỹ.jk = fj(X̃.jk + TEk), where TEk is the learnable task embedding of task k that is shared
across experts. The final output Y of each task k is obtained by taking a convex combination of all
the output slots Ỹ. This process is similar to the previous one:

Cijk =
exp((XΦ)ijk)∑n

j=1

∑p
k=1 exp((XΦ)ijk)

, Yk = C..kỸ..k, (2)

where C, the combine weights, are computed by applying a softmax over the rows of XΦ. This
facilitates the dynamic connection between different input modalities and tasks and enables proba-
bility modeling in Sec. 3.3.

3.3 JOINT PROBABILITY MODELING OF MODALITY, TASK AND EXPERTS

To understand how each modality contributes to different tasks, we define a probability model over
tasks T , experts E, and modalities M . We assume that when our trained network is deployed, it
will receive a random task T and a corresponding multi-modal image pair I based on a global task
distribution P (T )1. The input-conditioned and dynamic multi-expert structure of MToE makes it
well-suited for jointly modeling T and M , where the ϕ ∈ Rm×n×p matrix and task slots collabora-
tively connect modality M to expert E and subsequently to task T .

In the MToE module, we model the probability P (Ej |Tk) of selecting expert Ej for task Tk based
on how much importance the routing network assigns expert Ej to task Tk. For example, in sparse
MoEs, if the routing network assigns 30 out of 100 image pairs from task Tk to expert Ej , then
P (Ej |Tk) = 0.3. In the MToE, rather than making hard assignments, we calculate these probabil-
ities by summing the soft weights from the routing matrix XΦ. Given this matrix, the conditional
probability of an input X can then be determined as follows:

P (Ej |Tk) =

∑m
i=1(XΦ)i,j,k∑n

j=1

∑p
k=1(XΦ)i,j,k

, (3)

where m is the number of modalities, n is the number of experts, and p is the number of tasks. Sim-
ilarly, the conditional probability P (Mi|Tk) can be represented by the frequency of how a modality
i is selected to contribute to a task j, which can be written as follows:

P (Mi|Tk) =

∑n
j=1(XΦ)i,j,k∑m

i=1

∑p
k=1(XΦ)i,j,k

. (4)

To model how experts are assigned to each modality for different tasks, we need to model the
conditional probability P (M,E|T ). This can be given by dispatch weights as well. Given the input
X and task k, the modality i is assigned to the expert j with the probability P (Mi, Ej |Tk), which
can be expressed by:

P (Mi, Ej |Tk) =

∑n
j=1(XΦ)i,j,k∑m

i=1

∑n
j=1

∑p
k=1(XΦ)i,j,k

. (5)

Based on our hypothesis of modality-task dependence, in the multi-modal multi-task learning set-
ting, the most important experts and the selection of input modality features should depend on the
task. This allows the MToE to assign specific experts to corresponding modalities for each task. To
achieve so, we could maximize the conditional mutual information between experts E and modali-
ties M given T :

I(M ;E|T ) =
m∑
i=1

n∑
j=1

p∑
k=1

P (Mi, Ej |Tk) log
P (Mi, Ej |Tk)

P (Mi|Tk)P (Ej |Tk)
. (6)

1This distribution is typically derived from the dataset, as not all data points have labels for every task.
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This term can be calculated based on our probabilistic modeling above in the MToE2.

To understand this objective, we can decompose it as I(M ;E|T ) = H(M |T ) − H(M |E, T ).
Term −H(M |E, T ) refers to the entropy of modality given task and experts, a smaller H(M |E, T )
encourages the MToE to learn a stronger dependency of the modality on both the expert and task, and
to leverage different combinations of modalities for different tasks. H(M |T ) refers to the entropy of
modalities given tasks, where a higher term ensures modality diversity instead of repeatedly relying
on a small subset of modalities. Given the training objective Ltk of each task tk, the final loss L can
be written as:

L =

p∑
i=1

Ltk − αI(M ;E|T ), (7)

where α is the hyper-parameter that adjusts the strength of conditional mutual information loss.

4 EXPERIMENT

4.1 EXPERIMENT SETTING

Datasets. To test M4oE’s generalizability across populations and medical imaging modalities, we
conduct extensive experiments over four public datasets on two use cases. Mammogram screen-
ing: We use EMory BrEast Imaging Dataset (EMBED) (Jeong et al., 2023) collected in the United
States, The 2023 RSNA Screening Mammography Breast Cancer Detection AI Challenge Dataset
(RSNA) collected in Australia (Carr et al.), and VinDr-Mammo Dataset (VinDr) collected in Viet-
nam (Nguyen et al., 2023). EMBED has four modalities (2 view FFDM and 2 view 2DS) and seven
tasks: BI-RADS assessment (3-class), 1-5 years risk scoring (binary), and density classification(4
class). RSNA and VinDr have two modalities (2 view FFDM) and two tasks: density classification
(4-class) and BI-RADS assessment (3-class). Ophthalmology screening: we use the Glaucoma
grAding from Multi-Modality imAges (GAMMA) dataset (Wu et al., 2023) collected in China.
GAMMA has two modalities (color fundus photos and OCT) and two tasks: glaucoma detection
(3-class) and optical cup segmentation.

Evaluation. Accuracy is used for classification tasks, and DICE score is used for segmentation. For
the M4oE model reported in Table 1, we use 128 experts for the MToE module and 32 experts for
each of the MSoE modules. We use Adam optimizer with learning rate of 1e-4 and stepLR scheduler
with step size of 5 and gamma of 0.1. The model is trained on a batch size of 32 and a total of 100
epochs. α is set to 0.05. Our hardware includes 4 NVIDIA A100s and 4 L40s.

Baselines. We mainly compare our method with four groups of SOTA methods: 1) Multi-modal
single-task baselines from medical AI. 2) Multi-modal multi-task baselines from medical AI. In
1), we compare with MIRAI (Yala et al., 2022) and Asymmirai (Donnelly et al., 2024) for mam-
mography, Eyemost (Zou et al., 2024b) and Eyestar (Wu et al., 2023) for ophthalmology. In 2),
we compare with the 4 methods under multi-task setting. 3) MoE-related baselines. We compare
with a multi-modal soft mixture of experts (Puigcerver et al., 2023) and the combination of MI-
RAI and Asymmirai with our MToE. 4) Multi-modal multi-task baselines adapted from the natural
domain. We compare our method with FULLER (Huang et al., 2023), AIDE (Yang et al., 2023),
MModN (Swamy et al., 2024), and EVIF (Geng et al., 2024).

4.2 MAIN RESULTS

Our M4oE significantly outperforms baseline methods. As shown in Table 1, the single-task
MSoE outperforms all the single-task medical AI baselines, demonstrating our design’s effective-
ness in retaining modality-specific information. As for multi-task settings, M4oE consistently out-
performs baseline methods across all tasks on all benchmarks. This highlights the effectiveness of
M4oE in the multi-modal, multi-task learning setting. T

Multi-tasks benefit from each other in our M4oE method, unlike the baseline approaches. As
shown in Table 1, our M4oE trained in a multi-task setting shows superior performance compared

2In implementation, Φ is with the shape of (m · l) × n × p since each modality has l tokens. For each
modality, we sum up the probability of all of its tokens to marginalize probability for each Modality m.
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to its single-task training counterpart. This indicates that tasks involved in multi-task learning con-
tribute to shared features. We show in Sec. 4.3 that this also reduces gradient conflicts that typically
hinder the learning of task-specific features. In contrast, such improvements are not seen in base-
line methods. This may be because these methods fail to capture the dynamic dependence between
modalities and tasks.

Our MToE framework can generalize to different multi-modal learning backbones. We have
adapted MToE to Miral and Asymiral baselines for mammography tasks, and have adapted MToE to
Eyemost and Eyestar baselines for retinal tasks. After being combined with our MToE module, the
single-task oriented medical AI baselines obtain significant performance improvement, most on par
with or even exceeding Multi-modal Multi-task baselines from the natural domain. This highlights
MToE’s flexibility and generalizability.

Table 1: Multi-modal single-task and multi-modal multi-task results over four benchmarks from
mammography imaging and retinal imaging. Complete 7-task results on EMBED dataset are in
appendix.

Setting Method EMBED RSNA VinDR Method GAMMA
Mammo. Risk Density Birads Density Birads Density Birads Retinal Glau. Seg.

Single Mirai 84.0 82.3 72.5 76.3 62.3 86.3 66.1 Eyemost 86.0 87.8
-Task Asysmirai 79.0 80.2 69.4 74.1 60.1 78.9 62.4 Eyestar 85.4 85.9

Ours wo MSoE 83.2 82.1 71.9 76.8 62.2 85.4 65.8 Our wo MSoE 86.2 86.2
Ours 85.5 83.6 74.2 77.5 64.0 87.7 67.5 Ours 87.6 88.9

Multi Mirai 83.1 83.2 72.3 76.1 62.5 85.4 65.9 EyeMost 86.5 86.6
-Task +MToE 84.6 83.3 73.4 76.8 63.1 85.9 66.4 +MToE 87.2 88.5

Asymirai 80.0 82.5 69.6 73.9 60.7 79.1 62.2 Eyestar 85.9 84.1
+MToE 81.9 83.1 70.8 74.2 61.2 81.2 64.2 +MToE 87.5 86.9

EVIF 84.7 83.4 73.6 77.0 65.9 88.8 70.7 EVIF 88.7 87.0
Fuller 84.3 83.5 72.5 76.9 65.4 87.1 68.7 Fuller 87.8 86.2
AIDE 84.1 82.9 73.6 76.8 66.1 88.2 69.8 AIDE 88.5 87.5
MModN 84.8 83.7 73.9 77.1 66.4 89.0 70.4 MModN 89.2 87.2

Ours wo MToE 84.0 82.8 73.1 76.7 64.3 86.9 67.3 Ours wo MToE 88.1 87.4
Ours 85.9 84.1 75.1 77.8 66.7 89.6 71.8 Ours 90.4 89.7

4.3 ANALYSIS

Modality Utilization in Non-MoE Fusion, MoE vs M4oE. To investigate our first hypothesis, we
examine how well traditional (non-MoE) multi-modal models, multi-modal MoE, and our approach
utilize the four different modalities on the EMBED dataset on the cancer risk prediction task.

For traditional multi-modal learning, we first train a multi-modal model where each modality is
encoded by a modality-specific ViT encoder. The representations from each modality are then av-
eraged and then passed through a dense fusion layer before being fed into the task heads. We also
trained four unimodal models for each modality. As shown in Fig. 3(a), we compared the four
modality-specific (from the multi-modal model) encoders’ performance with that of their unimodal
counterpart. The encoders from the multi-modal model exhibited a significant performance gap
compared to the model trained solely on that modality, especially for modalities FFDM left-to-right
(M2), 2DS up-to-down (M3), and 2Ds left-to-right (M4). This indicates that M2-M4 is much more
poorly optimized in the multi-modal model compared to M1, i.e. losses the modality competi-
tion (Huang et al., 2022).

For the MoE-based method, it is easier to evaluate the modality utilization across experts: For
modality Mi, we first obtain the sum of input-conditioned modality dispatch weights assigned to
Mi’s token for a data sample and a given expert Ej , then aggregate this value over all experts
and over all data points. In Fig. 3, we observe that when simply using a multi-modal soft MoE
architecture, modality 1 dominates the expert space. In contrast, M4oE alleviates this issue by
learning a much more diverse modality utilization and achieves higher performance as shown in
Table. 1 (Without MSoE v.s. M4oE).

Dynamic Modality Dependence. Recall our second hypothesis that the fused features from dif-
ferent modalities should be dynamically dependent on different tasks. Unlike M4oE, traditional
multi-modal fusion models lack interpretability of modality-task dependence. To ensure a fair com-
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Figure 3: (a). Performance drop caused by modality competition. (b). Modality utilization of multi-
modal soft MoE. (c). Modality utilization of M4oE. Our method has less modality competition.

Figure 4: Visualization of modality-task dependence. We report modality-pair-wise synergies which
measure how two modalities benefit from each other on contributing to the given prediction task.

parison, we introduce the synergy measure from partial information decomposition (PID) theory,
which quantifies how much new task-specific information emerges when two modalities are fused.

We train synergy estimators using BATCH algorithm following Liang et al. (2024) to calculate pair-
wise synergy between input modalities for a given task. For this experiment, we train models on
the EMBED dataset with density prediction and 1-year risk prediction tasks. We utilize the two
FFDM modalities and two 2DS modalities for training, and this results in 6 pairwise synergies per
task, visualized as matrices in Fig. 4. We observe that the synergy matrix for the baseline MIRAI
method shows similar value distributions across different tasks, where shared information of two-
view FFDM is prevalent (M1 and M2). While Task 1 (density) and Task 2 (risk) synergy for baseline
do capture different absolute values, the highest synergy pair still only peaks for M1 and M2 (within
two views of FFDM) for both tasks. However, this doesn’t follow our dynamic modality-task depen-
dence intuition. While density information is known to be mostly captured by FFDMs (Destounis
et al., 2020; Zuckerman et al., 2016), prior work (Kleinknecht et al., 2020; Gastounioti et al., 2022)
in mammogram screening suggests that for the cancer risk task, models should leverage useful in-
sights from all four modalities. Our model shows a clear contrast of synergy distributions between
the two tasks, and the cancer risk task’s distribution derives information from more diverse infor-
mation from different modalities. The benefits can be further proven by the improved results after
adding MToE in Table 1 (Without MToE vs M4oE). For density, our method peaks at M1-M2. For
risk, we peak at not only M1-M2 synergy (within FFDM) but also M1-M4 synergy (between FFDM
and 2DS). We also capture the M2-M3 and M3-M4 synergy much better than the baseline. This in-
dicates a stronger modality-task dependency. This improvement is likely due to our method’s ability
to better learn task-dependent mutual information between different modalities. Further details on
PID theory and BATCH algorithm can be found in Appendix A.

Sample and Population-Level Modality Contribution Interpretability. M4oE has inherent sam-
ple and population level interpretability of modality contribution to a specific task, because the Φ
matrix determines both how much weight each modality contributes to an expert and how much
weight each expert contributes to a task. We use two tasks from the EMBEDS dataset to illus-
trate this. 1) Sample-level (local) modality contribution for one patient input: Given a task, we
calculate the importance weight of each modality for each expert, and average over all experts by
expert-task assignment weights. 2) Population-level (global) modality contribution: we aggregate
the sample-level contribution over the entire dataset. Fig. 5 provides granular insights on how dif-
ferent modalities contribute to the task predictions of two different patient samples and over the
entire EMBEDS dataset. We observe distinct patterns across patients and clinically sensible global
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Figure 5: Visualization of modality contribution on patient level and dataset level.

Figure 6: (a). Gradients from different task heads may conflict, and our method has mitigated this
issue. (b). Compared to basic Soft MoE, our method has a sparser expert-task dependency that may
have helped alleviate the gradient conflict problem.

patterns: FFDM contributes more to density, and all modalities should contribute to risk prediction
(Destounis et al., 2020; Aujero et al., 2017; Zuckerman et al., 2016).

Gradient Conflict Mitigation. Gradient conflict problem is a long-standing issue in multi-task
learning that may harm the model’s ability to learn task-specific information (Chen et al., 2023b;
Zhou et al., 2024). This issue is also present in multi-modal scenarios, as shown in Fig 6. We
observe that M4oE also helps mitigate this issue. We train a ViT-based multi-task late fusion model
using four modalities in mammography, predicting density and 1-year risk. We collect the gradients
from the last layer of the fusion block during back-propagation for both task losses in each step of
an epoch. As shown in Fig 6, we calculate the cosine similarities between the gradients of the two
tasks and categorize the gradient relationships into three categories: ”conflict” (similarity between
-1 and -0.01), ”neutral” (-0.01 to 0.01), and ”enhance” (0.01 to 1). The baseline model shows a
high proportion of conflicts, indicating significant gradient conflicts in the multi-modal, multi-task
setting. In contrast, our M4oE model exhibits a much lower proportion of conflicts, demonstrating
that our method effectively mitigates gradient conflicts. This improvement may be attributed to
sparse task-expert dependency, where experts tend to specialize in different tasks. As shown in
Fig. 6, we conduct a reduced experiment (16 experts and 7 tasks) and generate heatmaps of the
expert-task assignment scores from the combine matrix to visualize the expert-task dependencies in
both the baseline MoE model and our M4oE. Our method shows higher sparsity, enabling dynamic
separation of task-specific parameters and helping to reduce gradient conflicts.

4.3.1 LIMITATIONS

Our current work prioritizes establishing the foundational framework for dynamic modality-task
modeling, with several promising directions for future extension. While our approach inherently
supports training with missing labels due to its flexible task supervision scheme and could theoret-
ically accommodate missing modalities through integration with embedding bank techniques (Yun
et al., 2024), systematic investigation of these scenarios lies beyond our current scope.

4.4 ABLATION STUDY

Ablation of Different Model Components. As shown in Table 2, we conduct ablation studies on
each component of the M4oE framework. Removing either the MSoE or MToE leads to a significant
performance drop. This is because: 1) the MSoE retains and contributes modality-specific features
to the embedding pool and alleviates the modality competition issue. 2) The task-slot and task-
specific embedding guided MToE data flow capture the dependence between modalities and tasks
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to find the most suitable modality feature selection and fusion for each task. Additionally, removing
the mutual-information regularization loss while retaining the MToE results in a slight performance
decrease compared to original M4oE model, as the loss encourages higher modality-task dependence
and more diverse modality feature fusion.

Increasing the number of experts and regularization degree α within a certain range improves
the performance. As shown in Fig. 7, increasing the number of experts in the MToE from 16 to 128
improves the model’s performance. Additionally, raising the value of α, which controls the degree
of mutual information regularization, from 0.01 to 0.2 generally enhances the model’s performance,
but too heavy of a weight makes the predictions slightly worse. Detailed results are in the Appendix.

Figure 7: Ablation on expert number n
and regularization degree α.

Table 2: Ablation results on technical components in M4oE.

MToE MSoE MI Reg. EMBED
1 year risk Density Birads

✓ 84.0 82.8 73.1
✓ ✓ 85.1 83.5 73.8
✓ ✓ 85.2 83.7 73.5
✓ ✓ ✓ 85.9 84.1 75.1

5 CONCLUSION

In this paper, we propose M4oE, a Multi-modal Multi-task Mixture of Experts framework for Med-
ical multi-modal multi-task learning. M4oE enables dynamic, sample-adaptive modality fusion and
modality-task dependence modeling. It jointly models the dependence of modalities, experts, and
tasks and captures dynamic distinct and shared modality information. Extensive experiments and
analysis show that M4oE consistently outperforms baseline models across diverse medical imag-
ing benchmarks, offers interpretability of modality contribution, and can be flexibly combined with
different backbones.
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