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ABSTRACT

Graph neural networks (GNNs) have shown superiority in various data mining
tasks but rely heavily on extensively labeled nodes. To improve the training effi-
ciency and select the most valuable nodes as the training set, graph active learning
(GAL) has gained much attention. However, previous GAL methods are designed
for homophilic graphs, and their effectiveness on heterophilic graphs is less ex-
amined. In this paper, we study active learning on heterophilic graphs, where
nodes with the same labels are less likely to be connected. We are surprised to
find that previous GAL methods fail to outperform the naive random sampling on
heterophilic graphs. Through an insightful investigation, we find that previous
GAL-selected training sets imply homophily even on heterophilic graphs, leading
to their defectiveness. To address this issue, we propose the principle of “Know
Your Neighbors” and design an active learning algorithm KyN specifically for
heterophilic graphs. The primary idea of KyN is to let GNNs receive a correct ho-
mophily distribution by labeling nodes along with their neighbors. We build KyN
based on subgraph sampling with probabilities proportional to ℓ1 Lewis weights,
which has a solid theoretical guarantee. The effectiveness of KyN is evaluated on
various real-world datasets.

1 INTRODUCTION

Graphs are ubiquitous in real-world applications, from recommendation system (Ma et al., 2024;
Ni et al., 2024) and misconduct detection (Tao et al., 2024; Wu & Hooi, 2023) to AI for science
(Gasteiger et al., 2021; Lam et al., 2023). Recently, graph neural networks (Kipf & Welling, 2017;
Wu et al., 2019a; Velickovic et al., 2018; Chen et al., 2020) have become the de facto standard
used in many graph learning tasks. Like other deep learning methods, the success of GNNs largely
depends on the existence of high-quality training labels, and data labeling for these node samples
is costly due to its reliance on human labor. To address this challenge, graph active learning has
emerged as an effective approach for improving data efficiency (Song et al., 2023; Zhang et al.,
2022a). GAL methods aim to maximize model performance by identifying the most informative
nodes for annotation within a given labeling budget. Despite their success, we are surprised to find
that previous GAL methods are only examined on homophilic graphs, i.e., nodes with the same
labels are more likely to be connected. As heterophilic graph learning becomes a popular research
direction, it is intriguing to ask:

Do graph active learning methods work with heterophily?

The answer to this question is, unfortunately, no. We examined the performance of representative
GAL methods on the heterophilic graph dataset, Roman-empire (Platonov et al., 2023b). The results
are presented in Figure 1. The essential requirement of GAL methods is to consistently outperform
the uniformly random sampling, since they are not very likely to be faster or simpler. However,
we observe that none of the GAL methods can fulfill such requirements on this graph. Overall,
uniformly random sampling might even be the strongest approach! These GAL methods work well
on homophilic graphs, so this finding is highly unexpected.
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Figure 1: The performance of different GAL methods on the heterophilic graph datasets, Roman-
empire. We set the labeling budget from 2C to 20C, where C is the number of classes in this dataset.

The defectiveness of GALs on heterophilic graphs is not only a new issue, but also a fatal one.
According to recent surveys (Luan et al., 2024), heterophilic graphs are prevalent in many real-
world applications, e.g., fraud/anomaly detection (Gao et al., 2023) and graph clustering (Pan &
Kang, 2023). If one adopts off-the-shelf GAL methods on these graphs without knowing their pitfall,
lots of time and human resources will be wasted. On the other hand, GNNs are known to be less
optimal for heterophilic graphs, sometimes even outperformed by graph-agnostic models (Loveland
et al., 2023). The last thing we want is a GAL method that is worse than random sampling to fuel
the flames.

In this paper, we aim to develop an active learning algorithm for heterophilic graphs to fill the gap.
Our method is motivated by issues of previous GALs. Specifically, we find that (1) existing GALs
fail to let GNNs “know” whether a graph is homophilic or heterophilic, since they cannot pro-
duce the correct local homophily distribution. And (2) the fusion of ego-embeddings and neighbor-
embeddings on heterophilic graphs makes nodes less distinguishable. To address the above prob-
lems, we propose the principle of “Know Your Neighbors” and dub the model as KyN. By selecting
nodes along with their neighbors, KyN yields the correct local homophily distribution. We build
KyN with a novel ℓ1 Lewis weights subgraph sampling. KyN has a solid theoretical guarantee and
is evaluated against various baselines on real-world datasets.

Our contributions are summarized as follows:

• We uncover the unexpected failure of active learning methods on heterophilic graphs.
While they show their power on homophilic graphs, they are outperformed by the naive
random sampling on heterophilic graphs. To the best of our knowledge, this is the first
paper to reveal this phenomenon.

• We propose a novel method called KyN for active learning on heterophilic graphs. Our
method is well-motivated by existing issues of previous GALs. KyN select training nodes
along with their neighbors to yield a correct local homophily distribution that reflects the
true homophilic/heterophilic nature of graphs.

• We conduct comprehensive experiments that demonstrate the superior performance of KyN
on the heterophilic GAL task.

2 PRELIMINARIES

Notations. Let G = (V,E,X,Y ) be a simple graph with node set V and edge set E. X ∈ R|V |×f

is the node feature matrix, where f is the number of dimensions of each feature. Y ∈ R|V |×C is the
one-hot label matrix with C classes. We use xi to represent the feature vector of the i-th node and
yi as its label. We can also use the adjacency matrix A ∈ {0, 1}|V |×|V |, where the (i, j)-th entry is
1 if and only if the i-th node and the j-th node are connected. A k-hop neighborhood of node i ∈ V ,
Nk(i) denotes the subgraph induced by the nodes that are reachable within k-steps of i.
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Homophily of graphs. Homophily is a graph property describing the tendency of edges to connect
similar nodes (Platonov et al., 2023a). Throughout our paper, a graph is homophilic if the nodes with
the same labels are more likely to be connected. And a graph is heterophilic if the nodes with the
same labels are less likely to be connected. Many statistics can measure the degree of homophily of
a graph. We will mainly use the following two definitions of homophily/heterophily from previous
works (Loveland et al., 2023).
Definition 2.1 (Global Homophily). The global homophily of a graph is defined as:

h =
|{(u, v) : (u, v) ∈ E ∧ yu = yv}|

|E|
, (1)

where yu is the label of node u.
Definition 2.2 (Local Homophily). The local homophily of a node t is defined as:

ht =
|{(u, t) : u ∈ N1(t) ∧ yu = yt}|

|N1(t)|
. (2)

Intuitively, global homophily describes the overall property of a graph, while local homophily fo-
cuses on the specific neighborhood of each node. Previous works (Mao et al., 2023; Loveland
et al., 2023) show that crucial properties (e.g., the prediction accuracy of GNNs) vary across lo-
cal homophily levels, highlighting the importance of zooming in and analyze the diversity of node
neighborhood.

Graph active learning. Active learning algorithms aim to select a training set that maximizes
the performance of the models trained on it. Specifically, let AGAL be a certain GAL algorithm
that takes a graph G and a labeling budget B as inputs, the GAL-selected training set is Vtrain =
AGAL(G,B) with |Vtrain| = B. We acquire the labels of Vtrain from an oracle, then train a GNN
with them. The performance of the trained GNN can be used to measure the quality of Vtrain, which
in turn reflects the effectiveness of AGAL. Since previous researches show that GCN is not suitable
for heterophilic graphs (Platonov et al., 2023b), we will use the SAGE-mean (Hamilton et al., 2017)
as the GNN encoder to eliminate additional impacts.

3 METHODOLOGY

3.1 DO GAL-SELECTED TRAINING SETS “TELL” THEIR HETEROPHILY?

Before designing a GAL algorithm that works with heterophily, we first investigate why previous
GALs perform poorly on these graphs. Conceptually, GNNs cannot “know” whether a graph is
homophilic or heterophilic if the training set does not “tell” them about it. Thus it is natural to
first investigate the homophily-related information contained in GAL-selected training sets Vtrain.
As local homophily emerges as an important statistic for heterophilic graphs, we can measure the
homophily-related informativeness by the closeness between the distribution of local homophily
of the training sets and that of the whole graph (i.e., the ground truth). Specifically, let Pht(G)
be the local homophily distribution of the whole graph that can be empirically estimated with A
and Y . And let Pht(Gtrain) be the local homophily distribution of a training set. Since we only
know the labels of nodes in this training set, the distribution received by GNNs should be estimated
with Atrain and Ytrain, where Atrain is the subgraph induced by the training set and Ytrain is the
labels of the training set. In other words, we do not count the unlabeled neighbors when investi-
gating the homophily distribution of GAL-selected training sets. For some statistical distance D, a
GAL-selected training set that correctly contains homophily-related information should have small
D(Pht

(G),Pht
(Gtrain)), since it reflects the real distribution of local node homophily. We use the

kernel density estimation to approximate the homophily distribution of each GAL-selected training
set and present them in Figure 2.

Note that in our definition, the node t itself is contained in its neighborhood N1(t), so each node
will have at least one homophilic neighbor. Even under this setting, the ground truth of local ho-
mophily distribution is still right-skewed, indicating the heterophilic nature of the Roman-empire
dataset. However, we observe that previous GAL methods select training sets that show homophilic
properties on this heterophilic dataset, i.e., the distributions are left-skewed. It is then clear why
GNN trained on these labeled sets fails to produce a satisfactory result: the model is given wrong,
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Figure 2: The local node homophily distribution plot of different GAL-selected training sets and
that of the ground truth on the Roman-empire dataset. For a clear comparison, we also include our
algorithm KyN. It is clear that KyN is the most similar to the ground truth distribution, and the only
heterophilic one. We clip the distributions at 0 and 1. The labeling budget is 20C.

even opposite, information in the first place. Formally, we show that a correct local homophily is
actually necessary for a high accuracy. More details are in the Appendix A.
Proposition 3.1. For predictions ŷ = {ŷ1, · · · , ŷn}, let Acc =

∑n
i=1 1(yi = ŷi)/n, where 1(·) is

the indicator function, let the accuracy of the ego-graph of node i be

Acci =
∑

j∈N(i) 1(yj = ŷj)/|N(i)|, and measure the correctness of local homophily with

D(h, ĥ) = 1
n

∑n
i=1

1
|N(i)| |

∑
j∈N(i) 1(yj = yi)−

∑
j∈N(i) 1(ŷj = ŷi)|, where h = {hi}i∈V is the

vector of local homophily, and N(i) is 1-hop neighborhood of node i, we omit the subscript for the
simplicity of notations. We have that a correct label homophily (i.e., smallD(h, ĥ)) is necessary for
high accuracy. Formally,

D(h, ĥ) ≤ 1

n

n∑
i=1

(1−Acci) + (1−Acc). (3)

But why do previous GALs select homophilic training sets on a heterophilic graph? We argue that
these GALs query nodes without their neighbors, leading to many isolated nodes in the induced
subgraph. When fed to GNNs, these isolated nodes are viewed as strongly homophilic nodes (i.e.,
ht = 1) since they are the only labeled nodes in their own neighborhood, resulting in an inaccurate
homophily distribution. Therefore, the solution is rather straightforward: for heterophilic graphs,
we should label their neighbors together with the selected nodes, which embodies the principle of
“know your neighbors”.
Theorem 3.2 (The principle of “know your neighbors”). For any labeled node i in a graph G, the
more its neighbors are known, the more accurate the estimate of local homophily will be. Formally,
suppose we query ni node, then ∀ϵ ∈ (0, hi),

P(|ĥi − hi| ≥ ϵ) ≤ 2 exp(−2ϵ2ni), (4)

where ĥi is the estimated local homophily of node i and hi is the ground truth.

3.2 SUBGRAPH IMPORTANCE SAMPLING

There are two methods to “know your neighbors”:

• Sample then select k-hop: This approach first samples nodes with some GAL methods,
then selects the k-hop neighbors of each node.

• Partition then sample: This approach first partitions the graph into disjoint subgraphs, and
selects subgraphs with some GAL methods.

4
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Sample then one-hop

Partition then sample

Figure 3: A toy example to illustrate two ap-
proaches to “know your neighbors”. The colored
nodes are labeled and will be used for training
GNNs. We set k = 1 in the “sample then select
k-hop” scheme.

Figure 3 shows these two methods on a toy ex-
ample. Due to neighbor explosion, the “sam-
ple then select k-hop” scheme tends to select
a huge connected component, while “partition
then sample” usually produces reasonably di-
verse subgraphs. Consider two nodes u and v
are selected in the first stage of “sample then
select one-hop”, where v is in the k-hop neigh-
borhood of u, i.e., v ∈ Nk(u). In the sec-
ond stage, the union neighborhood of these two
nodes will be gigantic, draining the labeling
budget. Therefore, we design our algorithm
within the “partition then sample” scheme. We
introduce the details of each phase separately.

Partitioning. We adopt the classic graph clus-
tering algorithms METIS (Karypis & Kumar,
1998) to partition the graphs. For the graph
G, we partition its nodes into c groups: V =
{V1, V2, · · ·Vc}, where Vi is the i-th part. We
then have c subgraphs as

Gi = (Vi, Ei),∀i ∈ [c], (5)
where Ei = {(u, v) : (u, v) ∈ E ∧ u ∈ Vi ∧ v ∈ Vi}. Before moving on to the sampling phase,
we need to generate a representation RGi

for each subgraph Gi. It is possible to use naive readouts,
e.g., take the average of node features:

RGi
=

1

|Vi|
∑
u∈Vi

xu. (6)

However, since we are dealing with heterophilous graphs, Eq. (6) will lead to an inter-class fusion
that makes subgraphs indistinguishable. Therefore, we propose a more sophisticated way to produce
the representations. We first find a central node for each subgraph. The graph center is defined as
follows:
Definition 3.3 (Jordan center (Wasserman & Faust, 1994)). The center of a graph is the set of all
vertices of minimum eccentricity, i.e.,

argmin
u

max
v

d(u, v), (7)

where d(·, ·) is the geodesic distance.

By finding a central node nc, we are able to view the subgraph Gi as an ego-graph centered at nc.
We can then separate the ego-embedding and neighbor-embeddings to yield a reasonable subgraph
representation RGi

. This separation is known to be effective on heterophilic graphs (Zhu et al.,
2020). Specifically, we compute the representation as follows:

RGi
= CONCAT(xnc

,
1

|N1(nc)| − 1

∑
i∈N1(nc)\{nc}

xi), (8)

where CONCAT(·, ·) is the concatenation function. Note that this readout can also serve as a proxy
of GraphSAGE (Hamilton et al., 2017) without learnable parameters, which is one of the few basic
GNN encoders that work with heterophily (Platonov et al., 2023b).

Sampling. The goal of the sampling phase is to approximate the training loss of all subgraphs with
only a small fraction of them. We sample these subgraphs with probabilities proportional to their ℓ1
Lewis weights. The formal definition of ℓ1 Lewis weights is:
Definition 3.4 (ℓ1 Lewis weights (Cohen & Peng, 2015)). For any matrix M ∈ Rn×f the ℓ1 Lewis
weights are the unique values τ1(M), · · · , τn(M) such that,

τi(M)2 = mT
i (M

TWM)†mi, (9)
where W is the diagonal matrix with 1/τ1(M), · · · , 1/τn(M) as its diagonal, and the dagger
symbol represents the pseudoinverse.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

The ℓ1 Lewis weights sampling has solid theoretical guarantees. In practice, we let M = R,
where R = (RG1

, · · · ,RGc
)T is the subgraph representation matrix. We compute and normalize

the ℓ1 Lewis weights τ1(M), · · · , τc(M) and select subgraphs with these probabilities. Once a
subgraph is selected, we query all nodes within the subgraph, achieving “know your neighbors”.
After the number of labeled nodes reaches the budget, we feed the training set to GNNs for parameter
optimization.

3.3 THEORETICAL ANALYSIS

The ℓ1 Lewis weights sampling has solid theoretical guarantees. For linear classification, the ℓ1
Lewis weights sampling yields a relative error coreset (Mai et al., 2021). A type of binary classifi-
cation loss called nice hinge function is considered in Mai et al. (2021):
Definition 3.5 (Nice Hinge Function (Mai et al., 2021)). A function f : R→ R+ is an (L, a1, a2)-
nice hinge function if for fixed constants L, a1 and a2,

(1) f is L-Lipschitz; (2) |f(z)− ReLU(z)| ≤ a1,∀z; (3) f(z) ≥ a2,∀z ≥ 0,

where ReLU(·) is the rectified linear unit.

We extend the theory to our multi-class classification on graphs. We show that ℓ1 Lewis sampling
on R gives a relative error coreset for the cross-entropy (CE) loss. Specifically, minimizing the ob-
jective function on this selected coreset (i.e., the training set Vtrain in experiments) will yield a near
minimizer over all subgraphs. Considering that the GCN encoder is not suitable for heterophilic
graphs, while SAGE-Mean performs stably on heterophilic graphs (Platonov et al., 2023b), we fol-
low previous work and use SAGE-Mean as the encoder. For simplicity, we use a one-layer SAGE-
Mean encoder, the results are similar on any multi-layer linear GNNs. We reformulate the CE loss
to show it is also a (1, ln 2, ln 2)-nice hinge function. The detailed proof is deferred to Appendix C.
Theorem 3.6. For a one-layer GNN encoder, the CE loss is given by L(β) =
−
∑c

i=1 ln(p(yi)|RGi , β), where β is the learnable parameter. For a set of sampling values pi

with
∑c

i=1 pi = m and pi ≥ Cmax(τi(R),1/c)·µ(R)2

ϵ2 for all i, where C = a ·max(1, L, a1, 1/a2)
10 ·

ln( ln(cmax(1,L,a1,1/a2)·µ(R)/ϵ)m
δ ) and a is a fixed constant, µ(R) = supβ ̸=0

||(Rβ)+||1
||(Rβ)−||1 . If the sam-

pling matrix S ∈ Rm×c has each row chosen independently as the ith standard basis vector scaled
by 1/pi with probability pi/m, then with probability at least 1 − δ, we have the following relative
error coreset: ∣∣∣∣∣

m∑
i=1

[Sf (z)]i − L (β)

∣∣∣∣∣ ≤ ϵ · L (β) , (10)

where S has m = Õ( fµ(R)2

ϵ2 ) rows.

Thus, assuming β∗ = argminβ L(β), and β̃ is the minimizer of the weighted loss
∑m

i=1 [Sf (Z)]i,
we have L(β̃) ≤ 1+ϵ

1−ϵ · L (β∗). This shows that minimizing the objective function on the sampled
subset of size m can produce an approximation close to the minimizer over all subgraph, achieving
the goal of subgraph sampling. On the other hand, selecting all nodes within each subgraph achieves
“know your neighbors”, revealing the degree of homophily of a graph. To ensure a fair comparison,
we sample subgraphs until the number of labeling nodes exceeds the budget, and keep the first B
nodes in experiments.

4 RELATED WORK

Active learning is a classic research direction that aims to mitigate annotation expenses (Ren et al.,
2021; Matsushita et al., 2018). It is studied in many fields and under different settings, including
computer vision (Bengar et al., 2021; Kim et al., 2021), nature language processing (Zhang et al.,
2022b; Margatina et al., 2023) and general deep learning (Huang et al., 2024b; Yan & Huang, 2018;
Tang & Huang, 2022). In the graph realm, AGE (Cai et al., 2017) is one of the earliest works
that measure the informativeness of nodes by combining centrality, density, and uncertainty. AN-
RMAB (Gao et al., 2018) improves AGE by learning weights using reinforcement learning. ALG
(Zhang et al., 2021a) considers both the importance and correlation via the effective reception field
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maximization. FeatProp (Wu et al., 2019b) first propagates features and then employs a clustering
algorithm on the propagated node features. GraphPart (Ma et al., 2023) further enhances FeatProp
by applying it to each graph partition. DOCTOR (Song et al., 2023) is a GAL method based on
the expected model change maximization. GreedyET (Huang et al., 2024c) treat GAL as the ag-
gregation involvement maximization. Some other papers focus on different settings that fit certain
applications, e.g., noise/soft label (Zhang et al., 2022a; 2021b; 2024), fairness (Han et al., 2024) and
transfer learning (Hu et al., 2020).

Graph neural networks under heterophily is an emerging topic in the graph realm. In heterophilic
graphs, the nodes with the same labels are not more, sometimes even less, likely to be connected.
The fusion phase of ordinary GNNs in these diverse neighborhoods makes nodes indistinguishable,
leading to unsatisfactory performance. Various model architectures are proposed to address this
challenge. H2GCN (Zhu et al., 2020) is an early work on heterophily identifying designs crucial
to the heterophily setting. CPGNN (Zhu et al., 2021) models different levels of homophily using a
learnable class compatibility matrix in the aggregation step. GPR-GNN (Chien et al., 2021) is the
generalized PageRank-inspired architecture designed to adapt to different label patterns. FAGCN
(Bo et al., 2021) adaptively integrates different signals in the process of message passing with a self-
gating mechanism. GloGNN (Li et al., 2022) generates node embedding by aggregating information
from global nodes in the graph. GGCN (Yan et al., 2022) learns degree corrections and signed
messages based on a unified theoretical perspective for heterophily and oversmoothing. M2M-
GNN (Liang et al., 2024) unveil some potential pitfalls of signed message passing and design a
new scheme to address the problem of undesirable representation update for multi-hop neighbors
and vulnerability against oversmoothing issues. UniFilter (Huang et al., 2024a) develop an adaptive
heterophily basis, this basis is then integrated with the homophily basis to construct a universal
polynomial basis. In our paper, we train the GraphSAGE (Hamilton et al., 2017) to evaluate the
quality of GAL-selected training sets, since it is one of the few basic GNN encoders that work with
heterophily (Platonov et al., 2023b). We want to point out that GAL methods can be used with
all previously mentioned GNNs that designed for heterophilic graphs. We omit such combinations
without loss of generality.

Coreset is a research field that is very close to active learning. The main difference between the two
problems is that we have access to labels before training set selection, but many coreset methods do
not use labels so that they can be used for active learning. There are sampling works that focus on
ℓ2-regression (Drineas et al., 2006; Li et al., 2013; Cohen et al., 2015) and ℓ1-regression (Clarkson,
2005; Sohler & Woodruff, 2011; Clarkson et al., 2016). Recent works show that coresets with
relative error can be constructed on bounded complexity data for the logistic loss and hinge loss
(Munteanu et al., 2019; Mai et al., 2021). Sampling-based coreset methods are also used for fields
of active learning, e.g., multiple deep models active learning (Huang et al., 2024b). To the best of
our knowledge, this paper is the first to explore Lewis weight sampling for graph active learning.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We first compare KyN with other GAL methods on various real-world datasets: Roman-empire,
Amazon-ratings, Tolokers, and Minesweeper (Platonov et al., 2023b), Wisconsin and Texas (Pei
et al., 2020). We set the labeling budget to 5C, 10C, and 20C, where C is the number of classes in
each dataset. This setting is common in previous GAL research (e.g., (Han et al., 2024)).

According to previous research, the message-passing approach of GCN is not suitable for het-
erophilic graphs, while SAGE-Mean shows relatively stable performance (Platonov et al., 2023b).
This is because SAGE-Mean allows the “negative-aggregation” by concatenating the ego-embedding
and neighbor-embedding. Therefore, to eliminate any additional impact from the encoder, we used
SAGE-Mean as the GNN encoder instead of GCN on heterophilic graphs. We also used some GNNs
designed specifically for heterophilic graphs as backbones to do a small number of experiments.
Since the conclusions are consistent, we mainly use SAGE-Mean for simplicity and readability. We
also provide the formula of SAGE-mean for readers who are not familiar with this encoder:

hl
v = σ(hl−1

v W l
1 + (meanu∈N(v)h

l−1
u )W l

2). (11)
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For these graphs, we train a three-layer encoder to evaluate the quality of the selected training set.
The number of epochs is 300. The learning rate is 0.01 and the weight decay is 5 × 10−4. The
number of hidden units is 64. All results are averaged over 10 runs, and standard deviations are
reported. A key hyperparameter of our framework is the number of groups c, which is set to [1500,
2000, 2500, 25, 2500, 30] for Roman-empire, Amazon-ratings, Tolokers, Wisconsin, Minesweeper,
and Texas, respectively.

All experiments are implemented using Python and PyTorch Geometric. Experiments are conducted
on a server with an NVIDIA A100 GPU (80 GB memory) and an Intel Xeon Sapphire Rapids 9462
CPU. More implementation details can be found in Appendix D.

5.2 EXPERIMENTAL RESULTS

Table 1: The experimental results of KyN and other graph active learning methods. We report
the mean classification accuracy and standard deviation trained on the training set selected by each
GAL. The best results are bolded.

Dataset Roman-empire Amazon-ratings
Budget 5C 10C 20C 5C 10C 20C

Random 43.1 ± 2.9 50.7 ± 1.0 56.5 ± 0.8 30.2 ± 2.6 30.7 ± 1.5 31.3 ± 0.6
Uncertainty 32.7 ± 4.4 44.7 ± 3.0 52.3 ± 2.6 30.6 ± 2.9 30.8 ± 2.7 31.4 ± 1.1
Density 38.2 ± 3.3 44.5 ± 2.4 50.2 ± 2.2 30.5 ± 2.1 30.9 ± 2.2 31.1 ± 0.8
AGE 36.3 ± 2.8 48.2 ± 2.4 54.6 ± 1.6 29.3 ± 1.8 30.2 ± 2.5 30.8 ± 1.6
ALG 41.8 ± 2.3 48.4 ± 1.8 53.8 ± 1.5 30.8 ± 1.5 31.0 ± 1.5 31.6 ± 1.0
FeatProp 42.4 ± 1.0 50.6 ± 2.1 52.4 ± 1.7 30.2 ± 1.3 30.3 ± 1.5 30.9 ± 0.6
GraphPart 42.7 ± 1.6 44.8 ± 2.5 52.3 ± 1.9 30.4 ± 2.2 31.0 ± 1.4 32.1 ± 0.7
KyN 44.8 ± 2.4 51.4 ± 1.3 57.5 ± 1.4 31.2 ± 1.7 31.3 ± 1.1 32.3 ± 0.4

Ave. Improve. 5.2 4.0 4.3 0.9 0.6 1.0

Dataset Tolokers Wisconsin
Budget 5C 10C 20C 5C 10C 20C

Random 65.4 ± 3.9 68.8 ± 4.7 69.0 ± 3.2 71.7 ± 4.0 78.6 ± 3.3 86.1 ± 2.3
Uncertainty 68.9 ± 8.6 71.4 ± 8.0 71.7 ± 4.6 71.6 ± 5.9 78.7 ± 3.9 88.1 ± 2.1
Density 62.7 ± 9.2 68.5 ± 6.4 68.6 ± 4.2 68.7 ± 1.3 72.5 ± 1.1 83.7 ± 2.0
AGE 66.6 ± 7.8 69.4 ± 5.6 70.9 ± 4.7 69.2 ± 2.2 78.2 ± 0.7 87.4 ± 3.0
ALG 67.3 ± 6.4 69.6 ± 6.1 70.8 ± 4.3 70.8 ± 3.7 78.5 ± 3.2 86.9 ± 2.6
FeatProp 62.3 ± 7.1 70.6 ± 5.3 66.8 ± 3.9 71.9 ± 2.8 78.8 ± 1.7 87.9 ± 2.5
GraphPart 69.8 ± 6.8 71.2 ± 4.3 71.5 ± 4.1 69.7 ± 3.1 78.9 ± 1.5 87.2 ± 2.9
KyN 71.0 ± 4.5 71.8 ± 3.5 72.9 ± 4.2 72.5 ± 3.5 79.1 ± 1.1 88.5 ± 2.2

Ave. Improve. 4.9 1.9 3.0 2.0 1.4 1.8

Dataset Minesweeper Texas
Budget 5C 10C 20C 5C 10C 20C

Random 72.9 ± 5.2 75.0 ± 3.6 77.1 ± 3.1 73.3 ± 2.9 82.6 ± 3.0 92.8 ± 2.2
Uncertainty 68.7 ± 7.9 75.4 ± 6.2 76.7 ± 4.1 73.4 ± 2.9 84.1 ± 2.5 94.7 ± 1.4
Denstiy 67.3 ± 9.8 73.0 ± 7.9 75.1 ± 3.2 73.5 ± 2.5 78.6 ± 2.7 91.8 ± 1.6
AGE 71.0 ± 3.8 75.7 ± 3.8 76.4 ± 2.5 74.3 ± 2.3 80.4 ± 2.1 89.3 ± 0.7
ALG 71.6 ± 4.7 75.5 ± 5.4 76.8 ± 2.7 74.6 ± 2.7 83.5 ± 2.6 91.3 ± 1.1
FeatProp 73.1 ± 4.4 75.6 ± 2.9 76.2 ± 2.3 76.2 ± 2.8 82.2 ± 2.4 92.9 ± 1.5
GraphPart 72.8 ± 5.6 75.9 ± 3.1 76.8 ± 2.1 77.1 ± 2.4 83.9 ± 2.2 92.7 ± 1.9
KyN 73.3 ± 5.3 76.5 ± 3.6 77.8 ± 2.8 77.4 ± 2.9 84.3 ± 4.1 93.2 ± 1.6

Ave. Improve. 2.2 1.3 1.4 2.8 2.1 1.0

Performance on heterophilic graphs. Table 1 shows the performance of GALs on heterophilic
graphs. The results show that KyN achieves the best performance on all heterophilic graphs with
different labeling budgets. As mentioned earlier, we observe that on many heterophilic datasets (e.g.,
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Roman-empire and Minesweeper), previous GALs fail to consistently outperform the naive random
sampling. The gap between previous GAL methods and random sampling can even reach as high as
10.4% and 5.6%. Compared to previous GAL methods, the performance improvement of KyN on
six datasets can reach up to 12.1%, 1.9%, 8.7%, 6.6%, 6.0% and 5.7%, respectively. The success of
KyN is due to the unveiling of the heterophilic nature by the selection training sets. As mentioned
in Section 3.1 and Figure 2, previous GAL-selected training sets imply homophilic property even
on heterophilic graphs. This is because these GALs are only designed for informativeness and
coverage of graphs, not homophily. In contrast, we address this issue by the principle of “know your
neighbors”.
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Figure 4: The runtime (in second) comparison between KyN and other GALs.
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Figure 5: The hyperparameter sensitivity analysis of KyN. The green, orange, and blue lines are
accuracy curves with labeling budgets of 5C, 10C, and 20C, respectively.

Runtime comparison. Although the purpose of this paper is not to design an efficient GAL method,
we still hope that KyN can achieve a reasonable runtime. For graph active learning, if the time re-
sources consumed are excessive, then such a GAL method is not feasible for practical implementa-
tion. Figure 4 shows the runtime of each GAL method on relatively larger datasets. We observe that
the runtime of KyN is acceptable considering its performance. On these datasets, it is faster than
prevalent GAL methods, e.g., FeatProp, GraphPart, and ALG. On the Roman-empire and Amazon-
ratings datasets, the time consumption of KyN is even an order of magnitude lower than that of
FeatProp. Moreover, the runtime of KyN is negligible compared with human annotation.
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Table 2: The experimental results with het-
erophilic GNNs as backbones on the Roman-
empire dataset. The labeling budget is 20C.

Method FAGCN M2M-GNN

Random 52.0 ± 0.5 58.3 ± 1.3
Uncertainty 47.7 ± 1.8 54.9 ± 1.0

Density 45.3 ± 1.1 51.5 ± 1.2
AGE 50.5 ± 1.9 55.7 ± 1.4
ALG 51.2 ± 1.3 56.3 ± 1.2

FeatProp 51.7 ± 0.9 57.0 ± 0.8
GraphPart 51.6 ± 1.2 56.1 ± 0.8

KyN 53.5 ± 1.4 59.2 ± 1.0

Hyperparameter sensitivity. We study the in-
fluence of the number of groups c on the perfor-
mance of KyN. As mentioned earlier, we do not
want a giant connected component as the train-
ing set, since it lacks diversity. So the bottom
line is to keep the number of nodes in a sub-
graph under the labeling budget, i.e., |V | ≤ Bc,
where B is the budget. On the other hand, a
c that is too large should also be avoided as it
will not achieve our principle of “know your
neighbors”. Figure 5 shows the results on six
datasets. We observe that KyN is robust to the
choice of c. In practice, we recommend choos-
ing c around |V |

C , where C is the number of
classes. We also want to point out that some
choice of c will lead to a better performance
than Table 1. This is normal since we do not tune c with the final accuracy to avoid data leakage.

Table 3: The experimental results on a large het-
erophilic graph, snap-patents. The labeling bud-
get is 5C. We report the classification accuracy
and runtime (in seconds). OOT (out-of-time) in-
dicates the scenario where the algorithm failed to
finish within 24 hours.

Method Accuracy Runtime

Random 32.9 0.06
Uncertainty 25.5 0.45

Density 25.1 752
AGE 23.7 3504
ALG OOT -

FeatProp 21.6 7245
GraphPart OOT -

KyN 33.7 651

Heterophilic GNNs as backbones. We use
two heterophilic GNNs, FAGCN (Bo et al.,
2021) and M2M-GNN (Liang et al., 2024), as
backbones to compare different GALs on the
Roman-empire dataset. The results are pre-
sented in Table 2. We observe that KyN still
achieve the best performance with these two
backbones. In other experiments in this arti-
cle, we stick to SAGE-Mean as the backbone
so that readers who are not familiar with het-
erophilic GNN can understand it more easily.

Performance on a large heterophilic graph.
To verify the scalability of KyN, we compare
different GAL methods on a large heterophilic
graph, snap-patents. This dataset contains more
than two million nodes and thirteen million
edges. The results are presented in Table 3.
We observe that KyN achieves the best perfor-
mance and the runtime is also reasonable. This
experiment shows the efficiency of KyN.

More detailed component analysis. Due to the page limit, we defer ablation studies and other
component analyses to Appendix H.

6 CONCLUSION

In this paper, we investigate a new research problem, heterophilic graph active learning. We observe
that previous GAL methods that work perfectly on homophilic graphs fail to outperform naive ran-
dom sampling on heterophilic graphs. Through an insightful investigation of the local homophily
distribution, we find that previous GAL-selected training sets imply homophilic properties on het-
erophilic graphs. We argue that the previous design principle of informativeness and coverage on
graphs will inevitably produce isolated training nodes that is harmful for heterophilic GALs. To ad-
dress this issue, we propose a novel principle of “know your neighbors” and dub our model as KyN.
KyN unveils the homophilic/heterophilic nature of graphs by labeling nodes along with their neigh-
bors. We implement KyN with ℓ1 Lewis weights sampling, which has solid theoretical guarantees.
Extensive experiments show the effectiveness of our method.
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A PROOF OF PROPOSITION3.1

Proposition A.1. For predictions ŷ = {ŷ1, · · · , ŷn}, let

Acc =
1

n

n∑
i=1

1(yi = ŷi), (12)

where 1(·) is the indicator function, let the accuracy of the ego-graph of node i be

Acci =
1

|N(i)|
∑

j∈N(i)

1(yj = ŷj), (13)

and measure the correctness of local homophily with

D(h, ĥ) = 1

n

n∑
i=1

1

|N(i)|
|
∑

j∈N(i)

1(yj = yi)−
∑

j∈N(i)

1(ŷj = ŷi)|, (14)

where N(i) is 1-hop neighborhood of node i, we omit the subscript for the simplicity of notations. We
have that a correct label homophily (i.e., small D(h, ĥ)) is necessary for high accuracy. Formally,

D(h, ĥ) ≤ 1

n

n∑
i=1

(1−Acci) + (1−Acc). (15)

Proof.

D(h, ĥ) = 1

n

n∑
i=1

1

|N(i)|
|
∑

j∈N(i)

1(yj = yi)−
∑

j∈N(i)

1(ŷj = ŷi)|

=
1

n

n∑
i=1

1

|N(i)|
1(yi = ŷi)|

∑
j∈N(i)

1(yj = yi)−
∑

j∈N(i)

1(ŷj = ŷi)|

+
1

n

n∑
i=1

1

|N(i)|
1(yi ̸= ŷi)|

∑
j∈N(i)

1(yj = yi)−
∑

j∈N(i)

1(ŷj = ŷi)|

≤ 1

n

n∑
i=1

1

|N(i)|
1(yi = ŷi)

∑
j∈N(i)

1(yj ̸= ŷj) +
1

n

n∑
i=1

1(yi ̸= ŷi)

≤ 1

n

n∑
i=1

(1−Acci) + (1−Acc).

(16)

Theorem 3.1 shows that higher accuracy implies correct local homophily (i.e., small D(h, ĥ)), and
wrong local homophily (i.e., large D(h, ĥ)) implies lower accuracy. This result further shows the
importance of homophily to the behavior of GNNs. We also want to highlight that the left-hand side
of Eq. (15) is a global measure, and the right-hand side is also a global measure since the first term
is a summation over all nodes i ∈ V . So even if a node j is not in the neighborhood of some node i,
its accuracy still counts. The second term of the right-hand side is also a global measure, so there is
no theoretical gap between the local and the global.

B PROOF OF THEOREM 3.2

Theorem B.1 (The principle of “know your neighbors”). For any labeled node i in a graph G, the
more its neighbors are known, the more accurate the estimate of local homophily will be. Formally,
suppose we query ni node, then ∀ϵ ∈ (0, hi),
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P(|ĥi − hi| ≥ ϵ) ≤ 2 exp(−2ϵ2ni), (17)

where ĥi is the estimated local homophily of node i and hi is the ground truth.

Proof. Suppose we have K out of ni nodes that have the same label with i. We will estimate the local
homophily use ĥi =

K
ni

, and the ground truth is hi =
P

|N(i)| , where P is the total number of positive
neighbors. We observe that K follows a hypergeometric distribution, K ∼ HG(|N(i)|, P, ni).
Therefore, ∀ϵ ∈ (0, hi),

P(|ĥi − hi| ≥ ϵ) = P(ĥi − hi ≥ ϵ) + P(ĥi − hi ≤ −ϵ)
= P(K ≥ (hi + ϵ)ni) + P(K ≤ (hi − ϵ)ni)

≤ 2 exp(−2ϵ2ni).

(18)

Theorem 3.2 shows that, for any node i, the more its neighbors are known, the more accurate the
estimate of local homophily will be. Since we have D(h, ĥ) = 1

n

∑n
i=1 |hi − ĥi|, small |hi − ĥi| is

necessary for D(h, ĥ). However, since we are working on a GAL setup with a limited budget, it is
not possible to make all nodes i ∈ V “know their neighbors”. What we can do is to ensure that as
many nodes as possible meet this principle. Besides, when node i knows its neighbor j, it implies
that j also knows its neighbor i, so the process is reciprocal.

C PROOF OF THEOREM 3.6

We will make use of the following result on linear classification with nice hinge function:

Theorem C.1 (Nice Hinge Function – Relative Error Coreset (Mai et al., 2021)). For some matrix
X ∈ Rn×d and an (L, a1, a2)-nice hinge function f and a2 > 0. For a set of sampling value pi

with
∑n

i=1 pi = m and pi ≥ Cmax(τi(X),1/n)·µ(X)2

ϵ2 for all i, where C = a ·max(1, L, a1, 1/a2)
10 ·

ln( ln(nmax(1,L,a1,1/a2)·µ(X)/ϵ)m
δ ) and a is a fixed constant, if we generate S ∈ Rm×n with each

row chosen independently as the ith standard basis vector times 1/pi with probability pi/m, then
with probability at least 1− δ, ∀β ∈ Rd,

|
m∑
i=1

[Sf(Xβ)]i −
n∑

i=1

f(Xβ)i| ≤ ϵ ·
n∑

i=1

f(Xβ)i, (19)

where S has m = Õ(dµ(X)2

ϵ2 ) rows.

We extend the above theorem to our multi-class classification on GNNs.

Theorem C.2. For a 1-layer GraphSAGE encoder, the CE loss is given by L(β) =
−
∑c

i=1 ln(p(yi)|RGi , β), where β is the learnable parameter. For a set of sampling values pi

with
∑c

i=1 pi = m and pi ≥ Cmax(τi(R),1/c)·µ(R)2

ϵ2 for all i, where C = a ·max(1, L, a1, 1/a2)
10 ·

ln( ln(cmax(1,L,a1,1/a2)·µ(R)/ϵ)m
δ ) and a is a fixed constant, µ(R) = supβ ̸=0

||(Rβ)+||1
||(Rβ)−||1 . If the sam-

pling matrix S ∈ Rm×c has each row chosen independently as the ith standard basis vector scaled
by 1/pi with probability pi/m, then with probability at least 1 − δ, we have the following relative
error coreset: ∣∣∣∣∣

m∑
i=1

[Sf (z)]i − L (β)

∣∣∣∣∣ ≤ ϵ · L (β) , (20)

where S has m = Õ( fµ(R)2

ϵ2 ) rows.

Proof. Consider a single-layer GraphSAGE, where R = (RG1
, . . . ,RGc

)T ∈ Rc×d is the rep-
resentation matrix, where d = 2f in our setting, y ∈ {1, . . . , C}c is the label vector, and
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β ∈ Rd×k is the parameter. The CE Loss is given by L(β) = −
∑c

i=1 ln(p(yi|RGi
)), where

p(yi|RGi
) = eR

T
Gi

βyi/
∑C

j=1 e
RT

Gi
βj . We can reformulate L(β) as:

L(β) = −
c∑

i=1

ln(p(yi|RGi
))

= −
c∑

i=1

ln(
eR

T
Gi

βyi∑C
j=1 e

RT
Gi

βj
)

=

c∑
i=1

ln(

∑C
j=1 e

RT
Gi

βj

e
RT

Gi
βyi

)

=

c∑
i=1

ln(1 +

∑
j ̸=yi

eR
T
Gi

βj

e
RT

Gi
βyi

)

=

c∑
i=1

ln(1 + ezi)

=

c∑
i=1

f(z)i,

(21)

where we let z ∈ Rc, and zi = ln
(∑

j ̸=yi
eR

T
Gi

βj

)
−RT

Gi
βyi .

According to Definition 3.5, f(z) := ln (1 + ez) is a (1, ln 2, ln 2)-nice hinge function. Therefore,
following Theorem C.1, if we sample subgraphs proportionally to the ℓ1 Lewis weights, we will
obtain a (1 ± ϵ)-relative error coreset with probability at least 1 − δ, where δ > 0 is a small
constant. Specifically, if the sampling matrix S ∈ Rm×c has each row chosen independently as the
ith standard basis vector scaled by 1/pi with probability pi/m, then there exists a small ϵ > 0 such
that for any β ∈ Rc×C , ∣∣∣∣∣

m∑
i=1

[Sf (z)]i − L (β)

∣∣∣∣∣ ≤ ϵ · L (β) . (22)

D EXPERIMENTAL DETAILS

The detailed statistics for the datasets used for heterophilic graph active learning are shown in Table
4. We use effective GAL methods as baselines. Some methods are not selected since their code is
not available (Song et al., 2023; Cui et al., 2022), or they focus on other settings, like noisy oracle
(Zhang et al., 2021b; 2024). We briefly introduced the used baselines as follows:

Table 4: The statistics of used datasets.

Dataset #Nodes #Edges #Feature #Class h

Roman-empire 22,662 32,927 300 18 0.0469
Amazon-ratings 24,492 93,050 300 5 0.3804

Tolokers 11,758 519,000 10 2 0.5945
Minesweeper 10,000 39,402 7 2 0.6828

Wisconsin 251 499 1,703 5 0.1703
Texas 183 309 1,703 5 0.0615

Snap-patents 2,923,922 13,975,788 269 5 0.07
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• Random: The naive random sampling that chooses nodes uniformly.

• Uncertainty (Settles & Craven, 2008): A GAL that chooses the nodes with maximum en-
tropy on the predicted distribution.

• Density (Cai et al., 2017): A GAL that performs clustering on the embeddings of the nodes,
and then chooses nodes with maximum density score.

• AGE (Cai et al., 2017): A GAL that selects nodes based on centrality, density, and uncer-
tainty.

• ALG (Zhang et al., 2021a): A GAL that maximizes the effective reception field.

• FeatProp (Wu et al., 2019b): A GAL that first performs clustering on the propagated fea-
tures, and then chooses the nodes closest to the cluster centers.

• GraphPart (Ma et al., 2023): A GAL that first splits the graph into disjoint partitions and
then selects representative nodes within each partition.

E CASE STUDY

We provide the case study in Figure 6 over selected nodes for different GAL methods on the Roman-
empire dataset. We observe that KyN indeed selects more connected nodes than previous GAL
baselines, which follows our principle of “know your neighbors”.

(a) Random (b) Uncertainty (c) Density (d) AGE

(e) ALG (f) FeatProp (g) GraphPart (h) KyN

Figure 6: The case study over selected nodes for different GAL methods on the Roman-empire
dataset. The labeling budget is 20C.

F PSEUDOCODE

Algorithm 1 is the pseudocode of ℓ1 Lewis weights computation. The approximation has the time
complexity of Õ(nnz(M)+dω), where d is the number of dimensions and ω ≈ 2.37 is the constant
of fast matrix multiplication (Mai et al., 2021).

Algorithm 2 is the pseudocode of our KyN.
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Algorithm 1 ℓ1 Lewis weights computation. (Cohen & Peng, 2015)

Require: A representation matrix M , the approximation coefficient β, the iteration steps T .
w = LewisIterate(M,β,w)

for i = 1 . . . n do
Let τ̃i ≈β τi(W

−1/2M) be a β-approximation of the statistical leverage score of row i

in W−1/2M , where W is the diagonal matrix of w.
Set ŵi ← (wiτ̃i)

1/2 ≈β1/2 (mT
i (M

TW−1M)−1mi)
1/2.

end for
return ŵ.

w = ApproxLewisWeights(M,β, T )

Initialize wi = 1.
for t = 1 . . . T do

Set w ← LewisIterate(M,β,w).
end for
return w.

Algorithm 2 KyN

Require: A unlabeled graph G, the labeling budget b, the number of cluster c.
Partition the graph into c groups V = {V1, · · · , Vc} with the METIS algorithm.
Compute the subgraph representation R with Eq. 8.
Compute the subgraph ℓ1 Lewis weights w = ApproxLewisWeights(R, β, T ).
Initilalize count = 0 and the training set Vtrain = ∅.
while count < b do

Sample a subgraph Vi with the ℓ1 Lewis weights w.
if count + |Vi| < b then

Add all nodes in Vi to Vtrain.
else

Add the central node of |Vi| to Vtrain and uniformly sample b− count−1 nodes from |Vi|
to Vtrain.

end if
count = |Vtrain|.

end while
return Vtrain.

G MORE NODE HOMOPHILY DISTRIBUTION PLOT

Figure 7 is the local node homophily distribution plot of different GAL-selected training sets and
that of the ground truth on the Amazon-ratings dataset.

H DETAILED COMPONENT STUDIES

Effectiveness of the importance sampling. We use two datasets, Roman-empire and Tolokers,
with a budget of 5C to test the effectiveness of the importance sampling. The results are presented
in Table 5. We observe even without the full importance sampling, our model is still better than the
naive random sampling. However, the performance degrades without the representative information.

Table 5: The ablation study of KyN to examine the effectiveness of the importance sampling. The
labeling budget is 5C.

Roman-empire Tolokers

KyN 44.8 71.0
KyN w.o. Importance sampling 43.7 68.5

KyN w.o. Concatenation 44.0 70.3

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0
Local homophily

0

2

4

6

8

10

12

14

De
ns

ity

Ground Truth
KyN
Random
Uncertainty
Density
FeatProp
AGE
ALG
GraphPart

Figure 7: The local node homophily distribution plot of different GAL-selected training sets and
that of the ground truth on the Amazon-ratings dataset. For a clear comparison, we also include our
algorithm KyN. It is clear that KyN is the most similar to the ground truth distribution, and the only
heterophilic one. We clip the distributions at 0 and 1. The labeling budget is 20C.

Why not “sample then select”? We implement a simple ”sample then select one-hop” method that
first randomly select nodes and their one-hop neighbors. The results are presented in Table 6. We
observe that the “sample then select k-hop” scheme is indeed suboptimal.

Table 6: The comparison between the two scheme, “sample then select k-hop” and “partition then
sample”. The labeling budget is 5C.

Roman-empire Amazon-ratings Tolokers

Sample then select one-hop 43.4 30.5 66.7
KyN 44.8 31.2 71.0

Different choice of graph partition methods. We use METIS as our graph clustering algorithm as
it is the de facto in the GNN realm (Chiang et al., 2019; Fey et al., 2021; Huang et al.). To justify
our choice, we replace METIS with three algorithms, algebraic JC, variation neighborhoods, and
affinity GS. The results are presented in Table 7. We observed that METIS performs the best, but
the results of other graph clustering algorithms are also acceptable.

Table 7: The comparison between different graph partition methods. The labeling budget is 5C.

Roman-empire Amazon-ratings Tolokers

KyN+JC 43.9 30.8 68.7
KyN+VN 44.2 30.8 69.2
KyN+GS 44.5 31.0 70.5

KyN 44.8 31.2 71.0
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