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Abstract

Protein language models (PLMs) are often assumed to capture evolutionary in-
formation by training on large protein sequence datasets. Yet it remains unclear
whether PLMs can reason about evolution—that is, infer evolutionary relation-
ships between sequences. We test this capability by evaluating whether standard
PLM usage, frozen or fine-tuned embeddings with distance-based comparison,
supports evolutionary reasoning. Existing PLMs consistently fail to recover phy-
logenetic structure, despite strong performance on sequence-level tasks such as
masked-token and contact prediction. We present PHYLA, a hybrid state-space
and transformer model that jointly processes multiple sequences and is trained
using a tree-based objective across 3,000 phylogenies spanning diverse protein
families. PHYLA outperforms the next-best PLM by 9% on tree reconstruction
and 23% on taxonomic clustering while remaining alignment- and guide-tree-free.
Although classical alignment pipelines achieve higher absolute accuracy, PHYLA
narrows the gap and achieves markedly lower end-to-end runtime. Applied to
real data, PHYLA reconstructs biologically accurate clades in the tree of life and
resolves genome-scale relationships among Mycobacterium tuberculosis isolates.
These findings suggest that, under standard usage, evolutionary reasoning does
not reliably emerge from large-scale sequence modeling. Instead, PHYLA shows
that models trained with phylogenetic supervision can reason about evolution more
effectively, offering a biologically grounded path toward evolutionary foundation
models.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



1 Introduction

Protein language models (PLMs) use transformers with masked language or autoregressive self-
supervision to model molecular sequences (Rives et al., 2021; Lin et al., 2022; Alley EC, 2019;
Madani, 2023; Notin, 2022). PLMs have shown state-of-the-art performance across predictive
(Meier et al., 2021; Rives et al., 2021; Rao et al., 2021; Elnaggar et al., 2021; Alley EC, 2019;
Rao et al., 2020) and generative (Lin et al., 2022; Hayes et al., 2024; Madani, 2023; Ferruz, 2022)
tasks. At their core, PLMs learn statistical distributions over amino acid sequences, modeling which
residues are likely to appear given their surrounding context. This enables powerful zero-shot
predictions of mutational effects by observing how the likelihood of a substitution changes under the
model. Over time, this paradigm has been framed as a form of “evolutionary modeling,” with the
assumption that capturing residue-level distributions implicitly reflects evolutionary dynamics. In
practice, researchers often quantify these relationships using distance measures—typically Euclidean
or cosine distances—between frozen or fine-tuned embeddings Alley EC (2019); Hie et al. (2022);
West-Roberts et al. (2024); Pantolini et al. (2024); Muir et al. (2025).

However, in this work, we argue that this paradigm conflates evolutionary modeling with evolutionary
reasoning. Evolutionary modeling, as practiced by current PLMs, involves capturing local amino acid
distributions to estimate residue likelihoods. In contrast, evolutionary reasoning requires a deeper
level of abstraction: given a set of sequences, can a model infer the evolutionary relationships that
generated them? This includes identifying shared ancestry, relative divergence, and tree-like structure
— tasks that cannot be solved by distributional modeling alone.

This distinction is critical. Evolutionary reasoning is the foundation of phylogenetic analysis — a
problem that predates modern biology and underlies centuries of effort to reconstruct how life has
changed through time. Classical phylogenetics attempts to recover the tree of life Hug (2016) from
observed sequences, but current PLMs are not evaluated on their ability to do this. They operate
largely in isolation, modeling individual sequences without explicit multi-sequence comparison,
structure discovery, or relational inference. Beyond phylogeny, important biological insights can be
discerned from reasoning across sequences, whether it is determining the impact of a protein variant
(Meier et al., 2021; Brandes, 2023; et al., 2023) or annotating functions of poorly characterized
proteins (Nguyen et al., 2024; Avsec, 2021; Zvyagin et al., 2022; Queen et al., 2024).

This work poses the following question: Are current PLMs capable of evolutionary reasoning? And
if not, how must we reimagine their architecture and training to enable them to do so?

Present Work. To address the limitations of current PLMs in performing evolutionary reasoning,
we make several contributions. First, we introduce a benchmark for evolutionary reasoning over
protein sequences, built from curated datasets containing ground-truth phylogenetic trees derived
from established phylogenetic studies and databases. This benchmark enables rigorous evaluation of
whether models can infer evolutionary structure from sets of sequences, rather than simply modeling
local residue distributions. Second, we evaluate existing PLMs on this benchmark. Using their
learned embeddings, we attempt to reconstruct phylogenetic trees and find that these models Lin
et al. (2022); Hayes et al. (2024); ESM Team (2024); Nijkamp et al. (2022); Brixi et al. (2025) fail
to outperform a simple baseline, Hamming distance, when evaluated under standard usage (frozen
or fine-tuned embeddings with distance-based comparison). This analysis highlights a fundamental
limitation: current PLMs are architecturally and functionally optimized for intra-sequence modeling,
not inter-sequence reasoning.

To address this gap, we propose PHYLA, a new model architecture designed for evolutionary reasoning.
PHYLA is a hybrid state-space and sparsified attention model that processes multiple sequences jointly.
It alternates between inter-sequence modules, which detect conserved motifs across sequences, and
intra-sequence modules, which contextualize these motifs within individual sequences—allowing
the model to reason over sequence sets. We also introduce a novel pretraining objective tailored to
phylogenetic structure. Instead of using masked language modeling, PHYLA is trained using a tree
loss that teaches the model to embed sequences such that their pairwise distances reflect the correct
evolutionary topology.

Despite its compact size (24M parameters), PHYLA outperforms existing PLMs in phylogenetic tree
reconstruction and competitive accuracy in mutation effect prediction. On TreeBase—a dataset of
protein sequences paired with phylogenetic trees from published studies—PHYLA outperforms much
larger models, including ESM-3 (1.4B) and ProGen-XLarge (6.4B), by 8% and 13% respectively,
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Figure 1: PHYLA takes unaligned protein sequences and generates embeddings that reflects relative
evolutionary distance between input sequences which we can use to construct phylogenetic trees.

based on normalized Robinson-Foulds (normRF) distance. However, state-of-the-art accuracy re-
mains with traditional phylogenetic algorithms Katoh et al. (2002); Price et al. (2010). PHYLA is
substantially faster and narrows this gap, but further advances in model architecture and training
objectives will be required to surpass classical methods. On the ProteinGym mutation effect predic-
tion benchmark, PHYLA achieves a Spearman correlation of 0.64, matching or exceeding models
with several orders of magnitude more parameters. We further demonstrate PHYLA’s capacity for
evolutionary reasoning by applying it to reconstruct the tree of life from ribosomal protein sequences
spanning Bacteria, Archaea, and Eukarya. Additionally, we use PHYLA to infer whole-genome
evolutionary relationships among Mycobacterium tuberculosis isolates. In both cases, the resulting
trees deviate from canonical topologies and instead reflect known functional distinctions, suggesting
that PHYLA learns representations aligned with true biological structure. These results position
PHYLA as a foundation for a new generation of protein models grounded in evolutionary reasoning
rather than sequence-level pattern recognition alone.

2 Related Work

Protein Language Models (PLMs). State-of-the-art protein language models include transformer-
based models such as ESM2 (Lin et al., 2022), ESMC ESM Team (2024), ProGen (Madani, 2023),
and Progen2 Nijkamp et al. (2022) that are trained using masked or autoregressive language modeling.
These models learn to model the language of proteins by learning the co-occurrence of amino acid
residues within a diverse training set. Other PLMs, such as ESM3 (Hayes et al., 2024), model
additional data modalities. ESM3 considers structural and functional information in addition to
the background amino acid sequences. These models have demonstrated good performance on
intra-sequence reasoning from sequence modeling pre-training tasks, but have not explicitly been
trained to perform inter-sequence reasoning between different sequences in the training set.

Alternatives to self-attention. Self-attention is the backbone of the transformer but suffers from
quadratic scaling with sequence length, making modeling longer protein sequences difficult (Vaswani
et al. (2017)). The Mamba state-space architecture has been proposed as an alternative backbone
architecture for sequence-based foundation models. The architecture builds upon the S4 class of
structured state-space models (Gu et al. (2022)) by adding a selection mechanism and a hardware-
aware parallel algorithm. These advances allow Mamba to model long sequences efficiently. Beyond
Mamba, other approaches use similar ideas to extend context length, including Hyena (Poli et al.,
2023a) and xLSTM (Beck et al., 2024). More recent work has shown hybrid state-space and
transformer architectures allow for long-context modeling while maintaining the advantages of
transformers Poli et al. (2023b); Ren et al. (2025).

Bioinformatics approaches to phylogenetic analysis. Traditional tree reconstruction methods for a
set of input protein sequences consist of generating a multiple sequence alignment (MSA) using one
of many alignment algorithms. The MAFFT and Clustal Omega alignment algorithms are popular
choices for efficient and accurate MSA generation (Katoh et al. (2002); Sievers et al. (2011)). These
alignment algorithms align the input sequences by matching the location of the most conserved amino
acids within the sequences. After generating the MSA, a phylogenetic tree is reconstructed using a
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tree reconstruction algorithm, like FastTree and IQTree (Price et al. (2010); Nguyen et al. (2014)).
These algorithms infer the structure of the phylogenetic tree with and without parametric models and
usually with various heuristics to generate the most likely phylogenetic tree topology. The primary
limitation of tree reconstruction is runtime inefficiency as tree sizes grow. More recent works can be
found in the Appendix A.6.

3 Problem Definition

Evolutionary Reasoning: Problem Formulation Let S = {s1, . . . , sn} denote a set of protein
sequences drawn from an unknown evolutionary process that produced a true, strictly binary phyloge-
netic tree T ∗ whose leaves correspond bijectively to S. The patristic (evolutionary) distance between
sequences si and sj on T ∗ is denoted devol(i, j).

Our goal is to learn an encoder fθ : Σ∗ → Rd that maps each sequence to an embedding space,
together with a distance function dϕ : Rd × Rd → R≥0, such that the embedding-based distances

Dij = dϕ
(
fθ(si), fθ(sj)

)
approximate the true evolutionary distances devol(i, j).

A model fθ is said to perform evolutionary reasoning on S if there exists a computable mapping h
(e.g., a distance-based tree builder) such that the reconstructed tree

T̂ = h(Dpred),

where Dpred[i, j] = Dij , minimizes a topology-level loss

Ltree(T̂ , T
∗) = dist(T̂ , T ∗),

with dist denoting a structural metric such as normalized Robinson-Foulds (normRF) distance.

In our experiments, we use neighbor joining for h, Euclidean distance for dϕ and the normalized
Robinson-Foulds distance for Ltree. Under this formulation, evolutionary reasoning corresponds to
learning embeddings and distance functions whose geometry maximally preserves the information
contained in the true phylogenetic structure.

Alignment-Free and Guide-Tree-Free Unlike most prior methods, our approach does not rely
on a multiple sequence alignment (MSAs are used solely to derive supervision distances, not as
model inputs) or a predefined guide tree (i.e. a fixed topology to scaffold inference). Removing both
introduces new challenges: alignment and tree inference are jointly NP-hard WANG & JIANG (1994);
Roch (2005), and guide trees offer strong structural priors. By dispensing with both, PHYLA must
discover meaningful patterns directly from unaligned sequences—capturing evolutionary structure
without relying on handcrafted heuristics.

4 Methods

4.1 PHYLA Model Architecture

To do well on evolutionary reasoning, models must be able to perform good inter- and intra-sequence
reasoning. Inter-sequence reasoning requires the model to detect motifs that recur across different
sequences, revealing shared evolutionary signatures. Intra-sequence reasoning requires the model to
contextualize identified motifs within the context of an individual sequence to determine evolutionary
divergence from the identified motif.

To meet these requirements, we introduce a hybrid state-space transformer model, PHYLA. The
PHYLA architecture alternates between inter-sequence and intra-sequence reasoning blocks. Inter-
sequence reasoning is performed using BiMamba layers, a parameter-efficient state-space module
with gated linear recurrence and deep receptive fields, enabling the model to detect long-range
evolutionary motifs across sequences Schiff et al. (2024). Intra-sequence reasoning is handled by
sparsified attention layers to contextualize these motifs within each sequence. The current 24M-
parameter PHYLA model comprises three inter-sequence blocks, each containing 16 BiMamba layers
followed by a single sparsified attention layer. Each layer operates with a hidden dimension of 256.
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Figure 2: Overview of the PHYLA. (a) PHYLA processes batches of protein sequences sampled from
a tree, learning embeddings used to reconstruct phylogenies. (b) It alternates inter- and intra-sequence
reasoning blocks. (c) Inter-sequence reasoning uses long bidirectional convolutions to extract shared
motifs; intra-sequence reasoning applies sparsified attention to maintain per-sequence context.

Unlike most PLMs which operate on a single sequence at a time (Lin et al. (2022); Hayes et al. (2024);
ESM Team (2024); Notin et al. (2023b); Nijkamp et al. (2022)), PHYLA is the first PLM designed
to process multiple sequences concurrently. This enables it to directly compare sequences, identify
conserved motifs, and exploit these inter-sequence relationships to infer evolutionary structure at
inference time. While prior models have employed hybrid state-space transformer architectures (Poli
et al. (2023b)), PHYLA introduces a sparsification mechanism: an attention mask M that constrains
each token to attend only to tokens within its own sequence, preserving intra-sequence context while
enabling efficient multi-sequence processing. Specifically M :

Mij =

{
1, if the j-th token is within the i-th sequence,
0, otherwise.

(1)

4.2 PHYLA Model Training

Tree Loss Pretraining. To teach PHYLA how to model input sequences to recapitulate evolutionary
relationships, we designed a novel tree loss pretraining function. Constructing a phylogenetic tree
contains a series of decisions in how to split sequences based on their relative distance to each other.
With this in mind, we use a quartet loss to supervise training. The quartet loss encourages the model
to embed sequences such that inferred distances preserve correct quartet topologies. For a set of n
sequences with predicted pairwise distances Dpred ∈ Rn×n and true distances Dtrue ∈ Rn×n, we
sample a set of quartets Q = {(i, j, k, ℓ)}. For each quartet, we compute three possible pairwise
distance sums:

xij|kℓ = Dij +Dkℓ,

xik|jℓ = Dik +Djℓ,

xiℓ|jk = Diℓ +Djk,

and convert them into logits using a softmax-like transformation:

logitsq =
1

T ∗

([
xij|kℓ xik|jℓ xiℓ|jk

]
− mean(xij|kℓ, xik|jℓ, xiℓ|jk)

)
,

where T ∗ is a temperature hyperparameter controlling softness. We compute the cross-entropy loss
between these logits and the ground-truth minimum sum (from Dtrue):

Lquartet =
1

|Q|
∑
q∈Q

CrossEntropy(logitsq, arg min
α∈{ij|kℓ,ik|jℓ,iℓ|jk}

xtrue
α ).

5



Quartet loss is the sole pretraining objective used to train PHYLA. In contrast to most protein
language models, which rely on masked language modeling (MLM) over amino acids, PHYLA
does not use MLM.

Training Details. PHYLA was trained on distances derived from 3,321 high-quality multiple se-
quence alignments (MSAs) curated from the OpenProteinSet Ahdritz et al. (2023). Low-quality
MSAs were removed using the filtering procedure described in EVE Frazer et al. (2021). For each
MSA, we compute pairwise distances between sequences by counting the number of matching
positions and dividing by the total alignment length. These normalized pairwise distances are used
as supervision during training. We used MSA-derived pairwise distances rather than tree-based
distances, as experiments showed that training on tree distances did not yield significant performance
gains (Appendix A.1.2). Using the precomputed MSAs from OpenProteinSet therefore provided
comparable results at substantially lower computational cost. The current 24M parameter model was
trained on a single 80GB H100 GPU for 3 days with the AdamW optimizer using a 10,000 step linear
warmup up to a learning rate of 1e-5 (Loshchilov & Hutter (2019)).

Adaptive Batch Size Sampling. We employ an adaptive batch sizing approach to efficiently utilize
GPU memory and avoid overfitting to a specific tree topology. We determine the largest subtree
t ∈ T at every training step that can fit within the available GPU memory. Next, we randomly sample
a subtree size n such that 10 ≤ n ≤ |t|, where |t| is the number of sequences in t. Finally, we identify
how many subtrees of the sampled size |t| can be accommodated within the GPU memory. If the
model encounters an out-of-memory (OOM) error during this process, the subtrees are resampled
with both the subtree size and the number of subtrees halved. We empirically determined that PHYLA
can process input lengths up to 213,350 tokens on a 32 GB GPU and up to 302,350 tokens on a 48
GB GPU. For other GPU memory sizes, we used a linear model to estimate the maximum allowable
input length. Given the length of the longest protein in the input, we computed the maximum number
of sequences that could fit within the memory limit.

Training Procedure. During training, a phylogenetic tree T is sampled, where T consists of N
sequences S. Each sequence is tokenized with an alphabet of 23 tokens, corresponding to 20 standard
amino acids, a CLS token, a mask token, and a pad token. The input to PHYLA is S with a [CLS] token
concatenated in front of each tokenized sequence, s ∈ S: {[CLS]s1∥[CLS]s2∥[CLS]s3...[CLS]sn}.
The size and number of trees considered in each training step are determined at each training step by
the adaptive batch size sampler.

5 Experiments

Datasets. We evaluate PHYLA on a range of evolutionary and functional reasoning tasks. For
phylogenetic tree reconstruction, we use two held-out datasets: TreeBase, which includes 1,533
curated phylogenetic trees across diverse species (Piel & Tannen (2009)), and TreeFam, which
contains 9,586 gene-family trees spanning a wide evolutionary range (Li et al. (2006)). Dataset
statistics are provided in Table 3 and Table 4, with further details in Appendix A.1.1. To assess
taxonomic classification, we use bacterial isolate sequences from the Genome Taxonomy Database
(GTDB) (Parks et al. (2021)). We define five classification tasks at different levels of taxonomic
granularity: Class, Order, Family, Genus, and Species. These tasks measure the model’s ability
to cluster sequences according to hierarchical evolutionary relationships. Together, these seven
tasks—tree reconstruction in TreeBase and TreeFam, and taxonomic classification at five levels using
GTDB—form our evolutionary reasoning benchmark. To evaluate performance beyond evolutionary
structure, we also assess performance on functional prediction using the ProteinGym benchmark,
which consists of 83 protein mutation effect datasets (Notin et al., 2023a) (Appendix A.1.3).

Baselines. We consider four protein language models, one genomic foundation model, six models
from the ProteinGym benchmark, and a naive Hamming distance baseline. The protein language
models include ESM2, ESM3, ESM C, and ProGen2 (Lin et al. (2022); Hayes et al. (2024); ESM
Team (2024); Nijkamp et al. (2022)). The genomic foundation model is Evo 2 (Brixi et al. (2025)).
The six models from the ProteinGym benchmark are ProteinNPT, MSA Transformer, ESM-1v,
Tranception, TranceptEVE, and DeepSequence (Notin et al. (2023a,b); Rao et al. (2021); Meier
et al. (2021); Notin et al. (2022); Riesselman (2018); Notin (2022)). We also evaluate a traditional
phylogenetic pipeline consisting of a multiple sequence alignment constructed via MAFFT Katoh
et al. (2002) and then a tree constructed via FastTree Price et al. (2010).
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Evaluation setup. We consider three evaluation settings. Tree reconstruction: This setting evaluates
the model’s ability to reconstruct phylogenetic trees given solely the original sequences. For each
method, we generated protein embeddings, computed pairwise distances between embeddings,
and reconstructed trees using the neighbor-joining algorithm. We evaluate tree reconstruction by
comparing the predicted tree to the reference tree using the normalized Robinson-Foulds metric
(Robinson & Foulds (1981)). Taxonomic clustering: This setting evaluates the model’s ability to
perform fine-grained and coarse-grained classification of sequences. We cluster 500 sequences at
each taxonomic level of Class, Order, Family, Genus, and Species and assess the homogeneity of
the predicted clusters. Functional prediction: This setting evaluates the model’s ability to predict
functional labels given solely the original sequences. We assess functional prediction by training a
linear probe classifier on the generated embeddings, and also by utilizing the predicted tree structure
to assign labels. More details can be found in Appendix A.1.1.

5.1 PHYLA can Reason over Protein Sequences

Experimental setup. To assess the ability of PHYLA to reason over sequences, we assess PHYLA’s
ability to reconstruct phylogenetic trees on the TreeBase and TreeFam datasets. We use the metric
of Robinson-Foulds distance, or “RF”, whereby a larger RF value is equivalent to a larger distance
between predicted and reference tree, and can be interpreted as a lower quality predicted tree. The
RF metric is not invariant to tree size, so we compute the normalized RF, or “normRF”, to directly
compare the tree reconstruction performance between trees of different sizes. We utilize the ETE3
Toolkit implementation of RF and normRF distance (Jaime Huerta-Cepas & Bork (2016)). In addition,
we assess PHYLA’s ability to cluster sequences across various taxonomic levels. We report the metric
of homogeneity across predicted clusters as a measure of the ability to classify sequences. We
compare the performance of PHYLA against PLMs (ESM2, ESM3, ESM C, ProGen2), a genomic
foundation model (Evo 2), and a traditional phylogenetics workflow (MAFFT and FastTree) (Lin
et al. (2022); Hayes et al. (2024); ESM Team (2024); Nijkamp et al. (2022); Brixi et al. (2025); Katoh
et al. (2002); Price et al. (2010)). Table 1 shows the normRF performance of PHYLA and benchmark
models on the TreeBase and TreeFam datasets.

Results. PHYLA achieves the best performance out of all tested PLMs on both the TreeBase and
TreeFam tree reconstruction benchmarks, outperforming all tested baselines—including models with
12 to 266 times more parameters, such as ESM2 (650M) and ProGen2-XLarge (6.4B) (Table 1).
On TreeFam, PHYLA reduces normRF by 13.4% compared to the next-best model (ESM2 650M).
This improvement is not attributable to data overlap with the pretraining corpus (Appendix A.1.1).
Fine-tuning ESM2 embeddings with the same tree-based loss did not yield meaningful gains (Ap-
pendix A.1.2), and training PHYLA with tree-derived versus MSA-derived supervision produced
comparable results (Appendix A.1.2), indicating that performance arises from the model architecture
rather than specific training heuristics.

Traditional alignment-based methods remain the accuracy upper bound: the MAFFT + FastTree
pipeline achieves a normRF of 0.65 on TreeBase and 0.32 on TreeFam, while PHYLA attains 0.73
and 0.58, respectively—closing roughly half of this gap. Notably, the classical workflow required
roughly 2 hours on TreeBase and 66 hours on TreeFam across multiple CPU nodes, whereas PHYLA
completed both in under an hour on a single H100 GPU. On the taxonomy clustering benchmark,
PHYLA also achieves the best performance across all taxonomic levels, improving species-level
homogeneity by 23.2% over the strongest baseline. Notably, all PLMs underperform compared to
the naive Hamming distance baseline on TreeBase, highlighting the challenge of this dataset. These
results underscore the effectiveness of incorporating evolutionary structure into PHYLA architecture
and training.

5.2 PHYLA Trees Encode Protein Functional Information

Experimental setup. To evaluate the expressivity of the learned embeddings, we use two comple-
mentary strategies for PHYLA and the baseline PLMs. For PHYLA, we convert its embeddings into
pairwise distances and construct trees using the neighbor-joining algorithm, as in the previous bench-
mark. Functional labels from the training sequences are then overlaid onto the resulting tree. Local
sequence clusters are identified using TreeCluster (Balaban M, 2019), which assigns each evaluation
sequence to a cluster. The functional label of a test sequence is inferred by averaging the labels of
training samples within its cluster, and performance is measured using Spearman rank correlation
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Table 1: Evolutionary reasoning benchmark comparing PHYLA to existing protein language
models (PLMs). Tree reconstruction performance on TreeBase and TreeFam is evaluated using
normalized Robinson-Foulds distance (normRF), where lower values indicate better agreement
with ground truth phylogenies. Clustering performance at the Class, Order, Family, Genus, and
Species levels is measured using homogeneity scores, with higher values indicating more accurate
unsupervised grouping according to known taxonomic labels. For other clustering metrics see
Appendix A.5.

Model TreeBase ↓ TreeFam ↓ Class ↑ Order ↑ Family ↑ Genus ↑ Species ↑
Hamming Distance 0.75 0.75 – – – – –
MAFFT+FastTree 0.65 0.32 – – – – –
ESM2 (650M) 0.78 0.67 0.64 0.66 0.68 0.71 0.75
ESM2 (3B) 0.79 0.67 0.55 0.56 0.57 0.59 0.67
ESM3 (1.4B) 0.81 0.72 0.61 0.63 0.66 0.67 0.72
ESM C (300M) 0.77 0.71 0.57 0.60 0.62 0.67 0.71
ESM C (600M) 0.80 0.73 0.61 0.66 0.66 0.71 0.75
Evo 2 (7B) 0.84 0.84 0.50 0.54 0.55 0.55 0.64
ProGen2-Large (2.7B) 0.77 0.68 0.60 0.65 0.66 0.71 0.75
ProGen2-XLarge (6.4B) 0.86 0.82 0.52 0.55 0.57 0.61 0.68

PHYLA (24M) 0.73 0.58 0.71 0.76 0.87 0.93 0.98

between predicted and true labels. For baseline PLMs, we follow the standard evaluation protocol
and train a linear probe to predict functional labels directly from their embeddings. Applying this
linear-probe approach to PHYLA performed poorly. We utilize the 83 datasets from the ProteinGym
(Notin et al. (2023a)) benchmark as our evaluation set (Appendix A.1.3). Figure 3 shows the average
Spearman correlation metric with both the dataset size (in number of sequences trained on) and the
model size (in parameters) on the 83 ProteinGym evaluation datasets.

Results. PHYLA achieves competitive performance on the ProteinGym benchmark, ranking among
the top-performing models across the 83 functional prediction tasks (Figure 3). Despite being trained
on 34 times less data and with 27 times fewer parameters than models like ESM2 (650M), PHYLA
achieves a comparable Spearman correlation of 0.64. Notably, PHYLA outperforms several larger
PLMs, including ESM3 (1.4B) and Tranception, demonstrating that its tree-based representations
encode meaningful biological function. These results suggest that the structured embeddings pro-
duced by PHYLA not only capture phylogenetic and taxonomic information but also generalize to
downstream functional prediction—despite minimal model size and data requirements.

5.3 Ablation Analyses

Experimental setup. To understand the effect of the tree loss versus traditional masked language
modeling loss, we trained PHYLA with only masked language modeling (PHYLA-MLM). To probe
the effect of PHYLA architecture on performance, we ablated the sparsified attention layers, which are
the intra-sequence reasoning blocks (PHYLA-NoAttention). We then evaluated both ablated PHYLA
models on the tree reasoning benchmark and on functional prediction.

Results. As shown in Table 2, pretraining on a masked language modeling (MLM) objective resulted
in substantial performance degradation across all tasks: a 19.3% increase in normalized Robinson-
Foulds (normRF) distance for tree reconstruction (TreeBase and TreeFam), a 16.4% drop in Spearman
correlation for functional prediction (ProteinGym), and a 5.3% reduction in average taxonomic
clustering homogeneity. Similarly, ablating sparsified attention led to even greater degradation: a
20.4% increase in normRF, a 45.5% drop in functional prediction, and a 7.4% reduction in taxonomic
clustering. These results highlight that both the tree-based training objective and the sparsified
attention mechanism are critical to PHYLA’s overall performance.

5.4 PHYLA application to real world datasets

PHYLA demonstrates promising performance in sequence reasoning. To showcase its capabilities,
we applied PHYLA to the task of phylogenetic tree construction. The tree of life is a fundamental
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Figure 3: Functional prediction performance on ProteinGym with model sizes and dataset sizes.
Spearman correlation of existing PLMs and PHYLA on ProteinGym benchmark as a function of
pretraining dataset size. Model points are sized based on the number of parameters in the model.

Table 2: Ablation study on PHYLA’s architecture and training objectives. Tree reconstruction is
evaluated on TreeBase and TreeFam using normalized Robinson-Foulds distance (normRF), where
lower values indicate better alignment with ground truth trees. Functional prediction is assessed on
ProteinGym using Spearman correlation (higher is better). Taxonomic clustering is evaluated at five
hierarchical levels—class, order, family, genus, and species—using homogeneity scores, with higher
values indicating more taxonomically consistent clusters. Additional clustering metrics are reported
in Appendix A.4.

Model TreeBase ↓ TreeFam ↓ ProteinGym ↑ Class ↑ Order ↑ Family ↑ Genus ↑ Species ↑
PHYLA-MLM 0.83 0.79 0.55 0.66 0.76 0.80 0.87 0.95
PHYLA-NoAttention 0.86 0.78 0.44 0.69 0.74 0.78 0.82 0.92
PHYLA 0.73 0.58 0.64 0.71 0.76 0.87 0.93 0.98

framework in biology, delineating evolutionary relationships between organisms and serving as an
indicator of relative phenotypic traits. Current approaches to constructing the tree of life typically
rely on multiple sequence alignments of ribosomal proteins (Hug et al., 2016). We used PHYLA to
analyze a set of 3,084 phylogenetic sequences, successfully reconstructing the tree of life in just 16
hours, compared to the 3,840 hours required by traditional methods (Hug et al., 2016) (Appendix
A.2).

In order to evaluate the validity of the reconstructed tree of life, we compare the tree to the multiple
sequence alignment and perform manual feature inspection. As shown in Figure 1, PHYLA accurately
places sequences within their respective domains in the tree of life. PHYLA identifies overlap between
certain Archaeal isolates and Bacteria, a result consistent with current phylogenetic reasoning.
Lokiarchaeota, an Archaeal lineage clustered with Bacteria, is known to have a mosaic genome with
over 30% of its genome derived from Bacteria (Levasseur et al., 2017). Within this genus, PHYLA
placed Lokiarchaeaota archaeon loki (L-A) paraphyletic to Bacteria while Lokiarchaeota 45 8 (L-45)
is paraphyletic to Archaea (Figure 4a). Examination of the multiple sequence alignment of L-45
and L-A with their immediate phylogenetic neighbors revealed that L-45 harbors a deletion of the
S3 ribosomal protein while L-A retains this protein (Figure 4b). The S3 deletion has been noted in
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Figure 4: PHYLA created a new placement of Lokiarchaea. (a) Lokiarchaeaota archeaon loki
(L-A) was placed among Bacterial neighbors while Lokiarchaeota 45 8 (L-45) was placed among
Archaeal neighbors. (b) Analysis of the multiple sequence alignment revealed that L-A placed with
Bacteria retained a conserved S3 ribosomal protein, aligning with its Bacterial neighbors. In contrast,
the L-45 placed with Archaea exhibited a deletion of the S3 ribosomal protein, aligning with its
Archaeal neighbors.

previous studies of Lokiarchaea genomes Da Cunha et al. (2017). Biologically, these differences
may relate to adaptation to extreme environments. L-45 was isolated from the bottom of the Arctic
Ocean, while L-A was isolated from the Horonobe Underground Research Laboratory (URL) in
Japan. In fact, L-A’s neighbor, Methylacidiphilum infernorum, is an acidophilic methanotroph
originally isolated from a geothermal area in New Zealand Hou et al. (2008). This environment
shares similarities with the conditions in the URL, where extensive methane metabolism has been
observed Amano et al. (2024). This highlights PHYLA’s ability to discover potentially biologically
meaningful evolutionary relationships through probing the output reconstructed tree. We also apply
PHYLA to whole-genome sequences of Mycobacterium tuberculosis, aligning over 4 megabases of
DNA to infer novel phylogenetic relationships among clinical isolates (Appendix A.3).

6 Conclusion

We introduced an evolutionary reasoning benchmark showing that existing PLMs fail to recover
phylogenetic structure, revealing a gap between sequence modeling and evolutionary reasoning.
To address this, we proposed PHYLA, a hybrid state-space transformer trained with a tree-based
objective. PHYLA achieves state-of-the-art performance on evolutionary reasoning and competitive
accuracy on functional prediction, despite using far fewer parameters and data than large PLMs.

Traditional alignment-based methods such as MAFFT + FastTree remain the accuracy benchmark,
but PHYLA narrows this gap while offering orders-of-magnitude faster inference. Limitations include
reliance on distance-based tree reconstruction, operation in Euclidean space that may underrepresent
hierarchical structure, and an evolutionary benchmark that, while practical, cannot fully capture
the diversity or open-ended nature of protein evolution. As more curated phylogenetic datasets
become available, expanding this benchmark is an important next step. Overall, PHYLA shows that
evolutionary reasoning does not emerge from standard sequence-modeling paradigms and points
toward a new class of models that learn evolution directly.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We introduce a new evolutionary reasoning benchmark that exposes a clear
limitation of current PLMs. We also introduce a new model PHYLA that is explicitly trained
to model multiple sequences and performs well on evolutionary reasoning tasks while
maintaining strong functional prediction performance.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss all potential limitations of our work in the Supplemental.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA] .

Justification: We do not include any theoretical results in our paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We include code to run our model and all IDs of datasets we use to train and
evaluate our model.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We include a link to an anonymized version of our Github repository, which
includes code to run our model. We also include the IDs of the datasets we use to train our
model from the OpenProteinSet (Ahdritz et al. (2023)) and the datasets we use for evaluation
from TreeBase, TreeFam, GTDB, and ProteinGym (Piel & Tannen (2009); Li et al. (2006);
Parks et al. (2021); Notin et al. (2023a)).
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We include all details about hyperparameters used for model training in the
Supplemental. We also include details about all evaluation datasets in the Experiments
section, with further details in the Supplemental.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: Since we perform one run for each of our evaluation results, we do not report
error bars to represent standard deviation of the results over multiple runs. We include
statistical significance tests of our results in the Supplemental.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We include all details on compute resources used to train PHYLA in the
Supplemental.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We do not involve any human subjects in our research, we utilize only public
datasets that do not require external consent forms, we include open access to code and data,
and we outline any potential safety concerns of our work in the Supplemental.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
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Justification: We include details about both positive and negative societal impacts of our
work in the Supplemental.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The current version of our PHYLA model is very small and light-weight at 24M
parameters so it does not pose significant risk compared to larger genomic and proteomic
foundation models trained in the billions of parameters.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We include citations for all code, data, and models that were referenced in our
work or used as inspiration to develop our methods.
Guidelines:

• The answer NA means that the paper does not use existing assets.
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• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We introduce a new benchmark and PHYLA model in our paper, and we
document these novel contributions in our anonymized Github.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We do not utilize any human subjects in our work.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
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Justification: We do not utilize any human subjects in our work, and thus do not require IRB
approval.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We do not use LLMs for important, original, or non-standard components of
the core methods in our work.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Technical Appendices and Supplementary Material

Table 3: Information about the 1,533 TreeBase evaluation datasets.

Dataset Metric Min Mean Max Standard Deviation
Average Sequence Length 5 322 3658 288
Number of Sequences 4 53 1284 65

Table 4: Information about the 9,586 TreeFam evaluation datasets

Dataset Metric Min Mean Max Standard Deviation
Average Sequence Length 40 599 31926 687
Number of Sequences 4 33 375 34

A.1 Tree reasoning and Protein Gym benchmark

A.1.1 Tree reasoning benchmark

Tree Reconstruction. We evaluate tree reconstruction performance using two external datasets:
TreeBase Piel & Tannen (2009) and TreeFam Li et al. (2006). TreeBase is a curated repository
of 12,817 phylogenetic trees from peer-reviewed studies, along with associated sequence data
contributed by users. After filtering for trees with complete and parseable sequence information,
we retained 1,533 trees for analysis. TreeFam is a database of gene family trees focused on animal
genomes. We extracted 9,586 gene trees along with their corresponding protein sequences. To
evaluate reconstruction quality, we computed the normalized Robinson-Foulds distance (lower is
better) between the predicted and reference trees. We found that PHYLA had the lowest normalized
Robinson-Foulds distance among all models. This difference was significant (p < 0.05, one-sided
t-test, Table 5) for all models.

We also evaluate the overlap between the training corpus (OpenProteinSet) and the evaluation sets
(TreeBase, TreeFam). We ran BLAST Altschul et al. (1990) between each tree in TreeBase and
TreeFam and all the sequences in the training corpus using an e-value cutoff of 1e-5 and bitscore
cutoff of 50. We found in TreeBase only 0.56% of evaluation trees had any match to the training set.
The overall mean percent identity of sequences in TreeBase is 0.38%. In TreeFam only 3.38% of
evaluation trees had any match to the training set. The overall mean percent identity of sequences in
TreeFam is 0.23%. These results indicate minimal leakage and highlights the ability of PHYLA to
generalize.

Table 5: P-values from paired t-tests comparing PHYLA with baseline PLMs on normalized Robinson-
Foulds scores for TreeBase and TreeFam. Lower values indicate statistically significant improvements.

Baseline Model TreeBase P-value TreeFam P-value

ESM2 (650M) 6.78× 10−16 1.54× 10−102

ESMC (300M) 1.69× 10−9 7.95× 10−222

ESMC (600M) 4.61× 10−27 7.16× 10−288

ESM2 (3B) 7.72× 10−24 3.95× 10−118

ProGen2-Large (2.7B) 1.37× 10−12 4.63× 10−112

ProGen2-XLarge (6.4B) 7.99× 10−99 1.37× 10−308

ESM3 (1.4B) 3.20× 10−40 5.41× 10−249

Evo2 (7B) 4.71× 10−65 1.37× 10−308

Taxonomic Clustering Evaluation. We evaluate taxonomic structure using data from the Genome
Taxonomy Database (GTDB), a high-quality and frequently updated resource for microbial taxonomy.
GTDB taxonomic labels are derived by concatenating multiple sequence alignments of 120 marker
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proteins per organism. We use Release 10-RS226 (released April 16, 2025), which contains 715,230
organisms.

To construct our evaluation dataset, we randomly sample 50 groups of 10 organisms each, ensuring
that all organisms within a group share the same taxonomic label at either the class, order, family,
genus, or species level depending on the benchmark. For each model, we compute organism-
level embeddings as follows: (1) For baseline models, we embed each of the 120 marker proteins
independently, then average the resulting embeddings to produce a single vector per organism. (2)
For PHYLA, we batch all 500 organisms for each marker protein (e.g. protein 1) and compute
embeddings jointly. We repeat this for all 120 proteins, then average across them to obtain organism-
level embeddings. We then perform k-means clustering (as implemented in scikit-learn) with k=50,
corresponding to the number of groups.

In the main text, we report results for one such sample of 500 organisms. However, we find that
performance is consistent across clustering metrics (completeness, homogeneity, NMI) and across
random seeds. We generate four additional random samples and report mean and standard deviation
across these replicates. PHYLA achieves state-of-the-art performance in taxonomic clustering across
all taxonomic levels. It is only outperformed by ProGen2-XLarge in completeness at the class level
(Table 6).

A.1.2 Extended Benchmarking

Fine-tuned ESM2-650M. We fine-tuned the strongest baseline model, ESM2-650M, using two
lightweight heads—a feed-forward network and a transformer head—trained with the same quartet
loss as PHYLA, while freezing the backbone (as backpropagation through 650M parameters for trees
with more than 100 leaves is computationally infeasible). Despite this targeted fine-tuning, the best
variant achieved normalized Robinson–Foulds (normRF) scores of 0.77 on TreeBase and 0.79 on
TreeFam, whereas PHYLA —trained end-to-end to reason jointly over sets of sequences—achieved
0.73 and 0.58, respectively. These results indicate that the performance gap cannot be attributed
solely to evaluating PLMs in a zero-shot setting.

Input-Order Robustness. For each evaluation tree in TreeBase and TreeFam, PHYLA processes the
full set of sequences in a single forward pass. Because the model is trained on randomly sampled and
permuted sequence subsets, its predictions are invariant to input order. To verify this property, we
randomly shuffled the sequence order for 250 trees from TreeBase five times each and measured the
standard deviation in normalized RF scores. The mean deviation was 0.01, confirming that PHYLA’s
embeddings and resulting distance matrices are effectively deterministic with respect to sequence
order.

Training signal comparison. To assess whether the choice of supervision signal influences per-
formance, we compared two variants of PHYLA trained using (i) normalized Hamming distances
computed from multiple sequence alignments (MSAs) and (ii) pairwise patristic distances extracted
from trees reconstructed with FastTree on the same MSAs. Both variants achieved nearly identical
performance on TreeBase and TreeFam benchmarks, with differences below 0.01 in normalized
Robinson–Foulds distance (Table 7).

These results indicate that PHYLA does not simply replicate a specific distance metric but learns
generalizable representations that capture consistent topological structure across distance definitions.
In practice, Hamming distances serve as an efficient proxy for topological supervision without
materially affecting model behavior or accuracy.

A.1.3 ProteinGym benchmark

The 83 ProteinGym datasets were chosen based on the memory constraint of a single 80GB H100
GPU. We stratified performance on the ProteinGym functional prediction benchmark across various
levels of overlap between pre-training and evaluation datasets. We quantified overlap by running the
Basic Local Alignment Search Tool (BLAST) algorithm between each representative sequence of the
83 ProteinGym datasets and each model’s pre-training dataset (Altschul et al. (1990)). Overlap was
calculated as the average percent similarity of output hits. We did not include the total number of hits
when calculating the overlap metric in order to not further penalize models with larger pre-training
datasets.
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Table 6: Clustering evaluation metrics (mean ± std) across taxonomic levels. Standard deviation and
mean across 5 random taxonomic group samples from GTDB.

Taxonomic Level Model Homogeneity Completeness NMI

Class

ESM2 (650M) 0.54 ± 0.05 0.64 ± 0.04 0.58 ± 0.05
ESM3 (1.4B) 0.67 ± 0.01 0.71 ± 0.01 0.69 ± 0.01
ESMC (300M) 0.55 ± 0.10 0.62 ± 0.10 0.58 ± 0.10
ESMC (600M) 0.51 ± 0.02 0.59 ± 0.02 0.55 ± 0.02
ProGen2-Large (2.7B) 0.67 ± 0.02 0.74 ± 0.02 0.70 ± 0.02
ProGen2-XLarge (6.4B) 0.66 ± 0.04 0.75 ± 0.03 0.70 ± 0.03
Evo2 (7B) 0.58 ± 0.02 0.67 ± 0.01 0.62 ± 0.01

PHYLA (24M) 0.69 ± 0.02 0.73 ± 0.02 0.71 ± 0.02

Family

ESM2 (650M) 0.57 ± 0.05 0.68 ± 0.04 0.62 ± 0.04
ESM3 (1.4B) 0.75 ± 0.02 0.78 ± 0.03 0.76 ± 0.02
ESMC (300M) 0.59 ± 0.11 0.67 ± 0.10 0.63 ± 0.11
ESMC (600M) 0.48 ± 0.04 0.61 ± 0.04 0.54 ± 0.04
ProGen2-Large (2.7B) 0.74 ± 0.04 0.81 ± 0.03 0.77 ± 0.03
ProGen2-XLarge (6.4B) 0.65 ± 0.07 0.76 ± 0.05 0.70 ± 0.06
Evo2 (7B) 0.62 ± 0.05 0.72 ± 0.05 0.67 ± 0.05

PHYLA (24M) 0.85 ± 0.02 0.88 ± 0.02 0.86 ± 0.02

Genus

ESM2 (650M) 0.64 ± 0.05 0.74 ± 0.04 0.68 ± 0.05
ESM3 (1.4B) 0.83 ± 0.02 0.85 ± 0.02 0.84 ± 0.02
ESMC (300M) 0.65 ± 0.10 0.73 ± 0.11 0.69 ± 0.10
ESMC (600M) 0.51 ± 0.09 0.66 ± 0.06 0.58 ± 0.08
ProGen2-Large (2.7B) 0.77 ± 0.06 0.85 ± 0.04 0.81 ± 0.05
ProGen2-XLarge (6.4B) 0.68 ± 0.08 0.79 ± 0.05 0.73 ± 0.07
Evo2 (7B) 0.74 ± 0.06 0.80 ± 0.04 0.77 ± 0.05

PHYLA (24M) 0.95 ± 0.02 0.97 ± 0.01 0.96 ± 0.01

Order

ESM2 (650M) 0.57 ± 0.03 0.67 ± 0.03 0.62 ± 0.03
ESM3 (1.4B) 0.72 ± 0.03 0.76 ± 0.02 0.74 ± 0.03
ESMC (300M) 0.58 ± 0.10 0.65 ± 0.10 0.61 ± 0.10
ESMC (600M) 0.51 ± 0.03 0.63 ± 0.02 0.57 ± 0.03
ProGen2-Large (2.7B) 0.68 ± 0.04 0.76 ± 0.04 0.72 ± 0.04
ProGen2-XLarge (6.4B) 0.65 ± 0.03 0.75 ± 0.03 0.69 ± 0.03
Evo2 (7B) 0.60 ± 0.05 0.69 ± 0.03 0.64 ± 0.04

PHYLA (24M) 0.78 ± 0.03 0.81 ± 0.02 0.79 ± 0.02

Species

ESM2 (650M) 0.69 ± 0.05 0.79 ± 0.04 0.73 ± 0.05
ESM3 (1.4B) 0.85 ± 0.03 0.88 ± 0.03 0.87 ± 0.03
ESMC (300M) 0.73 ± 0.06 0.82 ± 0.02 0.77 ± 0.04
ESMC (600M) 0.52 ± 0.04 0.72 ± 0.04 0.60 ± 0.04
ProGen2-Large (2.7B) 0.85 ± 0.04 0.90 ± 0.03 0.87 ± 0.03
ProGen2-XLarge (6.4B) 0.73 ± 0.04 0.83 ± 0.03 0.77 ± 0.03
Evo2 (7B) 0.82 ± 0.03 0.87 ± 0.03 0.84 ± 0.03

PHYLA (24M) 0.98 ± 0.01 0.99 ± 0.00 0.99 ± 0.01

When comparing functional prediction performance between PHYLA and ESM2 on all 83 ProteinGym
datasets, ESM2 significantly outperforms PHYLA by 0.14. However, on low-overlap regimes with
less than 40% similarity to the model’s pre-training dataset, PHYLA outperforms ESM2 by 0.03 as
shown in Table 8 (Pearson (2013). Performance degrades on low-overlap regimes for all models,
but PHYLA’s performance degrades less. In addition, PHYLA occupies a lower overlap regime than
ESM2, which is likely due to the smaller pre-training set used for PHYLA.
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Table 7: Performance comparison when training with Hamming versus tree-based supervision signals.

Training Signal TreeBase (normRF) TreeFam (normRF)
Hamming Distance (original) 0.73 0.58
FastTree Distance 0.73 0.58

Table 8: Functional Prediction Across Various Overlap Settings. Model performance on predicting
functional effects in ProteinGym stratified into low-overlap and high-overlap settings based on
alignment overlap.

Model Low-Overlap High-Overlap All Datasets
ESM2 0.59 0.80 0.78
PHYLA-MLM 0.53 0.61 0.55
PHYLA-NoAttention 0.40 0.53 0.44

PHYLA 0.62 0.68 0.64

A.2 Tree of Life analysis

To reconstruct the tree of life, we use a dataset of 3,083 organisms, each represented by the con-
catenated multiple sequence alignment (MSA) of 16 conserved ribosomal proteins Hug (2016). For
input to PHYLA, we concatenate the raw amino acid sequences of all 16 ribosomal proteins per
organism, yielding sequence lengths of approximately 6 million tokens. We process these sequences
using PHYLA on a high-memory CPU machine (800 GB RAM), requiring approximately 16 hours of
compute time for a full forward pass. We then compute pairwise distances between organism-level
embeddings and apply the neighbor-joining algorithm to construct the resulting phylogenetic tree.

A.3 Tuberculosis analysis

Tuberculosis (TB) is one of the leading causes of death globally due to infectious disease World
Health Organization (2024). A major challenge in controlling TB is its capacity to rapidly evolve
drug resistance. Genomic surveillance has become a critical tool in addressing this issue: by tracking
the evolutionary dynamics of TB, we can detect emerging resistance before it becomes widespread
and adapt treatment strategies accordingly Thorpe et al. (2024). We use PHYLA to construct the first
whole-genome phylogenetic tree of Mycobacterium tuberculosis isolates. Specifically, we analyze
151 complete TB genomes (around 4 Mb each) Marin et al. (2025). To generate organism-level
representations, we divide each genome into non-overlapping 500 bp segments (shared across all
151 genomes), embed each chunk using PHYLA, and then average the resulting embeddings across
the genome. This approach is well-suited to TB, which is a highly clonal organism with limited
variation across isolates—making direct genome chunking and alignment across samples both feasible
and meaningful Freschi et al. (2021). We compute pairwise distances between the organism-level
embeddings and reconstruct the phylogenetic tree using the neighbor-joining algorithm (Figure 5).

PHYLA accurately reconstructs the major global lineages of Mycobacterium tuberculosis, recovering
coherent clades corresponding to Lineages 1–6 and the recently described Lineage 8 Freschi et al.
(2021). The topology is broadly consistent with established TB phylogenies, with early-branching
Lineage 1 and distinct clusters for the derived East Asian (Lineage 2) and Euro-American (Lineage
4) groups. Deviations are observed in the relative positioning of Lineages 3 and 4, which appear
slightly closer than expected. Given that PHYLA infers these relationships directly from sequence
embeddings rather than explicit substitution models, the recovery of lineage-level structure without
supervision underscores that the learned representation captures genuine evolutionary signal beyond
surface sequence similarity.
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Figure 5: PHYLA-generated tree of whole genome Tuberculosis (TB) isolates. By comparing
chunks of the genome of TB across 151 TB isolates, PHYLA constructed the first whole genome tree
of TB. Labeled are the main lineages of TB (lineage2, lineage 3, and lineage 4).

A.4 Ablations

We retested our ablations, PHYLA-MLM trained with only the MLM loss and PHYLA-NoAttention
trained without sparsified attention, on the extended taxonomic clustering dataset described in
Section A.1.1. We found across all taxonomic levels, except class, PHYLA had the best performance
across all metrics assessed. PHYLA also has significantly better tree reconstruction on TreeBase and
TreeFam than all ablations (Table 10).
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Table 9: Clustering evaluation metrics (mean ± std) for PHYLA variants across taxonomic levels.
Standard deviation and mean across 5 random taxonomic group samples from GTDB.

Taxonomic Level Model Homogeneity Completeness NMI

Class
PHYLA-MLM 0.65 ± 0.02 0.69 ± 0.02 0.67 ± 0.02
PHYLA-NoAttention 0.69 ± 0.02 0.74 ± 0.01 0.71 ± 0.02
PHYLA 0.69 ± 0.02 0.73 ± 0.02 0.71 ± 0.02

Family
PHYLA-MLM 0.78 ± 0.02 0.80 ± 0.02 0.79 ± 0.02
PHYLA-NoAttention 0.79 ± 0.02 0.83 ± 0.02 0.81 ± 0.02

PHYLA 0.85 ± 0.02 0.88 ± 0.02 0.87 ± 0.02

Genus
PHYLA-MLM 0.89 ± 0.02 0.92 ± 0.02 0.90 ± 0.02
PHYLA-NoAttention 0.85 ± 0.03 0.88 ± 0.02 0.87 ± 0.03

PHYLA 0.95 ± 0.02 0.97 ± 0.01 0.96 ± 0.01

Order
PHYLA-MLM 0.74 ± 0.01 0.78 ± 0.01 0.76 ± 0.01
PHYLA-NoAttention 0.74 ± 0.03 0.79 ± 0.02 0.76 ± 0.02

PHYLA 0.78 ± 0.03 0.81 ± 0.02 0.79 ± 0.02

Species
PHYLA-MLM 0.94 ± 0.01 0.96 ± 0.01 0.95 ± 0.01
PHYLA-NoAttention 0.92 ± 0.01 0.94 ± 0.01 0.93 ± 0.01

PHYLA 0.98 ± 0.01 0.99 ± 0.00 0.99 ± 0.01

Table 10: P-values from paired t-tests comparing PHYLA with PHYLA ablations on normalized
Robinson-Foulds scores for TreeBase and TreeFam. Lower p-values indicate stronger statistical
significance.

Baseline Model TreeBase P-value TreeFam P-value

PHYLA-MLM 1.14× 10−57 0.0
PHYLA-NoAttention 1.94× 10−91 0.0

A.5 Evolution Reasoning Result

Please see Section A.1.1.

A.6 Recent Work

Evolutionary reasoning versus evolutionary modeling. Previous studies distinguish between fitting
a generative model to observed sequence data and reasoning about the underlying fitness landscape
that produced those sequences Weinstein et al. (2022); Ding et al. (2019). From these works, we know
generative sequence models aim to match the marginal distribution of extant proteins (evolutionary
modeling), whereas evolutionary reasoning seeks to recover the selective pressures and functional
constraints driving those distributions.

AI for Phylogenetic Tree Construction. Recent years have seen a surge of AI-driven approaches for
evolutionary-biology problems. For instance, PhyloVAE and ARTree Xie et al. (2025); Xie & Zhang
(2023) generate plausible tree topologies from collections of existing phylogenies. GeoPhy and
Phyloformer Mimori & Hamada (2023); Nesterenko et al. (2025) take a multiple sequence alignment
(MSA) as input and infer both tree topology and branch lengths by maximizing the likelihood under a
fixed substitution model. Other methods—such as DEPP and DeePhy Jiang et al. (2022); Mahapatra
& Mukherjee (2025)—are designed to place unaligned query sequences into a reference phylogenetic
tree or into existing triplets of sequences. In contrast, PHYLA focuses on a task that combines
these capabilities: starting from unaligned sequences alone, it simultaneously infers a complete tree
topology without requiring any prior alignment.
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A.7 Evaluation on Masked Token Prediction

In addition to evaluating the ability of PHYLA and benchmark models to perform evolutionary
reasoning, we also assess performance on a standard PLM task of masked-token prediction. PHYLA
trained only with masked-language modeling attains 30% top-1 accuracy with reduced evolutionary
reasoning performance; training with tree loss decreases accuracy to 11% but improves evolutionary
reasoning performance (See PHYLA-MLM performance in 2 for evolutionary reasoning performance).
Conventional PLMs (ESM-2 650M, ProGen2) achieve 45–55%. These results confirm a trade-off: per-
token objectives favor single-sequence reconstruction, whereas the tree loss preserves cross-sequence
signals essential for evolutionary reasoning.

A.8 Societal Impacts and Safety Concerns

Our method’s ability to generalize beyond its training distribution can lead to more accurate identifi-
cation of disease-causing variants in previously unseen protein families, potentially accelerating both
basic research and the development of personalized therapeutics. However, because this is the first
model that infers a phylogenetic tree directly from raw sequence data, there is a risk that users may
overestimate its reliability and substitute it for established, alignment-based pipelines. Such overre-
liance could produce misleading evolutionary hypotheses or clinical interpretations if the model’s
assumptions and limitations are not carefully considered. To mitigate these dangers, we stress that our
approach is intended as a complement to—rather than a replacement for—traditional phylogenetic
methods, and that any high-stakes decisions should always include orthogonal validation.
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