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ABSTRACT

Exploring rich environments and evaluating one’s actions without prior knowledge
is immensely challenging. In this paper, we propose Motif, a general method to in-
terface such prior knowledge from a Large Language Model (LLM) with an agent.
Motif is based on the idea of grounding LLMs for decision-making without requir-
ing them to interact with the environment: it elicits preferences from an LLM over
pairs of captions to construct an intrinsic reward, which is then used to train agents
with reinforcement learning. We evaluate Motif’s performance and behavior on
the challenging, open-ended and procedurally-generated NetHack game. Surpris-
ingly, by only learning to maximize its intrinsic reward, Motif achieves a higher
game score than an algorithm directly trained to maximize the score itself. When
combining Motif’s intrinsic reward with the environment reward, our method sig-
nificantly outperforms existing approaches and makes progress on tasks where no
advancements have ever been made without demonstrations. Finally, we show that
Motif mostly generates intuitive human-aligned behaviors which can be steered
easily through prompt modifications, while scaling well with the LLM size and
the amount of information given in the prompt.

1 INTRODUCTION

Where do rewards come from? An artificial intelligence agent introduced into a new environ-
ment without prior knowledge has to start from a blank slate. What is good and what is bad in
this environment? Which actions will lead to better outcomes or yield new information? Imag-
ine tasking an agent with the goal of opening a locked door. The first time the agent finds a
key, it will have no idea whether this could be useful for achieving the goal of opening a door:
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Figure 1: NetHack score for Motif and
baselines. Agents trained exclusively
with Motif’s intrinsic reward surpris-
ingly outperform agents trained using
the score itself, and perform even bet-
ter when trained with a combination of
the two reward functions.

it has to learn this fact by interaction. A human, instead,
would know by mere common sense that picking up a key
is generally desirable for opening doors. Since the idea
of manually providing this knowledge on a per-task basis
does not scale, we ask: what if we could harness the col-
lective high-level knowledge humanity has recorded on the
Internet to endow agents with similar common sense?

Although this knowledge may not provide a direct solu-
tion to how an agent should manage its sensors or actua-
tors, it bears answers to the fundamental questions men-
tioned above. This holds true for many of the environ-
ments where we would want to deploy an agent. However,
the knowledge on the Internet is highly unstructured and
amorphous, making it difficult to find and reuse informa-
tion. Fortunately, by learning on Internet-scale datasets,
Large Language Models (LLMs) absorb this information
and make it accessible (Brown et al., 2020). Nonetheless,
empowering a sequential decision-making agent with this
source of common sense is far from trivial.

While an LLM’s knowledge typically exists at a high level of abstraction, a decision-making agent
often operates at a lower level of abstraction, where it must process rich observations and output

* Equal contribution, order defined by coin flip ({klissarm, pierluca.doro}@mila.quebec).
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fine-grained actions in order to achieve a desired outcome. For an agent to harness this prior knowl-
edge and know what to look for in an environment, it is necessary to build a bridge between an
LLM’s high-level knowledge and common sense, and the low-level sensorimotor reality in which
the agent operates. We propose to bridge this gap by deriving an intrinsic reward function from
a pretrained LLM, and using it to train agents via reinforcement learning (RL) (Sutton & Barto,
2018). Our method, named Motif, uses an LLM to express preferences over pairs of event captions
extracted from a dataset of observations and then distills them into an intrinsic reward. The result-
ing reward is then maximized directly or in combination with an extrinsic reward coming from the
environment. A guiding principle in the design of Motif is the observation that it is often easier to
evaluate than to generate (Sutton, 2001; Schulman, 2023). Motif’s LLM expresses preferences over
textual event captions; these are only required to be coarse descriptions of events happening in the
environment rather than fine-grained step-by-step portrayals of the current observations. The LLM
is not even asked to understand the low-level action space, which may be composite or continuous.
In comparison, an approach using an LLM as a policy typically requires a complete text interface
with the environment (Wang et al., 2023; Yao et al., 2022). When using Motif, the LLM remains
in the space of high-level knowledge it was trained on, but leverages the capabilities of deep RL
algorithms to deal with decision-making under rich observation and action spaces.

We apply Motif to the challenging NetHack Learning Environment (NLE) (Küttler et al., 2020), and
learn intrinsic rewards from Llama 2’s preferences (Touvron et al., 2023) on a dataset of gameplays.
This dataset, collected by policies of different levels of proficiency, only contains observations from
the environment, without any action or reward information. Using this framework, we show that the
resulting intrinsic reward drastically improves subsequent learning of a policy by RL. Motif excels
in both relatively dense reward tasks, such as maximizing the game score, and extremely sparse
reward tasks, such as the oracle task. To our knowledge, our paper is the first to make progress on
this task without leveraging expert demonstrations. Notably, an agent trained only through Motif’s
intrinsic reward obtains a better game score than an agent trained directly with the score itself.

In addition to quantifying Motif’s strong game performance, we also delve into the qualitative prop-
erties of its produced behaviors. First, we show that Motif’s intrinsic reward typically yields behav-
iors that are more aligned with human gameplay on NetHack. Second, we find tendencies of Motif
to create anticipatory rewards (Thomaz et al., 2006; Pezzulo, 2008) which ease credit assignment
while being consistent with human common sense. Third, we uncover a phenomenon that we name
misalignment by composition, due to which the joint optimization of an aligned intrinsic reward and
a task reward yields a misaligned agent with respect to the latter. Fourth, we demonstrate that the
performance of the agent scales favorably in relation to both the size of the LLM and the amount of
information contained in the prompt. Fifth, we investigate how sensitive the performance is to slight
variations in the prompt. Sixth, we demonstrate it is possible to steer the agent’s behavior by prompt
modifications, naturally generating a set of semantically diverse policies.

2 BACKGROUND

A Partially Observable Markov Decision Process (POMDP) (Åström, Karl Johan, 1965) is a tuple
M = (S,A,O, µ, p,O,R, γ), where S is the state space, A is the action space, O the observation
space and γ is a discount factor. First, an initial state s0 is sampled from the initial state distribution
µ. At each time step t ≥ 0, an observation ot is sampled from the emission function, ot ∼ O(st).
This observation is given to the agent, which then produces an action at leading to an environment
transition st+1 ∼ p(·|st, at) and, upon arrival to the next state and sampling from the emission
function, a reward rt+1 = R(ot+1). The goal of the agent is to learn a policy π : Ot → ∆(A)
which maximizes the expected discounted cumulative reward Eπ[

∑∞
t=0 γ

trt]. Each observation ot
has a (potentially empty) textual caption c(ot) ∈ C as a component.

We assume access to a dataset of observations D = {o(i)}Ni=1. This type of dataset departs from the
more typical ones, employed for instance in offline RL, which normally contain information about
actions and possibly rewards (Levine et al., 2020). It is often much easier in practice to obtain a
dataset of observations, for example videos of humans playing videogames (Hambro et al., 2022b),
than to record actions or to rely on a possibly non-existing reward function. We do not assume any
level of proficiency in the policies that generated the dataset, but we assume sufficient coverage.

Code is available at: https://github.com/facebookresearch/motif
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Figure 2: A schematic representation of the three phases of Motif. In the first phase, dataset annota-
tion, we extract preferences from an LLM over pairs of captions, and save the corresponding pairs of
observations in a dataset alongside their annotations. In the second phase, reward training, we distill
the preferences into an observation-based scalar reward function. In the third phase, RL training,
we train an agent interactively with RL using the reward function extracted from the preferences,
possibly together with a reward signal coming from the environment.

3 METHOD

The basic idea behind our method is to leverage the dataset D together with an LLM to construct a
dataset Dpref of preferences, and then use Dpref for training an intrinsic reward function. This intrinsic
reward is then incorporated into an RL algorithm interacting with the environment. We next describe
in detail the three phases characterizing our method, which are also depicted in Figure 2.

Dataset annotation In the first phase, we use a pretrained language model, conditioned with a
prompt possibly describing a desired behavior, as an annotator over pairs of captions. Specifically,
the annotation function is given by LLM : C × C → Y , where C is the space of captions, and
Y = {1, 2,∅} is a space of choices for either the first, the second, or none of the captions. Allowing
a refusal to answer when uncertain reduces the noise coming from mistaken annotations and helps in
normalizing the reward function (Lee et al., 2021). Concretely, we construct a dataset of preferences
over pairs Dpref = {(o(j)1 , o

(j)
2 , y(j))}Mj=1 where observations o

(j)
1 , o

(j)
2 ∼ D are sampled from the

base dataset and annotations y(j) = LLM(c(o(j)1 ), c(o
(j)
2 )) are queried from the LLM.

Reward training For deriving a reward function from the LLM’s preferences, we use standard
techniques from preference-based RL (Wirth et al., 2017), minimizing a cross-entropy loss function
on the dataset of pairs of preferences Dpref to learn a parameterized reward model rϕ : O → R:

L(ϕ) = −E(o1,o2,y)∼Dpref

[
1[y = 1] logPϕ[o1 ≻ o2] + 1[y = 2] logPϕ[o2 ≻ o1]

+ 1[y = ∅] log

(√
Pϕ[o1 ≻ o2] · Pϕ[o2 ≻ o1]

)]
,

(1)

where Pϕ[oa ≻ ob] =
erϕ(oa)

erϕ(oa)+erϕ(ob)
is the probability of preferring an observation to another.

Reinforcement learning training Once we have trained the intrinsic reward model rϕ, we use it
to define an intrinsic reward rint, and provide it to an RL agent, which will optimize a combination
of the intrinsic and extrinsic rewards: reffective(o) = α1rint(o)+α2r(o). In some of our experiments,
we set α2 = 0, to have agents interact with the environment guided only by the intrinsic reward. For
simplicity, we do not further fine-tune the reward function on data collected online by the agent, and
instead fully rely on the knowledge acquired offline.
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3.1 LEARNING FROM ARTIFICIAL INTELLIGENCE FEEDBACK ON NETHACK

We apply our method to the game of NetHack (Küttler et al., 2020), an extremely challenging rogue-
like video game in which the player has to go through multiple levels of a procedurally generated
dungeon, exploring, collecting and using items, and fighting monsters. NetHack is an interesting
domain for testing intrinsic motivation approaches: it is rich and complex, and the reward signal
coming from the environment (e.g., the game score, or the dungeon level) can be sparse and not
necessarily aligned with what a human would evaluate as good gameplaying.

To instantiate Motif on the NLE, which provides access to NetHack-based tasks, we follow the gen-
eral strategy described above, integrating it with domain-specific choices for the dataset of obser-
vations, the LLM model and prompting strategy, the reward model architecture and post-processing
protocol, and the agent architecture and RL algorithm. We now provide the main information re-
garding these different choices. Further details can be found in the Appendix B and Appendix G.

Dataset generation A convenient feature of NetHack is that the game displays a text message
in about 10% to 20% of game screens, typically describing events happening in the game. These
include positive events, such as killing a monster, negative events, such as starving, or neutral events,
like bumping into a wall. Every message is part of the observation, which also includes a visual
representation of the game screen and numerical features such as the position, life total and statistics
of the agent. Thus, messages can be interpreted as captions, and we use them as the input that we
feed to the LLM to query its preference. To construct a reasonably diverse dataset D, we collect
a set of 100 episodes at every 100 million steps of learning with the standard NLE RL baseline
CDGPT5 (Miffyli, 2022) and repeat the process for 10 seeds. The CDGPT5 baseline is trained for
1 billion steps to maximize the in-game score. We analyze these choices in Appendix H.3.

LLM choice and prompting We employ the 70-billion parameter chat version of Llama 2 (Tou-
vron et al., 2023) as annotator to generate Dpref from D. We determined via a preliminary analysis
(shown in Appendix C) that this model has sufficient knowledge of NetHack and common-sense
understanding to be useful as an annotator, even with no domain-specific fine-tuning. We modify
the model’s system prompt from its default, and write a prompt that tasks the model with evaluating
pairs of messages extracted from D. We use a form of chain of thought prompting (Wei et al., 2022),
asking the model to provide a brief summary of its knowledge of NetHack, and an analysis of its
understanding of the messages presented, before expressing a preference.

Annotation process We use a regular expression to identify one of the labels in Y in the LLM’s
output text. In case of a failure in finding one of the them, we ask the model again by continuing
the conversation, and remove the pair from the dataset if the second attempt also fails. When two
messages are exactly the same, as can happen in roughly 5% to 10% of the cases (e.g., due to empty
messages), we automatically assign the label y = ∅ without any further processing.

Intrinsic reward architecture and post-processing We train the intrinsic reward rϕ by optimizing
Equation 1 by gradient descent. For simplicity, we only use the message as the part of the observa-
tion given to this reward function, and process it through the default character-level one-dimensional
convolutional network used in previous work (Henaff et al., 2022). To make it more amenable to RL
optimization, we transform the reward function rϕ produced by the training on Dpref into:

rint(message) = 1[rϕ(message) ≥ ϵ] · rϕ(message)/N(message)β , (2)

where N(message) is the count of how many times a particular message has been previously found
during the course of an episode. The transformation serves two purposes. First, it employs episodic
count-based normalization, as previously utilized in Raileanu & Rocktäschel (2020); Mu et al.
(2022); Zhang et al. (2021). This transformation helps in overcoming some of the major limitations
of a Markovian reward function (Abel et al., 2021), encouraging the agent to diversify the observed
outcomes and preventing it from getting fixated on objects with which it cannot interact due to its
limited action space or skills. Second, applying a threshold below ϵ reduces the noise coming from
training based on preferences from an imperfect LLM. We ablate these choices in Appendix H.2.

Reinforcement learning algorithm We train agents using the CDGPT5 baseline, which separately
encodes messages, bottom-line features, and a cropped-field-of-view version of the screen. The al-
gorithm is based on PPO (Schulman et al., 2017) using the asynchronous implementation of Sample
Factory (Petrenko et al., 2020). We additively combine intrinsic and extrinsic rewards. We will
specify what weight is given to each reward function, depending on the experiment.
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Figure 3: Success rate of Motif and baselines on sparse-reward tasks. Motif is sample-efficient and
makes progress where no baseline learns useful behaviors. In Appendix F, we additionally compare
to E3B (Henaff et al., 2022) and NovelD (Zhang et al., 2021), finding no benefits over RND.

4 EXPERIMENTS

We perform an extensive experimental evaluation of Motif on the NLE. We compare agents trained
with Motif to baselines trained with the extrinsic reward only, as well as a combination between ex-
trinsic and intrinsic reward provided by Random Network Distillation (RND) (Burda et al., 2019b).
RND is an established intrinsic motivation baseline and it has previously been shown to provide
performance improvements on certain tasks from the NLE (Küttler et al., 2020). We evaluate addi-
tional baselines in Appendix F, showing that none of them is competitive with Motif. We report all
experimental details in Appendix G, and additional experiments and ablations in Appendix H.

4.1 PERFORMANCE ON THE NETHACK LEARNING ENVIRONMENT

To analyze the performance of Motif, we use five tasks from the NLE. The first one is the score
task, in which the agent is asked to maximize the game score proper to NetHack. This task is gener-
ally considered the most important one in the NLE, the score being also the metric of agent evalu-
ation used in previous NetHack AI competitions (Hambro et al., 2022a). The other four are sparse-
reward tasks. We employ three variations of a dungeon descent task (staircase, staircase
(level 3), staircase (level 4)), in which the agent only receives a reward of 50 when
it enters the second, third and fourth dungeon level respectively. We additionally use the extremely
sparse reward oracle task, in which the agent gets a reward of 50 when it finds the oracle, an
in-game character that resides in a specific branch of the dungeon, at a depth level greater than five.

Figure 1 reports the performance of Motif and related baselines on the score task. While, as shown
in previous work (Küttler et al., 2020; Zhang et al., 2021), existing intrinsic motivation approaches
offer minimal benefits on this task, Motif significantly enhances the agent’s performance. In particu-
lar, training an agent only through Motif’s intrinsic reward function and no extrinsic reward already
generates policies collecting more score than the baselines that directly maximize it. To the best of
our knowledge, this is the first time an agent trained with deep RL using only an intrinsic reward is
shown to outperform one trained with the environment’s reward on a relatively dense-reward com-
plex task. When combining intrinsic and extrinsic rewards, the score improves even further: Motif
largely surpasses the baselines in terms of both final performance and sample efficiency. We provide
more insights into the behavior induced by the intrinsic reward in Section 4.2.

We show the success rate of Motif and the baselines on the sparse reward tasks in Figure 3. On
the staircase task, in which the agent has to reach the second dungeon level, Motif has better
sample efficiency than the baselines, albeit featuring worse asymptotic performance than RND. On
the other more complex staircase tasks, the agent only receives a reward from the environment when
it reaches dungeon level 3 or 4. Since the LLM prefers situations which will likely lead to new
discoveries and progress in the game, the intrinsic reward naturally encourages the agent to go deep
into the dungeon. Thus, Motif is able to make significant progress in solving the tasks, with just
its intrinsic reward and even more when combining it with the extrinsic reward, while an agent
trained with either the extrinsic reward or RND has a zero success rate. On the oracle task, the
hardest task in the set, no approach ever reported any meaningful progress without using human
demonstrations (Bruce et al., 2023), due to the extremely sparse reward. In Figure 3, we show that,
when combining intrinsic and extrinsic reward, Motif can achieve a success rate of about 30%.
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4.2 BEHAVIOR AND ALIGNMENT ANALYSIS

From which type of behavior do the large performance gains provided by Motif come from? We now
analyze in-depth the policies obtained using Motif’s intrinsic reward and the environment’s reward,
showing that Motif’s better performance can be attributed to the emergence of complex strategies.

Score

Experience
Level

Kills

Alive
Time

Gold

Dungeon
Depth

Motif (intrinsic only)

Motif (extrinsic+intrinsic)

Extrinsic only

Figure 4: Comparison along differ-
ent axes of policy quality of agents
trained with Motif’s and environ-
ment’s reward functions.

We then characterize these behaviors and discuss their align-
ment with human intuition.

Characterizing behaviors It is customary to measure the
gameplay quality of an agent on NetHack using the game
score (Hambro et al., 2022a; Tuyls et al., 2023). While the
score is indeed a reasonable quality measure, it is a one-
dimensional representation of a behavior that can be fairly rich
in a complex and open-ended environment such as NetHack.
To more deeply understand the relationship among the kind
of behaviors discovered via the intrinsic reward, the extrinsic
reward and their combination, we characterize policies using
metrics similar to the one proposed in Bruce et al. (2023) and
Piterbarg et al. (2023). Figure 4 shows that the three agents ex-
hibit qualitatively different behaviors. The agent trained only
with the extrinsic reward greedily goes down into the dungeon,
guided by the reward it gets when transitioning between dun-
geon levels or collecting the gold it can find in a new level.
Disregarding the perils from adventuring down into the dun-
geon too fast and without a sufficiently high experience level
is very risky, as each new dungeon level will generate more challenging monsters and present dan-
gerous situations. The agent trained only with Motif’s intrinsic reward has a behavior tailored for
survival, more aligned to a player’s behavior, killing more monsters, gaining more experience levels
and staying alive for longer. The agent trained with a combination of Motif’s intrinsic reward and
the environment reward leverages their interplay and achieves the best of both worlds, acquiring the
survival-oriented skills implied by the intrinsic reward but leveraging them at the cost of a shorter
lifespan to go down into the dungeon with better combat skills, collecting more gold and score.

Alignment with human intuition Motif’s intrinsic reward comes from an LLM trained on human-
generated data and then fine-tuned on human preferences. It is natural to wonder whether the align-
ment of the LLM with human intentions will be converted into a behavior that follows human in-
tuition. In Appendix H, we provide evidence of human-aligned behavior, in addition to Figure 4,
with agents trained with Motif being less likely to kill their pet. The agent also exhibits a natural
tendency to explore the environment. Indeed, many of the messages most preferred by Motif are
related to the exploration of the environment (e.g., “The door opens.”), which would also be intu-
itively preferred by humans (see Appendix D). When compared to traditional intrinsic motivation
approaches, this has profound consequences. Typical approaches define the novelty as a feature of a
state and let the RL algorithm solve the credit assignment problem to find special states that might
lead to novel states. Motif goes a step beyond that: it directly rewards states that, under some in-
tuitive assumption about a policy, will likely lead to new discoveries (such as opening a door), an
anticipatory reward-crafting behavior that has been observed in humans (Thomaz et al., 2006). This
brings Motif’s intrinsic reward conceptually closer to a value function (Ng et al., 1999), and drasti-
cally eases credit assignment for the RL algorithm. In other words, via its LLM, Motif effectively
addresses both exploration (by leveraging prior knowledge) and credit assignment (by anticipating
future developments in a reward function), which may explain Motif’s strong performance.

Misalignment by composition in the oracle task We now show how the alignment with human
intuition can break when combining Motif’s intrinsic reward with the environment reward. We have
seen in Figure 3 that Motif reaches a good level of performance on the challenging oracle task, in
which the agent has to find the oracle @ by going deep into the dungeon and after facing significant
challenges. However, if we inspect the behavior learned by Motif, we observe something surprising:
it almost never goes past the first level. Instead, as shown in Figure 5, the agent learns a complex
behavior to hack the reward function (Skalse et al., 2022), by finding a particular hallucinogen. To
do so, the agent first has to find a specific monster, a yellow mold F , and defeat it. As NetHack is a
procedurally generated game with hundreds of different monsters, this does not happen trivially, and
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(1) Agent @ sees the monster F (2) Agent @ kills the monster (3) Agent @ eats the corpse %

(4) Agent @ starts hallucinating (5) A monster Y nears agent @ (6) The oracle @ is hallucinated

Figure 5: Illustration of the behavior of Motif on the oracle task. The agent @ first has to survive
thousands of steps, waiting to encounter F (a yellow mold), a special kind of monster that contains an
hallucinogen in its body (1). Agent @ kills F (2) and then immediately eats its corpse % (3). Eating
the corpse of F brings the agent to the special hallucinating status, as denoted by the Hallu shown
at the bottom of the screen (4). The behavior then changes, and the agent seeks to find a monster
and remain non-aggressive, even if the monster may attack (5). If the agent survives this encounter
and the hallucination period is not over, agent @ will see the monster under different appearances,
for example here as a Yeti Y . Eventually, it will hallucinate the oracle @ and complete the task (6).

the agent must survive thousands of turns to get this opportunity. Once the yellow mold is killed, the
agent has to eat its corpse % to start hallucinating. In this state, the agent will perceive monsters as
characters typically found in other parts of the game, such as a Yeti Y . Normally, the agent would
attack this entity, but to hack the reward, it must completely avoid being aggressive and hope to
survive the encounter. If it does so and the hallucination state is not over, it will hallucinate the
monster as an oracle @ . As the NLE detects that a nearby character appears to be the oracle, the task
will be declared as completed.2 To summarize, the agent learns to find hallucinogens to dream of the
goal state, instead of actually going there. This unexpected behavior is not found by the agent that
optimizes the extrinsic reward only. At the same time, the intrinsic reward, despite being generally
aligned with human’s intuition, creates in the agent new capabilities, which can be used to exploit
the environment’s reward function. We name the underlying general phenomenon misalignment by
composition, the emergence of misaligned behaviors from optimizing the composition of rewards
that otherwise lead to aligned behaviors when optimized individually. We believe this phenomenon
may appear in other circumstances (e.g., for chat agents) and is worthy of future investigations.

4.3 SENSITIVITY TO LLM SIZE AND PROMPT

So far, we trained agents with Motif using a fixed LLM and a fixed prompt. In this section, we seek
to understand how interventions along these variables influence the agent’s behavior.

Scaling behavior We first investigate how scaling the LLM annotator impacts the downstream
performance of the RL algorithm. If the LLM has more domain or common-sense knowledge, we
can expect the reward function to more accurately judge favorable events in NetHack. We train a
Motif agent on staircase (level 3) with a combination of extrinsic reward and intrinsic
rewards obtained from Llama 2 7b, 13b, and 70b. In Figure 6a, we show that larger LLMs lead to
higher success rates when used to train agents via RL. This result hints at the scalability of Motif,
which could potentially take advantage of more capable LLMs or domain-specific fine-tuned ones.

2 For completeness, we report in Appendix H that Motif performs well, albeit with lower success rate, also
on a modified version of the oracle task, in which success is only valid when the agent is not hallucinating.
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Figure 6: Changes in downstream performance of the RL agent due to changes in LLM or prompt.
(a) Downstream performance scales with the LLM size. (b) Adding more information to the prompt
improves the already noticeable performance of a zero-knowledge prompt. (c) The wording of the
prompt can lead to very different behaviors in complex tasks.

Effect of task-relevant information in the prompt The regular prompt we provide to the agent
includes a few keywords that act as hints for constructive NetHack gameplay (i.e., maximizing the
score, killing monsters, collecting gold, and going down the dungeon). What if we let the model
entirely rely on its own knowledge of NetHack, without providing any type of information about the
game? With a zero-knowledge prompt, the only way for the intrinsic reward to be effective is for
an LLM to not only be able to discern which messages are more or less aligned to a given goal or
gameplaying attitude but also to infer the goal and the attitude by itself. We report the prompts in
the Appendix. Figure 6b shows the performance of Motif trained using only the intrinsic reward on
the score task. The results show two points: first, Motif exhibits good performance also when the
annotations come from a zero-knowledge prompt, denoting the capability of the LLM to naturally
infer goals and desirable behaviors on NetHack; second, adding knowledge in this user-friendly way
(through a single sentence in the prompt) significantly boosts the performance, demonstrating that
Motif unlocks an intuitive and fast way to integrate prior information into a decision-making agent.

Sensitivity to prompt rewording LLMs are known to be particularly sensitive to their prompt,
and different wordings for semantically similar prompts are known to cause differences in task
performance (Lu et al., 2022). To probe whether this is the case also in the context of Motif, we
design a reworded, but semantically very similar, prompt and compare the performance of Motif
trained with the default and the reworded prompts, with the combination of intrinsic and extrinsic
rewards. While we do not observe significant performance differences in the score task (see
Appendix H), we show in Figure 6c that the intrinsic reward implied by the reworded prompt, in
interaction with the extrinsic reward, induces a significantly different behavior compared to the
one derived from the default prompt. In particular, while Motif equipped with the default prompt
finds the “hallucination technique” to hack the reward function, and does not need to go down
the dungeon, the version of Motif that uses the reworded prompt optimizes the expected solution,
learning to go down the dungeon to find the oracle. This is due to emergent phenomena resulting
from the combination of the LLM’s prompt sensitivity and RL training: a change in the prompt
affects preferences, that are then distilled into the intrinsic reward, which in turn leads to a behavior.
We believe studying this chain of interactions is an important avenue for future safety research.

4.4 STEERING TOWARDS DIVERSE BEHAVIORS VIA PROMPTING

A major appeal of Motif is that its intrinsic reward can be modulated by prompts provided in natural
language to an LLM. This begs the question of whether a human can leverage this feature not only to
provide prior information to the agent but also to steer the agent towards particular behaviors, aligned
with their intentions. To demonstrate this, we add different modifiers to a base prompt, generating
three agents encouraged to have semantically diverse behaviors. The first agent, The Gold Collector,
is incentivized to collect gold and avoid combat. The second agent, The Descender, is encouraged
to descend the stairs but avoid confrontation. The third agent, The Monster Slayer, is encouraged
to combat monsters. For each prompt, we show in Table 1 the messages most preferred by the
corresponding reward function and the ratio of improvement over the zero-knowledge prompt. For
each agent, we calculate this ratio on the most relevant metric: gold collected for The Gold Collector,
dungeon level reached for The Descender, and number of monsters killed for The Monster Slayer.
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Agent The Gold Collector The Descender The Monster Slayer

Prompt Modifier Prefer agents that maximize their gold Prefer agents that go down the dungeon Prefer agents that engage in combat

Improvement +106% more gold (64%, 157%) +17% more descents (9%, 26%) +150% more kills (140%, 161%)

“In what direction?” “In what direction?” “You hit the newt.”
 “$ - 2 gold pieces.” “The door resists!” “You miss the newt.”

“$ - 4 gold pieces.” “You can see again.” “You see here a jackal corpse.”

Table 1: Performance improvement from a particular prompt on the corresponding metric (collected
gold, dungeon level, and number of killed monsters) compared to the unaltered prompt, prompt
modifiers, and set of most preferred messages from the different reward functions.

The results show that the agent’s behavior can indeed be steered, with noticeable improvements
across all prompts, being more than twice as effective as the baseline at collecting gold or combat.
Inspecting the most preferred messages, The Gold Collector gets higher rewards for collecting gold,
but also for discovering new rooms; The Descender is encouraged to explore each level of the
dungeon better; The Monster Slayer is led to engage in any kind of combat.

5 RELATED WORK

Learning from preferences in sequential decision-making has a long history (Thomaz et al., 2006;
Knox & Stone, 2009). In the field of natural language processing, learning from human (Ouyang
et al., 2022) or artificial intelligence (Bai et al., 2022) feedback has created a paradigm shift driving
the latest innovations in alignment of LLMs. More closely related to our work is Kwon et al. (2022),
that also proposes to use LLMs to design reward functions, albeit working with complete trajectories
that include the state of the game and the actions at each time step. In comparison, Motif studies the
role of artificial intelligence feedback in a challenging long horizon and open-ended domain where
the resulting rewards are used as intrinsic motivation (Schmidhuber, 1991). Another closely related
work is Du et al. (2023), which leverages LLMs to generate goals for an agent and defines rewards
by measuring the cosine similarity between the goal description and the observation’s caption. Motif
instead builds on the capabilities of LLMs to anticipate future developments when providing pref-
erences on current events. A separate line of work considers leveraging LLMs as agents interacting
directly in the environment (Yao et al., 2022; Wang et al., 2023). However, this introduces the ne-
cessity to ground the LLM in both the observation and action space (Carta et al., 2023). We further
contextualize our approach by discussing more related work in Appendix A.

6 CONCLUSIONS

We presented Motif, a method for intrinsic motivation from artificial intelligence feedback. Motif
learns a reward function from the preferences of an LLM on a dataset of event captions and uses it to
train agents with RL for sequential decision-making tasks. We evaluated Motif on the complex and
open-ended NetHack Learning Environment, showing that it exhibits remarkable performance both
in the absence and in the presence of an external environment reward. We empirically analyzed the
behaviors discovered by Motif and its alignment properties, probing the scalability, sensitivity and
steerability of agents via LLM and prompt modifications.

We believe Motif to be a first step to harness, in a general and intuitive manner, the common sense
and domain knowledge of LLMs to create competent artificial intelligence agents. Motif builds a
bridge between an LLM’s capabilities and the environment to distill knowledge without the need for
complicated textual interfaces. It only relies on event captions, and can be generalized to any envi-
ronment in which such a captioning mechanism is available. A system like Motif is well-positioned
for directly converting progress in large models to progress in decision-making: more capable LLMs
or prompting techniques may easily imply increased control competence, and better multimodal
LLMs (Alayrac et al., 2022; Mañas et al., 2023) could remove the need for captions altogether.
Throughout a large part of this paper, we analyzed the behavior and alignment properties of Motif.
We encourage future work on similar systems to not only aim at increasing their capabilities but
to accordingly deepen this type of analysis, developing conceptual, theoretical and methodological
tools to align an agent’s behavior in the presence of rewards derived from an LLM’s feedback.

9



REFERENCES

David Abel, William Dabney, Anna Harutyunyan, Michael K. Ho, Michael L. Littman, Doina Pre-
cup, and Satinder Singh. On the expressivity of markov reward. In Advances in Neural Informa-
tion Processing Systems, 2021.

Ademi Adeniji, Amber Xie, Carmelo Sferrazza, Younggyo Seo, Stephen James, and Pieter
Abbeel. Language reward modulation for pretraining reinforcement learning. arXiv preprint
arXiv:2308.12270, 2023.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
model for few-shot learning. Advances in Neural Information Processing Systems, 35:23716–
23736, 2022.

Dilip Arumugam, Jun Ki Lee, Sophie Saskin, and Michael L. Littman. Deep reinforcement learning
from policy-dependent human feedback. ArXiv, abs/1902.04257, 2019. URL https://api.
semanticscholar.org/CorpusID:21704492.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol Chen, Catherine Ols-
son, Christopher Olah, Danny Hernandez, Dawn Drain, Deep Ganguli, Dustin Li, Eli Tran-
Johnson, Ethan Perez, Jamie Kerr, Jared Mueller, Jeffrey Ladish, Joshua Landau, Kamal Ndousse,
Kamile Lukosuite, Liane Lovitt, Michael Sellitto, Nelson Elhage, Nicholas Schiefer, Noemi Mer-
cado, Nova DasSarma, Robert Lasenby, Robin Larson, Sam Ringer, Scott Johnston, Shauna
Kravec, Sheer El Showk, Stanislav Fort, Tamera Lanham, Timothy Telleen-Lawton, Tom Con-
erly, Tom Henighan, Tristan Hume, Samuel R. Bowman, Zac Hatfield-Dodds, Ben Mann, Dario
Amodei, Nicholas Joseph, Sam McCandlish, Tom Brown, and Jared Kaplan. Constitutional ai:
Harmlessness from ai feedback, 2022.

Marc G. Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and
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Canada, pp. 2402–2413, 2018b. URL https://proceedings.neurips.cc/paper/
2018/hash/2715518c875999308842e3455eda2fe3-Abstract.html.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In The Eleventh International
Conference on Learning Representations, 2022.

Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kirmani, Kuang-Huei Lee, Montse Gonzalez Are-
nas, Hao-Tien Lewis Chiang, Tom Erez, Leonard Hasenclever, Jan Humplik, et al. Language to
rewards for robotic skill synthesis. arXiv preprint arXiv:2306.08647, 2023.

Tom Zahavy, Yannick Schroecker, Feryal M. P. Behbahani, Kate Baumli, Sebastian Flennerhag,
Shaobo Hou, and Satinder Singh. Discovering policies with domino: Diversity optimization
maintaining near optimality. In The Eleventh International Conference on Learning Represen-
tations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023a. URL https:
//openreview.net/pdf?id=kjkdzBW3b8p.

Tom Zahavy, Vivek Veeriah, Shaobo Hou, Kevin Waugh, Matthew Lai, Edouard Leurent, Nenad
Tomasev, Lisa Schut, Demis Hassabis, and Satinder Singh. Diversifying AI: towards creative
chess with alphazero. CoRR, abs/2308.09175, 2023b. doi: 10.48550/arXiv.2308.09175. URL
https://doi.org/10.48550/arXiv.2308.09175.

Jenny Zhang, Joel Lehman, Kenneth Stanley, and Jeff Clune. Omni: Open-endedness via models of
human notions of interestingness. arXiv preprint arXiv:2306.01711, 2023.

Tianjun Zhang, Huazhe Xu, Xiaolong Wang, Yi Wu, Kurt Keutzer, Joseph E. Gonzalez, and
Yuandong Tian. Noveld: A simple yet effective exploration criterion. In Marc’Aurelio Ran-
zato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems 34: Annual Conference on Neu-
ral Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual,
pp. 25217–25230, 2021. URL https://proceedings.neurips.cc/paper/2021/
hash/d428d070622e0f4363fceae11f4a3576-Abstract.html.
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A ADDITIONAL RELATED WORK

LLMs for sequential decision-making Given the capabilities of recent LLMs, a broad research
community is exploring the idea of deriving artificial intelligence agents from them. To circumvent
the problem of grounding them in complex observation and action spaces, many efforts have been
focusing on text-based environments, for instance concerned with web navigation, for which the
LLM can be directly used as a policy (Deng et al., 2023; Shaw et al., 2023; Kim et al., 2023; Yao
et al., 2022; Wu et al., 2023). This type of approach is, however, limited to simple text-based short-
horizon domains, and it heavily relies on the assumption that a specific LLM is a good generator of
behaviors in a given task. The approach we follow in this paper is based on the idea of not relying
on the ability of the LLM to have a long-enough context, and to fully grasp the observation and
action spaces, but instead linking an agent to the common sense encoded by an LLM by extracting a
reward function from its preferences. Previous work explored other techniques for reward function
extraction from LLMs, including inducing them to write code (Yu et al., 2023), directly asking
for scores on full trajectories (Kwon et al., 2022), and extracting a reward by measuring similarities
between textual and visual representations (Di Palo et al., 2023; Cui et al., 2022; Adeniji et al., 2023;
Fan et al., 2022; Mahmoudieh et al., 2022; Ma et al., 2023; Du et al., 2023; Lifshitz et al., 2023).
These approaches are limited to task specification, but cannot leverage the common sense of the
LLM for exploration or for crafting anticipatory rewards as Motif does. Other methods employed
LLMs for curriculum or subgoals generation, for instance by using language-conditioned policies
or text-based environments (Huang et al., 2022; Zhang et al., 2023; Wang et al., 2023; Wu et al.,
2023; Ichter et al., 2022; Mirchandani et al., 2021). These approaches are limited by the availability
of task success detectors. They are orthogonal to Motif and combining them with our method is an
interesting avenue for future work.

Learning from preferences One of the earliest works in the field of learning from feedback is Is-
bell et al. (2001) which collected preferences in a open-ended chat environment where it interacted
with humans. Later on, Thomaz et al. (2006) investigated the anticipatory nature of rewards obtained
from human preferences. As we noticed in this paper, these anticipatory rewards are also naturally
obtained by eliciting preferences from an LLM. Knox & Stone (2009) introduced TAMER which
explicitly learns to model the human reinforcement feedback function, leading to better generaliza-
tion and scalability. Similarly Fürnkranz et al. (2012) provided a formal framework for integrating
qualitative preferences in RL rather than numerical feedback, for example by using reward func-
tions. Learning from preferences has also been studied through diverse research directions, such
as investigating the dependence of the feedback on the agent’s current policy (MacGlashan et al.,
2017; Arumugam et al., 2019) or the role of the distribution of samples over which preferences are
given (Sadigh et al., 2017). In the field of deep RL, Christiano et al. (2017) has shown that learning
from preferences can lead to strong performance on Atari games as well as faster learning. Recently,
Bowling et al. (2022) have investigated the connection between learning from preferences and the
form of the reward function, specifically focusing on the reward hypothesis (Sutton, 2004). Learning
from human feedback has driven much of the recent progress of LLM-based chatbots (Brown et al.,
2020; Ouyang et al., 2022; Touvron et al., 2023; Rafailov et al., 2023). However as human feedback
is costly to obtain, recently researchers have training such language models using reinforcement
learning from artificial intelligence feedback (Bai et al., 2022; Lee et al., 2023), where instead of
humans, LLMs provide feedback in order to improve fine-tuning. In sequential decision-making,
Kwon et al. (2022) suggested using LLMs to provide feedback. Differently from our work, the au-
thors focus on a setting where feedback is provided at the end of an episode with the assumption of
providing full state and action information. Importantly, in long horizon tasks, it is impractical to
provide feedback on full episodes due to limited context length.

Intrinsic motivation Intrinsic motivation studies how agents can spontaneously seek interest-
ing information in an environment, guided by a signal that goes beyond the environment re-
ward (Schmidhuber, 1991; Oudeyer et al., 2007; Singh et al., 2009). In the classical theory of RL,
it is connected to count-based exploration which, in the simplest case of a discrete environment, en-
courages an agent to go in states rarely encountered during its interactions (Bellemare et al., 2016).
The most used intrinsic motivation method for deep RL is Random Network Distillation (Burda
et al., 2019b), which we used as main baseline across the paper. A number of related methods have
been proposed (Burda et al., 2019a). However, it has been shown that most of these methods do
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not generalize outside of the domain or task for which they were originally designed (Taı̈ga et al.,
2020). Especially relevant to our paper is intrinsic motivation work on NetHack and its simplified
sandbox version MiniHack (Samvelyan et al., 2021), in which previous work explored both global
and episodic counts (Henaff et al., 2023). Our intrinsic reward normalization, based on episodic
counts, resembles the one used by previous methods (Raileanu & Rocktäschel, 2020; Henaff et al.,
2022), albeit assuming the role of mere normalizing procedure in the context of the LLM-derived re-
ward function. Zhang et al. (2021) test a method called NovelD on some of the tasks we used in this
paper, showing that it provides small-to-no benefit for solving the score and oracle tasks. The
method has also been generalized with language-based bonuses on MiniHack (Mu et al., 2022). Dif-
ferently from all of these approaches, Motif’s intrinsic rewards leverages the knowledge of NetHack
of an LLM and its common sense to design reward functions that not only generically encourage
novel states, but that incorporates exploratory information as well as future rewards. In this sense,
these intrinsic rewards are “decision-aware” (Farahmand et al., 2017; Nachum et al., 2017; Xu et al.,
2018b; D’Oro et al., 2020; Klissarov et al., 2022), and the LLM annotation process can be seen as
related to teacher-based exploration methods (Xu et al., 2018a; D’Oro & Bacon, 2021).

Learning Diverse Behaviour When learning from a single objective, practitioners face the diffi-
culty of expressing the desired behavior through a single function in such a way that the learning
system may progress. As the task of interest scales and its goal becomes more ambitious, the spec-
ification of such an objective turns impractical. Instead, we may seek to optimize a diversity of
objectives to make progress towards a larger goal. Quality Diversity algorithms (Cully & Demiris,
2017) leverage evolutionary computation to generate such diversity of high performing behavior,
either through novelty search with local competition (Lehman & Stanley, 2011) or through MAP-
Elites (Cully et al., 2015; Mouret & Clune, 2015). In the field of RL, learning diverse behaviour has
been influential when considering hierarchical agents (Sutton et al., 1999), for example in terms of
exploration (Machado et al., 2017; Dabney et al., 2021) or transfer learning (Khetarpal et al., 2020;
Klissarov & Precup, 2021). There exist a variety of approaches for obtaining such diverse skills,
for example by relying on the mutual information between states and skills (Gregor et al., 2017),
the eigendecomposition of the Laplacian (Klissarov & Machado, 2023), or by maximizing the worst
case performance (Zahavy et al., 2023a). Recently, Zahavy et al. (2023b) define diversity in terms
of state occupancy measure and show how it can significantly improve performance and robustness
in the game of chess, in particular on challenging puzzles such as the Penrose Set. Differently from
such approaches, we here define diversity through language and allow for users to specify in which
way to steer behaviour through simple prompt modifications.

B PROMPTS AND ANNOTATION PROCESS

We now list and discuss the prompts we employed in conducting our experiments.

System prompt

You are a helpful and honest judge of good gameplaying and progress
in the NetHack game. Always answer as helpfully as possible, while
being truthful.

If you don’t know the answer to a question, please don’t share false
information.

Prompt 1: System prompt, tasking the LLM to be a “truthful judge”.

We modified the default system prompt used by the chat version of Llama 2, with a prompt in line
with the assistant-nature of the LLM, but tailored to the role of the LLM as evaluator of NetHack
gameplays.

In Prompt 1, we show we encourage the LLM to be a “honest judge”, and to be helpful and truthful.
We found this wording to help the model to focus on the actual messages contained in its prompt,
instead of hallucinating non-existent interactions, as we observed some prompts to cause.
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Zero-knowledge prompt

I will present you with two short gameplay descriptions. First, tell
me about your knowledge of NetHack. Mention the goal of NetHack.
{modifier}

Then, write an analysis describing the semantics of each description
strictly using information from the descriptions (which may be empty)
and your knowledge of NetHack. Provide a comparative analysis based
on first princicples.

Finally, respond by explicitly declaring which one is the most
likely to make some progress towards the goal, writing either
("best description": 1), ("best description": 2). You could also
say ("best description": None).
{ "description 1": "{message 1}" }
{ "description 2": "{message 2}" }

Prompt 2: Basic zero-knowledge prompt template, altered by changing the blue placeholders. The
first placeholder, {modifier}, takes values listed in Prompt 3 depending on the experiment. {message
1} and {message 2} are extracted from the dataset of event captions.

Prompt modifiers

{default}: "Prefer agents that maximize the score in the game, for
instance by killing monsters, collecting gold or going down the
stairs in the dungeon."

{gold}: "Prefer agents that maximize their gold. But never prefer
agents that maximize the score in other ways (e.g., by engaging in
combat or killing monsters) or that go down the dungeon."

{stairs}: "Prefer agents that go down the dungeon as much as
possible. But never prefer agents that maximize the score (e.g.,
by engaging in combat) or that collect ANY gold."

{combat}: "Prefer agents that engage in combat, for instance by
killing monsters. But never prefer agents that collect ANY gold or
that go down the dungeon."

Prompt 3: Prompt modifiers applied to Prompt 2. For most of the experiments, when not otherwise
specified, it is set to be {default}; in the zero-knowledge experiment of Figure 6b, it is set to be
empty, and in the steering-by-prompting experiments of Table 1, it is set to be either {gold} for
The Gold Collector, {stairs} for The Descender, {combat} for The Monster Slayer.

We use Prompt 2 as basic prompt template, customizing it with different modifiers explained in
Prompt 3 depending on the experiment. We use a form of chain-of-thought prompting (Wei et al.,
2022): before asking the model for any annotation, we elicit it to write about its knowledge of
NetHack, and to mention the goal of the game. Then, we encourage the model to analyze the
messages that we will provide relating them to its knowledge of NetHack. We explain the different
possible answers to the model, that has also the possibility of declaring that no one of the two
messages that it is given can be preferred over the other. The two messages, sampled at random
from the dataset of observations, are provided in a JSON-like format. We then look for the LLM’s
preference in its output text, by using the regular expression:

(?i)\W*best_*\s*description\W*(?:\s*:*\s*)?(?:\w+\s*)?(1|2|none)
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that looks for slight variations of the answer format that we show to the model in the prompt.

Retry prompt

So, which one is the best? Please respond by saying
("best description": 1), ("best description": 2), or
("best description": None).

Prompt 4: Prompt provided to the LLM to continue the conversation when the regular expression
does not find a valid annotation in the LLM’s answer to the original prompt.

When the regex does not provide an answer, we continue the conversation with the LLM and use
Prompt 4 to explicitly ask for an answer in the requested format. Our overall response rate is rea-
sonably high, being around 90% for most of the prompt configurations. We do not train the reward
model on the observations that are in D but for which we were not able to extract a preference due
to failure of output-getting from the LLM.

Reworded prompt

I will present you with two short gameplay messages. First, tell me
about your knowledge of NetHack. Mention the goal of NetHack. Then,
write a summary describing the meaning and obvious effect of each
message strictly using factual information from the messages and your
knowledge of NetHack. Then, provide a comparative analysis based on
first princicples. Comment on uncertainty. {modifier}

Finally, respond by explicitly declaring one of the two messages
as the most likely to show improvement with respect to the goal,
writing either ("best message": 1), ("best message": 2). Under high
uncertainty you could also say ("best message": None). You have to
absolutely comply with this format.
{ "message 1": "{message 1}" }
{ "message 2": "{message 2}" }

Prompt 5: Semantically-similar variation of Prompt 2, used for the experiment in Figure 6c.

In our experiments about prompt rewording, we use Prompt 5. The main differences are that this
prompt asks about uncertainty, mentions improvements and actually calls the messages “message”
instead of “description”. We adjust the regular expression accordingly.

The starting size of our dataset of observations is of about 107 samples, and our dataset of pairs
Dpref kept the same across all of the experiments (we just change the annnotations) and has 5× 105

samples. For efficient inference during annotation, we use PagedAttention via the vLLM Python
module (Kwon et al., 2023). For sampling answers from the LLM, we use simple autoregressive
decoding, only sampling from the tokens with the 50 highest logits and with a probability of at least
95% with a sampling temperature of 0.1.

C LLM OUTPUTS

When first approaching the problem of using an LLM as an evaluator for NetHack, we sought to
understand whether the LLama 2 model had observed enough knowledge of NetHack to be useful
at this task. In Output 1, we directly ask the model about its knowledge of NetHack, obtaining a
complete answer, showing a remarkable knowledge of NetHack’s game dynamics. By contrast, a
FLAN-T5 XXL model (Chung et al., 2022) seem not to know anything about NetHack, and hallu-
cinates a brief answer about it, falsely claiming it to be a first-person shooter video game. Future
work can explore the possibility to fine-tune an LLM to apply Motif to domains unknown to it.
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What do you know about NetHack and the goal of a player in it? (Llama 2 70b)

NetHack is a popular open-source roguelike video game that was first
released in 1987. It is a descendant of the 1980 game Rogue, and
it has been widely influential in the development of the roguelike
genre. The game takes place in a procedurally generated dungeon,
where the player controls a character known as the "hero" who must
navigate through levels filled with monsters, traps, and treasure.

The ultimate goal of the player in NetHack is to find and retrieve
the Amulet of Yendor, which is located on the lowest level of the
dungeon. However, this task is not straightforward, as the amulet is
guarded by powerful monsters and protected by various obstacles. To
reach the amulet, the player must explore the dungeon, fight or evade
monsters, collect useful items and equipment, and solve puzzles.
Along the way, the player can also complete side quests and interact
with non-player characters (NPCs) for rewards and assistance.

It’s worth mentioning that NetHack is known for its high difficulty
level, complex gameplay mechanics, and steep learning curve. Players
must carefully manage their resources, such as food, water, and
health, and make strategic decisions about how to proceed through
the dungeon. Additionally, the game features permadeath, meaning
that if the hero dies, they must start over from the beginning with a
new character. Despite these challenges, NetHack remains a beloved
game among fans of the roguelike genre due to its depth, complexity,
and replayability.

Output 1: Answer of Llama 2 70b (chat) on a question about its knowledge of NetHack. The model
demonstrate knowledge of both the history of the game, its goal and peculiarities of its gameplay.

What do you know about NetHack and the goal of a player in it? (FLAN-T5 XXL)

NetHack is a first-person shooter video game

Output 2: Answer of FLAN-T5 XXL (Chung et al., 2022) on a question about its knowledge of
NetHack. The model only provides an factually incorrect short answer.

We additionally provide two examples of responses from Llama 2 70B. In the first example in Output
3 we compare the message “There is a staircase up here. You see here an orcish helm.” to “It’s solid
stone.” We notice that the LLM naturally associates the staircase with potential progress in the game,
making use of its common sense, knowledge of NetHack and predictive capabilities. In the second
example in Output 4 we compare an empty message (which happens often in NetHack) to “It’s
solid stone.” In this case, the information content of both messages is extremely low and the LLM
naturally recognizes that neither is better than the other.

D ANALYZING MOTIF’S INTRINSIC REWARD

One way to understand which kind of behaviors might be encouraged by Motif is to directly inspect
the intrnsic reward function it produces. To do so, we compute the reward for all the messages that
can be found in a hold-out set of Dtext, and rank the messages by the value of the reward.

In Message List 1, we report a list of the top messages that are preferred by the reward function
when trained with the annotations produced by the LLM with the default prompt. As highlighted in
Section 4.2, among the most encouraged messages are the ones that are seen by the agent during the
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“There is a staircase up here. You see here an orcish helm.”
vs

“It’s solid stone.”

I have extensive knowledge of NetHack and its mechanics. The goal of
NetHack is to descend through the dungeon levels, collecting treasure
and killing monsters, while avoiding death and reaching the Amulet
of Yendor, which is located on the bottom level. The game is won by
taking the Amulet to the surface.

Description 1 mentions a staircase up and an orcish helm. The
presence of a staircase suggests the possibility of descending
deeper into the dungeon, which aligns with the goal of the game.
The orcish helm could potentially provide a bonus to the player’s
combat abilities, which would aid in killing monsters and collecting
treasure.

Description 2 simply states that the area is solid stone. This
does not provide any information about the possibility of descending
deeper into the dungeon or encountering monsters or treasure.

Based on the information provided, Description 1 is more likely
to lead to progress towards the goal of the game. Therefore,
("best description": 1).

Output 3: Answer of Llama 2 70b with default prompt when tasked to evaluate two messages. The
model prefers the message indicating progress, containing both reference to a staircase and to one of
the objects in the game, to the less informative message “It’s solid stone”. The anticipatory behavior
of the LLM, guided by its knowledge of the task, is clearly visible.

execution of exploratory actions, like opening a door, finding a hidden door, or moving a boulder that
blocks the way to the rest of the dungeon. We discussed the remarkable effect that this can have on
exploration, since the agent does not have to learn that the consequences of this simple and common
actions are often positive for getting new information or arriving to a better state of the environment.
Other encouraged actions are more directly related to successful accomplishments in the game, like
descending the stairs to the next dungeon level, killing or fighting monsters, and seeing potentially
useful objects. We also notice some general bias of the LLM to prefer longer messages, which may
negatively affect the quality of the resulting reward function.

We additionally report the messages with lowest reward function value in Message List 2. Many of
these correspond to undesirable behaviors in the game, such as executing actions in the wrong mo-
ment, attacking non-playing characters (like Sneem) or damaging a pet kitten. Overall, our thresh-
olding mechanism will discard the effect of this tail behavior of the reward function, losing semantics
in the reward function in order to reduce noise.

E DIVERSE BEHAVIORS THROUGH DIVERSE PREFERENCES

We now have a closer look at the reward functions originated in the experiment from Table 1.

For each of the three agents (The Gold Collector, The Descender, The Monster Slayer), we want
to measure which messages are getting a relatively higher reward, compared to the baseline reward
function created by the most basic version of Prompt 2. To do so without being subject to the
confounding factor of potentially different reward scales, we compute, for the same set of messages
from the held-out set of Dpref the ranking of messages according to the different rewards. Then, we
report for each one of the steered agents the messages that maximally increased their ranking among
the other messages, compared to the rankings observed with the zero-knowledge prompt.
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Empty message
vs

“It’s solid stone.”

I have extensive knowledge of NetHack and its mechanics. The goal of
NetHack is to descend through the dungeon levels, collecting treasure
and killing monsters, while avoiding death and reaching the Amulet
of Yendor, which is located on the bottom level. The game is won by
taking the Amulet to the surface.

Based on the given descriptions, neither of them provides much
information about the game state or the player’s progress.

Description 1 is empty, providing no information about the game
state.

Description 2 mentions that the current square is solid stone, which
means that the player is currently standing on a solid stone floor.
This information doesn’t reveal much about the player’s progress or
the surrounding environment.

Comparing the two descriptions, neither provides any information
about the player’s progress towards the goal of the game.

Based on the information provided, it’s difficult to determine
which description is more likely to make progress towards the goal.
Therefore, I must declare that ("best description": None) is the most
appropriate response.

However, I must note that in general, it’s important to keep in
mind that the player’s surroundings, inventory, and current floor
level are important factors in determining progress in NetHack. A
description that provides information about these aspects would be
more helpful in evaluating progress towards the goal.

Output 4: Answer of Llama 2 70b with default prompt when tasked to evaluate an empty message
to the message “It’ solid stone”, which is encountered by the agent when bumping into a wall. For
two equally not helpful messages, the model is able to refuse to give an answer.

In Message List 3, we see that The Gold Collector mainly prefer the collection of gold pieces, or
any other actions, even from other characters in the game, related to money. In addition, explorative
actions such as interacting with doors (related both to “In what direction” and “The door resists”)
are encouraged. Again, this is an instance of anticipatory rewards, or the intrinsic reward from the
LLM behaving similarly to a value function: the LLM imagines that, after opening a door, there can
be some gold awaiting for the agent.

Message List 4 shows that The Descender’s reward has an even stronger preference for messages
suggesting that exploratory behaviors are being executed, such as interacting with doors, recovering
sight, or even swapping places with the pet, that the LLM interprets as a sign of swift movement in
the game.

Lastly, in Message List 5 we report the relatively most preferred messages for The Monster Slayer
prompt. As expected, all the messages that are more preferred compared to the baseline are related
to combat. Interestingly, when pushed to do so, the reward function starts to encourage attacking the
pet, which was among the least encouraged messages for the default prompt. This comes from the
prompt, the generally prescribes combat as the goal for the agent to pursue, regardless of the target.
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Highly preferred messages

The door opens.
With great effort you move the boulder.
You descend the stairs.
You find a hidden door.
You kill the cave spider!
As you kick the door, it crashes open!
You kill the newt!
You kill the grid bug!
You find a hidden passage.
You see here a runed dagger.
You hear the footsteps of a guard on patrol. It’s a wall.
There is a partly eaten rothe corpse here; eat it? [ynq] (n)
There is a sewer rat corpse here; eat it? [ynq] (n)
You hit the gnome lord!
A kobold lord blocks your path.
You kill the gecko! Welcome to experience level 3. You feel
healthy!
You hit the black naga hatchling! The black naga hatchling bites!
$ - 3 gold pieces.

Message List 1: Most preferred messages according to the reward function induced by feeding the
default prompt to the LLM for annotating the dataset.

Least preferred messages

Unknown command ’̂M’.
Thump!
This time I shall let thee off with a spanking, but let it not happen
again.
The little dog jumps, nimbly evading your kick.
You swap places with your kitten.
It yowls.
You miss it.
You kick the kitten. The kitten jumps, nimbly evading your kick.
This orange is delicious! You feel weak now.
It hits!
Really attack Sneem? [yn] (n)
You collapse under your load. It is hit.
Core dumped.
You hit it. You are beginning to feel hungry.
Everything looks SO boring now.
A glowing potion is too hot to drink.

Message List 2: Least preferred messages according to the reward function induced by feeding the
default prompt to the LLM for annotating the dataset.

F ADDITIONAL BASELINES

For the sake of clarity, in the main paper we have only compared to the RND baseline (Burda
et al., 2019b). We now provide a comprehensive comparison to more baselines, including additional
intrinsic motivation baselines and ablations on our method.
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Relatively most preferred messages for The Gold Collector

In what direction?
$ - 2 gold pieces.
$ - 4 gold pieces.
$ - 5 gold pieces.
You hear someone counting money.
$ - 7 gold pieces.
$ - 3 gold pieces.
You hear someone counting money. It’s solid stone.
You see here a tin.
The door resists!

Message List 3: Messages more emphasized by the prompt used by The Gold Collector compared
to the baseline prompt.

Relatively most preferred messages for The Descender

In what direction?
The door resists!
You can see again.
You see here a whistle.
You are lucky! Full moon tonight.
You swap places with your little dog.
You see here a tin.
You see here a gnome corpse.
You swap places with your kitten.
You find a hidden door.

Message List 4: Messages more emphasized by the prompt used by The Descender compared to the
baseline prompt.

We compare to the Exploration via Elliptical Episodic Bonuses (E3B) baseline (Henaff et al., 2022)
which has shown state-of-the-art performance on the MiniHack game (Samvelyan et al., 2021). E3B
leverages an inverse dynamics model to learn the important features on which they define episodic
elliptical bonuses. We also compare to NovelD (Zhang et al., 2021) which proposes a measure of
novelty inspired by RND and makes use of episodic counts. NovelD previously claimed state-of-
the-art performance on some of the NetHack environments. We additionally perform an ablation
our method where we do not leverage LLM feedback to define a reward function and instead assign
a value of 1 to all messages. We call this baseline Motif w/o LLM. Finally, we considered imple-
menting Behaviour Cloning from Observation (BCO) (Torabi et al., 2018), however this baseline
typically never outperforms the agent from which it learns. As we notice in our experiments, Motif
signficantly improves upon the agent that generated the initial dataset, sometimes doubling the base
performance (see Appendix H.3)

We also attempted to take the LLM-as-a-policy approach of recent work Wang et al. (2023), how-
ever the agent would not make any progress. It is possible that with much more prompt engineering
this result could improve, however we believe the appeal of Motif is precisely in avoiding such
involved optimization. Indeed, Motif’s prompts are simple and could be composed by non-experts.

In Figure 7 we compare Motif to the aforementioned baselines in both the intrinsic only setting and
when learning from the intrinsic and extrinsic rewards. We make this comparison in the standard
score task, the staircase (level 4) task and the oracle task.
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Relatively most preferred messages for The Monster Slayer

You hit the newt.
You miss the newt.
You see here a jackal corpse.
Really attack the little dog? [yn] (n)
You hit the lichen.
The goblin hits!
The giant rat bites!
The grid bug bites!
You see here a newt corpse.
The jackal bites!

Message List 5: Messages more emphasized by the prompt used by The Monster Slayer compared
to the baseline prompt.
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Figure 7: Comparison to additional baselines on the score task, the staircase (level 4)
task and on the oracle task, both when learning only from intrinsic reward and when it is combined
with extrinsic.

We see that in the score task, Motif easily outperforms existing intrinsic motivation approaches.
In fact, none of the intrinsic motivation baselines are significantly improving upon the extrinsic-only
agent. On the more straightforward staircase (level 4) task, some of the baselines provide
gains, although they require access to the extrinsic reward to do so. None of the baseline approaches
showed any meaningful progress in the environment oracle, characterized by extremely sparse
rewards.
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For each baseline we have performed a sweep over their hyperparameters, in particular the intrinsic
rewards coefficients. We kept the extrinsic rewards coefficients fixed (1.0 for score and 10.0 for
the rest). For E3B, we swept the ridge regularizer in the values {0.1, 1.0} and the intrinsic reward
coefficient in the values {0.0001, 0.001, 0.01, 0.1, 1.0, 10.0}. The final values were 0.1 and 0.1, re-
spectively. For NovelD, we swept the scaling factor in {0.1, 0.5} and the intrinsic reward coefficient
in the values {0.0001, 0.001, 0.01, 0.1, 1.0, 10.0}. The final values were 0.5 and 0.1, respectively.
For RND, we swept the intrinsic reward coefficient in the values {0.001, 0.01, 0.1, 0.5, 1.0, 10.0}.
The final value was 0.5.

G EXPERIMENTAL DETAILS

We base our implementation of the environments on the code released in the NetHack Learning
Environment (Küttler et al., 2020). We use default parameters for each environment. However, as
discussed in one the issues currently available on the public repository, even tough the ‘eat’ action
is available to the agent, it is not possible to actually eat most of the items in the agent’s inventory.
To overcome this limitation, we make a simple modification to the environment by letting the agent
eat any of its items, at random, by performing a particular action (the action associated with the
key y). This effectively addresses this mismatch. Additionally, for our experiments on learning
from intrinsic rewards only we let the agent interact with the environment even if it has reached
the goal (although we only reward it once). This was also noted in (Burda et al., 2019b) in their
intrinsic-only experiments, although they make this adjustment on the level of the agent itself by
never experiencing termination (e.g. γ = 0.99 for all states).

During the reward training phase of Motif, we use the message encoder from the Elliptical Bonus
baseline (Henaff et al., 2022). This baseline has shown state of the art performance on MiniHack
(Samvelyan et al., 2021). We split the dataset of annotation into a training set containing 80% of
the datapoints and a validation set containing 20%. We train for 10 epochs, around which time the
validation loss stabilizes. We use a learning rate of 1× 10−5.

Before providing the reward function to the RL agent, we normalize it by subtracting the mean and
dividing by the standard deviation. As Equation 2 shows, we further divide the reward by an episodic
count and we only keep values above a certain threshold. The value of the count exponent was 3
whereas for the threshold we used the 50th quantile of the empirical reward distribution.

Table 2: PPO hyperparameters

Hyperparameter Value

Reward Scale 0.1
Observation Scale 255
Num. of Workers 24

Batch Size 4096
Num. of Environments per Worker 20

PPO Clip Ratio 0.1
PPO Clip Value 1.0

PPO Epochs 1
Max Grad Norm 4.0
Value Loss Coeff 0.5
Exploration Loss entropy

Extrinsic Reward Coeff (score) 0.1
Extrinsic Reward Coeff (others) 10.0

Intrinsic Reward Coeff 0.1
ϵ threshold 0.5 quantile
β exponent 3

For the RL agent baseline we build on the Chaotic Dwarven GPT-5 baseline (Miffyli, 2022), which
itself was defined on Sample Factory (Petrenko et al., 2020). Sample Factory includes a an extremely
fast implementation of PPO (Schulman et al., 2017) which runs at about 20K frames-per-second
using 20 computer cores and one V 100 GPU. We provide all hyperparemeters in Table 2.
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For the experiments in Section 4.1, all results are reported by averaging 10 random seeds together
with the standard deviation. For the experiments in Section 4.4, report results by averaging 5 random
seeds together with the 95th confidence interval.

H ADDITIONAL EXPERIMENTS AND ABLATIONS

H.1 ADDITIONAL EXPERIMENTS

Un-hackable oracle task In Section 4.2, we have investigated the behavior of the agent on a
range of task and our analysis has revealed an unexpected way in which the agent solves the
oracle task. This begs the question whether Motif could solve the intended task, that is, to
go down multiple dungeons and find the oracle in the right branch of the maze. To do so, we
modify the oracle to include the following success condition: the task is done when the agent
stands by the oracle and is not under a state of hallucination. We name this task oracle-sober.
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Figure 8: Performance of Mo-
tif on the unhackable version
of the oracle task. Mo-
tif reaches satisfying perfor-
mance even in this case.

In Figure 8 we show that Motif, using the intrinsic and extrinsic
rewards, is still able to solve this extremely sparse reward task, al-
though with a lower success rate than before. When using only the
intrinsic reward Motif performs slightly better than the baselines. It
would be possible to improve this performance by explicitly men-
tioning the task of interest in the prompt, similarly to results pre-
sented in Section 4.4. In particular, the oracle only appears in one
of two branches going down the NetHack dungeons. By modifying
the prompt we could encourage the agent to visit the right branch
and possibly significantly increase its chance of finding the oracle.

Alignment in avoiding pet killing The agent is accompanied by
a pet from the beginning of the game, that can help it to kill mon-
sters or pick objects. Following the environment reward, there is
a strong incentive to kill the pet (the agent trained with extrinsic
reward kills it 99.4% ± 0.63% of the time), since the agent gets score points by doing it and addi-
tionally avoids to lose points due to future actions of the pet (e.g., when the pet kills monsters in
place of the agent). This behavior is, however, not intuitive for most humans, that would not kill the
pet unless constrained by the game to do so. Indeed, Motif’s intrinsic reward captures this intuition,
and, despite achieving a better score, an agent trained with that reward kills the pet significantly less,
33.4%± 25.14% of the time.

H.2 ABLATIONS

In the design of Motif we we introduce two hyperparameters shown explicitly in the main paper in
Section 3. These hyperparameters consist in the exponent β that affects the counts coefficient and the
threshold value ϵ under which rewards are zeroed out. We verify the effect of these hyperparameters
on the score task and present results in Figure 9. We notice that Motif’s performance is generally
robust across a wide range of values. An interesting failure case is when there are no counts (i.e.
when β = 0). This is due to the fact that the LLM encourages the agent to try to interact with
different objects in the game, such as armor and weapons, in order to increase its abilities. This is
a standard strategy, however, in the current version of score the action set does not include the
possibility to interact with such objects, which brings the agent to never-ending loops where it seeks
things it simply cannot achieve.

Finally, another important hyperparameter is the set of coefficients that balance the intrinsic and ex-
trinsic rewards. As we have seen previously, learning only with the intrinsic reward leads improved
performance when compared to an agent learning with the extrinsic reward. As such, we vary the
value of the extrinsic reward coefficient and present results in Figure 9c. We notice that when the
extrinsic reward coefficient is in the same range as the intrinsic reward coefficient (that is a value
of around 0.1), we achieve the best performance. As we increase the value of the extrinsic reward
coefficient, the performance tends to decrease, eventually reaching the same score as the extrinsic
only agent.
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Figure 9: Ablations on the hyperparameters used by Motif. Using a form of count-based normaliza-
tion is critical for the method to work. Otherwise, Motif is very robust to hyperparameter choices
and the change in performance follows intuitive patterns.

In Figure 6a we have reported the scaling profile when modifying the LLM annotator size on the
staircase (level 3). We now additionally investigate the effect of the model size on the
oracle task and present results in Figure 10a. We notice that the 70B model finds much more
consistently the oracle than both the 13B and the 7B ones.
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Figure 10: Additional experiments on sensitivity of the performance to changes in the LLM and
prompt. Good performance on the oracle task emerges from the 70b Llama 2 model, and perfor-
mance on the score task is reasonably robust to a rewording of the prompt, both with and without
extrinsic reward.

We also previously investigated in Figure 6c the importance of the precise prompt used to obtain
preferences from the LLM and noticed significant differences when the task has a considerably
narrow definition of success as is the case in oracle. We now investigate whether this also appears
to be case in the more open-ended score domain. In Figure 10b we plot the learning curves when
the agent learns through both the extrinsic and the intrinsic reward functions, whereas in Figure 10c
we report results when only learning from the intrinsic reward function. We notice no significant
difference in performance in this case between the default prompt and the reworded one. This
indicates that when the task can be achieve by a larger span of behavior, the performance obtained
by the RL agent is robust to variance the prompt .

H.3 IMPACT OF DATASET DIVERSITY AND PERFORMANCE LEVEL

In all of our experiments, we use a dataset D collected by policies trained with RL. From the base
dataset, we extracted a 500000-pairs dataset and annotated it using an LLM’s preferences. How
does the performance of Motif changes based on the return level and diversity of the policies that
collected the dataset? This question is related to recent studies conducted in the context of offline
RL (Lambert et al., 2022; Schweighofer et al., 2022), that similarly identified the performance level
and diversity of a dataset as the important features to measure how good will a resulting policy be
after running offline RL training on the dataset.

To control the diversity and performance level in the dataset, we characterize polices that collected
the dataset using the distributions of their returns (Rahn et al., 2023). In particular, for each one

31



0 2000 4000 6000

Episode Score

0

50000

100000

150000

C
ou

nt

Figure 11: Distribution of scores of the episodes from which the observations in the dataset of
pairs Dpref come from. The distribution exhibits a long right tail, with agents that, due to lucky
configurations of the procedurally generated dungeon, can sometimes get particularly high scores.
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Figure 12: Distribution of scores of the episodes from which the observations in the dataset of pairs
Dpref come from, cut (from above and below) at different percentile levels η. This progressively
reduces the overall diversity in the dataset.

of the pairs of observations in the dataset, we use the game score of the episode from which an
observation came from. Figure 11 shows the distribution of such game scores. The histogram shows
a reasonably diverse score distribution, highlighting a certain degree of diversity that comes both
from the variability across different seeds of the RL algorithm and the variability across episodes
due to the procedurally-generated nature of NetHack.

To see how changes to the distributions of scores, and thus to the diversity and the performance level
of the dataset, have an impact on the reward function and the downstream performance of Motif,
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Figure 13: Distribution of scores of the episodes from which the observations in the dataset of pairs
Dpref come from, discarding pairs that contain at least one observation coming from an episode
with a level of score greater than the maximum return threshold. This progressively reduces the
performance of the policies that collected the dataset.
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Figure 14: Performance of Motif trained with a combination of intrinsic and extrinsic reward, when
trained the reward on a restricted dataset of preferences, either capping the score of the best policy in
the dataset (a) or reducing its diversity by discarding observations coming from episodes with score
higher or lower than the one at a given reference percentile η (b).

we alter the dataset in two controlled ways. First, to reduce the diversity of the dataset, we remove
the left and right tails of the distribution, by discarding pairs that contain at least an observation
coming from episodes with score residing in either one of those tails. We identify those tails by
measuring what is lower or higher than a given percentile, namely 5%, 15%, 25%, 35% for the left
tail, and 95%, 85%, 75%, 65% for the right tail respectively. We denote by η this “symmetric”
percentile level. In Figure 12, we show the resulting distribution of scores for different percentile
levels. Second, to reduce the maximum performance implied by the dataset, we remove the pairs
containing observations coming from episodes that achieved a at least a given level of return. In
Figure 13, we show how the distribution changes for different levels of score-based filtering, with
maximum returns of 1300, 1000, 700, 400.

We report in Figure 14 the performance of Motif when using reward functions derived from the
dataset restricted in the two different ways. The results show that Motif is remarkably robust to both
the performance level and the diversity of the dataset. Up to a maximum score of 700 and a percentile
of η = 25%, corresponding to dataset sizes of around 100000 samples, Motif’s experiences only
minimal drops to its performance. The performance completely degrades only for extreme removals
from the dataset, shrinking it down to a few tens of thousands of pairs (i.e., for η = 35% and a
maximum score of 400).

33


	Introduction
	Background
	Method
	Learning from Artificial Intelligence Feedback on NetHack

	Experiments
	Performance on the NetHack Learning Environment
	Behavior and Alignment Analysis
	Sensitivity to LLM Size and Prompt
	Steering towards Diverse Behaviors via Prompting

	Related Work
	Conclusions
	Appendix
	 Appendix
	Additional Related Work
	Prompts and Annotation Process
	LLM Outputs
	Analyzing Motif's Intrinsic Reward
	Diverse behaviors through diverse preferences
	Additional baselines
	Experimental details
	Additional Experiments and Ablations
	Additional Experiments
	Ablations
	Impact of dataset diversity and performance level



