
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

BIDIRECTIONAL CONSISTENCY MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion models (DMs) are capable of generating remarkably high-quality sam-
ples by iteratively denoising a random vector, a process that corresponds to mov-
ing along the probability flow ordinary differential equation (PF ODE). Interest-
ingly, DMs can also invert an input image to noise by moving backward along the
PF ODE, a key operation for downstream tasks such as interpolation and image
editing. However, the iterative nature of this process restricts its speed, hindering
its broader application. Recently, Consistency Models (CMs) have emerged to ad-
dress this challenge by approximating the integral of the PF ODE, largely reducing
the number of iterations. Yet, the absence of an explicit ODE solver complicates
the inversion process. To resolve this, we introduce Bidirectional Consistency
Model (BCM), which learns a single neural network that enables both forward
and backward traversal along the PF ODE, efficiently unifying generation and in-
version tasks within one framework. We can train BCM from scratch or tune it us-
ing a pretrained consistency model, wh ich reduces the training cost and increases
scalability. We demonstrate that BCM enables one-step generation and inversion
while also allowing the use of additional steps to enhance generation quality or re-
duce reconstruction error. We further showcase BCM’s capability in downstream
tasks, such as interpolation, inpainting, and blind restoration of compressed im-
ages. Notably, when the number of function evaluations (NFE) is constrained,
BCM surpasses domain-specific restoration methods, such as I2SB and Palette, in
a fully zero-shot manner, offering an efficient alternative for inversion problems.

1 INTRODUCTION

Two key components in image generation and manipulation are generation and its inversion. Specif-
ically, generation aims to learn a mapping from simple noise distributions, such as Gaussian, to
complex ones, like the distribution encompassing all real-world images. In contrast, inversion seeks
to find the reverse mapping, transforming real data back into the corresponding noise 1. Recent
breakthroughs in deep generative models (Goodfellow et al., 2014; Kingma & Welling, 2013; Dinh
et al., 2014; Song & Ermon, 2019; Ho et al., 2020; Song et al., 2021a;b) have revolutionized this
field. These models have not only achieved remarkable success in synthesizing high-fidelity sam-
ples across various modalities (Karras et al., 2021; Rombach et al., 2022; Kong et al., 2021; OpenAI,
2024), but have proven effective in downstream applications, such as image editing, by leveraging
the inversion process (Mokady et al., 2023; Huberman-Spiegelglas et al., 2023; Hertz et al., 2023).

Particularly, score-based diffusion models (DMs) (Song & Ermon, 2019; Ho et al., 2020; Song et al.,
2021a;b; Karras et al., 2022) have stood out for generation (Dhariwal & Nichol, 2021). Starting
from random initial noise, DMs progressively remove noise through a process akin to a numerical
ODE solver operating over the probability flow ordinary differential equation (PF ODE), as outlined
by Song et al. (2021b). However, it typically takes hundreds of iterations to produce high-quality
generation results. This slow generation process limits broader applications.

This issue has been recently addressed by consistency models (CMs) (Song et al., 2023; Song &
Dhariwal, 2024), which directly compute the integral of PF ODE trajectory from any time step
to zero. Similar to CMs, Kim et al. (2024) introduced the Consistency Trajectory Model (CTM),
which estimates the integral between any two time steps along the trajectory towards the denoising

1The inversion problem also refers to restoring a high-quality image from its degraded version. However,
in this paper, we define it more narrowly as the task of finding the corresponding noise for an input image.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(a) DM (b) CM (c) CTM (d) BCM

Figure 1: An illustrative comparison of score-based diffusion models, consistency models, consis-
tency trajectory models, and our proposed bidirectional consistency models. (a) DM estimates the
score function at a given time step; (b) CM enforces self-consistency that different points on the
same trajectory map to the same initial points; (c) CTM strengthens this principle of consistency,
which maps a point at time t back to another point at time u ď t along the same trajectory. (d) BCM
is designed to map any two points on the same trajectory to each other, removing any restrictions on
the mapping direction. When the mapping direction aligns with the diffusion direction, the model
adds noise to an input image. Conversely, if the mapping direction is opposite, the model performs
denoising. This approach unifies generation and inversion tasks into a single, cohesive framework.

direction. Through these approaches, the consistency model family enables image generation with
only a single Number of Function Evaluation (NFE, i.e., number of network forward passes) while
offering a trade-off between speed and quality.

On the other hand, unfortunately, the inversion tasks remain challenging for DMs. First, the gen-
eration process in many DMs (Ho et al., 2020; Karras et al., 2022) is stochastic and hence is non-
invertible; second, even for methods that employ a deterministic sampling process (Song et al.,
2021a), inverting the ODE solver necessitates at least hundreds of iterations for a small reconstruc-
tion error; third, although CMs and CTM accelerate generation by learning the integral directly, this
integration is strongly non-linear, making the inversion process even harder.

Therefore, in this work, we aim to bridge this gap through natural yet non-trivial extensions to
CMs and CTM. Specifically, they possess a key feature of self-consistency: points along the same
trajectory map back to the same initial point. Inspired by this property, we pose the questions:

Is there a form of stronger consistency where points on the same trajectory can map to each
other, regardless of their time steps’ order? Can we train a network to learn this mapping?

In the following sections of this paper, we affirmatively answer these questions with our proposed
Bidirectional Consistency Model (BCM). Specifically:

1. We train a single neural network that enables both forward and backward traversal (i.e., integra-
tion) along the PF ODE, unifying the generation and inversion tasks into one framework. We can
either train the model from scratch or fine-tune it from a pretrained consistency model to reduce
training cost and increase scalability.

2. We demonstrate BCM can generate images or invert a given image with a single NFE, and can
achieve improved sample quality or lower reconstruction error by chaining multiple time steps.

3. Leveraging BCM’s capability to navigate both forward and backward along the PF ODE trajec-
tory, we introduce two sampling schemes and a combined approach that has empirically demon-
strated superior performance.

4. We apply BCM for image interpolation, inpainting, and blind restoration of compressed images,
showcasing its potential versatile downstream tasks.

2 BACKGROUND AND PRELIMINARY

Before launching into the details of the Bidirectional Consistency Model (BCM), we first describe
some preliminaries, including a brief introduction to Score-based Diffusion Models (DMs), Consis-
tency Models (CMs), and Consistency Trajectory Model (CTM) in the following. We also illustrate
these models, along with our proposed method, in Figure 1.

Score-based Diffusion Models. Score-based Diffusion Models (DMs, Song et al., 2021b) sample
from the target data distribution by progressively removing noise from a random xT „ Np0, T 2Iq.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

To achieve this, DMs first diffuse the data distribution pdatapxq through a stochastic differential
equation (SDE): dxt “ µpxt, tqdt ` σptqdwt, which has a reverse-time SDE, as described by
Anderson (1982): dxt “

“

µpxt, tq ´ 1
2σ

2ptq∇ log ptpxtq
‰

dt ` σptqdw̄t, where t P r0, T s2, pt is
the marginal density of xt, and wt and w̄t represents the standard Wiener process in forward and
reverse time respectively. Note, that p0 is our desired data distribution pdata. Remarkably, Song et al.
(2021b) showed that there exists an ordinary differential equation, dubbed the Probability Flow (PF)
ODE, whose solution trajectories have the same marginal density pt at time t:

dxt{dt “ µpxt, tq ´ 1{2σ2ptq∇ log ptpxtq. (1)

During training, DMs learn to estimate ∇ log ptpxtq with a score model spxt, tq with score matching
(Hyvärinen & Dayan, 2005; Song et al., 2021b; Karras et al., 2022). And during sampling, DMs
solve the empirical PF ODE from time T to 0 with a numerical ODE solver. Following Karras et al.
(2022), we set µ “ 0, σ “

?
2t, T “ 80.

Consistency Models, Consistency Training, and improved Consistency Training. However,
while the above procedure has proven effective in generating high-quality samples, the numerical
ODE solver typically requires iterative evaluations of the network spxt, tq and hence bottlenecks the
generation speed. To this end, Song et al. (2023) proposed Consistency Models (CMs) that train a
network to estimate the solution to PF ODE directly, i.e.,

fθpxt, tq « x0 “ xt `
ş0

t
pdxs{dsq ds (2)

The network fθp¨, ¨q can be either trained by distillation or from scratch with Consistency Training
(CT). Here, we describe the consistency training in more detail since it lays the foundation of our
proposed method: to begin, consistency training first discretizes the time horizon r0, T s into N ´ 1
sub-intervals, with boundaries 0 “ t1 ă t2 ă ¨ ¨ ¨ ă tN “ T . The training objective is defined as

LN
CT pθ,θ´q “ Ez,x,nrλptnqdpfθpx ` tn`1z, tn`1q,fθ´ px ` tnz, tnqqs. (3)

θ and θ´ represents the parameters of the online network and a target network, respectively. The
target network is obtained by θ´ Ð stopgrad pµθ´ ` p1 ´ µqθq at each iteration. λp¨q is a
reweighting function, x represents the training data sample, and z „ N p0, Iq is a random Gaussian
noise. During training, N is gradually increased, allowing the model to learn self-consistency in
an incremental manner. Additionally, Song et al. (2023) proposed to keep track of an exponential
moving average (EMA) of the online parameter θ. Specifically, after optimizing θ in each iteration,
CMs update the EMA by θEMA Ð µEMAθEMA `p1´µEMAqθ.After training, CMs discard the online
parameters and generate samples with θEMA.

Besides, in a follow-up work, Song & Dhariwal (2024) suggested to use the Pseudo-Huber loss for
d, along with other techniques that include setting µ “ 0 (i.e., θ´ Ð stopgrad pθq), propos-
ing a better scheduler function for N , adapting a better reweighting function λptnq “ 1{|tn ´ tn`1|.
Dubbed improved Consistency Training (iCT), these modifications significantly improve the perfor-
mance. Therefore, unless otherwise stated, we inherit these improving techniques in our work.

Consistency Trajectory Model. While CMs learn the integral from an arbitrary starting time to 0,
Consistency Trajectory Model (CTM) (Kim et al., 2024) learns the integral between any two time
steps along the PF ODE trajectory towards the denoising direction. More specifically, CTM learns

fθpxt, t, uq « xu “ xt `
şu

t
pdxs{dsq ds, where u ď t. (4)

CTM demonstrates that it is possible to learn a stronger consistency: two points xt and xu along the
same trajectory not only can map back to the same initial point x0, but also can map from xt to xu,
provided u ď t. This inspires us for a stronger consistency with a bijection between xt and xu.

However, it is worth noting that, while sharing some motivation, our methodology is foundationally
different from that in CTM. Our network adopts a different parameterization, which is a natural
extension of that by EDM (Karras et al., 2022). Moreover, CTM largely relies on adversarial loss
(Goodfellow et al., 2014), while our proposed method, following Song & Dhariwal (2024), is free
from LPIPS (Zhang et al., 2018) and adversarial training.

2To avoid numerical issues, we always set t in r0.002, T s in practice. However, to keep the notation simple,
we will ignore this small initial value 0.002 when describing our methods in this paper.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Algorithm 1 Bidirectional Consistency Training (Red indicates differences from CT/iCT (Song
et al., 2023; Song & Dhariwal, 2024)

Input: Training set D, initial model parameter θ, learning rate η, step scheduleNp¨q, noise schedule
pp¨q, EMA rate µEMA, distance metric dp¨, ¨q, reweighting function λp¨q and λ1p¨, ¨q.

Output: Model parameter θEMA.
Initialize: θEMA Ð θ, k Ð 0.
repeat until convergence

Sample training example, time steps, and random noise:
Sample x P D, n „ ppn|Npkqq.
Sample n1 „ p̃pn1|Npkqq, where p̃pn1|Npkqq9

#

0, if n1
“ n,

ppn1
|Npkqq, otherwise.Sample z „ N p0, Iq.

Calculate and optimize BCT loss:
LCTpθq Ð λptnqdpfθpx ` tn`1z, tn`1, 0q,fθ̄px ` tnz, tn, 0qq;
LSTpθq Ð λ1ptn, tn1 qd pfθ̄pfθpx ` tnz, tn, tn1 q, tn1 , 0qq,fθ̄px ` tnz, tn, 0qq;
LBCTpθq Ð LCTpθq ` LSTpθq;
θ Ð θ ´ η∇θLBCTpθq;
Update the EMA parameter and the iteration number:
θEMA Ð µEMAθEMA ` p1 ´ µEMAqθ, k Ð k ` 1;

end repeat

3 METHODS

In this section, we describe details of Bidirectional Consistency Model (BCM). From a high-level
perspective, we train a network fθpxt, t, uq that traverses along the probability flow (PF) ODE from
time t to time u, i.e., fθpxt, t, uq « xu “ xt `

şu

t
dxs

ds ds. This is similar to Equation (4), but
since we aim to learn both generation and inversion, we do not set constraints on t and u, except for
t ‰ u. To this end, we adjust the network parameterization and the training objective of consistency
training (Song et al., 2023; Song & Dhariwal, 2024). These modifications are detailed in Sections 3.1
and 3.2. Besides, we introduce new sampling schemes leveraging our model’s invertibility, which
are described in Section 3.3. Finally, we discuss BCM’s inversion in Section 3.4.

3.1 NETWORK PARAMETERIZATION

We first describe the network parameterization. Our network takes in three arguments: 1) the sample
xt at time t, 2) the current time step t, and 3) the target time step u, and outputs the sample at time
u, i.e., xu. To achieve this, we directly expand the models used in Consistency Models (CMs) (Song
et al., 2023; Song & Dhariwal, 2024) with an extra argument u. In CMs, the networks first calculate
Fourier embeddings (Tancik et al., 2020) or positional embeddings (Vaswani et al., 2017) for the
time step t, followed by two dense layers. Here, we simply concatenate the embeddings of t and u,
and double the dimensionality of the dense layers correspondingly.

Similar to CMs (Song et al., 2023) and EDM (Karras et al., 2022), instead of directly learning fθ,
we train Fθ and let fθpxt, t, uq “ cskippt, uqxt ` coutpt, uqFθpcinpt, uqxt, t, uq, where

cinpt, uq “
1

a

σ2
data ` t2

, coutpt, uq “
σdatapt´ uq
a

σ2
data ` t2

, cskippt, uq “
σ2

data ` tu

σ2
data ` t2

. (5)

Note that cskippt, tq “ 1 and coutpt, tq “ 0, which explicitly enforce the boundary condition
fθpxt, t, tq “ xt. We detail our motivation and derivations in Appendix D.

3.2 BIDIRECTIONAL CONSISTENCY TRAINING

We now discuss the training of BCM, which we dub as Bidirectional Consistency Training (BCT).
Following Song et al. (2023); Song & Dhariwal (2024), we discretize the time horizon r0, T s into
N ´ 1 intervals with boundaries 0 “ t1 ă t2 ă ¨ ¨ ¨ ă tN “ T .

Our training objective has two terms. The first term takes the same form as Equation (3), enforcing
the consistency between any points on the trajectory and the starting point. We restate it with our

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

new parameterization for easier reference:

LN
CT pθq “ Ez,x,tnrλptnqdpfθpx ` tn`1z, tn`1, 0q,fθ̄px ` tnz, tn, 0qqs, (6)

where x is one training sample, z „ N p0, Iq, and θ̄ is the stop gradient operation on θ, and λptnq “
1{|tn ´ tn`1|. We replace θ´ in Equation (3) with θ̄ according to Song & Dhariwal (2024).

The second term explicitly sets constraints between any two points on the trajectory. Specifically,
given a training example x, we randomly sample two time steps t and u, and want to construct a
mapping from xt to xu, where xt and xu represent the results at time t and u along the Probability
Flow (PF) ODE trajectory, respectively. Note, that the model learns to denoise (i.e., generate) when
u ă t, and to add noise (i.e., inverse) when u ą t. Therefore, this single term unifies the generative
and inverse tasks within one framework, and with more t and u sampled during training, we achieve
consistency over the entire trajectory. To construct such a mapping, we minimize the distance

d pfθpxt, t, uq,xuq . (7)

However, Equation (7) will have different scales for different u values, leading to a high variance
during training. Therefore, inspired by Kim et al. (2024), we map both fθpxt, t, uq and xu to time
0, and minimize the distances between these two back-mapped images, i.e.,

d pfθ̄pfθpxt, t, uq, u, 0qq,fθ̄pxu, u, 0qq , (8)

where θ̄ is the same θ with stop gradient operation. We denote this as a “soft” trajectory constraint.
Unfortunately, directly minimizing Equation (8) without a pretrained DM is still problematic. This
is because, without a pretrained DM, we can only generate xt and xu from the diffusion SDE, i.e., by
adding Gaussian noise to x. However, xt and xu generated by the diffusion SDE do not necessarily
lie on the same PF ODE trajectory, and hence Equation (8) still fails to build the desired bidirectional
consistency. Instead, we notice that when the CT loss defined in Equation (6) converges, we have
fθ̄pxu, u, 0q « fθ̄pxt, t, 0q « x. We therefore optimize:

d pfθ̄pfθpxt, t, uq, u, 0qq,fθ̄pxt, t, 0qq . (9)

Empirically, we found Equation (9) plays a crucial role in ensuring accurate inversion performance.
We provide experimental evidence for this loss choice in Appendix B.2.1.

Finally, we recognize that the term fθ̄px ` tnz, tn, 0q in Equation (6) and the term fθ̄pxt, t, 0q in
Equation (9) have exactly the same form. Therefore, we set t “ tn to reduce one forward pass.
Putting together, we define our objective as

LN
BCT pθq “ Ez,x,tn,tn1

”

λptnqdpfθpx ` tn`1z, tn`1, 0q,fθ̄px ` tnz, tn, 0qq

`λ1ptn, tn1 qd pfθ̄pfθpx ` tnz, tn, tn1 q, tn1 , 0qq,fθ̄px ` tnz, tn, 0qq

ı (10)

where we set reweighting as λ1ptn, tn1 q “ 1{|tn ´ tn1 | to keep the loss scale consistent.

Training from scratch. We can train BCM from scratch using Equation (10). We empirically
found that all the training settings used for iCT (Song & Dhariwal, 2024), including the scheduler
function for N , the sampling probability for tn (aka the noise schedule ppnq in (Song et al., 2023;
Song & Dhariwal, 2024)), the EMA rate, and more, also works well for BCM. Please refer to
Appendix C.1 for more details on these settings and hyperparameters. We summarize the training
process in Algorithm 1 and compare the training of CT, CTM, and BCT in Table 2 in Appendix E.

Bidirectional Consistency Fine-tuning. To reduce the training cost and increase scalability, we
can also initialize BCM with a pretrained consistency model and fine-tune it using Equation (10)
to incorporate bidirectional consistency. Recall that BCM takes in three arguments: 1) the sample
xt at time t, 2) the current time step t, and 3) the target time step u, and outputs the sample at
time u, i.e., xu. In contrast, the standard consistency model only takes the first two inputs and can
be viewed as a special case of BCM when the target time step u is set to 0. Therefore, we aim
to initialize BCM such that it preserves the performance of the pretrained CM when u “ 0. To
achieve this, we concatenate the embeddings of t and u, then pass the result through a linear layer
(without bias vector) to reduce the dimensionality by half. The weight matrix is initialized as rI,0s.
The embedding layers for t and u are initialized using the pretrained CM’s embedding layer, but
they are not tied together during fine-tuning. Other layers are initialized identically to those of the
CM. It is easy to check that this initialization effectively ignores u, preserving the CM’s generation
performance without fine-tuning. See Appendix C.1 for more details.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(a) (b) (c) (d)

Figure 2: Comparison of different strategies of adding fresh noise in zigzag sampling. (a) 1-step
generation. (b) Zigzag sampling with manually added fresh noise, where the new noises drastically
alter the content. (c) Zigzag sampling with manually added, fixed noise, i.e., we fix the injected
fresh noise in each iteration to be the same as the initial one. We can see that the quality significantly
deteriorates. (d) Zigzag sampling with BCM. At each iteration, we apply a small amount of noise
and let the network amplify it. We can see that the image content is mostly maintained.

3.3 SAMPLING

In this section, we describe the sampling schemes of BCM. Similar to CMs and CTM, BCM sup-
ports 1-step sampling naturally. However, BCM’s capability to navigate both forward and backward
along the PF ODE trajectory allows us to design more complicated multi-step sampling strategies to
improve the sample quality. We present two schemes and a combined approach that has empirically
demonstrated superior performance in the following.

Ancestral Sampling. The most straightforward way for multi-step sampling is to remove noise se-
quentially. Specifically, we first divide the time horizon r0, T s into N sub-intervals with boundaries
0 “ t0 ă t1 ă ¨ ¨ ¨ ă tN “ T . Then, we sample a noise image xT „ N p0, T 2Iq, and sequentially
remove noise with the network: xtn´1

Ð fθpxtn , tn, tn´1q, n “ N,N´1, ..., 1. We note that the
discretization strategy may differ from the one used during the training of BCM. Since this sampling
procedure can be viewed as drawing samples from the conditional density pxtn´1

|xtn
pxtn´1

|xtnq,
we dub it as ancestral sampling, and summarize it in Algorithm 2. We can also view 1-step sampling
as ancestral sampling, where we only divide the time horizon into a single interval.

Zigzag Sampling. Another effective sampling method (Algorithm 1 in Song et al. (2023)) is to
iteratively re-add noise after denoising. Similar to ancestral sampling, we also define a sequence of
time steps t1 ă ¨ ¨ ¨ ă tN “ T . However, different from ancestral sampling where we gradually
remove noise, we directly map xT to x0 by fθpxT , T, 0q. We then add a fresh Gaussian noise to x0,
mapping it from time 0 to time tn´1, i.e., xtn´1

“ x0 ` tn´1σ, where σ „ N p0, Iq. This process
repeats in this zigzag manner until all the designated time steps are covered. The two-step zigzag
sampler effectively reduces FID in CMs (Song et al., 2023) and is theoretically supported (Lyu
et al., 2023). However, the fresh noise can alter the content of the image after each iteration, which
is undesirable, especially considering that our tasks will both include generation and inversion. One
may immediately think that setting the injected noise to be the same as the initial random noise can
fix this issue. However, we reveal that this significantly damages the quality of the generated images.

Fortunately, our proposed BCM provides a direct solution, leveraging its capability to traverse both
forward and backward along the PF ODE. Specifically, rather than manually reintroducing a large
amount of fresh noise, we initially apply a small amount and let the network amplify it. In a nutshell,
for iteration n (n “ N,N ´ 1, ¨ ¨ ¨ , 2), we have

x0 Ð fθpxtn , tn, 0q, xεn´1 Ð x0 ` εn´1σ, xtn´1 Ð fθpxεn´1 , εn´1, tn´1q. (11)

where εn´1 is the scale of the small noises we add in n-th iteration, and σ „ N p0, Iq is a fresh
Gaussian noise. We detail this scheme in Algorithm 3. To verify its effectiveness, in Figure 2, we
illustrate some examples to compare the generated images by 1) manually adding fresh noise, 2)
manually adding fixed noise, and 3) our proposed sampling process, i.e., adding a small noise and
amplifying it with the network. We can clearly see our method maintains the generated content.

Combination of Both. Long jumps along the PF ODE in zigzag sampling can lead to accumu-
lative errors, especially at high noise levels, which potentially hampers further improvements in
sample quality. Therefore, we propose a combination of ancestral sampling and zigzag sampling.
Specifically, we first perform ancestral sampling to rapidly reduce the large initial noise to a more
manageable noise scale and then apply zigzag sampling within this small noise level. We describe
this combined process in Algorithm 4. We empirically found this combination results in superior
sample quality compared to employing either ancestral sampling or zigzag sampling in isolation.
We provide ablation to evidence the effectiveness of this combination in Appendix B.2.3.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

3.4 INVERSION

BCM inverts an image following the same principle of sampling. Specifically, we also set an in-
creasing sequence of noise scales ε “ t1 ă t2 ă ¨ ¨ ¨ ă tN ď T . Note that, in contrast to the
generation process, it is not always necessary for tN to equal T . Instead, we can adjust it as a hy-
perparameter based on the specific tasks for which we employ inversion. Then, given an image x0,
we first inject a small Gaussian noise by xt1 “ x0 ` εσ, and then sequentially add noise with the
network, i.e., xtn`1 “ fpxtn , tn, tn`1q, n “ 1, 2, ¨ ¨ ¨ , N ´ 1. The adoption of small initial noise
is due to the observation that the endpoint of the time horizon is less effectively covered and learned
during training, as discussed in Appendix B.2.4. Empirically, we find this minor noise does not
change the image’s content and leads to lower reconstruction errors when ε « 0.07. One may also
include denoising steps interleaved with noise magnifying steps, like zigzag sampling, but we find
it helps little in improving inversion quality. We summarize the inversion procedure in Algorithm 5.

4 EXPERIMENTS AND RESULTS

In this section, we first present the results of the two basic functions of BCM, i.e., generation and
inversion. Then in Section 4.3, we show some potential applications enabled by these two functions.

4.1 IMAGE GENERATION

We first evaluate the image generation performance of BCM. On CIFAR-10, we train our BCM
from scratch, while on ImageNet-64, we first train an iCT model, and fine-tune BCM from it, as
we discussed in Section 3.2. When reproducing iCT on ImageNet-64, we encountered instability
during training, and found it difficult to reproduce the reported FID by Song & Dhariwal (2024). To
mitigate the performance gap, we removed the attention layer at the 32x32 resolution and added nor-
malization to the QKV attention, following (Karras et al., 2024). We empirically find these simple
modifications bring positive influences on performance. We include the hyperparameters for train-
ing and sampling in Appendices C.1 and C.2. We report image quality and NFE for CIFAR-10 and
ImageNet-64 in Table 1, and we visualize some generated samples Figures 3 and 4 and appendix H.
As we can see,

• both ancestral sampling and zigzag sampling can improve the sample quality, while the combina-
tion of both further yields the best performance;

• our proposed BCM achieves comparable or even better results within at least one order of magni-
tude fewer NFEs compared with diffusion models; BCM presents better results with even fewer
NFEs then the methods boosting sampling speed through fast samplers; it is also comparable to
modern distillation approaches like EM distillation by Xie et al. (2024);

• comparing with CMs, iCT (Song & Dhariwal, 2024) surpasses BCM for 1-step sampling. This
is not surprising, given that BCMs tackle a significantly more complex task compared to CMs.
However, as the number of function evaluations (NFEs) increases, following the sampling strate-
gies detailed in Section 3.3, BCM starts to outperform. This indicates that our approach allows
the model to learn bidirectional consistency without hurting the generation performance;

• our model’s performance still falls short of CTM’s (Kim et al., 2024). However, CTM relies
heavily on adversarial loss and uses LPIPS (Zhang et al., 2018) as the distance measure, which
can have feature leakage (Song & Dhariwal, 2024; Kynkäänniemi et al., 2023). ECT (Geng
et al., 2024) also outperforms BCM on ImageNet-64 with 2 NFEs. However, we note that their
approach—fine-tuning from a pretrained diffusion and using the advanced EDM2 architecture
(Karras et al., 2024)—is orthogonal to ours. Our method could be combined with theirs for po-
tential improvements in both performance and training speed.

Another interesting phenomenon we observed on ImageNet-64 is that our fine-tuned BCM actually
outperforms its initialization (i.e., our pretrained iCT) on generation. In contrast, we empirically
find fine-tuning iCT with the same training budget did not yield any improvement. We suspect this
is due to the “soft” trajectory constraint in the bidirectional training objective, which may act as a
form of regularization, aiding optimization. We leave further investigation of this for future work.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Sample quality on CIFAR-10 (left) and ImageNet-64 (right). We train BCM from scratch
on CIFAR-10 and fine-tune it using our reproduced iCT model on ImageNet-64. ˚Results estimated
from Figure 13 in Kim et al. (2024). :For our BCM and BCM-deep, we use ancestral sampling when
NFE=2, zigzag sampling when NFE=3, and the combination of both when NFE=4. Our results
indicate that ancestral and zigzag sampling can individually improve FID, and their combination
can achieve even better performance. ˚˚Results by our reproduction.

METHOD NFE (Ó) FID (Ó) IS (Ò)
Diffusion with Fast Sampler / Distillation / Fine-tuning
DDIM (Song et al., 2021a) 10 8.23 -
DPM-solver-fast (Lu et al., 2022a) 10 4.70 -
AMED-plugin (Zhou et al., 2023) 5 6.61 -
Progressive Distillation (Salimans & Ho, 2022) 1 8.34 8.69
Diff-Instruct (Luo et al., 2024) 1 4.53 -

CD (LPIPS, Song et al., 2023) 1 3.55 9.48
2 2.93 9.75

CTM (LPIPS, GAN loss, Kim et al., 2024) 1 1.98 -
2 1.87 -

CTM (LPIPS, w/o GAN loss, Kim et al., 2024) 1 ą 5.00˚ -
ECT (Geng et al., 2024) 2 2.11 -

Direct Generation
EDM (Karras et al., 2022) 35 2.04 9.84

CT (LPIPS, Song et al., 2023) 1 8.70 8.49
2 5.83 8.85

CTM (LPIPS, GAN loss, Kim et al., 2024) 1 2.39 -

iCT (Song & Dhariwal, 2024) 1 2.83 9.54
2 2.46 9.80

iCT-deep (Song & Dhariwal, 2024) 1 2.51 9.76
2 2.24 9.89

BCM (ours):

1 3.10 9.45
2 2.39 9.88
3 2.50 9.82
4 2.29 9.92

BCM-deep (ours):

1 2.64 9.67
2 2.36 9.86
3 2.19 9.94
4 2.07 10.02

METHOD NFE (Ó) FID (Ó)

Diffusion with Fast Sampler / Distillation / Fine-tuning
DDIM (Song et al., 2021a) 10 18.3
DPM-solver-fast (Lu et al., 2022a) 10 7.93
AMED-solver (Zhou et al., 2023) 5 10.74
Progressive Distillation (Salimans & Ho, 2022) 1 7.88
Diff-Instruct (Luo et al., 2024) 1 5.57
EM Distillation (Xie et al., 2024) 1 2.20

CD (LPIPS, Song et al., 2023) 1 6.20
2 4.70

CTM (LPIPS, GAN loss, Kim et al., 2024) 1 1.92
2 1.73

ECT-XL (Geng et al., 2024) 2 1.67

Direct Generation
EDM2-L/XL (Karras et al., 2024) 63 1.33

CT (LPIPS, Song et al., 2023) 1 13.0
2 11.1

iCT (Song & Dhariwal, 2024) 1 4.02 (4.60˚˚)
2 3.20 (3.40˚˚)

iCT-deep (Song & Dhariwal, 2024) 1 3.25 (3.94˚˚)
2 2.77 (3.14˚˚)

BCM (ours):

1 4.18
2 2.88
3 2.78
4 2.68

BCM-deep (ours):

1 3.14
2 2.45
3 2.61
4 2.35

(a) 1-step (FID 2.64)

(d) 4-step (FID 2.07)

Figure 3: Samples
by BCM-deep on
CIFAR-10.

(a) 1-step (FID 3.14) (d) 4-step (FID 2.35)

Figure 4: Samples by BCM-deep on ImageNet-64.

4.2 INVERSION AND RECONSTRUCTION

We evaluate BCM’s capability for inversion on CIFAR-10 and ImageNet-64, and report the per-
dimension mean squared error (scaled to [0,1]) in Figure 5. We also present ODE-based baselines,
including DDIM (Song et al., 2021a) and EDM (Karras et al., 2022) for comparison. The hy-
perparameters for inversion are tuned on a small subset of the training set and are discussed in
Appendix C.2. We can see BCM achieves a lower reconstruction error than ODE-based diffusion
models, with significantly fewer NFEs, on both data sets.

We visualize the noise generated by BCM at Figure 16 in Appendix G, from which we can see that
BCM Gaussianizes the input image as desired. We also provide examples of the reconstruction in
Figure 17 in Appendix G. We observe that using only 1 NFE for inversion sometimes introduces
slight mosaic artifacts, possibly because both endpoints of the time horizon are less effectively cov-
ered and learned during training. Fortunately, the artifact is well suppressed when using more than 1
NFEs. Also, we find that the inversion process can occasionally alter the image context. However, it

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

100 101 102

NFE

0.000

0.005

0.010

0.015

0.020

0.025

0.030

M
SE

EDM (VP)
EDM (VE)
DDIM
BCM (ours)

(a) CIFAR-10.

100 101 102

NFE

0.000

0.005

0.010

0.015

0.020

0.025

0.030

M
SE

EDM
BCM (ours)
BCM-deep (ours)

(b) ImageNet-64.
Figure 5: Reconstruction MSE
on CIFAR-10 & ImageNet.

Figure 6: Interpolation between two real images. We include
more results in figs. 18, 20 and 21.

(a) Original image with missing pixels.

(b) BCM’s inpainting (NFE=4, FID 12.32). More examples in fig. 22.

(c) CM’s Inpainting (NFE=18, FID 13.16). More examples in fig. 23.

Figure 7: Inpainting by BCM and CMs on CIFAR-10 test set.

is important to note that this is not unique to BCM but also occurs in ODE-based diffusion models,
such as EDM (see Figures 17f and 17g for examples), even though they employ more NFEs.

4.3 APPLICATIONS WITH BIDIRECTIONAL CONSISTENCY

100 101 102

NFE

5
10
15
20

FI
D

I2SB
Palette
BCM (ours)

Figure 8: JPEG (QF20) restora-
tion with I2SB, Palette and BCM
on ImageNet-64.

Since BCM inherits the consistency of CMs, it can handle the
applications introduced by Song et al. (2023) in the same way,
including colorization, super-resolution, stroke-guided image
generation, denoising, and interpolation between two gener-
ated images. However, BCM’s unique bidirectional consis-
tency can enhance or enable more applications. In this section,
we showcase that BCM can interpolate two real images and
achieve superior inpainting quality with fewer NFEs. We also
demonstrate its downstream applications for blind restoration
of compressed images.

Interpolation. While CMs can perform interpolations be-
tween two generated images (Song et al., 2023), our BCM can
interpolate between two given real images, which is a more meaningful application. Specifically,
we can first invert the given images into noises, smoothly interpolate between them, and then map
the noises back to images. We illustrate some examples in Figure 6. Here, we note a caveat in the
implementation of BCM’s interpolation: recall that when inverting an image, we first inject a small
initial noise, as described in Section 3.4. In the context of interpolation, we find it crucial to inject
different initial noises for each of the two given images to avoid sub-optimal results, as illustrated in
Figure 19. We defer further discussions to Appendix C.3.1.

Inpainting. BCM’s bidirectional consistency can also help with inpainting: having an image with
some pixels missing, we first add a small noise to the missing pixels and then invert the image
by multi-step inversion. Different from our standard inversion algorithm in Algorithm 5, at each
iteration, we manually replace the region of missing pixels with a new Gaussian noise, whose scale
corresponds to the current time step. In this way, we gradually fill in the missing region to in-
distribution noise. In the end, we map the entire noisy image back to time 0, finishing the inpainting.
We summarize this process in Algorithm 6, and include more details on the hyperparameters in
Appendix C.3.2. We illustrate our BCM inpainting results on CIFAR-10 in Figure 7, with the CM’s
inpainting results using the algorithms proposed by Song et al. (2023) (Algorithm 4 in (Song et al.,
2023)) for comparison. Our method produces better inpainting results within much fewer NFEs.

Blind restoration of compressed image. BCM’s bidirectional consistency can offer broader appli-
cations. For example, we can invert an image with OOD artifacts to the noise space and re-generate

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

the image from the noise. During inversion, the model maps OOD regions to in-distribution noise,
effectively eliminating these artifacts. One potential application leveraging this property is blind
restoration of compressed image, where OOD artifacts originate from compression. We prove this
concept by applying BCM to restore images compressed by JPEG. We present the results in Figure 8,
and also include two established restoration approaches, I2SB (Liu et al., 2023) and Palette (Saharia
et al., 2022), for comparison. We include hyperparameters for our approach and these baselines in
Appendix C.3.3. Surprisingly, BCM achieves better performance compared to both I2SB and Palette
when NFE is limited. Note that I2SB and Palette require paired data under known degradation for
training, while BCM is fully zero-shot and blind. This result strongly evidences the potential of
BCM in downstream inversion tasks.

5 RELATED WORKS

Accelerating Diffusion’s Generation. In addition to CM and CTM we discussed in Section 2,
many attempts have also been made to accelerate the generation of DMs. Existing methods include
faster ODE solvers (Song et al., 2021a; Zhang & Chen, 2022; Lu et al., 2022b; Zhou et al., 2023) and
distillation (Salimans & Ho, 2022; Luhman & Luhman, 2021; Zheng et al., 2023; Luo et al., 2024;
Xie et al., 2024). However, these ODE solvers generally require 5-10 steps for satisfactory samples,
and the distillation approach may cap the performance at the level of the pretrained diffusion model,
as highlighted by Song & Dhariwal (2024). On the other hand, while distillation approaches have
achieved impressive generation quality, an intrinsic property of CMs is their ability to enable fast
traversal along ODEs. This allows for the design of broader applications; for example, Zhang et al.
(2024) leverage this property to develop an efficient importance sampler. Our proposed BCM further
enriches this by enabling both forward and backward traversal.

Inversion. Inversion of an input image is a key step in downstream tasks like image edit-
ing (Mokady et al., 2023; Wallace et al., 2023; Hertz et al., 2023; Huberman-Spiegelglas et al.,
2023). Current methods typically include encoders (Richardson et al., 2021; Tov et al., 2021), op-
timization (Mokady et al., 2023; Abdal et al., 2019), and model fine-tuning or modulation (Roich
et al., 2022; Alaluf et al., 2022). For diffusion-based models, the most common inversion method
is based on solving PF ODE backward, as first proposed by Song et al. (2021a). However, since
the ODE solver relies on local linearization, this ODE-based inversion typically provides an insuf-
ficient reconstruction, especially when using fewer diffusion steps. One way to address this issue is
to perform gradient optimization using the ODE-based inversion as an initialization, as introduced
by Mokady et al. (2023). Our proposed BCM can provide better inversion with fewer NFEs and is
compatible with Mokady et al. (2023)’s approach for a better reconstruction quality.

6 CONCLUSIONS AND LIMITATIONS

In this work, we introduce the Bidirectional Consistency Model (BCM), enhancing upon existing
consistency models (Song et al., 2023; Song & Dhariwal, 2024; Kim et al., 2024) by establishing
a stronger consistency. This consistency ensures that points along the same trajectory of the proba-
bility flow (PF) ODE map to each other, thereby unifying generation and inversion tasks within one
framework. By exploiting its bidirectional consistency, we devise new sampling schemes and show-
case applications in a variety of downstream tasks. Unlike other distillation approaches, a notable
property of CMs is their ability to enable fast traversal along the entire PF ODE. Our proposed BCM
further enriches this, and we believe that it will open a new avenue for further exploration.

One limitation of our method is that while employing more steps in generation or inversion can
initially enhance results, the performance improvements tend to plateau quickly. Increasing the
Number of Function Evaluations (NFEs) beyond a certain point does not yield further performance
gains. This is similar to CMs, where there is no performance gain with more than 2 NFEs. A
potential solution involves employing the parameterization and tricks proposed by Kim et al. (2024).
Additionally, our method delivers imperfect inversion, which sometimes alters the image content.
However, we should note that this also happens in ODE-based DMs. Future work can involve
developing more accurate inversion techniques, like the approach by Wallace et al. (2023).

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

BROADER IMPACT AND ETHICS STATEMENTS

BCM can accelerate the generation and inversion of diffusion models, which may pose a risk of
generating or editing images with harmful or inappropriate content, such as deepfake images or
offensive material. Strong content filtering or even regulatory rules are required to prevent the
creation of unethical or harmful content.

REFERENCES

Rameen Abdal, Yipeng Qin, and Peter Wonka. Image2stylegan: How to embed images into the
stylegan latent space? In Proceedings of the IEEE/CVF international conference on computer
vision, pp. 4432–4441, 2019.

Yuval Alaluf, Omer Tov, Ron Mokady, Rinon Gal, and Amit Bermano. Hyperstyle: Stylegan inver-
sion with hypernetworks for real image editing. In Proceedings of the IEEE/CVF conference on
computer Vision and pattern recognition, pp. 18511–18521, 2022.

Brian D.O. Anderson. Reverse-time diffusion equation models. Stochastic Processes and
their Applications, 12(3):313–326, 1982. ISSN 0304-4149. doi: https://doi.org/10.
1016/0304-4149(82)90051-5. URL https://www.sciencedirect.com/science/
article/pii/0304414982900515.

Yochai Blau and Tomer Michaeli. The perception-distortion tradeoff. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 6228–6237, 2018.

Yochai Blau and Tomer Michaeli. Rethinking lossy compression: The rate-distortion-perception
tradeoff. In International Conference on Machine Learning, pp. 675–685. PMLR, 2019.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components esti-
mation. arXiv preprint arXiv:1410.8516, 2014.

Zhengyang Geng, Ashwini Pokle, William Luo, Justin Lin, and J. Zico Kolter. Consistency models
made easy, 2024. URL https://arxiv.org/abs/2406.14548.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-or.
Prompt-to-prompt image editing with cross-attention control. In The Eleventh International Con-
ference on Learning Representations, 2023.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Inbar Huberman-Spiegelglas, Vladimir Kulikov, and Tomer Michaeli. An edit friendly ddpm noise
space: Inversion and manipulations. arXiv preprint arXiv:2304.06140, 2023.

Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score match-
ing. Journal of Machine Learning Research, 6(4), 2005.

Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko Lehtinen, and
Timo Aila. Alias-free generative adversarial networks. Advances in Neural Information Process-
ing Systems, 34:852–863, 2021.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in Neural Information Processing Systems, 35:26565–26577,
2022.

11

https://www.sciencedirect.com/science/article/pii/0304414982900515
https://www.sciencedirect.com/science/article/pii/0304414982900515
https://arxiv.org/abs/2406.14548

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli Laine. Analyz-
ing and improving the training dynamics of diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 24174–24184, 2024.

Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu Uesaka,
Yutong He, Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models: Learning proba-
bility flow ode trajectory of diffusion. In International Conference on Learning Representations,
2024.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile
diffusion model for audio synthesis. In International Conference on Learning Representations,
2021.

Tuomas Kynkäänniemi, Tero Karras, Miika Aittala, Timo Aila, and Jaakko Lehtinen. The role
of imagenet classes in fréchet inception distance. In The Eleventh International Conference on
Learning Representations, 2023.

Guan-Horng Liu, Arash Vahdat, De-An Huang, Evangelos A Theodorou, Weili Nie, and Anima
Anandkumar. I2sb: image-to-image schrödinger bridge. In Proceedings of the 40th International
Conference on Machine Learning, pp. 22042–22062, 2023.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
Han. On the variance of the adaptive learning rate and beyond. In International Conference on
Learning Representations, 2020.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
ode solver for diffusion probabilistic model sampling in around 10 steps. Advances in Neural
Information Processing Systems, 35:5775–5787, 2022a.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
ode solver for diffusion probabilistic model sampling in around 10 steps. Advances in Neural
Information Processing Systems, 35:5775–5787, 2022b.

Eric Luhman and Troy Luhman. Knowledge distillation in iterative generative models for improved
sampling speed. arXiv preprint arXiv:2101.02388, 2021.

Weijian Luo, Tianyang Hu, Shifeng Zhang, Jiacheng Sun, Zhenguo Li, and Zhihua Zhang. Diff-
instruct: A universal approach for transferring knowledge from pre-trained diffusion models.
Advances in Neural Information Processing Systems, 36, 2024.

Junlong Lyu, Zhitang Chen, and Shoubo Feng. Convergence guarantee for consistency models.
arXiv preprint arXiv:2308.11449, 2023.

Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Null-text inversion for
editing real images using guided diffusion models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 6038–6047, 2023.

OpenAI. Video generation models as world simulators. https://openai.com/research/
video-generation-models-as-world-simulators, 2024. Accessed: 2024-02-26.

Elad Richardson, Yuval Alaluf, Or Patashnik, Yotam Nitzan, Yaniv Azar, Stav Shapiro, and Daniel
Cohen-Or. Encoding in style: a stylegan encoder for image-to-image translation. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pp. 2287–2296, 2021.

Daniel Roich, Ron Mokady, Amit H Bermano, and Daniel Cohen-Or. Pivotal tuning for latent-based
editing of real images. ACM Transactions on graphics (TOG), 42(1):1–13, 2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

12

https://openai.com/research/video-generation-models-as-world-simulators
https://openai.com/research/video-generation-models-as-world-simulators

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Chitwan Saharia, William Chan, Huiwen Chang, Chris Lee, Jonathan Ho, Tim Salimans, David
Fleet, and Mohammad Norouzi. Palette: Image-to-image diffusion models. In ACM SIGGRAPH
2022 conference proceedings, pp. 1–10, 2022.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In
International Conference on Learning Representations, 2022.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations, 2021a.

Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. In Inter-
national Conference on Learning Representations, 2024.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations, 2021b.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In Proceedings
of the 40th International Conference on Machine Learning. JMLR.org, 2023.

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let networks learn
high frequency functions in low dimensional domains. Advances in Neural Information Process-
ing Systems, 33:7537–7547, 2020.

Omer Tov, Yuval Alaluf, Yotam Nitzan, Or Patashnik, and Daniel Cohen-Or. Designing an encoder
for stylegan image manipulation. ACM Transactions on Graphics (TOG), 40(4):1–14, 2021.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural compu-
tation, 23(7):1661–1674, 2011.

Bram Wallace, Akash Gokul, and Nikhil Naik. Edict: Exact diffusion inversion via coupled trans-
formations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pp. 22532–22541, 2023.

Sirui Xie, Zhisheng Xiao, Diederik P Kingma, Tingbo Hou, Ying Nian Wu, Kevin Patrick Murphy,
Tim Salimans, Ben Poole, and Ruiqi Gao. Em distillation for one-step diffusion models. arXiv
preprint arXiv:2405.16852, 2024.

Fengzhe Zhang, Jiajun He, Laurence I Midgley, Javier Antorán, and José Miguel Hernández-Lobato.
Efficient and unbiased sampling of boltzmann distributions via consistency models. arXiv preprint
arXiv:2409.07323, 2024.

Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential integrator.
In The Eleventh International Conference on Learning Representations, 2022.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 586–595, 2018.

Hongkai Zheng, Weili Nie, Arash Vahdat, Kamyar Azizzadenesheli, and Anima Anandkumar. Fast
sampling of diffusion models via operator learning. In International Conference on Machine
Learning, pp. 42390–42402. PMLR, 2023.

Zhenyu Zhou, Defang Chen, Can Wang, and Chun Chen. Fast ode-based sampling for diffusion
models in around 5 steps. arXiv preprint arXiv:2312.00094, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

BIDIRECTIONAL CONSISTENCY MODELS: APPENDIX

A ALGORITHMS

Algorithm 2 BCM’s ancestral sampling

Input: Network fθp¨, ¨, ¨q, time steps 0 “ t0 ă t1 ă ¨ ¨ ¨ ă tN “ T , initial noise xT .
Output: Generated image xt0 .
xtN Ð xT .
for n “ N, ¨ ¨ ¨ , 1 do

xtn´1
Ð fθpxtn , tn, tn´1q. Ź Denoise image from time step tn to tn´1.

end for
Return: xt0 .

Algorithm 3 BCM’s zigzag sampling

Input: Network fθp¨, ¨, ¨q, time steps t1 ă ¨ ¨ ¨ ă tN “ T , manually-added noise scale at each time
step ε1, . . . , εN´1, initial noise xT .

Output: Generated image x.
xtN Ð xT .
for n “ N, ¨ ¨ ¨ , 2 do

x Ð fθpxtn , tn, 0q. Ź Denoise image from time step tn to 0.
σ „ N p0, Iq, and xεn´1

Ð x ` εn´1σ. Ź Add small fresh noise.
xtn´1

Ð fθpxεn´1
, εn´1, tn´1q. Ź Amplify noise by network.

end for
x Ð fθpxt1 , t1, 0q.
Return: x.

Algorithm 4 Combination of ancestral and zigzag sampling

Input: Network fθp¨, ¨, ¨q, ancestral time steps t1 ă ¨ ¨ ¨ ă tN “ T , zigzag time steps τ1 ă ¨ ¨ ¨ ă

τM “ t1, manually-added noise scale at each time step ε1, . . . , εM´1, initial noise xT .
Output: Generated image x.
xtN Ð xT .
Ancestral sampling steps
for n “ N, ¨ ¨ ¨ , 2 do

xtn´1
Ð fθpxtn , tn, tn´1q. Ź Denoise image from time step tn to tn´1.

end for
Zigzag sampling steps
xτM Ð xt1 .
for m “ M, ¨ ¨ ¨ , 2 do

x Ð fθpxτm , τm, 0q. Ź Denoise image from time step τm to 0.
σ „ N p0, Iq, and xεm´1

Ð x ` εm´1σ. Ź Add small fresh noise.
xτm´1

Ð fθpxεm´1
, εm´1, τm´1q. Ź Amplify noise by network.

end for
x Ð fθpxτ1 , τ1, 0q.
Return: x.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Algorithm 5 BCM’s inversion

Input: Network fθp¨, ¨, ¨q, time steps ε “ t1 ă ¨ ¨ ¨ ă tN ď T , initial image x0.
Output: Noise xtN .
σ „ N p0, Iq, xt1 Ð x ` εσ.
for n “ 2, ¨ ¨ ¨ , N do

xtn Ð fθpxtn´1 , tn´1, tnq. Ź Add noise to image from time step tn´1 to tn.
end for
Return: xtN .

Algorithm 6 BCM’s inpainting

Input: Network fθp¨, ¨, ¨q, time steps ε “ t1 ă ¨ ¨ ¨ ă tN ď T , initial image x, binary image mask
Ω where 1 indicates the missing pixels, initial noise scale for masked region s.

Output: Inpainted image x̂.
Dataset preparation
x̃ Ð x d p1 ´ Ωq ` 0 d Ω. Ź Create image with missing pixels.
Initialization
σ „ N p0, Iq.
x̃ Ð x̃ d p1 ´ Ωq ` sσ d Ω. Ź Manually add small noises to missing pixels.
Inversion steps
σ1 „ N p0, Iq.
xt1 Ð x̃ ` εσ1. Ź Manually add initial noise for inversion (similar to Algorithm 5)
for n “ 2, ¨ ¨ ¨ , N do

xtn Ð fθpxtn´1
, tn´1, tnq. Ź Add noise to image from time step tn´1 to tn.

σ2 „ N p0, Iq.
xtn Ð xtn d p1 ´ Ωq ` tnσ

2 d Ω. Ź Replace missing region with in-distribution noise.
end for
Generation steps

(Here, we exemplify with 1-step sampling, but note that multi-step schemes can also be used)
x0 Ð fθpxtN , tN , 0q.
x̂ Ð x̃ d p1 ´ Ωq ` x0 d Ω Ź Leave the region which is not missing unchanged.
Return: x̂.

Algorithm 7 BCM’s inpainting with refinement

Input: Network fθp¨, ¨, ¨q, BCM inpainting time steps ε “ t1 ă ¨ ¨ ¨ ă tN ď T , Refinement time
steps τ1 ą ¨ ¨ ¨ ą τM , initial image x, binary image mask Ω where 1 indicates the missing pixels,
initial noise scale for masked region s.

Output: Inpainted image x̂.
Initialize with BCM’s inpainting
x̂ Ð Algorithm 6pfθ, t1, . . . , tN ,x,Ω, sq.
Refine
for m “ 1, ¨ ¨ ¨ ,M do

x̂ „ N px̂, τ2mIq.
x̂ Ð fθpx̂, τm, 0q.
x̂ Ð x d p1 ´ Ωq ` x̂ d Ω.

end for
Return: x̂.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B ADDITIONAL EXPERIMENTS

B.1 ADDITIONAL APPLICATIONS WITH BIDIRECTIONAL CONSISTENCY

Here, we provide more demonstrations of BCM’s application.

B.1.1 INPAINTING ON HIGHER-RESOLUTION IMAGES

(a) FFHQ 64 ˆ 64

(b) LSUN 256 ˆ 256

Figure 9: Inpainting on FFHQ and LSUN Bedroom. We compare inpainting with BCM (Algorithm 6
and Algorithm 7) with CM’s inpainting. We visualize more uncurated examples in figs. 24 and 25.

In the main text, we demonstrate that BCM can yield better inpainting results with fewer NFEs
on CIFAR-10 images compared with CM’s inpainting algorithm proposed by Song et al. (2023).
On high-resolution images, however, we find that simply following the same algorithm as CIFAR-
10 (Algorithm 6) is suboptimal, possibly because the correlation between pixels is smaller than
that in low-resolution. Fortunately, we find Algorithm 6 can quickly fill the missing region with
imperfect but sensible results. Therefore, we can add a few more steps to refine the inpainting
results by iteratively adding some small noise to the inpainting regions and denoising by BCM. We
summarize this algorithm in Algorithm 7. This can be viewed as a combination of BCM’s inpainting
by Algorithm 6 with CM’s inpainting algorithm proposed by Song et al. (2023). We observe that
this combination can reduce the NFEs without hurting the inpainting performance.

We evaluate Algorithms 6 and 7 on FFHQ 64 ˆ 64 and LSUN Bedroom 256 ˆ 256 in Figure 9 and
also compare the results of CM’s inpainting. The hyperparameters are included in Appendix C.3.2.
As we can see: 1) simply adopting BCM’s inpainting as described in Algorithm 6 can fill in relatively
sensible content but is imperfect in the overall color and details; 2) CM’s inpainting algorithm yields
satisfactory performance with significantly more NFEs; and 3) applying BCM’s inpainting with
refinement as described in Algorithm 7 can achieve a comparable performance with fewer NFEs.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B.2 ADDITIONAL ABLATION STUDIES AND CONCLUSIONS

0 100000 200000 300000 400000
training iteration

0.0

0.2

0.4

0.6

lo
ss

BCT Loss
BCT Loss with Eq (9)

BCT w/o CT Loss
iCT Loss

Figure 10: Tracking the loss with different objection functions. We include the loss curve of iCT
(Song & Dhariwal, 2024) for reference. We can see that the model with BCT loss defined in Equa-
tion (10) converges well. Conversely, the model applying Equation (8) instead of Equation (9) for
the soft constraint has a much higher loss at the end of the optimization. While the one without CT
loss totally diverges.

B.2.1 COMPARISON BETWEEN LOSS DEFINED WITH EQUATION (8) AND EQUATION (9)

(a) original images (b) Inversion w. NFE=1 (c) Inversion w. NFE=4 (d) Inversion w. NFE=12

Figure 11: Inversion and reconstruction by BCM trained with Equation (8). We can see the model
trained fails to provide an accurate inversion. Even though the images start to look plausible with
NFE=12, the content compared with the original images has been significantly changed.

In Section 3.2, we discussed that we optimize Equation (9) instead of Equation (8). Here we provide
experimental evidence for our design choice.

We track the loss by models trained with both choices in Figure 10, where we can see that the
model trained with Equation (8) features a much higher loss in the end. This echoes its failure in
the inversion process: as shown in Figure 11, the model trained with Equation (8) fails to provide an
accurate inversion. This is because Equation (8) contains two trajectories, starting from xu and xt.
While both of them are along the SDE trajectories starting from the same x0, they do not necessarily
reside on the same PF ODE trajectory; in fact, the probability that they are on the same PF ODE
trajectory is 0. On the contrary, Equation (9) bypasses this issue since it only involves trajectories
starting from the same xt.

B.2.2 ABLATION OF CT LOSS

Recall our final loss function has two terms, the soft trajectory constraint term and the CT loss term.
We note that the soft constraint defined in Equation (9) can, in principle, cover the entire trajectory,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

so it should also be able to learn the mapping from any time step t to 0, which is the aim of CT loss.
However, we find it crucial to include CT loss in our objective. We provide the loss curve trained
without CT loss term in Figure 10, where we can see the training fails to converge. For further
verification, we also visualize the images generated by the model trained with full BCM loss and the
model trained without CT loss term after 200k iterations in Figure 12. We can clearly see that the
model without CT loss cannot deliver meaningful outcomes.

(a) (b)

Figure 12: Images generated by (a) the model trained with full BCM loss for 200k iterations, and
(b) the model trained without CT loss term for 200k iterations.

B.2.3 ALBATION OF DIFFERENT SAMPLING SCHEMES

In this section, we compare image generation quality using different sampling schemes we proposed
in Section 3.3. Specifically, we compare FID v.s. NFE on CIFAR-10 using ancestral sampling,
zigzag sampling and their combination in Figure 13. As we can see, both zigzag sampling and
ancestral sampling offer performance gain over single-step generation. However, as NFE increases,
zigzag sampling and ancestral sampling cannot provide further improvement in generation quality.
This phenomenon has also been discussed by Kim et al. (2024). However, the combination of both
can yield better FID than either of them in isolation.

0.0 2.5 5.0 7.5 10.0
NFE

2.0

2.5

3.0

FI
D

best zigzag
best ancestral
combination

zigzag sampling
ancestral sampling
1-step sampling
combination

Figure 13: Comparing zigzag sampling, ancestral sampling, and their combination on CIFAR-10.
Both zigzag sampling and ancestral sampling offer performance gain over single-step generation,
where their combination is better than either in isolation.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

B.2.4 COVERAGE OF TRAJECTORY DURING TRAINING

0.002 16 32 48 64 80
tn

0.002

16

32

48

64

80

t n
′

10 9

10 8

10 7

10 6

(a)

0.002 0.085 0.965 5.83924.408 80.0
tn

0.002

0.085

0.965

5.839

24.408

80.0

t n
′

10 9

10 8

10 7

10 6

(b)

Figure 14: Probability mass of ptn, tn1 q pair being selected during BCT. We transfer the time axes
to log space in (b) for a clearer visualization.

In Figure 14, we visualize the probability of selecting a ptn, tn1 q pair during the BCT process, where
ptn, tn1 q is defined in Equation (10). This offers insights into how well the entire trajectory is covered
and trained. We can see that most of the probability mass is concentrated in small-time regions. This
reveals some of our observations in the experiments:

• first, in the generation process, we find the combination of a zigzag and ancestral sampling yields
optimal performance because the ancestral sampler can rapidly jump over the large-time regions,
which we cover less in training;

• second, it also explains why adding a small initial noise in inversion helps: simply adding a
small ε « 0.085 noise increases the probability of being selected during BCT by more than a
thousandfold;

• third, it offers insights into the necessity of incorporating CT loss into our final objective, as
defined in Equation (10): while theoretically, the soft constraint is expected to cover the entire
trajectory, including boundary conditions, it is highly inefficient in practice. Therefore, explicitly
including CT loss to learn the mapping from any noise scale t to 0 is crucial.

This also points out some future directions to improve BCM. For example, we can design a better
sampling strategy during training to ensure a better coverage of the entire trajectory. Or using
different sampling strategy for CT loss term and the soft trajectory constraint term.

C EXPERIMENT DETAILS

In this section, we provide the experiment details omitted from the main paper.

C.1 TRAINING SETTINGS

CIFAR-10. For all the experiments on CIFAR-10, following the optimal settings in Song &
Dhariwal (2024), we use a batch size of 1,024 with the student EMA decay rate of 0.99993, scale
parameter in Fourier embedding layers of 0.02, and dropout rate of 0.3 for 400,000 iterations with
RAdam optimizer Liu et al. (2020) using learning rate 0.0001. We use the NCSN++ network ar-
chitecture proposed by Song et al. (2021b), with the modification described in Section 3.1. In our
network parameterization, we set σdata “ 0.5 following Karras et al. (2022) and Song et al. (2023).
Regarding other training settings, including the scheduler function for Np¨q, the sampling probabil-
ity for tn (aka the noise schedule ppnq in (Song et al., 2023; Song & Dhariwal, 2024)), the distance
measure dp¨, ¨q, we follow exactly Song & Dhariwal (2024), and restate below for completeness’s

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

sake:

dpx,yq “
a

||x´ y||2 ` c2 ´ c, c “ 0.00054
?
d, d is data dimensionality, (12)

ppnq9erf
ˆ

logptn`1 ´ Pmeanq
?
2Pstd

˙

´ erf
ˆ

logptn ´ Pmeanq
?
2Pstd

˙

, Pmean “ ´1.1, Pstd “ 2.0, (13)

Npkq “ minps02
tk{K1u, s1q ` 1, s0 “ 10, s1 “ 1280, K 1 “

Z

K

log2rs1{s0s ` 1

^

, (14)

K is the total training iterations

tn “

ˆ

t
1{ρ

min `
n´ 1

Npkq ´ 1

´

t
1{ρ
max ´ t

1{ρ

min

¯

˙ρ

, tmin “ 0.002, tmax “ 80, ρ “ 7. (15)

FFHQ 64 ˆ 64 and LSUN Bedroom 256 ˆ 256. Except the differences stated below, we train
BCMs on FFHQ 64 ˆ 64 and LSUN Bedroom 256 ˆ 256 using exactly the same settings:

• For FFHQ 64ˆ64, we use a batch size of 512 but still train the model for 400,000 iterations.
• For LSUN Bedroom 256 ˆ 256, we (i) use a dropout rate of 0.2, (ii) adopt the network

architecture configuration on this dataset in Song et al. (2021b), (iii) use a batch size of
128, and (iv) adopt a different discretization curriculum from Equation (14). Specifically, in
Equation (14), the training procedure is divided into 8 stages. Each stage uses a differentN
and hasK{8 iterations. In our experiments, we still divide the entire training procedure into
8 stages, and still setNpkq “ minps02

j´1, s1q`1 at stage j, for j “ 1, 2, ¨ ¨ ¨ , 8. However,
we do not divide these stages evenly. Instead, we assign 75,000, 60,000, 45,000, 30,000
iterations to the 1st/2nd stage, 3rd/4th stage, 5th/6th stage, 7th/8th stage, respectively 3.
The total number of iterations is 420,000.

Moreover, since our experiments include many applications that are necessarily conducted on test
sets (e.g., inpainting), we split FFHQ into a training set of 69,000 images and a test set containing the
last 1,000 images. For LSUN Bedroom, we use its official validation set as test set. We implement
our model and training algorithm based on the codes released by Song et al. (2023) at https:
//github.com/openai/consistency_models_cifar10 (Apache-2.0 License).

We specially emphasize that the settings we use to train FFHQ 64ˆ64 and LSUN Bedroom 256ˆ256
are not fine-tuned to optimal (in fact, most of them have not been tuned at all). For instance, Song
et al. (2023) trained LSUN Bedroom 256 ˆ 256 with a significantly larger batch size of 2,048 for
1,000,000 iterations, meaning that their model has seen more than 38ˆ samples than ours during
training. Therefore, we note that our settings for these two datasets should NOT be used as guidance
for training the models to optimal performance, and our results are only for demonstration purposes
and should NOT be directly compared with other baselines unless under aligned settings.

ImageNet-64. Instead of training from scratch, we apply bidirectional consistency fine-tuning on
ImageNet-64. Specifically, we first train an iCT on ImageNet-64, and then initialize and fine-tune
BCM from it. Since there is no official implementation or available checkpoints for iCT, we repro-
duce it by ourselves. Therefore, we first state our training settings for iCT:

Reproducing iCT on ImageNet-64. Our training setting follows Song & Dhariwal (2024) closely.
Most of the training parameters for ImageNet-64 are consistent with those used for training BCM
on CIFAR-10, with the exceptions noted below:

• We use a batch size of 4096 and train the model for 800,000 iterations.
• The EMA decay rate is set to 0.99997.
• We adopt the ADM architecture and remove AdaGN following Song & Dhariwal (2024).
• Instead of Fourier Embeddings, we employ the default positional embedding.
• The dropout rate is set to 0.2 and only applied to convolutional layers whose feature map

resolution is smaller or equal to 16 ˆ 16.
• We use mix-precision training.

3We assign more iterations to earlier stages with small N , as we empirically find that it yields better perfor-
mance given limited computing budget.

20

https://github.com/openai/consistency_models_cifar10
https://github.com/openai/consistency_models_cifar10

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Additionally, when reproducing iCT on ImageNet-64, following EDM2 (Karras et al., 2024), we
slightly modify the network architecture as follows:

• The self-attention layer at resolution 32 ˆ 32 is removed.

• The Q,K and V vectors are normalized in the self-attention layers.

We empirically find these simple modifications bring positive influences on performance.

Fine-tuning BCM on ImageNet-64. We initialize our BCM with the pretrained iCT weights and
fine-tune it using Equation (10). Recall that BCM takes in three arguments: 1) the sample xt at time
t, 2) the current time step t, and 3) the target time step u, and outputs the sample at time u, i.e., xu.
In contrast, the pretrained iCT model only takes the first two inputs and can be viewed as a special
case of BCM when the target time step u is set to 0. Therefore, we aim to initialize BCM such that it
preserves the performance of the pretrained CM when u “ 0. To achieve this, we carefully initialize
the BCM as follows:

• In iCT, the time embedding of t is passed through a 2-layer MLP with SiLU activation,
after which it is fed into the residual blocks. At the initialization of BCM, we duplicate the
2-layer MLP (with the same pretrained weights) for u. However, during fine-tuning, the
MLPs for t and u are not tied.

• We do not want to expand the input dimension of the pretrained residual blocks, so first
concatenate the embedding of t and u together, and then reduce its dimension by half with
a simple linear layer (without bias). No additional activation function is applied for this
simple linear layer.

• In order to maintain the generation quality of the pretrained iCT, we initialize this linear
projection as rI,0s, in which I represents an identity matrix and 0 represents a zero matrix.
As a result, the influence brought by the newly introduced time embedding of u is zeroed
at the beginning and learned gradually during fine-tuning.

With the modified architecture initialized with the pretrained CM weights, we tune the models using
our proposed BCT loss till convergence, using the same learning rate, ema rate, etc., as in iCT. The
only difference is that we start the fine-tuning from N “ 320 and increase it to N “ 480 and
subsequently N “ 640. Specifically,

• we tune BCM for 210k, 16k and 8k iterations respectively at N “ 320, 480 and 640.

• we tune BCM-deep for 360k, 100k and 10k iterations respectively at N “ 320, 480 and
640.

The number of iterations for different values of N is determined empirically: we increase N when
we observe no performance improvements by extending the training duration at the same N .

C.2 SAMPLING AND INVERSION CONFIGURATIONS

Here we provide hyperparameters for all the experiments on CIFAR-10 and ImageNet-64 ˆ 64 to
reproduce the results in the main paper.

Sampling. On CIFAR-10: for BCM (not deep), we use ancestral sampling with t1 “ 1.2 for
NFE“ 2, zigzag sampling with ε1 “ 0.2, t1 “ 0.8 for NFE“ 3 and the combination of ancestral
sampling and zigzag sampling with t1 “ 1.2, ε1 “ 0.1, τ1 “ 0.3 for NFE“ 4. For BCM-deep,
we use ancestral sampling with t1 “ 0.7 for NFE“ 2, zigzag sampling with ε1 “ 0.4, t1 “ 0.8
for NFE“ 3 and the combination with t1 “ 0.6, ε1 “ 0.14, τ1 “ 0.3 for NFE“ 4. On ImageNet-
64 ˆ 64: for both conditional BCM and BCM-deep, we use ancestral sampling with t1 “ 2.4 for
NFE“ 2, zigzag sampling with ε1 “ 0.1, t1 “ 1.2 for NFE“ 3 and the combination of ancestral
sampling and zigzag sampling with t1 “ 3.0, ε1 “ 0.12, τ1 “ 0.4 for NFE“ 4.

Inversion. On CIFAR-10: we set ε “ t1 “ 0.07, t2 “ 6.0 and t3 “ T “ 80.0 for NFE“ 2 and
t2 “ 1.5, t3 “ 4.0, t4 “ 10.0, t5 “ T “ 80.0 for NFE“ 4. These hyperparameters are tuned on
2,000 training samples, and we find them generalize well to all test images. On ImageNet-64 ˆ 64:
for both BCM and BCM-deep, we set ε “ t1 “ 0.07, t2 “ 15.0 and t3 “ T “ 80.0 for NFE“ 2. In

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

the experiments we always use 1-step generation to map the inverted noise to reconstructed images
(though using more than one step may improve the results) and evaluate the per-dimension MSE
between the original images and their reconstructed counterparts.

We highlight that the hyperparameters are relatively robust for 2-step sampling/inversion, and the
trend that the combination of ancestral and zigzag sampling is superior is also general. However,
to achieve optimal performance with more steps, the tuning of each specific time step may require
great effort. We should note that similar effort is also required in CMs, where Song et al. (2023) use
ternary search to optimize the time steps.

Inversion Baselines. For DDIM, we use the reported MSE by Song et al. (2021a); for EDM, we load
the checkpoint provided in the official implementation at https://github.com/NVlabs/
edm?tab=readme-ov-file (CC BY-NC-SA 4.0 License), and re-implement a deterministic
ODE solver following Algorithm 1 in (Karras et al., 2022).

C.3 APPLICATIONS WITH BIDIRECTIONAL CONSISTENCY

Here we provide more details about the applications we demonstrated in Section 4.3 and Ap-
pendix B.1.

C.3.1 INTERPOLATION

We first invert the two given images x1 and x2 to noise at T “ 80.0 using Algorithm 5. To avoid
subscript overloading, in this section, we denote their noise as z1 and z2, respectively. Specifically,
we find that adopting a 3-step inversion with ε “ t1 “ 0.07, t2 “ 1.5, t3 “ 6.0, and t4 “ T “ 80.0
for CIFAR-10, and a 2-step inversion with ε “ t1 “ 0.07, t2 “ 1.8, and t3 “ T “ 80.0 for FFHQ
and LSUN bedroom are sufficient for good reconstruction results. Note, that we use two different
small initial noise, i.e., σ1,σ2 „ N p0, Iq,σ1 ‰ σ2 when inverting x1 and x2 respectively.

Since BCM learns to amplify the two initial Gaussian i.i.d. noises, it is reasonable to hypothesize
that the amplified noises (i.e., the embeddings) z1 and z2 reside on the same hyperspherical surface
as if z1 and z2 are directly sampled from N p0, T 2Iq. Therefore, following Song et al. (2023), we
use spherical linear interpolation as

z “
sinrp1 ´ αqψs

sinpψq
z1 `

sinrαψs

sinpψq
z2, (16)

in which α P r0, 1s and ψ “ arccos
´

zT
1 z2

}z1}2}z2}2

¯

.

As we discussed in the main text, it is crucial to set σ1 ‰ σ2 for inversion. A possible reason
is that if using σ1 “ σ2 for inversion, the inverted noises z1 and z2 may reside on an unknown
submanifold instead of the hyperspherical surface of Gaussian, and hence Equation (16) cannot
yield ideal interpolation results. In Appendix F, we present visualization and discussions on the
geometric properties of the noise space.

C.3.2 INPAINTING

We describe BCM’s inpainting process in Algorithm 6. In our experiments on CIFAR-10, we set
the initial noise scale s “ 0.5. Additionally, instead of inverting the image back to T “ 80.0, we
empirically find inverting the image to T “ 2.0 already suffice for satisfactory inpainting outcomes,
and hence, we use a 3-step inversion (i.e., N “ 4), where t1 “ ε “ 0.07, t2 “ 0.4, t3 “ 1.0 and
t4 “ T “ 2.0, and 1-step generation from T to 0.

As for the results by CMs, we implement CM’s inpainting algorithm (Algorithm 4 in Song et al.
(2023)). The total number of time steps (NFEs) is set to 18 according to the official inpaint-
ing script at https://github.com/openai/consistency_models_cifar10/blob/
main/editing_multistep_sampling.ipynb. To ensure a fair comparison, we opt for the
improved model, iCT (Song & Dhariwal, 2024), over the original CMs, since iCT delivers superior
generation performance. Nonetheless, due to the absence of officially released codes and check-
points by the authors, we reproduce and train our own iCT model. Our reproduced iCT yields an
FID score of single-step generation closely matching that reported by Song & Dhariwal (2024) —
our reproduced FID is 2.87 compared to the reported 2.83 — affirming the reliability of our results.

22

https://github.com/NVlabs/edm?tab=readme-ov-file
https://github.com/NVlabs/edm?tab=readme-ov-file
https://github.com/openai/consistency_models_cifar10/blob/main/editing_multistep_sampling.ipynb
https://github.com/openai/consistency_models_cifar10/blob/main/editing_multistep_sampling.ipynb

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

For higher-resolution images, we summarize BCM’s inpainting with refinement in Algorithm 7.
For a fair comparison among BCM’s inpainting algorithm, CM’s inpainting algorithm and BCM’s
inpainting with refinement, we run these three algorithms on the same BCM trained on FFHQ
64 ˆ 64/LSUN Bedroom 256 ˆ 256. Then, we perform the inpainting using the following hyper-
parameters:

• FFHQ 64 ˆ 64: BCM inpainting: we adopt initial noise scale s “ 1.0, 1-step inversion
with t1 “ ε “ 0.5 and t2 “ T “ 20.0, and 1-step generation from T to 0 in BCM’s in-
painting. CM inpainting: we adopt a 24-step noise schedule following Song et al. (2023).
BCM inpainting w. refine: we first perform BCM inpainting, followed by refinement
using only the last M “ 12 time steps used in CM inpainting.

• LSUN Bedroom 256 ˆ 256: BCM inpainting: we use initial noise scale s “ 0.5, 2-
step inversion with t1 “ ε “ 0.5, t2 “ 2.5 and t3 “ T “ 200.0, and 2-step ancestral
generation with t1 “ 4.4 in BCM’s inpainting. CM inpainting: we adopt a 40-step noise
schedule following Song et al. (2023). we adopt the same 40-step noise schedule in Song
et al. (2023). BCM inpainting w. refine: we first perform BCM inpainting, followed by
refinement using only the last M “ 26 time steps used in CM inpainting.

C.3.3 JPEG RESTORATION

We invert the input image to reach the noise scale of T “ 3.2 using 1{2{3 steps and reconstruct it
by single-step generation, making a total NFE of 2{3{4 as in Figure 8. For 1-step inversion, we use
ε “ t1 “ 0.5, t2 “ T “ 3.2. For 2-step inversion, we use ε “ t1 “ 0.5, t2 “ 1.2, t3 “ T “ 3.2.
For 3-step inversion, we use ε “ t1 “ 0.5, t2 “ 1.2, t3 “ 2.0, t4 “ T “ 3.2.

For the I2SB (Liu et al., 2023) baseline, since there’s no pretrained checkpoints available for
ImageNet-64 ˆ 64, we reproduce it using the official codebase at https://github.com/
NVlabs/I2SB (NVIDIA Source Code License). There is also no official implemention or check-
points available for Palette (Saharia et al., 2022), so we also reproduce it by modifying from the
I2SB codebase. We initialize both methods with a pretrained ADM model with weight available at
https://github.com/openai/guided-diffusion (MIT License).

However, as there is no unconditional ADM weight for ImageNet-64 ˆ 64 and our BCM is also
trained with class conditions, we include labels in both the baseline methods and our method for
convenience and comparison fairness. This can lead to an overestimation of classifier accuracy or
Inception Score (IS). Therefore, to fairly compare our method with the baselines, we choose to report
MSE between the restored images and the ground truth, along with FID. This choice is motivated by
the known rate-perception-distortion trade-off (Blau & Michaeli, 2018; 2019). In essence, for the
same compression rate, there is a trade-off between MSE and realism, the latter of which is reflected
by FID in our experiments. In our experiments, we found both our BCM and I2SB models achieved
a per pixel MSE of around 0.004. As for the FID, as shown in Figure 8, when NFE is limited, BCM
achieves a better FID compared to I2SB. This indicates that, when NFE is limited, our BCM obtains
a better restoration than I2SB in a Pareto sense.

D DERIVATION OF THE NETWORK PARAMETERIZATION

In this section, we provide more details about our network parameterization design. To start with,
recall that in Song et al. (2023), they parameterize the consistency model using skip connections as

fθpxt, tq “ cskipptqxt ` coutptqFθpcinptqxt, tq, (17)

in which

cinptq “
1

a

σ2
data ` t2

, coutptq “
σdatapt´ εq
a

σ2
data ` t2

, cskipptq “
σ2

data

σ2
data ` pt´ εq2

, (18)

that ensures

coutpεq “ 0, cskippεq “ 1 (19)

23

https://github.com/NVlabs/I2SB
https://github.com/NVlabs/I2SB
https://github.com/openai/guided-diffusion

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

to hold at some very small noise scale ε « 0 so fθpx0, εq “ x0
4. Since we expect the output is

a noise image of target noise scale u, we expand the parameterization of cskip, cout and cin to make
them related to u, as

fθpxt, t, uq “ cskippt, uqxt ` coutpt, uqFθpcinpt, uqxt, t, uq. (20)

Our derivation of network parameterization shares the same group of principles in EDM Karras et al.
(2022). Specifically, we first require the input to the network Fθ to have unit variance. Following
Eq. (114) „ (117) in EDM paper (Karras et al., 2022), we have

cinpt, uq “
1

a

σ2
data ` t2

. (21)

Then, as we discussed in the main text, we expect the model to achieve consistency in Equation (7)
along the entire trajectory. According to Lemma 1 in Song et al. (2023), we have

∇ log ptpxtq “
1

t2
pErx|xts ´ xtq (22)

piq
«

1

t2
px ´ xtq (23)

“ ´
σ

t
, (24)

in which we follow Song et al. (2023) to estimate the expectation with x in piq. When u and t are
close, we can use the Euler solver to estimate xu, i.e,

xu « xt ´ tpu´ tq∇ log ptpxtq (25)
“ xt ` pu´ tqσ (26)
“ x ` uσ. (27)

Therefore, when u and t are close, and base on Song et al. (2023)’s approximation in piq, we can
rewrite the consistency defined in Equation (7) as

d pfθpx ` tσ, t, uq,x ` uσq (28)
“ |fθpx ` tσ, t, uq ´ px ` uσq| (29)
“ |cskippt, uqpx ` tσq ` coutpt, uqFθpcinpt, uqpx ` tσq, t, uq ´ px ` uσq| (30)
“ |coutpt, uqFθpcinpt, uqpx ` tσq, t, uq ´ px ` uσ ´ cskippt, uqpx ` tσqq| (31)

“ |coutpt, uq| ¨

ˇ

ˇ

ˇ

ˇ

Fθpcinpt, uqpx ` tσq, t, uq

´
1

coutpt, uq
pp1 ´ cskippt, uqqx ` pu´ cskippt, uqtqσq

ˇ

ˇ

ˇ

ˇ

. (32)

For simplicity, we set dp¨, ¨q to L1 norm in Equation (29). Note that, in practice, for D-
dimensional data, we follow Song & Dhariwal (2024) to use Pseudo-Huber loss dpa,bq “
a

||a ´ b||2 ` 0.000542D ´ 0.00054
?
D, which can be well approximated by L1 norm.

We should note that Equation (28) is based on the assumption that u and t are reasonably close. This
derivation is only for the pursuit of reasonable parameterization and should not directly serve as an
objective function. Instead, one should use the soft constraint we proposed in Equation (9) as the
objective function.

The approximate effective training target of network Fθ is therefore

1

coutpt, uq
pp1 ´ cskippt, uqqx ` pu´ cskippt, uqtqσq . (33)

4While the parameterization written in the original paper of Song et al. (2023) did not explicitly in-
clude cinptq, we find it is actually included in its official implementation at https://github.com/
openai/consistency_models_cifar10/blob/main/jcm/models/utils.py#L189 in the
form of Equations (17) and (18).

24

https://github.com/openai/consistency_models_cifar10/blob/main/jcm/models/utils.py#L189
https://github.com/openai/consistency_models_cifar10/blob/main/jcm/models/utils.py#L189

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Following Karras et al. (2022), we require the effective training target to have unit variance, i.e.,

Var

„

1

coutpt, uq
pp1 ´ cskippt, uqqx ` pu´ cskippt, uqtqσq

ȷ

“ 1, (34)

so we have

c2outpt, uq “ Var rp1 ´ cskippt, uqqx ` pu´ cskippt, uqtqσs (35)

“ p1 ´ cskippt, uqq2σ2
data ` pu´ cskippt, uqtq2 (36)

“ pσ2
data ` t2qc2skippt, uq ´ 2pσ2

data ` tuqcskippt, uq ` pσ2
data ` u2q, (37)

which is a hyperbolic function of cskippt, uq. Following Karras et al. (2022), we select cskippt, uq to
minimize |coutpt, uq| so that the errors of Fθ are amplified as little as possible, as

cskippt, uq “ argmin
cskippt,uq

|coutpt, uq| “ argmin
cskippt,uq

c2outpt, uq. (38)

So we have

pσ2
data ` t2qcskippt, uq “ σ2

data ` tu (39)

cskippt, uq “
σ2

data ` tu

σ2
data ` t2

. (40)

Substituting Equation (40) into Equation (36), we have

c2outpt, uq “
σ2

datat
2pt´ uq2

pσ2
data ` t2q

2 `

ˆ

σ2
datat` t2u

σ2
data ` t2

´ u

˙2

(41)

“
σ2

datat
2pt´ uq2 ` σ4

datapt´ uq2

pσ2
data ` t2q

2 (42)

“
σ2

datapt´ uq2

σ2
data ` t2

, (43)

and finally

coutpt, uq “
σdatapt´ uq
a

σ2
data ` t2

. (44)

One can immediately verify that when u “ t, cskippt, uq “ 1 and coutpt, uq “ 0 so that the boundary
condition

fθpxt, t, tq “ xt (45)

holds.

On the side of CMs, setting u “ ε will arrive at exactly the same form of cinpt, uq and coutpt, uq

in Equation (18). While cskippt, uq does not degenerate exactly to the form in Equation (18) when

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

taking u “ ε and t ą ε, this inconsistency is negligible when ε « 0, as

ˇ

ˇcBCM
skip pt, εq ´ cCM

skipptq
ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

σ2
data ` tε

σ2
data ` t2

´
σ2

data

σ2
data ` pt´ εq2

ˇ

ˇ

ˇ

ˇ

(46)

“

ˇ

ˇ

`

σ2
data ` pt´ εq2

˘ `

σ2
data ` tε

˘

´ σ2
data

`

σ2
data ` t2

˘
ˇ

ˇ

pσ2
data ` t2q pσ2

data ` pt´ εq2q
(47)

“

ˇ

ˇε2σ2
data ´ εtσ2

data ` εtpt´ εq2
ˇ

ˇ

pσ2
data ` t2q pσ2

data ` pt´ εq2q
(48)

“
εpt´ εq

ˇ

ˇpt´ εqt´ σ2
data

ˇ

ˇ

pσ2
data ` t2q pσ2

data ` pt´ εq2q
(49)

ă
εpt´ εqmax

␣

pt´ εqt, σ2
data

(

pσ2
data ` t2q pσ2

data ` pt´ εq2q
(50)

ď
εpt´ εqmax

␣

t2, σ2
data

(

pσ2
data ` t2q pσ2

data ` pt´ εq2q
(51)

ă
εpt´ εq

σ2
data ` pt´ εq2

(52)

“
ε

σ2
data

t´ε ` pt´ εq
(53)

ď
ε

2σdata
. (54)

Therefore, we conclude that our parameterization is compatible with CM’s parameterization, so with
the same CT target of Equation (6), any CT techniques (Song et al., 2023; Song & Dhariwal, 2024)
should directly apply to our model and it should inherit all properties from CMs just by setting u “ ε,
which is a clear advantage compared with models that adopt completely different parameterizations
(e.g., CTM Kim et al. (2024)).

E COMPARISON OF CT, CTM AND BCT

We compare the training objective of CT, CTM and our proposed BCT in Table 2, where we can see
how our method naturally extends CT and differs from CTM.

F UNDERSTANDING THE LEARNED NOISE (“EMBEDDING”) SPACE

This section provides some insights into the learned “embedding” space. Recall that during inversion
(Algorithm 5), we first inject a small Gaussian noise to the image. Here we investigate the influence
of this noise and the original image content on the noise generated by inversion.

We randomly select 500 CIFAR-10 images, and randomly split them into 10 groups. We then invert
the images to their corresponding noise by Algorithm 5. We inject the same initial noise during
inversion for images in the same group. Figure 15 visualize the t-SNE results Van der Maaten &
Hinton (2008) of the inversion outcomes. In Figure 15a, images injected with the same initial noise
are shown in the same color; while in Figure 15b, we color the points according to their class label
(i.e., airplane, bird, cat, ...).

Interestingly, we can see that images inverted with the same initial noise are clustered together. We,
therefore, conjecture that each initial noise corresponds to a submanifold in the final “embedding”
space. The union of all these submanifolds constitutes the final “embedding” space, which is the
typical set of N p0, T 2Iq, closed to a hypersphere. This explains why applying the same initial noise
is suboptimal in interpolation, as discussed in Appendix C.3.1.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 2: Comparison of CT, CTM training, and BCT training methodology. The figures illustrate
the main objective of each method, where θ̄ stands for stop gradient operation. Note that for BCM,
there are two possible scenarios corresponding to the denoising and diffusion direction, respectively.

Model Illustration of Training Objective Detailed Form of Loss

CT

𝑡𝑛𝑡𝑛+1

𝜽

ഥ𝜽
0

𝑑

LCT “ Etn,xrλptnqds,

x is the training sample,
λp¨q is the reweighting function,
tn, d are illustrated in the left plot.

CTM

ഥ𝜽

𝑡𝑛′′ 𝑡𝑛′0 𝑡𝑛

𝜽
ഥ𝜽

ഥ𝜽
pretrained

model

𝑑

LCTM “Etn,tn1 ,tn2 ,xrds

` λGANLGAN ` λDSMLDSM

LDSM is the adversarial loss,
LDSM is Denoising Score Matching loss (Song et al., 2021b; Vincent, 2011),

λGAN , λDSM are the reweighting functions,
tn, tn1 , tn2 , d are illustrated in the left plot.

BCT 𝑡𝑛𝑡𝑛+1

𝜽

ഥ𝜽

0 𝑡𝑛′
ഥ𝜽

𝜽
𝑑2
𝑑1

𝑡𝑛𝑡𝑛+1

𝜽

ഥ𝜽

0 𝑡𝑛′
ഥ𝜽

𝜽
𝑑2
𝑑1

LBCT “ Etn,tn1 ,xrλptnqd1 ` λ1ptn, tn1 qd2s,

λp¨q, λ1p¨, ¨q are the reweighting functions,
tn, tn1 , d1, d2 are illustrated in the left plot.

30 15 0 15 30

30

15

0

15

30

(a) images inverted with the same initial noise are
shown in the same color

30 15 0 15 30

30

15

0

15

30

(b) images with the same class label are shown in the
same color

Figure 15: t-SNE of the inverted noise generated from 500 randomly selected CIFAR images.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

G ADDITIONAL VISUALIZATIONS

(a)

(b)

Figure 16: Visualization of the noise images generated by inversion with BCM. Each line corre-
sponds to a noise scale of 0, 0.2, 0.5, 1.0, 2.0, 80.0, respectively. In (a), we truncate the image to
r´1, 1s, while in (b) we normalize the image to r´1, 1s.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

(a) Ground Truth

(b) BCM inversion and reconstruction with 1 NFE (MSE=0.00526)

(c) BCM inversion and reconstruction with 2 NFE (MSE=0.00451)

(d) BCM inversion and reconstruction with 3 NFE (MSE=0.00377)

(e) BCM inversion and reconstruction with 4 NFE (MSE=0.00362)

(f) EDM inversion and reconstruction with 9 NFE (MSE=0.01326)

(g) EDM inversion and reconstruction with 19 NFE (MSE=0.00421)

Figure 17: Reconstructed images and their residual with unconditional BCM on CIFAR-10. We
include EDM’s results in (e) and (f) for comparison.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Figure 18: Interpolation between two real CIFAR-10 images (injecting different initial noise in
inversion).

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Figure 19: Interpolation between two real CIFAR-10 images (injecting the same initial noise in
inversion).

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Figure 20: Interpolation between two real FFHQ 64 ˆ 64 images (injecting different initial noise in
inversion).

Figure 21: Interpolation between two real LSUN Bedroom 256 ˆ 256 images (injecting different
initial noise in inversion).

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

(a) Masked images.

(b) Inpainted images with BCM, where the unmasked region remains unchanged from the original (NFE=4,
test set FID 12.32)

(c) Inpainted images with BCM, with feathered masks for seamless integration.

Figure 22: Inpainting with BCM on CIFAR-10.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

(a) Masked images.

(b) Inpainted images with CM, where the unmasked region remains unchanged from the original (NFE=18, test
set FID 13.16).

(c) Inpainted images with CM, with feathered masks for seamless integration.

Figure 23: Inpainting with CM (concretely, iCT) on CIFAR-10.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Figure 24: Inpainting on FFHQ 64 ˆ 64.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Figure 25: Inpainting on LSUN Bedroom 256 ˆ 256.

H MORE GENERATION SAMPLES

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

(a) 1-step generation (FID=2.64)

(b) 2-step generation (FID=2.36)

(c) 3-step generation (FID=2.19)

(d) 4-step generation (FID=2.07)

Figure 26: Uncurated CIFAR-10 samples generated by BCM-deep.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

(a) 1-step generation (FID=3.14) (b) 2-step generation (FID=2.45)

(c) 3-step generation (FID=2.61) (d) 4-step generation (FID=2.35)

Figure 27: Uncurated ImageNet-64 samples generated by BCM-deep. Each line corresponds to one
randomly selected class.

38

