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Abstract

We use variational learning to improve accuracy and calibration of low-rank adap-1

tation (LoRA) finetuning in large language models. Specifically, we employ the2

Improved Variational Online Newton (IVON) optimizer, which is a drop-in re-3

placement of AdamW but significantly improves the performance with negligible4

overhead. We test our method by finetuning a Llama 2 model with 7 billion pa-5

rameters on a range of commonsense reasoning datasets. Compared to AdamW6

finetuning, IVON improves accuracy by 2.8% and ECE by 4.6% on average. Our7

work provides more evidence for the effectiveness of variational learning in large8

language models. A link to the code will be provided in the final paper.9

1 Introduction10

Large Language Models (LLMs) exhibit impressive capabilities across a wide range of natural11

language generation and understanding tasks but adapting them to new data can be hard, because12

lots of compute and memory is required due to their large number of parameters. While techniques13

like Low-Rank Adaptation (LoRA) [9] can alleviate this and enable finetuning on a small compute14

budget, models trained with LoRA still tend to be badly calibrated [23]. Bayesian methods promise15

to alleviate this, and in fact several Bayesian adaptations of LoRA have been proposed, such as16

Laplace-LoRA [23], LoRA ensembles [21], or SWAG-LoRA [16]. However, they all require either17

additional postprocessing steps or multiple training runs.18

We present a method that uses variational learning [7, 8] to improve both the accuracy and calibration19

of LoRA-trained models without training overhead or additional postprocessing steps. The proposed20

method is called IVON-LoRA and we use the IVON optimizer [18] to estimate a diagonal Gaussian21

distribution over the low-rank factors that are added in LoRA. Learning the diagonal Gaussian only22

induces a negligible overhead (around ≈ 1%, as discussed in Sec. 3) in terms of training speed when23

compared to AdamW but provides a posterior from which diverse models can be sampled. We find24

that IVON-LoRA improves both calibration and accuracy and averaging the predictions of multiple25

sampled models further significantly improves calibration.26

Several recent works consider related approaches to improve language model finetuning. Following a27

PAC-Bayesian framework, Liu et al. [11] proposes to finetune the full model using perturbed gradient28

descent. Chen and Garner [2] uses variational learning to estimate parameter importance in adaptive29

LoRA [24]. However, neither of them has been shown to work for recent billion-scale LLMs. Similar30

to Liu et al. [11], Zhelnin et al. [25] shows that Gaussian noise injection can improve instruction31

tuning of LLMs. Different from our work, they finetune on a significantly larger instruction dataset,32

which is more resilient to bad calibration and overfitting.33

We show the effectiveness of our method by finetuning a Llama 2 model with 7 billion parameters on34

a range of commonsense reasoning tasks. We compare our method to both standard LoRA training35

with AdamW, and various Bayesian variants of LoRA [16, 23]. Our results show that IVON-LoRA36

outperforms AdamW significantly in terms of both accuracy and calibration on all tasks. Our method37
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gives better accuracy than the other Bayesian adaptations of LoRA and provides competitive results38

in calibration metrics but without requiring training overhead or additional postprocessing.39

Altogether, IVON-LoRA is easy to implement and can be used as a plug-in replacement for LoRA40

training with AdamW that enables better accuracy and calibration without overhead. Our work further41

shows the effectiveness of variational learning for LLMs.42

2 Variational low-Rank adaptation using IVON43

The parameters of LLMs contain weight matrices W = {W(1), . . . ,W(D)}, where W(i) ∈ Rdi×ki .44

Instead of directly finetuning the weight matrices W, low-rank adaptation (LoRA) [9] learns low-rank45

increments ∆W = {∆W(1), . . . ,∆W(D)}. Each increment ∆W(i) = B(i)A(i) is parametrized46

by two smaller matrices B(i) ∈ Rdi×r, A(i) ∈ Rr×ki . r is a hyperparameter that determines the47

rank of the increments ∆W, and is smaller than di and ki. LoRA initializes all A(i) as random48

Gaussian matrices and B(i) to zero. Given a set of pretrained weight matrices W0, LoRA optimizes49

the following loss function,50

L(∆W) =
1

N

N∑
n=1

ℓn(W0 + (α/r)∆W), (1)

where α > 0 is an additional tuning hyperparameter, α/r makes hyperparameter choice consistent51

when varying the rank r and ℓn is the loss for data example n.52

We propose a variational learning approach and search for mean-field Gaussian posterior distributions53

over the low-rank factors A and B. Denoting θ = (A,B), we assume that q(θ) ∼ N (m, diag(v)),54

meaning that for every scalar entry of A and B we learn a scalar mean and variance. This amounts to55

minimizing the variational objective56

Lvariational(q) = λEq(θ) [L(∆W)] + DKL(q(θ) ∥ p(θ)), (2)

over the posterior mean m and variance v. Here the prior p(θ) ∼ N (0, v0I) is chosen as a Gaussian57

with zero mean and a constant variance v0, and λ > 0 is weighting-parameter. Setting λ = N58

one approximates the Bayesian posterior, and larger values target a cold posterior. The variational59

objective (2) can be optimized using the IVON [18] optimizer,1 which we employ to learn the60

variational posterior q(θ) over the low-rank factors A, B. Despite learning a Gaussian mean-field61

posterior over A and B, the optimizer has negligible memory overhead when compared to Adam.62

This is due to the variance playing an analogous role to the second-moment estimate in Adam, we63

refer the interested reader to Shen et al. [18] for the details.64

3 Experiments65

To evaluate the effectiveness of the proposed method, we use IVON to finetune pretrained Llama 266

[19] model with 7 billion parameters on six datasets with commonsense reasoning multiple-choice67

or true/false questions. These six datasets are WinoGrande-Small (WG-S), WinoGrande-Medium68

(WG-M) [17], ARC-Challenge (ARC-C), ARC-Easy (ARC-E) [4], OpenBookQA (OBQA) [14], and69

BoolQ [3]. We evaluate the performance of the trained LoRA adapters by calculating the accuracy,70

expected calibration error (ECE) and negative log-likelihood (NLL) on the test set. We add NLL71

as another metric for calibration, since ECE is found not always reliable for this purpose [1]. As72

for baseline methods, we compare the performance of IVON-LoRA adapters with LoRA adapters73

trained using AdamW. We also consider other methods for improving generalization and calibration,74

including Monte Carlo Dropout (MC Dropout) [6], Laplace Approximation (LA) [23], Stochastic75

Weight Averaging (SWA) [10, 16], and SWA-Gaussian (SWAG) [12, 16].76

Compared to standard AdamW finetuning which learns a point estimation of the parameters, IVON77

finetuning learns a distribution over the parameters, which allows sampling to obtain an ensemble of78

models during inference. Considering this, we evaluate two variants of inference with IVON-LoRA79

adapters: predicting at the mean of the posterior distribution, and predicting at an ensemble of 1080

1https://github.com/team-approx-bayes/ivon
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Table 1: Comparison of techniques applied to finetuning/finetuned Llama-2 7B model across com-
monsense reasoning datasets. Results at the end of training are reported, with subscripts indicating
standard error of the mean across 3 runs. We show the relative metric changes achieved by using
IVON over AdamW in parentheses, with improvements in blue and degradation in red. The methods
marked with * do not require customized pipeline or additional computation during inference.

Metrics Methods WG-S ARC-C ARC-E WG-M OBQA BoolQ Average

ACC ↑

AdamW* 66.50.4 66.70.5 84.90.2 73.50.4 78.90.7 85.80.1 76.1
+ MC Drop 66.70.4 67.30.5 84.80.4 73.70.2 79.30.5 85.90.2 76.3
+ LA (KFAC) 66.60.3 66.01.4 84.30.4 73.20.3 78.60.9 85.70.2 75.7
+ LA (diag) 66.20.3 61.21.9 81.80.5 73.30.3 79.70.8 85.70.2 74.7
+ SWA* 69.70.6 67.21.3 85.20.1 75.60.2 79.80.5 85.50.1 77.2
+ SWAG 69.40.6 68.41.3 85.10.2 75.20.4 80.10.1 85.20.2 77.2

IVON@mean* (+5.6) 72.10.5 (+3.2) 69.90.7 (+2.6) 87.50.6 (+3.1) 76.60.5 (+2.0) 80.90.6 (+0.3) 86.10.2 (+2.8) 78.9
IVON (+5.7) 72.20.5 (−0.4) 66.30.6 (+0.8) 85.70.3 (+2.9) 76.40.6 (+1.5) 80.40.4 (−0.1) 85.70.2 (+1.7) 77.8

ECE
(×100) ↓

AdamW* 32.80.5 31.40.6 14.50.3 25.30.4 19.10.8 7.60.2 21.8
+ MC Drop 30.70.3 28.80.7 13.40.4 23.60.1 17.50.6 7.60.3 20.2
+ LA (KFAC) 5.22.0 12.42.5 5.41.6 11.10.2 5.50.2 3.90.1 7.3
+ LA (diag) 12.41.2 16.31.7 24.23.6 5.80.6 13.11.2 19.70.2 15.3
+ SWA* 19.70.5 24.60.8 9.80.2 12.31.4 9.70.4 2.40.2 13.1
+ SWAG 12.91.1 15.61.1 5.70.3 8.01.2 5.10.4 1.10.4 8.1

IVON@mean* (−5.3) 27.50.4 (−5.6) 25.80.4 (−4.4) 10.10.4 (−2.3) 23.00.5 (−7.9) 11.20.5 (−2.0) 5.60.1 (−4.6) 17.2
IVON (−11.0) 21.80.8 (−20.7) 10.70.4 (−10.9) 3.60.6 (−3.9) 21.40.5 (−15.8) 3.30.9 (−5.0) 2.60.2 (−11.2) 10.6

NLL ↓

AdamW* 4.190.43 3.710.49 1.520.05 2.030.06 1.540.05 0.440.01 2.24
+ MC Drop 3.750.33 3.250.38 1.360.07 1.850.05 1.400.04 0.430.01 2.01
+ LA (KFAC) 0.630.01 0.960.03 0.490.02 0.760.01 0.680.00 0.370.00 0.65
+ LA (diag) 0.660.01 1.050.05 0.700.05 0.570.01 0.650.01 0.470.00 0.68
+ SWA* 0.870.02 1.340.06 0.550.00 0.630.04 0.650.02 0.340.00 0.73
+ SWAG 0.680.02 1.000.04 0.460.00 0.560.02 0.550.02 0.340.00 0.60

IVON@mean* (−0.69) 3.500.07 (−1.74) 1.970.03 (−0.83) 0.690.00 (+0.40) 2.430.04 (−0.88) 0.660.02 (−0.08) 0.360.00 (−0.64) 1.60
IVON (−1.94) 2.250.09 (−2.71) 1.000.03 (−1.12) 0.400.00 (+0.13) 2.160.01 (−1.00) 0.540.01 (−0.11) 0.330.00 (−1.13) 1.11

samples from the posterior distribution (referred to as IVON@mean and IVON, respectively). For a81

fair comparison, we use the same number of samples for MC Dropout, SWA and SWAG.82

We present the results in Table 1. First, we observe that IVON, as an alternative to AdamW,83

significantly improves the generalization of LoRA finetuning. When evaluated at the mean, IVON84

outperforms standard AdamW finetuning and other Bayesian adaptations of LoRA on all datasets in85

terms of accuracy, often by a large margin. We also observe that IVON exhibits improved calibration86

compared to AdamW and MC Dropout baselines, as indicated by the lower ECE and NLL values.87

We want to highlight that these improvements can be achieved with minimal changes to the codebase,88

that is, replacing the AdamW optimizer with IVON, and without any additional postprocessing steps89

or noticeable overhead.90

Next, we observe that ensembling with samples from IVON’s posterior distribution further improves91

calibration. When evaluate at an ensemble of 10 samples, IVON outperforms all other methods and is92

comparable to the best-performing LA (with a Kronecker-factored Hessian) and SWAG on ECE and93

NLL. Notably, IVON achieves this despite using a diagonal Hessian and without an additional pass94

through the data for computing Hessians at the converged point as in Laplace methods. With this95

improvement in calibration, IVON still maintains comparable or better accuracy over other methods.96

We also notice that by scaling the learned variance during inference (sampling from N (m, diag(τv))97

with τ being a scaling factor), the ensemble of IVON samples can have different behaviors in terms of98

accuracy and calibration. In Table 2, we present the results of IVON with different choices of τ during99

inference. When a smaller τ is used, the ensemble of IVON samples achieves slight improvements100

both in accuracy and calibration. On the other hand, the ensemble is further improved in calibration101

at the cost of accuracy when a larger τ is used. This can be useful in tweaking the trade-off between102

accuracy and calibration to suit the needs of different applications.103

Finally, we observe that the overhead induced by IVON is negligible. To investigate this, we profile104

our training code on an NVIDIA RTX 6000 Ada GPU. In our test run, the forward pass, loss105

computation, and backward pass of a training step take in total 316.3ms on average. As for the106

overhead of IVON, the sampling procedure and the optimization step of each training step take 1.8ms107

and 1.0ms on average, respectively, which is less than 1% of the running time of a training step.108
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Table 2: Comparison of different variance scaling factor τ used during IVON inference. For τ = 0, it
is equivalent to inference at the posterior mean. For τ = 1, it recovers the standard sampling. Results
at the end of training are reported. The subscripts indicate standard error of the mean across 3 runs.

Metrics τ WG-S ARC-C ARC-E WG-M OBQA BoolQ

ACC ↑

0 (IVON@mean) 72.10.5 69.90.7 87.50.6 76.60.5 80.90.6 86.10.2

0.25 72.30.6 71.11.1 87.40.6 76.60.5 80.90.7 86.20.2

0.5 72.40.6 70.11.1 87.20.6 76.70.5 80.80.8 86.10.2

0.75 72.20.7 68.61.0 86.70.4 76.50.4 80.70.4 86.10.1

1 (IVON) 72.20.5 66.30.6 85.70.3 76.40.6 80.40.4 85.70.2

1.25 71.70.5 56.00.6 81.50.6 76.30.5 75.60.4 84.80.1

1.5 70.50.4 30.20.4 48.62.8 76.60.4 53.51.9 82.70.4

ECE
(×100) ↓

0 (IVON@mean) 27.50.4 25.80.4 10.10.4 23.00.5 11.20.5 5.60.1

0.25 25.60.5 21.90.7 9.20.4 21.70.5 10.40.8 5.10.2

0.5 24.30.5 19.30.9 8.10.5 21.60.3 8.80.6 4.70.1

0.75 23.10.7 15.71.0 6.20.3 21.60.3 6.30.8 3.90.3

1 (IVON) 21.80.8 10.70.4 3.60.6 21.40.5 3.30.9 2.60.2

1.25 20.40.9 7.50.6 4.90.7 21.30.4 9.20.8 1.10.3

1.5 19.20.6 14.22.0 5.61.9 20.90.2 15.01.6 2.10.4

NLL ↓

0 (IVON@mean) 3.500.07 1.970.03 0.690.00 2.430.04 0.660.02 0.360.00

0.25 3.110.05 1.700.03 0.620.01 2.220.01 0.630.02 0.350.00

0.5 2.870.08 1.410.02 0.530.01 2.220.02 0.590.02 0.350.00

0.75 2.520.07 1.170.02 0.460.01 2.200.02 0.540.01 0.340.00

1 (IVON) 2.200.06 0.990.01 0.410.02 2.170.02 0.530.01 0.340.00

1.25 1.880.08 1.110.01 0.510.02 2.140.03 0.650.01 0.350.00

1.5 1.600.10 1.470.01 1.190.05 2.110.03 1.170.01 0.390.01

4 Discussion109

Our direct variational learning approach using IVON is surprisingly effective for improving calibration110

and accuracy in LoRA finetuning. Given the strong results, we hope that this work invigorates research111

in variational methods for LLMs. Reasons for IVON’s success are not fully understood, but one112

hypothesis is the prevention of overfitting as the finetuning datasets are often comparably small.113

This may be attributed to the preference for simpler solutions (flatter minima) which is inherent in114

variational learning [8, 7].115

On most of the datasets, ensemble of IVON samples outperforms IVON evaluated at the posterior116

mean on ECE and NLL, but at the cost of a slight decrease in accuracy. We want to point out this117

is possibly due to the limited number of samples used in the ensemble. We draw 10 samples for118

all the ensemble-based methods in our experiments, both to follow the setting in Yang et al. [23]119

and to keep the computational cost manageable. It is possible that using more IVON samples could120

further improve the performance of the ensemble, which is reported in Shen et al. [18] on image121

classification tasks. Nevertheless, the parameter uncertainty obtained by IVON is expected to be122

useful for several downstream tasks such as sensitivity analysis [15] and model merging [5], which123

will be explored in future work.124

A limitation shared with other Bayesian LoRA methods [23, 16] is that the learned posterior over the125

increment ∆W is non-Gaussian, as it is the product of two Gaussian random variables. Therefore,126

it cannot be easily merged down into or easily combined with Gaussian uncertainty on the full127

weights W. A different approach would be to use a variational low-rank correction to correct the128

mean and variance of a Laplace approximation of the original model. van Niekerk and Rue [20]129

propose such a low-rank approach in the context of latent Gaussian models, and adapting these ideas130

to large language models may be an interesting direction for future work.131

IVON also has some practical limitations. The method introduces two new hyperparameters over132

AdamW, which are λ in (2) and the initialization of the posterior variance. This makes tuning IVON133

a bit more involved than tuning AdamW and the results depend on setting these parameters well.134

While a good heuristic is to set λ as small as possible while still retaining stable training and setting135

the posterior initialization in the order of magnitude of the final posterior variance, more principled136

or automatic ways to set them reliably would be desirable.137
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Table 3: IVON hyperparameters used in experiments.

Hyperparameter WG-S ARC-C ARC-E WG-M OBQA BoolQ

Effective sample size 1× 107 1× 106 1× 106 1× 108 1× 106 1× 107

Hessian initialization 3× 10−4 1× 10−3 1× 10−3 3× 10−4 1× 10−3 3× 10−4

Learning rate 0.03
Gradient momentum 0.9
Hessian momentum 1− 10−5

Clip radius 10−3

Supplementary Material207

Details on experimental setup208

Our experimental design is based on Yang et al. [23]. We utilize the PEFT [13] library for LoRA209

adaptation, and apply LoRA to the query and value weights of the attention layers. Unlike in Yang210

et al. [23], we do not apply LoRA to the output layer due to numerical instability encountered in211

some preliminary experiments. The base model is quantized to 8-bit precision, with LoRA weights212

maintained in 16-bit precision. Finetuning is performed on a single NVIDIA RTX 6000 Ada GPU213

with a batch size of 4 for 10,000 steps, without gradient accumulation.214

To finetune a pretrained language model which predicts the next token in a sequence for solving215

multiple-choice or true/false questions, we need to wrap the text and the choice of each question216

with predefined prompt templates to an instruction. We then use the pretrained model to predict217

the next token of the wrapped instruction, and extract the output logits for the tokens standing for218

"True"/"False" or "A"/"B"/"C"/"D" choices. For the prompt templates, we use the same ones as in219

Yang et al. [23]. An example of such a prompt (used for WG-S and WG-M datasets) is as follows:220

Select one of the choices that answers the following question: {question}221

Choices: A. {option1}. B {option2}. Answer:222

Hyperparameters223

As for the hyperparameters of LoRA and AdamW finetuning, we use the same settings as in Yang224

et al. [23], which are also the default settings in Huggingface’s Transformers [22] and PEFT [13]225

library. For LoRA, we set the rank r to 8, α to 16, and the dropout rate to 0.1. For AdamW optimizer,226

we set the initial learning rate to 5× 10−5, weight decay to 0, and use a linear learning rate scheduler227

which decays the learning rate to 0 at the end of the training.228

Working IVON hyperparameters and guidelines for choosing them are discussed in Shen et al. [18].229

Still, it is not well understood how to choose them in the context of LoRA finetuning. We empirically230

find that setting λ as small as possible while still retaining stable training is a good heuristic. To231

choose the initialization value v0 of the posterior variance, we track the mean value of the running232

average of the posterior variance for the first few training steps. We notice that if the mean value233

changes significantly during the first few steps, then the initialization value is likely too far from a234

reasonable one. We follow the guideline in Shen et al. [18] and set the learning rate of IVON to 0.03,235

Hessian momentum to 1−10−5, and clip radius to 10−3. Finally, We summarize the hyperparameters236

of IVON used in our experiments in Table 3.237
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