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Abstract

Recent progress in Large Language Models
(LLMs) has drawn attention to their potential
for accelerating drug discovery. However, a
central problem remains: translating theoret-
ical ideas into robust implementations in the
highly specialized context of pharmaceutical
research. This limitation prevents practitioners
from making full use of the latest AI develop-
ments in drug discovery. To address this chal-
lenge, we introduce DrugAgent, a multi-agent
framework that automates machine learning
(ML) programming for drug discovery tasks.
DrugAgent employs an LLM Planner that for-
mulates high-level ideas and an LLM Instructor
that identifies and integrates domain knowledge
when implementing those ideas. We present
case studies on three representative drug discov-
ery tasks. Our results show that DrugAgent con-
sistently outperforms leading baselines, includ-
ing a relative improvement of 4.92% in ROC-
AUC compared to ReAct for drug-target inter-
action (DTI). DrugAgent is publicly available
at the anonymous link https://anonymous.
4open.science/r/drugagent-5C42/.

1 Introduction and Related Work

Artificial intelligence (Al) is changing many as-
pects of drug discovery (Huang et al., 2022).
Since experimental measurements of drug prop-
erties are costly and time-consuming, researchers
have turned to automated approaches for diverse
stages of drug development (Pushpakom et al.,
2019). Al-ready datasets and benchmarks, such
as ADMET prediction, drug-target interaction, and
high-throughput screening, are now widely acces-
sible (Huang et al., 2021; Chen et al., 2024a; Wang
et al., 2024c). Meanwhile, deep learning has shown
promise in lead optimization and drug-target inter-
action prediction (Huang et al., 2020a), pointing to-
ward possible reductions in the resources required
for traditional experimentation.

Yet building machine learning (ML) pipelines
for drug discovery is challenging, given that it in-
volves biology, chemistry, pharmaceutical science,
and computer science (Huang et al., 2022). While
Large Language Models (LLMs) offer automated
reasoning and coding assistance, domain-specific
subtleties remain difficult to handle in standard
frameworks. General-purpose agent-based systems
for ML, such as MLAgentBench (Huang et al.,
2024a) and Al-Scientist (Lu et al., 2024a), have
been proposed for end-to-end ML programming,
but they lack expert-level knowledge of drug dis-
covery workflows. Small mistakes, such as using
the wrong domain-specific library or misinterpret-
ing biological data types, can be difficult to debug
in specialized projects. In contrast, frameworks like
ChemCrow (M. Bran et al., 2024) and MultiTool-
CoT (Chain of Thought) (Inaba et al., 2023) include
chemical tools but offer limited support for larger-
scale ML tasks. This highlights the need for an
ML-focused system with domain awareness, span-
ning data preprocessing through model evaluation.
Present Work: DrugAgent. We introduce Dru-
gAgent, a multi-agent LLM framework that uni-
fies ML programming with biomedical expertise
to address the demands of modern drug discov-
ery. First, DrugAgent systematically checks where
domain knowledge is required, then deploys spe-
cialized resources before proceeding with coding.
Second, it uses a dynamic approach to manage
ML ideas, creating diverse options early on and
refining them based on empirical results. Third,
DrugAgent features a carefully curated library of
domain-specific documentation covering data ac-
quisition, data transformation, and advanced model
design, supporting critical tasks in drug discov-
ery. We evaluate DrugAgent on three representa-
tive tasks and find that it exceeds the performance
of general-purpose baselines and matches or sur-
passes expert-written methods. Our key contri-
butions include: (1) a systematic workflow that
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Figure 1: Overview of the DrugAgent framework. Given a drug discovery task described in natural language (i.e.,
user’s input, e.g., design an Al model to predict Absorption (one of the ADMET properties) using the PAMPA
dataset (Siramshetty et al., 2021)), the LLM Planner collaborates with the LLM Instructor to iteratively search for

actionable, high-performing solutions.

emphasizes when and how to incorporate domain
knowledge for ML-driven drug discovery, (2) an
iterative planning strategy guided by experimen-
tal observations, and (3) a broad set of specialized
tools and documentation for biological data pro-
cessing and modeling. A detailed comparison with
existing approaches is in Appendix A.

2 Methodology

We present DrugAgent, a multi-agent LLM frame-
work designed to handle the specialized challenges
of Al-driven drug discovery. As illustrated in Fig-
ure 1, DrugAgent integrates two primary agents:
(1) an LLM Planner, which manages the high-
level generation and refinement of solution ideas,
and (2) an LLM Instructor, which translates these
ideas into concrete code, drawing on domain-
specific knowledge to address the complex needs
of drug discovery tasks.

Problem Formulation. Following Huang et al.
(2024a), an ML programming task consists of three
components: (1) a Task Description, which spec-
ifies the objectives and constraints in natural lan-
guage, (2) Starter Files, which provide initial re-
sources like datasets or code templates, and (3)
Evaluator, which is a performance metric function
used to assess the output quality.

LLM Planner: Idea Space Management.
Open-ended ML tasks in drug discovery can be
approached by multiple strategies with no single
deterministic solution, and single-agent systems
risk missing promising alternatives (Wang et al.,

2024a). Additionally, LLMs sometimes make im-
practical suggestions if they lack specific domain
expertise or rely on hallucinated information. To
address these concerns, the Planner operates in
two phases: (1) Idea Generation, where it derives
K candidate solutions from the task description,
and (2) Exploration, where it selects one idea and
sends it to the Instructor for experimental evalua-
tion. Based on success or failure reports, it revises
the idea set, discarding those that underperform or
are not feasible. The process repeats until a max-
imum iteration limit is reached, after which the
highest-performing idea is submitted as the final
solution.

LLM Instructor: Domain-specific Knowledge
and Tool Preparation. Drug discovery depends
on specialized workflows, e.g., the correct handling
of SMILES strings and tailored data preprocess-
ing. When standard code-generation approaches ig-
nore this domain requirements (Huang et al., 2023,
2024b), the resulting errors are hard to debug.

Within DrugAgent, the Instructor incorporates
domain knowledge at every step of the coding pro-
cess. It can execute standard ML actions (e.g.,
reading or editing scripts, running code; see Ap-
pendix B) and references a set of targeted doc-
uments to build or refine specialized tools. The
Instructor then generates a performance report—if
critical functionalities are absent, it returns a failure
report instead. Specifically, the Instructor relies on
three curated types of documentation:

* Raw Data Acquisition: Methods for retrieving
and preprocessing biological data.



* Featurizing Biological Data: Techniques for en-
coding molecules and proteins (e.g., fingerprints,
graph-based representations).

* Domain-Specific Models: Pretrained founda-
tion models such as ChemBERTa (che) (small
molecules) and ESM (Evolutionary Scale Model-
ing for protein sequence) (Lin et al., 2022).

Further details about these resources appear in Ap-
pendix C. By explicitly integrating domain guid-
ance into the coding workflow, DrugAgent aims to
reduce errors that arise from incomplete or incor-
rect handling of drug discovery subtleties.

3 Experiment

3.1 Experimental Setup

Al-solvable Drug Discovery Tasks. We propose
three representative Al-solvable drug discovery
tasks as a proof-of-concept to validate the effective-
ness of DrugAgent. ADMET prediction forecasts
pharmacokinetic properties (Absorption, Distribu-
tion, Metabolism, Excretion, and Toxicity) from
a drug’s molecular structure, crucial for assessing
a drug’s efficacy and safety (Niu et al., 2024; Lu
et al., 2024b; Chen et al., 2021, 2024b). High-
throughput screening (HTS) leverages ML mod-
els to predict assay outcomes based on molecular
structure, improving the efficiency and reducing
the cost of evaluating the biological activity of
large chemical libraries (Pham et al., 2021). Drug-
target interaction (DTI) prediction forecasts the
binding affinity between drugs and proteins using
compound structures and amino acid sequences,
supporting virtual screening, drug repurposing, and
side effect prediction (Liu et al., 2024). All these
problems are binary classification tasks.

Dataset. We select one dataset for each task:
PAMPA (Siramshetty et al., 2021) for ADMET
prediction, DAVIS (Davis et al., 2011) for DTI
prediction, and HIV (Wu et al., 2018) for HTS.
Appendix D provides details on the dataset descrip-
tion, the rationale behind dataset selection, and the
data splitting methods.

Baselines. We compare DrugAgent against four
Al-based methods and one human baseline. We use
GPT-40-2024-08-06 as the underlying language
model for all Al methods, as it is one of the state-of-
the-art models for ML coding according to previous
benchmarks (Chan et al., 2024).

CoT (Chain of Thought) is a simple baseline
where the agent generates a solution by breaking

the problem into substeps (Wei et al., 2022). Re-
Act follows an interleaved reasoning and action
approach, enabling interactive analysis and execu-
tion (Yao et al., 2023). ResearchAgent is designed
for ML tasks, maintaining a research plan and exe-
cuting key actions such as file understanding, script
editing, and task reflection (Huang et al., 2024a).
ChemCrow is a chemistry-focused LLM agent that
augments LLM with 18 expert-designed tools to
enable automated planning and execution across
tasks such as synthesis, drug discovery, and mate-
rials design (M. Bran et al., 2024). The Human
baseline relies on model choices reported as effec-
tive in the literature and selected by experts, with
details provided in Appendix E.

These baselines are compared with two vari-
ants of DrugAgent: DrugAgent@Ideal, where
the agent selects the best ideas based on validation
results, and DrugAgent@Idea3, where the agent
submits the top three ideas based on validation re-
sults, and reports the best test set outcome. Other
methods do not include an idea search mechanism
like DrugAgent, so only a single result is reported
for each. Detailed experimental settings and imple-
mentation details for DrugAgent, including hyper-
parameters and prompt examples, are provided in
Appendix F.

Evaluation Metrics. We conduct eight indepen-
dent runs for each Al-based method. A submission
is considered valid if (1) the generated code is free
of bugs and, when executed, produces a submission
file, (2) the submission file adheres to our format
requirements, and (3) the performance does not fall
more than 10% below the human baseline. The
average metric (ROC-AUC) across all valid sub-
missions is reported. If all eight submissions are
invalid, the results are marked as N/A.

3.2 Quantitative Results

Table 1 reports the performance across all datasets.
DrugAgent achieves the highest ROC-AUC and
Valid Rate among all Al-based methods, perform-
ing comparably to baselines selected by human
experts. Notably, it outperforms ReAct in the
DTI task, achieving a relative improvement of
4.92% in ROC-AUC. We also observe that Dru-
gAgent@Idea3 surpasses DrugAgent@Ideal in the
ADMET and HTS tasks. This suggests that vali-
dation set performance does not always strongly
correlate with test set performance, sometimes lead-
ing the agent to select a suboptimal idea for final



ADMET HTS DTI

Method ROC-AUC (1) Valid Rate (1) ROC-AUC (1) Valid Rate (1) ROC-AUC (1) Valid Rate (1)
Human 0.8173 — 0.8305 — 0.8940 —

CoT 0.7599 62.5% 0.7524 50.0% N/A 0.0%
React 0.7385 87.5% 0.7653 75.0% 0.8530 50.0%
ChemCrow 0.7860 25.0% 0.7663 25.0% 0.8862 75.0%
ResearchAgent 0.7957 100.0% 0.7913 100.0% 0.8793 75.0%
DrugAgent@Topl 0.7667 100.0% 0.7919 100.0% 0.8950 87.5%
DrugAgent@Top3 0.8206 100.0% 0.8257 100.0% 0.8950 87.5%

Table 1: ROC-AUC and Valid Rate for PAMPA (ADMET), HIV (HTS), and DAVIS (DTTI) datasets.

Method ROC-AUC (1) Valid Rate (1)
DrugAgent 0.8950 87.5%
DrugAgent w/o Planner 0.8845 87.5%
DrugAgent w/o Instructor 0.8770 75.0%

Table 2: Ablation study on the DAVIS (DTI) task,
demonstrating how removing the Planner or Instruc-
tor from DrugAgent affects ROC-AUC and Valid Rate.
Results are averaged across runs.

submission. However, considering multiple sub-
missions can help mitigate this problem. Further-
more, we find that domain-specialized agents such
as ChemCrow do not outperform general-purpose
agents. This is likely because ChemCrow’s toolset
is designed for chemical reasoning, which offers
limited benefit for ML coding tasks.

Table 2 highlights the importance of each agent
in our framework, demonstrating that both the Plan-
ner and Instructor contribute significantly to overall
performance. Additional ablation studies, includ-
ing a qualitative analysis of each agent’s role, the
effect of using alternative LLMs, and the impact of
execution rounds, are provided in Appendix G.

3.3 Case Study

Comparing DrugAgent with ReAct. We con-
duct a case study to compare our framework with
ReAct (see Appendix H for detailed traces and
analysis). The results highlight our framework’s
effectiveness in diversifying ideas, accurately in-
tegrating domain knowledge, and learning from
failures.

Trace Analysis. To further assess the agent’s rea-
soning and decision-making process, we analyze
the traces of all runs for the DTI task and categorize
the top four error types. A detailed description of
each failure type is provided in Appendix I. Figure
2 illustrates that for general agent frameworks like
ReAct and ResearchAgent, most errors occur due

35

BN ReAct
I ResearchAgent

30 [0 DrugAgent

25

20

Percentage

15
10

nwh

Hallucination Debugging Domain Error Format Error

Error Categories

v

Figure 2: Percentage of runs over DAVIS (DTI) dataset
that falls into different error modes.

to poor performance caused by incorrect operations
in steps requiring domain knowledge. In contrast,
DrugAgent exhibits no errors in this category and
achieves the lowest overall error rate, highlight-
ing the effectiveness of our framework in utilizing
domain knowledge.

4 Conclusion

In this paper, we have introduced DrugAgent, a
multi-agent framework that marks a significant
advancement in leveraging large language mod-
els for automating critical aspects of drug discov-
ery. Through case studies in three drug discov-
ery tasks, DrugAgent demonstrates remarkable
improvements over general-purpose agent frame-
works, such as ReAct and ResearchAgent. This can
largely be attributed to the planner agent, which ef-
fectively generates and searches for ideas, and the
instructor agent, which ensures reliable implemen-
tation by integrating a specialized toolset. Together,
these agents enable DrugAgent to bridge the gap
between generalized Al capabilities and the nu-
anced demands of pharmaceutical research. We
believe this work opens exciting new avenues for
research and collaboration, pushing the boundaries
of Al-driven drug discovery.



Limitations

This study has several limitations. First, we eval-
uate the performance of DrugAgent on three case
study tasks. However, these tasks are not suffi-
cient for a comprehensive evaluation, and there
is a need for more extensive benchmarks to as-
sess machine learning programming tasks in drug
discovery settings. Second, although DrugAgent
can generate solutions comparable to human base-
lines, it is still limited to classic state-of-the-art
baselines rather than the latest cutting-edge meth-
ods. Advancing agent capabilities in this domain
will require significant research efforts. Third, the
current documentation for DrugAgent is relatively
basic and could be expanded in the future to cover
additional aspects of the drug discovery process.
Lastly, the agent framework has the potential to in-
corporate a ~human-in-the-loop’ approach, which
would enhance its usability for scientists working
on real-world drug discovery tasks.

Ethics Statement

We do not foresee any immediate ethical or soci-
etal concerns arising from our work. However, we
acknowledge that, due to challenges like hallucina-
tion, the current version of DrugAgent is not yet
ready for direct deployment in the drug discovery
pipeline. For instance, errors such as fabricating
results could lead to inaccurate predictions, which
might waste resources in the wet lab verification
process or misguide the drug discovery direction.
As a result, further safety checks and human over-
sight are essential. Moreover, as Al agents advance,
there is potential for them to replace human engi-
neers in ML programming tasks within drug discov-
ery. This highlights the need for human workers to
learn how to effectively collaborate with the agent
and understand its underlying implementation. By
fostering this collaboration, Al can enhance and
complement professional expertise rather than re-
place it.
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A Related Work

This section provides a more detailed overview of
related work on LLM agents and their applications
in ML programming and biomedical discovery.

LLM Agents An LLM agent is a system that
uses large language models to interact with users
or other systems, perform tasks, and make deci-
sions autonomously. Empowered by LLMs, LLM
agents have the capability to perform multi-step
reasoning, planning, and action execution beyond
static text generation (Wang et al., 2024b). Previ-
ous works have equipped LLM agents with mod-
ules to dynamically interact with external tools,
retrieve information, and adapt based on real-time
feedback (Schick et al., 2023; Yoon et al., 2024,
Qin et al., 2023; Ravuru et al., 2024; Lala et al.,
2023). This allows them to solve complex, evolv-
ing tasks such as code writing, long-term reasoning,
and decision-making in various contexts (Guo et al.,
2024; Jiang et al., 2024). In this work, we tailor
the LLM multi-agent framework to drug discovery
tasks.
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Table 3: Key differences between DrugAgent and existing agent methods. DrugAgent stands out by: 1)
interacting with the environment, 2) specializing in ML programming, 3) incorporating domain knowledge specific

to drug discovery, and 4) planning at the idea space level.

Interaction with Env ML Specialization Domain Knowledge Idea Space Planning
ReAct (Yao et al., 2023) X X X
ResearchAgent (Huang et al., 2024a) X X
ChemCrow (M. Bran et al., 2024) X X

DrugAgent (Ours)

LLM for ML Programming Recent work has
focused on accelerating traditionally manual re-
search processes by automating ML programming.
AIDE acts as a data science agent, exploring a vast
solution space and iteratively refining its approach
to reach optimal solutions (WecoAl, 2024). AutoK-
aggle introduces a specialized multi-agent frame-
work for Kaggle data science competitions (Li
et al., 2024b). Al-Scientist enables LLLMs to con-
duct research autonomously, from idea generation
to paper drafting, focusing on ML-related top-
ics (Lu et al., 2024a). In parallel, benchmarks have
been developed that provide a suite of 13 tasks
to evaluate LLLMs’ capabilities in conducting ML
programming (Huang et al., 2024a). However, ex-
isting works cannot handle domain-specific ML
tasks requiring complex domain knowledge, e.g.,
Al-aided drug discovery. To address this, we de-
sign workflows to insert domain knowledge and
call domain-specific tools automatically.

LLM for Biomedical Discovery Many stud-
ies have highlighted the applications of LLMs in
biomedical discovery, particularly when integrated
with domain-specific tools. For instance, Chem-
Crow demonstrates the potential of LLM agents
in organic synthesis, drug discovery, and material
design (M. Bran et al., 2024). Similarly, MMedA-
gent is a multimodal medical agent designed to
handle complex language and multimodal tasks,
demonstrating LLM versatility in medical applica-
tions (Li et al., 2024a). The multi-agent approach
is exemplified by ClinicalAgent (Yue et al., 2024),
which introduces a framework for clinical trial out-
come prediction by decomposing it into subprob-
lems, allowing individual agents to collaborate and
generate a comprehensive outcome. Existing ML
biomedical agents, however, generally lack the ML-
specific expertise required to perform end-to-end
programming.

B Action

Below is a set of machine learning (ML)-related
actions available to the instructor: List Files, Read
File, Write File, Append File, Copy File, Inspect
Script Lines, Undo Edit Script, Execute Script, Fi-
nal Answer, Understand File, Edit Script, and Edit
Script Segment. Since these actions are commonly
used across general ML agents, we recommend
referring to MLAgentBench (Huang et al., 2024a)
for a detailed explanation of each action.

C Documentation

Raw Data Preprocessing: We compiled documen-
tation from the TDC library (Huang et al., 2021),
which includes 66 AI/ML-ready datasets for drug
discovery.

Drug Preprocessing: We documented seven
molecular fingerprinting methods, two molecu-
lar graph construction methods, and one one-hot
encoding method, using a combination of the
TDC (Huang et al., 2021), DGL-LifeSci (Li et al.,
2021), and RDKit (Landrum, 2023) libraries.

Protein Preprocessing: We documented three
protein fingerprinting methods and one one-hot
encoding method, utilizing the PyBioMed (CBDD
Group, 2020) library.

Domain-Specific Models: We documented the
ChemBERTa (che) and ESM (Rives et al., 2019)
models, using the Transformers library (Wolf et al.,
2020).

The complete documentation, along with
the code for our framework, is available
at https://anonymous.4open.science/r/
drugagent-5C42/. It is important to note that this
documentation can be easily extended based on
specific needs and available resources.

D Dataset Description

Table 4 provides an overview of the selected drug
discovery tasks and datasets used in our case study.
DAVIS: This dataset contains 68 drugs and
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ADMET Prediction ‘ HTS Prediction DTI Prediction
Type Single-instance predic- | Single-instance predic- | Multi-instance predic-
tion tion tion
Input SMILES string SMILES string SMILES string and pro-
tein amino acid se-
quence
Impact Prevents clinical trial | Reduces experimental | Reduces experimental
failures through early | screening costs by pre- | screening needs by pri-
and accurate ADMET | dicting assay outcomes | oritizing drug candi-
profiling dates with high binding
affinity
Dataset (Case Study) | PAMPA (Siramshetty | HIV (Wu et al., 2018) DAVIS (Davis et al.,
etal., 2021) 2011)

Table 4: Task overview: ADMET, HTS, and DTI. In this paper, we focus on small-molecule drugs, which constitute
over 90% of all approved drugs. Small molecules are represented as SMILES strings, a compact ASCII notation

describing chemical structures.

379 proteins, with 2086, 3006, and 6011 sam-
ples allocated for training, validation, and test-
ing, respectively. A detailed description of
the dataset and preprocessing methods can be
found in MolTrans (Huang et al., 2020b). The
dataset is available at https://github.com/
kexinhuangl12345/moltrans.

PAMPA: This dataset includes 1424 training
samples, 203 validation samples, and 407 test sam-
ples. The data is split using the TDC random split
strategy. More details can be found on the TDC
website: https://tdcommons.ai/single_pred_
tasks/adme.

HIV: This dataset consists of 28,789 training
samples, 4,113 validation samples, and 8,225 test
samples. The split follows the TDC random split
strategy. Further information is available on the
TDC website: https://tdcommons.ai/single_
pred_tasks/hts.

D.1 Rationale for Task and Dataset Selection

These tasks are identified in recent surveys and
reviews as representative machine learning prob-
lems in drug discovery (Wang et al., 2023; Zheng
et al., 2024). Together, they span key decision
points across the Hit Identification, Hit-to-Lead,
and Lead Optimization stages (Zheng et al., 2024).
All three are essential for selecting compounds
with desirable properties—whether related to bi-
ological activity, screening outcomes, or pharma-
cokinetic behavior—thereby ensuring that only the
most promising candidates progress through the

drug discovery pipeline.

These tasks have also been chosen by domain
experts as representative benchmarks, including
their official designation by the Therapeutics Data
Commons (TDC) team (Huang et al., 2021).

The datasets used for each task are the official
benchmark datasets provided by the TDC team.
These datasets were curated to reflect realistic ex-
perimental settings and are widely adopted in the
field as standardized benchmarks for evaluating
predictive models.

E Human Baseline

Previous research (Xia et al., 2023) has shown that
for ADMET and HTS tasks, tree-based models
consistently outperform other approaches such as
GCN, DNN, SVM, CNN, RNN, and MPNN. These
models serve as a simple yet strong baseline that is
difficult to beat. Therefore, we use a random forest
model combined with Morgan fingerprinting as the
human baseline for these two tasks.

For the DTI task, DeepDTA (Oztiirk et al., 2018),
which employs two CNN encoders for drug and
protein representations, is a well-established deep
learning baseline. It is widely adopted as a SOTA
baseline in DTI studies (Huang et al., 2020b; Liu
et al., 2024, 2025) and is considered the human
baseline for this task.
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F Settings

For all agent frameworks, we allow a maximum
of 100 actions. For a detailed definition of an
action, refer to Appendix B and the MLAgent-
Bench (Huang et al., 2024a) paper. For the Re-
searchAgent baseline, we made the following ad-
justments to improve performance:

* For the understand_file action, we process
only the first 3 blocks to save resources in case
the file is too large (e.g., when understanding
a CSV file).

* We also print error messages in the observa-
tion to assist the agent with debugging.

For DrugAgent, we set the maximum number
of ideas explored to 5, based on the ablation study
results in Appendix G. Prompt examples and imple-
mentation details for reproducibility are provided
in Appendix J.

G Ablation Study

G.1 Without Instructor

We found that although exploring multiple ideas
improves the overall performance compared to the
original ReAct framework, the results are still not
satisfactory. The primary reason is that the model
sometimes encodes molecules in an ineffective
manner. Below is an example of code generated
by the ReAct Agent that naively encodes a protein,
leading to poor results despite a promising idea.

def protein_to_features(protein_sequence):
# Convert amino acid sequence into a feature
vector of fixed length 1024
features = np.zeros(1024, dtype=int) # fixed
length vector
for i, c in
enumerate(protein_sequence[:1024]):

features[i] = ord(c)

return features

G.2 Without Planner

We found that even when prompted to iteratively
experiment with different models, the agent fails to
sufficiently diversify its approach, often focusing
on variations of similar ideas. For example, it may
compare logistic regression with logistic regression
incorporating feature engineering, which limits its
ability to explore more optimal approaches.
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Model RESEARCHAGENT DRUGAGENT
GPT-40 0.8793 0.8950
GPT-40-mini 0.8772 0.8785
LLaMA-70B 0.8102 0.8367
GPT-3.5 N/A 0.8084

Table 5: ROC-AUC of ResearchAgent and DrugAgent
under different LLMs on the DAVIS (DTI) task. N/A
indicates an invalid submission.

Round Number ROC-AUC (1)
1 0.8433
3 0.8824
5 0.8950
10 0.8962

Table 6: ROC-AUC of DrugAgent with different round
numbers on the DAVIS (DTI) task.

G.3 Alternative LLMs

We compare DrugAgent and ResearchAgent using
four different LLMs. As shown in Table 5, Dru-
gAgent consistently outperforms ResearchAgent
across all settings, demonstrating the robustness of
our method to the choice of underlying LLM.

G.4 Number of Planning Rounds

The maximum number of planning rounds is a user-
defined hyperparameter, with each round generat-
ing a distinct idea. We set the value to 5 in our
main experiments, as it provides a good balance
between computational cost and performance. We
performed an ablation study on the DTI task to
evaluate the effect of different round numbers. The
results are shown in Table 6. Performance improves
steadily up to 5 rounds, with only a small gain when
increasing from 5 to 10. Notably, The performance
of DrugAgent with round 1 is lower than that of
DrugAgent without the planner. This is because
the planner introduces more diversity in the idea
space, which can make the quality of the first idea
more variable.

H Comparing DrugAgent with ReAct

To demonstrate the effectiveness of DrugAgent,
we conducted a case study on a DTI prediction
task and compared its performance to ReAct, as
illustrated in Fig. 3. This comparison underscores
the challenges LLMs face in domain-specific tasks
and highlights how DrugAgent overcomes these
limitations.

First, while ReAct (Yao et al., 2023) is prompted



Input: Designing and evaluating a model for DTI prediction (DAVIS dataset).
Step 0: Human intervention needed to download raw data.

Observation: Execution error

© Suboptimal encoding method

Observation:

@ Failure to diversify methods

Step 3: Refine Logistic Regression model.
Observation: No performance improvement.

Final Submission: Logistic Regression

@ Failed to identify the need for protein preprocessing

Step 1: Edit script to train Logistic Regression.

Step 2: Debug and use "CountVectorizer" for protein preprocessing.
Fixed preprocessing issue. Validation ROC-AUC = 0.8522

@® Test ROC-AUC =

0.8726

Step 0:

@ Successfully diversified ideas

Step 1: Planner initializes idea space.

Step 2:
Observation:

Planner investigates LR.

Step 3: Planner investigates GNN.

Step 4:
Observation:

s (b) DrugAgent ~

If no raw data provided, Agent downloads and splits data (TDC library).

Observation: LR (one-hot encoding), GNN, Random Forest (fingerprinting), DNN, etc.

Successful. Validation ROC-AUC
@ Reported failure to inform and refine future idea exploration.

Observation: Failure. Protein graph cannot be generated from 1D sequence.
@ Accurately identified and integrated domain knowledge

Planner skips graph-based methods for protein encoding. Tries Random Forest.

Successful. Validation ROC-AUC = 0.922 (ECFP4 for drug, CT for protein).

Final Submission: Random Forest with feature engineering

= 0.7673.

@ Test ROC-AUC = 0.9136

Figure 3: Comparison of ReAct and DrugAgent on a DTT task. (a) ReAct, a general-purpose framework, delivers
lower performance due to a lack of idea diversification and failure to recognize and incorporate domain knowledge.
(b) DrugAgent systematically explores a variety of approaches, successfully identifying optimal models and

preprocessing methods to achieve strong performance.

to iteratively select the best model, it lacks a high-
level planning mechanism, instead focusing on im-
plementing and refining a single approach. In con-
trast, DrugAgent leverages a planner agent to di-
versify ideas and systematically identify the most
effective approaches.

Second, ReAct fails to recognize the need for
preprocessing protein data early in the process, re-
sulting in wasted time during debugging and the
subsequent selection of suboptimal methods for
molecular data encoding. By comparison, Dru-
gAgent correctly identifies substeps that require
domain-specific tools and successfully integrates
fingerprint-based encoding methods for biological
data, delivering a bug-free model on the first at-
tempt.
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Third, ReAct is more prone to failure and strug-
gles to recover from bad planning. DrugAgent, on
the other hand, learns from observations to guide
future idea selection and avoids repeated failures.
For instance, in the case study, DrugAgent iden-
tifies the limitations of graph-based methods for
protein encoding and avoids further exploration of
those approaches. These findings highlight DrugA-
gent’s ability to automate domain-specific machine
learning tasks while systematically selecting and
refining the most effective approaches for the prob-
lem at hand.

H.1 Sample Code by DrugAgent

import pandas as pd
import numpy as np
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28

29
30
31
32

33
34
35

36

37
38

39

40
41
42

43

44
45
46

47
48
49
50

51

from sklearn.ensemble import 52

RandomForestClassifier 53

from sklearn.metrics import roc_auc_score 54

from agent_tools import DrugFeaturizer

from agent_tools import ProteinFeaturizer 55
56

# Load train, validation, and test datasets 57

train_data = pd.read_csv("”train.csv")

val_data = pd.read_csv("val.csv") 58

test_data = pd.read_csv("test.csv") 59

print(f”Loaded {len(train_data)} training 60

samples, {len(val_data)} validation samples, and sl
{len(test_data)} test samples.”)

62
print(train_data.head())

63

X_train_drug = train_data['Drug'] 64
X_train_protein = train_data['Protein'] 65
y_train = train_data['Y"'] 66
67
X_val_drug = val_data['Drug'] 68
X_val_protein = val_data['Protein']
y_val = val_data['Y'] 69
# 70

# In this part of the code, write and train the
model on the above dataset to perform the task. 71

# This part should populate the variable 72
train_roc_auc and valid_roc_auc on the model 73
selected
# 74
ki) 75
76
# Feature extraction 77
drug_featurizer = DrugFeaturizer(method="ECFP4")
protein_featurizer = 78
ProteinFeaturizer(method="ct") 79

80
# Transformations

X_train_drug_features =
drug_featurizer(X_train_drug.tolist())
X_train_protein_features =
protein_featurizer(X_train_protein.tolist())

X_val_drug_features =
drug_featurizer(X_val_drug.tolist())
X_val_protein_features =
protein_featurizer(X_val_protein.tolist())

# Concatenate drug and protein features
X_train_features =
np.concatenate([X_train_drug_features,
X_train_protein_features], axis=1)
X_val_features =
np.concatenate([X_val_drug_features,
X_val_protein_features], axis=1)

# Train Random Forest model

rf_model =
RandomForestClassifier(n_estimators=100,
random_state=42)
rf_model.fit(X_train_features, y_train)

# Predict probabilities

train_preds =
rf_model.predict_proba(X_train_features)[:, 1]
val_preds =
rf_model.predict_proba(X_val_features)[:, 1]
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# Compute ROC AUC scores

train_roc_auc = roc_auc_score(y_train,
train_preds)

valid_roc_auc = roc_auc_score(y_val, val_preds)

#
KEKKKEAKRKREAAKRKAKRKAEARKREAA KRR KRR A R KR AA R AR R AR XA XN A Ak khkk)kk
# End of the main training module

#

print("Train ROC AUC Score: " +
str(train_roc_auc))
print("”Validation ROC AUC Score: " +
str(valid_roc_auc))

X_test_drug = test_datal'Drug']
X_test_protein = test_data['Protein']

# Transformations for test set
X_test_drug_features =
drug_featurizer(X_test_drug.tolist())
X_test_protein_features =
protein_featurizer(X_test_protein.tolist())
X_test_features =
np.concatenate([X_test_drug_features,
X_test_protein_features], axis=1)

# Replace with actual predictions

test_preds =
rf_model.predict_proba(X_test_features)[:, 1]
test_data[ 'Predicted'] = test_preds
output_file = "submission.csv"” #do not change
submission file name

test_data.to_csv(output_file, index=False)

print(f"Submission file saved to {output_file}.")

I Error Type

1. Hallucination: This occurs when the agent
fabricates results or falsely claims progress,
such as reporting a submission despite not
making any edits to the training script.

2. Debugging: The agent fails to resolve issues
in its code modifications, such as mismatched
tensor shapes.

3. Domain Error: Poor performance caused by
incorrect operations in steps requiring domain
knowledge (e.g., improper methods for finger-
printing drugs and proteins).

4. Format Error: The agent altered the submis-
sion format, making it unrecognizable to the
evaluator.

J Code and Reproducibility

The DrugAgent code is available at our anony-
mous repository: https://anonymous.4open.


https://anonymous.4open.science/r/drugagent-5C42/
https://anonymous.4open.science/r/drugagent-5C42/

science/r/drugagent-5C42/ and is under the
MIT License.

J.1 Prompt Example

We provide an example prompt below to illus-
trate how the Planner Agent is initialized. This
prompt defines the agent’s role, available tools,
and decision-making instructions. The full set
of prompts used in our system is available in our
source code repository.
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initial_prompt =

You are a helpful research planner.

- Your goal is to manage an idea space and iteratively search for a high-performing and actionable
idea. You have access to the following tools:

{tools_prompt}

Research Problem: {task_description}

You do not have any prior knowledge about this problem.
Follow these instructions carefully and do not forget them:

- Begin by initializing the idea space with “NUM={init_idea_num}".

- Develop a high-level plan to manage the idea space and record it in the Idea Space Management. You
can revise the plan later.

- Highlight supporting experimental results and reasoning before drawing conclusions.

- Do not worry about implementing the ideas, as the Instructor Agent will handle that. You can pass
an idea to the Instructor Agent using the "Investigate Idea” action.

- You have no knowledge of the Instructor Agent's capabilities at the beginning, so start with a
baseline idea to investigate without ensembling or hyperparameter optimization. You can adjust
the complexity to search for more high-performing ideas as you learn about the Instructor
Agent's capabilities through obervations.

- Stop early and make a final submission after investigating “{early_stopping}” ideas.

Always respond in this exact format:
{format_prompt}

nnn

14




	Introduction and Related Work
	Methodology
	Experiment
	Experimental Setup
	Quantitative Results
	Case Study

	Conclusion
	Related Work
	Action
	Documentation
	Dataset Description
	Rationale for Task and Dataset Selection

	Human Baseline
	Settings
	Ablation Study
	Without Instructor
	Without Planner
	Alternative LLMs
	Number of Planning Rounds

	Comparing DrugAgent with ReAct
	Sample Code by DrugAgent

	Error Type
	Code and Reproducibility
	Prompt Example


