
A Pilot Study in Surveying Clinical Judgments
to Evaluate Radiology Report Generation

William Boag
MIT
USA

Hassan Kané
WL Research

USA

Saumya Rawat
MIT
USA

Jesse Wei
Beth Israel Deaconess Medical Center,

Department of Radiology
USA

Alexander Goehler
Beth Israel Deaconess Medical Center,

Department of Radiology
USA

ABSTRACT
The recent release of many Chest X-Ray datasets has prompted a
lot of interest in radiology report generation. To date, this has been
framed as an image captioning task, where the machine takes an
RGB image as input and generates a 2-3 sentence summary of find-
ings as output. The quality of these reports has been canonically
measured using metrics from the NLP community for language
generation such as Machine Translation and Summarization. How-
ever, the evaluation metrics (e.g. BLEU, CIDEr) are inappropriate
for the medical domain, where clinical correctness is critical. To
address this, our team brought together machine learning experts
with radiologists for a pilot study in co-designing a better metric
for evaluating the quality of an algorithmically-generated radiology
report. The interdisciplinary collaborative process involved mul-
tiple interviews, outreach, and preliminary annotation to design
a larger scale study – which is now underway – to build a more
meaningful evaluation tool.

CCS CONCEPTS
• Computing methodologies → Machine learning; • Human-
centered computing→ Collaborative and social computing design
and evaluation methods.
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1 INTRODUCTION
Over the past few years, there has been considerable interest in the
task of creating deep learning models to interpret medical images.
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Many of the use cases include tumor detection/localization [37],
automatic segmentation of CT [18], and X-ray scans [19, 28], and
image registration [13, 38]. All of these scenarios have structured
outputs, such as pixel labels or image labels, which allows stan-
dard loss functions and evaluation metrics to lead to models which
converge towards high performance.

The situation is different, however, for tasks which generate
clinical text, such as document summarization, clinical question
answering, and report generation. Evaluation metrics used in lan-
guage generation tasks are not as reliable, both general and domain-
specific settings, and are an area of active research.

In this work, we provide three main contributions:

• We develop and conduct an annotation task to collect clinical
judgment on 400 candidate reports from 100 radiology im-
ages. This provides much-needed guidance on what makes
a report good or bad.

• We examine what radiologists look at when evaluating a
report. This is useful both to understand the current limi-
tations of the task framing and also to help inform future
development of a better evaluation metric for Chest X-Ray
report generation.

• We demonstrate some of the outreach tools we used for
initial contact with domain experts to help create discussions
and eventual partnerships.

Our findings highlight the need for data scientists to work closely
with clinical experts to build meaningful tasks and models. Without
domain knowledge and wisdom, it is far too easy to fall into the
trap of incorrect modelling assumptions, such as treating radiology
report generation as a simple image captioning task with readily
available labels in the reports that accompany frontal radiographs.
And once the task is properly defined, interdisciplinary teams must
work together to develop sound evaluation metrics which service
as sound proxies for clinical usefulness.

The rest of the paper is as follows: Section 2 contextualizes this
effort in relation to related work; Section 3 describes the method-
ological design of the pilot, report candidates, and evaluation met-
rics; Section 4 shows the results of the pilot and related analyses;
Section 5 discusses the implications of these results; Section 7 offers
a conclusion of our results; and Section 6 discusses the limitations
of this study and how they inform future work.
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2 BACKGROUND AND RELATEDWORK
2.1 Generating and Evaluating Radiology

Reports
In recent years, several Chest X-Ray datasets, including both images
and clinical reports, have been made publicly available [4, 8, 16].
Some efforts in radiology AI have worked to model text and images
jointly in order to: predict disease severity of illness [32], identify
regions of interest over chest X-ray images [26], and allow infor-
mation retrieval [14]. Since these datasets have come out, many
works have generated radiology reports, including with template-
informed approaches [11] as well as reinforcement learning and
radiology-derived metrics in the objective function [21].

Once text gets generated by a model, it needs to be evaluated
both in training and at inference time to have an understanding
of the model performance. The gold standard would be a bespoke
human evaluation, but this has many challenges, including the
bottlenecks of speed, cost, and scale. The machine learning commu-
nity designed automatic metrics to solve some of these challenges.
Existing metrics can be broadly categorized into:

• n-gram matching: count the number of n-grams that oc-
cur in the reference and candidate text (potentially with
reweightings) [1, 20, 27, 36].

• embeddingmatching: compare the soft similarities of dense,
fuzzy representations for words [7, 22, 23, 39] and sentences
[9] .

• learnedmetrics: metrics are trained to optimize correlation
with human judgments [24, 31, 33].

• radiology-specific metrics: rule-based parsing to identify
the presence or absence of 14 specific diagnoses [15].

Evaluation metrics are meant to be proxies for bepoke human
evaluations, therefore any new metric that is developed is mea-
sured to demonstrate its correlation with some form of human
judgment. The original BLEU paper had human evaluators score
candidate translations from 1 (very bad) to 5 (very good) and then
demonstrated that BLEU ranks 5 systems in the same order that
human annotators do [27]. CIDEr was created in 2014 for image
captioning, and became very popular for benchamrking on the
MS COCO dataset [36]. Annotators were asked to decide which of
two candidate captions better agrees with a reference caption, and
then CIDEr was shown to agree with the annotator rankings more
strongly than previous metrics like BLEU and METEOR. Several
papers have proposed moving away from correlation and more
towards multidimensional evaluation where sentence corruptions
are introduced as “unit tests” for how well the metric responds
[2, 17].

Many of the most popular metrics have been widely criticised
[29]. In the context of text simplification, BLEU has a very weak –
and in some cases, negative – correlation with human judgment on
grammaticality, meaning preservation, and simplicity [34]. Even
in the context of machine translation (for which it was originally
created), BLEU correlates poorly with human judgment on both
adequacy (i.e. whether the hypothesis sentence fully captures the
meaning of the reference sentence) and on fluency (i.e. the quality
of language in the hypothesis sentence) [5].

Table 1: Linguistic characteristics of PASCAL-50S (CIDEr’s
annotations) and the MIMIC-CXR radiology reports.

Average Characteristic PASCAL-50S MIMIC-CXR
number of references 50.00 ± 0.0 1.00 ± 0.0
sentence count 1.00 ± 0.0 5.29 ± 1.9
word count 9.82 ± 3.2 55.25 ± 25.2
Dale–Chall readability score 5.23 ± 3.2 9.61 ± 1.0
Gunning-Fog index 11.20 ± 4.7 20.06 ± 2.8
Flesch readability score 96.08 ± 15.6 63.26 ± 12.5

2.2 Challenges in the Clinical Domain
Although these metrics have been used in evaluating radiology
report generation [21], they are often designed for specific contexts
with underlying assumptions about the number of reference sen-
tences available as well as the complexity of the sentences to be
analyzed. When CIDEr was introduced, its authors showed that
“humans and CIDEr agree with a high correlation,” but they did so
when there were 20-50 reference captions per images as well as very
low-complexity descriptions (e.g. “a cow is standing in a field”). It is
not clear whether these findings would hold in the clinical domain,
where there is: only one reference report, many more tokens, and a
strong emphasis on factual correctness.

To better understand the differences between the simple general
domain image descriptions and clinical text, we use standard read-
ability scores to assess the complexity of a given piece of text. The
Dale–Chall readability formula and Gunning-Fog index measures
the years of formal education a person needs to understand the text
on the first reading [6, 12]. In the case of Gunning-Fog, the score is
meant to directly indicate the number of school years (e.g. 7 means
7th grade, 12 means 12th grade, etc) and Dale-Chall works similarly
but on a 1-10 scale. The Flesh readability score rates documents
on a 100-point scale based on the number of words and sentence
and syllables per word [10]. Unlike the previous two indices,higher
Flesch scores indicate easier-to-read documents.

Table 1 demonstrates many of the differences between PASCAL-
50S (a dataset introduced in the CIDEr paper) and MIMIC-CXR. We
observe that PASCAL-50S indeed has 50 reference reports, each of
which has 5 times fewer tokens than a MIMIC-CXR report. Addi-
tionally, the Dale-Chall and Gunning-Fox readability scores suggest
that nearly twice as many yeears of formal education are required
to understand radiology reports than simple image descriptions.
Clinical text is demonstrably more complicated than the general
domain text that previous metrics were developed for.

3 METHODOLOGY
The long-term goal is to eventually design a better evaluation met-
ric for determining whether an automatically-generated radiology
report is good. However, such a task requires the close collabora-
tion with clinicians on the design and improvement of the metric.
As such, we begin by focusing on the process of this participatory
design, and will then apply these lessons learned in a standalone
work.

This collaborative effort was done in two parts: qualitative dis-
cussions to design the framing/task and a pilot study. Computer
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Figure 1: Three different annotation tasks we considered for the radiologists to perform.

(a) Direct Assessment.
Radiologist would be asked to se-
lect how good the generated cap-
tion is for the image from 1-10.

(b) Caption Ranking.
Radiologist would be asked to rank
4 proposed captions based on how
well each describes the given im-
age.

(c) Image Selection.
Radiologist would be asked to select which
image is the one being described by a given
caption.

scientists conducted interviews with radiologists from three hos-
pitals, including from Boston, MA and Atlanta, GA. After these
conversations, an interdisciplinary team of computer scientists and
radiologists conducted a pilot study based on feedback during the
initial outreach.

3.1 Designing the Annotation Task
Based on prior work in radiology report generation [3] and evalua-
tion metric creation [27, 36], we had a rough idea of the collabora-
tion and data collection we had in mind: radiologists need to read
generated reports and decide whether it is good or not.

The simplest way to go about this could be to display an im-
age + report and ask the radiologist to rank how good it is from
1-to-5. Unfortunately, this approach suffers from broader design
issues: behavioral economics demonstrates that humans can be
inconsistent. We can see an example of this from the Sentences
Involving Composition Knowledge (SICK) dataset [25], where prior
work observes that the same kind of sentence transformations can
be scored inconsistently [2]:

(1) A man is holding a frog had a 2.1/5 similarity with
There is no man holding a frog.

(2) A man is playing soccer had a 4.8/5 similarity with
There is no man playing soccer.

Although some of these annotator calibration concerns can be
solved with mean normalization, ensuring that a particularly harsh
annotator doesn’t distort the average, the larger problem is that
annotators are not only inconsistent with one another, but they can
also be inconsistent with themselves depending on their context
and priming [35].

With this in mind, we explored a few potential ways to pose the
annotation task for doctors. Figure 1 demonstrates a fewways to ask
annotators to make judgments, such as a ranking-based approach
(1b) or image selection (1c).

3.2 Interviews with Radiologists
In order to reach out to radiologists to discuss this project, we
created a “1-pager” to send to them before our call, inspired by the
Collabsheets list of “simple” questions for computer scientists and
clinicians to discuss [30]. The 1-pager is shown in Figure 3, and its
purpose of the document is to give a background on where we are

coming from and focus the conversation on the kinds of questions
that seemed important to us.

On many questions, there was a strong consensus among the
radiologists. They all agreed that clinical correctness is the most
important factor in determining whether a report is good. Addition-
ally, each radiologist talked about their field’s move towards more
structured, templated reports, with some suggesting that perhaps
an evaluation metric should try to favor regularity. Additionally,
there was overall agreement that for an annotation task like this
(where they were not being asked to write their own reports) it
might be nice to have a DICOM image viewer that could allow them
to zoom, adjust contrast, etc. but such functionality would not be
necessary.

During the course of the interviews, there were a few other
concepts raised by radiologists which we had not considered when
designing the 1-pager in Figure 3, including:

• Many images are simply “normal heart, normal lungs, etc.”
We should purposefully select a diversity of diagnoses in the
annotation set.

• When designing a metric eventually, it may be useful to look
for words conveying levels of uncertainty (e.g. “consistent
with” vs “suggests”).

There was, however, some disagreement among the clinicians.1
One radiologist questioned whether any of the proposed annotation
tasks were the most meaningful thing to measure: they suggested
perhaps we should create an interface where the generated report is
a “first draft” for the annotator tomodify until they are satisfiedwith
the final product. This would, however, be a much more involved
task for our annotators. Additionally, radiologists disagreed over
whether it was worth including background information about the
patient (e.g. “51 y/o female suffering from cough”).

3.3 Pilot Study: Annotation Task
Based on the feedback from initial conversations, we conducted a
data collection pilot study. Two radiologists annotated 100 images
(400 captions) a piece. Figure 4 demonstrates one instance of this
task: for a given image, radiologists needed to rank 4 possible

1Interestingly, the notion that different doctors could disagree on healthcare expert
opinions was surprising for some computer scientists. A helpful analogy for how
experts in a field have different opinions is to consider the strong opinions computer
scientists have on Bayesian vs Frequentist statistics. No field is a monolith.
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Figure 3: This “1-pager” document was sent to radiologists during outreach when setting up initial conversations about this
project’s goals.

reports based on how well they describe the findings of the image.
Each radiologist viewed the same images in the same order.

For each image, we presented the annotator with the following
statements:

(1) ”The four following reports are all trying to describe this
image (some of them might be factually incorrect). Please
rank them from best (1) to worst (4).”

(2) ”Briefly describe how you arrived at this ordering (a few
simple bullet points is fine)”
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Figure 4: An example HIT of the chosen annotation task.

(3) ”Confidence that another radiologist would arrive at the
same choice for best report (1=Not confident at all, 5=Very
confident)”

For each image, we generate four different reports using the fol-
lowing methods: reference, 3-gram, nearest neighbor (1-NN), and
random-report. The “reference” report refers to the actual report
written by the radiologist, logged in the EHR. The nearest neighbor
(1-NN) report is produced by returning the report of the closest im-
age (in the DenseNet-induced feature space) training set. Similarly,
the “random-report” is the associated report of a randomly selected
image from the training set. Finally, the “3-gram” is produced by
retrieving the 100 closest images and fitting a tri-gram model from
their associated reports.

3.4 Performance of Evaluation Metrics
Ranking the four reports for a single image produces 6 comparisons
(i.e. best > the other three, the second best > the other two, the
third best > the worst), though 3 of those comparisons involve
the reference sentence. To determine how strongly a given metric
agrees with radiologist judgment, we compute the specific metric
score for each of the 3 non-reference candidates2 and determine
the number of pairwise comparisons where the metric agrees with
the experts.

For the metrics, we evaluate many evaluation metrics, including:
baselines (random-score, length), readability scores (Dale-Chall),
n-gram (BLEU, CIDEr), embedding (BERTScore), and CheXpert
accuracy.

4 RESULTS
For 100 images, ranking 4 reports results in 600 binary comparisons.
Of those 600 comparisons, the annotators agreed with each other

2We do not compute the metric on the reference because, by definition, it would score
100% as you would be comparing the reference against itself.

Table 2: Of the 199 consensus comparisons, how oftenwould
each metric rank the two reports the same way the radiolo-
gists did?

Metric Percent Agree Percent Ties
random-score 50.0% 0
choose shorter report 54.3% 0.5%
Dale-Chall Readability Index 58.3% 0
BLEU-1 53.3% 0
BLEU-4 50.8% 0
ROUGE-1 56.3% 1%
CIDEr 58.8% 0
BERTScore 61.3% 0
chexpert-accuracy 43.7% 24.6%
chexpert-accuracy + .001*CIDEr 57.3% 0.5%

on 459 (i.e. 76.5% of the time).3 Of the 300 rankings which did not
include the reference report, radiologists agreed on 199 rankings
(i.e. 66% of the time).

In line with prior work [3], the clinical correctness4 of the 3-
gram model (0.353) is higher than the random-report model (0.319)
but the nearest neighbor achieves the highest level (0.437).

Table 2 shows how often each metric agreed with consensus
radiologist rankings. We include the “random-score” metric (not to
be confused with the “random-report” method) as a sanity check:
if the metric were randomly assigning numbers, it would get the
ranking correct 50% of the time. The “Percent Ties” column denotes
how often a given metric was not able to pick either report (e.g.

3There were 5 data entry errors where two reports were given the same ranking (e.g.
ranking of 1,2,3,3 or 1,2,4,4) even though the task did not allow for ties. For those five
entries, the authors used the given explanations to infer what the annotator meant
and break the ties.
4defined as the macro-average recall of CheXpert labels
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Table 3: Top n-grams from the explanations provided by annotators for decision-making. Phrases containing stop words were
removed.

unigram Count
“factually” 16
“all” 17
“wrong” 18
“not” 21
“correct” 24

bigram Count
“even though” 6
“most correct” 7
“hard to” 9
“factually wrong” 10
“all but” 13

trigram Count
“are factually wrong” 3
“one and two” 3
“not sure if” 4
“all but one” 5
“is hard to” 6

Table 4: Readability scores of the 100 ngram-generated re-
ports vs the 100 random-report candidates.

Average Characteristic random-report 3-gram
Dale–Chall readability score 9.61 ± 0.9 9.10 ± 1.5
Gunning-Fog index 20.03 ± 2.6 19.2 ± 3.7
Flesch readability score 63.66 ± 13.0 65.90 ± 17.3

if two reports were each correct on 9/14 findings, then chexpert-
accuracy would be tied at 64% a piece). Because this is so common
for chexpert-accuracy metrics, we also report how well it would
perform when CIDEr is used to break the ties (i.e. + .001*CIDEr)
BERTScore attains the top performance of 61.3%; CheXpert only
achieves 57.3%.

5 DISCUSSION
In this section, we explore unexpected or interesting results in an
attempt to better understand how they arose.

5.1 Self-Reported Annotator Rationale
We were curious to test what would happen when radiologists
needed to rank reports based on criteria which included style, fac-
tual correctness, grammar, and potentially other factors.

One of the annotators qualitatively described their process for
completing the ranking task in an interview. They made it clear that
the top criteria is factual correctness: “It doesn’t matter how nice
or brief a report is. If it’s factually wrong, then it’s bad.” To rank
the candidates, they would do an initial pass to group reports into
two buckets: “plausible” and “wrong.” From there, they would look
at each bucket and identify which errors were more egregious (e.g.
the report with a rare type of error was ranked worse than a report
with a common type of error). Whenever two reports were both
plausible without any disqualifyingly bad mistakes, they would
look to see which one was more complete, especially since some
omissions (e.g. failure to mention a lung lesion) would be more
glaring than others.

Based on the quantitative results, the other annotator seemed
to agree about the importance of correctness. After each image’s
ranking, annotators were asked to “Briefly Describe How You Ar-
rived at This Ordering (a few simple bullet points is fine).” Table 3
depicts the top-5 most frequent unigrams, bigrams, and trigrams
of the rationales experts gave in response. We can see through
uses of phrases like “correct”, “wrong”, “factually”, and “are factu-
ally wrong” that they are explaining their decisions as decisions

of factual correctness. Additionally, they convey the challenges of
comparing two non-perfect candidates through phrases like “most
correct” and “all but one.”

In both the qualitative and quantitative analyses, there was little
to no discussion of readability or grammaticality.

5.2 Why Do Radiologists and CheXpert
Disagree on 3-grams?

One surprising part about these “factual correctness”-based ex-
planations is that Table 2 shows the Dale-Chall Readability Index
agreed with the radiologists (58.3%) more often than any of the
CheXpert-based metrics (57.3%). This finding continues the dis-
crepancy initially discovered in the CXR-Baselines paper where
3-gram outperformed the random-report model on CheXpert’s clin-
ical correctness but underperformed on standard evaluation metrics
[3].

We can see in Table 4 that ngram-based reports tend to have
higher variance of readability, suggesting there may be especially
difficult-to-read reports which are still coherent enough for CheX-
pert’s rules to parse correctly. It may be the case that especially
ungrammatical reports came across as “non-sensical” to annotaors,
which could be considered part of “correctness.”

6 LIMITATIONS AND FUTUREWORK
Many of the reports in the dataset were essentially incomplete,
because they did not capture everything a radiologist would have
when really performing their work. Over half of all reports in the
annotation pilot referenced previous radiographs, which meant
annotators needed to make their best guesses about unseen data.
Additionally, although we only show the frontal chest x-ray, reports
are usually written using multiple views, such as frontal and lateral.

On top of that, because there are so many diagnostic labels, it can
be hard to know the focus of the report; in the true data generation
process, the radiologist knows the reason for the exam (e.g. “check
ETT tube placement”). This could lend itself more naturally to a
question-answering task, where the reason is the “question,” the
radiograph is the “corpus,” and the report is the “answer.”

Another limitation encountered in this work is that the caption
generation methods were very simple. When radiologists were
completing the survey, at least one of them performed an initial
“plausible” or ”wrong” screening to filter out obviously inappro-
priate reports. In the followup study we hope to run, we will also
use more advanced report generation techniques. Though we will
continue to use random-report to serve as a strong baseline for
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whether doctors can identify when a report looks good but is actu-
ally irrelevant to the context.

7 CONCLUSION
In this work, we performed a pilot study to assess clinician judg-
ment for what makes one radiology report better than another
one. The gold standard of a report’s “good-ness” would be how
well it improves outcomes for the patient or hospital: perhaps it
catches more illnesses than a bad report would, or perhaps it saves
time/money for hospital operations. Of course, one cannot run a
randomized control trial because a bad model would result in sig-
nificant harm to patients. That is why the clinical domain needs
an appropriate metric to serve as a proxy when the true outcome
itself cannot be obtained. The difficult challenge is in determining
whether a proxy is appropriate; BLEU is a proxy, but the field has
spent over a decade pointing out many flaws it has.

In addition to the clinical content of this work, the second main
contribution of this study is in the collaborative process itself. Many
domains (e.g. healthcare, criminal justice, social science, etc) are
getting a lot of attention from computer scientists, but meaningful
progress can only be made through meaningful engagement with
the domain experts and (when possible) the stakeholders. In this
work, we emphasize the tools we used for outreach and the con-
versations for co-designing a refined version of this task based on
lessons learned from the pilot study.
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