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A Chinese Multimodal Social Video Dataset for Controversy
Detection

Anonymous Authors

ABSTRACT
Social video platforms have emerged as significant channels for in-
formation dissemination, facilitating lively public discussions that
often give rise to controversies. However, existing approaches to
controversy detection primarily focus on textual features, which
raises three key concerns: it underutilizes the potential of visual
information available on social media platforms; it is ineffective
when faced with incomplete or absent textual information; and the
existing datasets fail to adequately address the need for comprehen-
sive multimodal resources on social media platforms. To address
these challenges, we construct a large-scale Multimodal Controver-
sial Dataset (MMCD) in Chinese. Additionally, we propose a novel
framework namedMulti-view Controversy Detection (MVCD) to ef-
fectively model controversies from multiple perspectives. Through
extensive experiments using state-of-the-art models on the MMCD,
we demonstrate MVCD’s effectiveness and potential impact.

CCS CONCEPTS
• Information systems → Information systems applications;
• Social and professional topics→ Professional topics; • Com-
putingmethodologies→Artificial intelligence;Machine learn-
ing.

KEYWORDS
ControversyDetection, Dataset Construction, Social Video Platform

1 INTRODUCTION
With the prevalence of social video platforms, videos have become
an important information-sharing channel. Videos uploaded on so-
cial media platforms quickly accumulate thousands of views within
seconds, facilitating worldwide user engagement in opinion shap-
ing [40]. However, the openness of these social platforms also gives
rise to fervent discussions and the exchange of divergent opinions.
Consequently, the proliferation of numerous videos necessitates
implementing risk management and control measures. Our work
focuses on controversy detection, which serves as the basis for
exploring various advanced applications such as risk indication and
brand reputation management. Previous research on controversy
detection has primarily focused on the textual modality, neglecting
the necessity of incorporating multimodal in situations where tex-
tual information is limited. In light of the ubiquity of social video
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Controversial Video

一般这么大的孩子作为母亲是会给孩子带
水杯而不会给喝凉水
(Normally for a child of this age, the mother 

would bring him a water bottle instead of cold 

water.)

感觉不像妈妈，带孩子出门穿成这样吗
(She doesn't feel like a mom, taking the kids 

out dressed like that.)

真的感觉像人贩子
(It really feels like a human trafficker.)

(a)

11915                   388                       124                      1887

Non-Controversial Video

这不是一般的鹦鹉，这是个受过高等感化
的 。
(This isn't just any parrot. This is a 

highly educated one.)

哈哈哈这个好
(Ha ha ha that‘s good.)

这是什么品种的鹦鹉啊？
(What kind of parrot is this?)

(b)

Figure 1: Examples of controversial and non-controversial
videos.

platforms, we specifically concentrate on multimodal controversy
detection. This involves the utilization of various modalities, includ-
ing video, text, and metadata, to discern the controversy inherent
in content.

Controversy exists as a form of public discourse, attracting an
increasing number of opposing viewpoints and resulting in esca-
lating divergence or polarization [10, 16, 36, 45]. As controversies
stem from the beliefs and values of participants, the exchange of
opinions goes beyond mere “facts” and evokes intense emotions
[28, 37]. Certain individuals may find their rights infringed upon
due to controversial videos, primarily manifested through verbal
accusations from others or conflicts and dissatisfaction arising from
them. While being under the spotlight, social media environment
can potentially cause psychological harm to these individuals, and
in extreme cases, even lead to radical actions. In particular, when ad-
dressing controversial videos that discuss policies related to specific
interests or incite intense discussions on social media platforms,
there exists an inherent potential for the emergence of broader pub-
lic controversies in the future [12, 37]. Hence, controversy detection
on social video platforms plays a crucial role in providing an indica-
tor for assessing the contentious nature of videos. It is necessary to
curb the spread of controversies and mitigate public opinion risks.
Additionally, controversy detection can generate recommendations
that promote a “healthier diet” on social media [21].

Inspired by previous research work [10, 16, 30, 36, 45], we de-
fine controversial videos on social media platforms by considering
three aspects. The first aspect concerns whether the video content
itself is prone to controversy, such as whether it contains sensation-
alism, violent information, and so on. The second aspect examines
a conflict between the video content and the users’ comments. Con-
troversial videos are identified if the comments exhibit opposing
viewpoints to the video, personal attacks against the video creator,

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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criticism of depicted phenomena, or criticism/questioning of in-
dividuals/objects featured in the video. The third aspect focuses
on the controversy within comments, specifically looking for clear
opposing viewpoints expressed through support and opposition.
Figure 1 provides an example of a controversial video and a non-
controversial one. Figure 1(a) depicts a video showing a woman
pushing a baby in a stroller, displaying an apparent lack of experi-
ence in child care. The comments associated with the video express
suspicion and criticism towards the individual portrayed, evoking
intense emotions and indicating a certain level of controversy. On
the other hand, Figure 1(b) showcases a comedic video featuring a
Yiwu Mountain parrot, wherein the comments applaud the parrot’s
performance, conveying a more positive sentiment without any
controversial elements.

Existing approaches for detecting controversy on social media
have primarily focused on leveraging semantic and structural fea-
tures of target posts and their comments. However, there are three
critical concerns. First, they overlook the potential of utilizing visual
features available on social media platforms. Second, the current
models for controversy detection often underperform when con-
fronted with incomplete or missing text. Lastly, existing datasets
offer a limited number of instances and lack simultaneous informa-
tion on video, text, and user profiles [2, 31, 54].

To bridge this gap in multimodal controversy detection datasets,
we introduce Multimodal Controversy Detection Dataset (MMCD),
a large-scale dataset in Chinese that encompasses video content and
rich social context. The MMCD dataset offers abundant features,
providing an opportunity to evaluate various approaches for contro-
versy detection and facilitate a deeper understanding of controversy
dissemination and potential interventions. To comprehensively an-
alyze the characteristics of controversial videos, we conduct an
exploratory analysis of MMCD from multiple perspectives, offering
valuable insights into effective detection strategies.

Furthermore, to address the challenges associated with multi-
modal controversy detection, we propose Multi-view Controversy
Detection (MVCD) framework and conduct extensive experiments
to compare with existing methods on MMCD. Experimental results
validate the superiority of our proposed framework. Additionally,
ablation experiment results validate the effectiveness of each in-
dividual module and modality within the framework. Moreover,
early predictions indicate that our proposed framework is capable
of handling scenarios with limited availability of comments.

Our main contributions are summarized as follows:

• We have developed and released MMCD, a Multimodal Con-
troversy Dataset in Chinese, providing a valuable resource
for studying controversies. This dataset is derived from social
video platforms and includes a wide range of video content
accompanied by extensive social context.

• We have conducted a comprehensive analysis of the con-
structed dataset, providing insights and findings relevant to
further research.

• We have devised a multimodal controversy detection frame-
work, Multi-view Controversy Detection (MVCD), which
effectively models multimodal video content and captures
the interaction between social contexts, enhancing the accu-
racy of controversy detection.

• Extensive experiments using state-of-the-art methods have
been conducted on the MMCD, showcasing the effectiveness
of our proposed approach and shedding light on the inherent
challenges associated with multimodal controversy detec-
tion. To facilitate further research, we have made our work
publicly available, including the codebase1.

2 RELATEDWORK
2.1 Controversy Detection Datasets
Currently, controversial detection datasets focus primarily on the
textual modality. Table 1 provides a comprehensive overview of
available datasets, covering aspects such as feature, category, lan-
guage, accessibility, source, and time span information. These datasets
are largely derived from three primary sources: web pages, with
a particular focus on Wikipedia [17, 31]; news websites, such as
The Guardian2, EMOL3, and Toutiao4, which have contributed
valuable datasets in this domain [2, 30, 39]; and social media plat-
forms including Twitter, Weibo, Reddit, and others, which have
also served as substantial sources of controversy detection datasets
[9, 11, 13, 48, 54]. However, we identify a noteworthy gap in the
availability of datasets specifically tailored for social video plat-
forms. These play a crucial role in information dissemination and
are frequent generators of controversies [16, 21, 40]. Consequently,
we propose the collection of multimodal data as an effort to bridge
this gap and provide necessary resources for detecting controversies
in social videos.

2.2 Controversy Detection Techniques
Earlymethods for controversy detection primarily relied on statistic-
based approaches, which involved analyzing user edit history [47],
revision time [26], and context information [18, 49, 53]. Further-
more, some researchers incorporated textural features, such as con-
troversial vocabulary [14], sentiment [27, 32, 38], writing style [27],
and combination statistical features [22, 41]. Recently, the focus
gradually shifted towards end-to-end approaches without explicitly
relying on specific features [43, 48]. Notably, utilizing Graph Neural
Network (GNN) to capture structural relationships gained popu-
larity [4, 39]. These approaches mainly include modeling users’
relationship [5, 11], modeling the relationship between topics and
comments [3, 30, 54], and examining controversies through intro-
ducing entities and polarity [39], and so on. In addition, researchers
have also explored early comments to predict controversy [23].
More recently, with advancements in Pretrained Language Models,
they have gradually been employed in controversy detection and
other related tasks [7, 9, 46]. However, the aforementioned methods
for controversy detection are mostly limited to textual modality. To
the best of our knowledge, there have been no approaches devel-
oped for multimodal controversy detection thus far.

1Upon acceptance of this paper, the codebase will be made publicly available at https:
//anonymous.4open.science/r/MM_Controversy_Detection_Released-DE6A.
2https://www.theguardian.com
3https://www.emol.com/
4https://www.toutiao.com

https://anonymous.4open.science/r/MM_Controversy_Detection_Released-DE6A
https://anonymous.4open.science/r/MM_Controversy_Detection_Released-DE6A
https://www.theguardian.com
https://www.emol.com/
https://www.toutiao.com
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Table 1: Summary of controversy detection datasets. The term “metadata” refers to fundamental statistical indicators including
the number of likes, forwards, and comments.

Dataset
Feature

Category Language Accessibility Source Time SpanVideo Text Metadata Comment Profile

Dori et al. [17] - ✓ - - - Website English NOT-public Wikipedia -
Beelen et al. [2] - ✓ - - - News English NOT-public theguardian.com 2017.09-2017.11

Twitter Pages [11] - ✓ - - ✓ Social media English NOT-public Twitter -
Linmans et al. [31] - ✓ - - - Website English NOT-public Wikipedia 2018-2019
Hessel et al. [23] - ✓ - ✓ ✓ News English NOT-public Reddit 2007.01-2014.02
Zhong et al. [54] - ✓ - ✓ - Social media Chinese Partly-public Weibo 2017.07-2019.08

Mendoza et al. [39] - ✓ ✓ - ✓ News English NOT-public emol.com 2016.04-2019.04
De França et al. [13] - ✓ - - - Social media English Partly-public Twitter 2021.02-2021.04
Canute et al. [9] - ✓ - - - Social media English All-public Twitter 2020.01-2022.12
Li et al. [30] - ✓ - - - News Chinese All-public Toutiao 2019.03-2019.12
ProsCons [48] - ✓ - ✓ - Social media Chinese NOT-public Weibo 2021.03-2022.03
MMCD (ours) ✓ ✓ ✓ ✓ ✓ Social media Chinese All-public Douyin 2017.12-2023.12

3 THE MMCD DATASET
To fill the existing void of publicly available datasets, we introduce
the Multimodal Controversy Dataset (MMCD). This dataset com-
prises over 10,000 Chinese videos, each accompanied by a wealth
of social context information. Our intention in creating this dataset
is to offer researchers an invaluable resource for studying multi-
modal controversy detection. By providing MMCD, we enable the
development and evaluation of innovative approaches in this area
of research.

3.1 Data Collection
We collected raw videos from Douyin5, a popular Chinese social
video platform, known for its vast user base of millions of active
participants. To obtain a comprehensive set of controversial videos
and establish reliable ground truth labels for controversy, we manu-
ally formed a set of 139 keywords (listed in supplementary material)
based on the popular news rankings on Weibo. Leveraging these
query keywords, we searched for videos and crawled relevant con-
tent.

Our data collection primarily involves crawling for video content,
metadata, publishers’ profiles, and comments context. The video con-
tent category encompasses fundamental attributes including videos’
IDs, publication timestamps, descriptions, URLs, and lengths; meta-
data includes metrics including the number of likes, shares, and
comments; publishers’ profile contains relevant information about
the publisher, providing insights into their characteristics. Addi-
tionally, the comment category provides details regarding user
comments associated with the videos. Notably, the comments are
sorted by the Douyin platform, mostly considering factors such as
the comments’ popularity and timestamp, and we selected the Top
40 from them. To ensure data quality, we implemented a filtering
process to exclude aberrant unplayable videos. As a result, we col-
lected a total of 18,623 Chinese videos released between Dec. 2017
and Dec. 2023.

5https://www.douyin.com

3.2 Data Annotation
We implemented a meticulous manual annotation process. Dur-
ing the selection of annotators, we prioritize maximizing demo-
graphic diversity and including individuals from various cultural
backgrounds. Our group of 25 annotators consists of 2 Ph.D. stu-
dents, 3 graduate students, and 20 undergraduate students from 5
departments at our university. Among the annotators, 11 identified
as women and 14 as men, with ages ranging from 18 to 30.

Annotating multimodal data presents additional challenges com-
pared to annotating textual data, primarily due to the requirement
for annotators to watch lengthy videos. To address this challenge
and ensure consistent annotation quality across all videos, annota-
tors were provided with explicit instructions through a comprehen-
sive guideline prepared by us. These guidelines instruct annotators
to evaluate the level of controversy in three aspects: (1) the contro-
versy within the video itself, (2) the controversy between the video
and its comments, and (3) the controversy among the comments.
Based on these assessments, annotators classified each video as
either controversial or non-controversial. We developed a website
for the annotation process. To ensure reliability, each video was
annotated by three annotators. The annotation process resulted in
substantial consensus among the annotators, with a Kappa value
of 0.78 indicating significant agreement. Following the annotation
process, we obtained a dataset consisting of 5,643 controversial
videos and 11,164 non-controversial videos.

3.3 Data Analylsis
To gain insights into the distinctive characteristics of controver-
sial and non-controversial videos, we conducted an exploratory
analysis of the collected dataset from three perspectives: data distri-
bution, indicators statistics, and sentiment analysis. These analyses
aim to provide valuable insights into the underlying behaviors
and patterns associated with these two types of videos, thereby
contributing to controversy detection.

Data Distribution. The MMCD Dataset is categorized into 14
domains using DBpedia [1] and manual judgment (details in sup-
plementary materials). Figure 2 illustrates the distribution of data
across these different domains. It is observed that different domains
exhibited varying levels of controversy, resulting in an imbalanced

https://www.douyin.com
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Figure 2: Data distributions across different domains.

Table 2: Statistical analysis of videos on MMCD.

Data Type Contro. Video Non-Contro. Video

Length of video 87s 79s
#(Forwards) 8,480 5,245
#(Likes) 143,300 83,300
#(Comments) 13,900 12,700
#(Publishers’ Videos) 4,960 3,467
#(Publishers’ Likes) 162,450,000 141,170,000
#(Publishers’ Followers) 3,038,317 2,757,106

dataset. Among these domains, the “Life” exhibits the least degree
of controversy in its data distribution. This can be attributed to the
close connection between “Life” and everyday experiences, which
enables individuals to have a deeper understanding of this domain.
On the other hand, the “Traffic” domain exhibits the highest de-
gree of controversy in its data distribution. This can be primarily
attributed to the complex nature of traffic conditions, making it dif-
ficult to determine responsibility for accidents. Moreover, conflicts
arising from conflicting interests among different parties further
contribute to the elevated controversy surrounding this domain.

Indicators Statistics. We extensively analyzed various video
content indicators, as presented in Table 2. These indicators include
the average length of videos, the number of forwards, likes and
comments, as well as the number of videos & likes associated with
publishers. Based on the statistical findings, we observed the fol-
lowing patterns. First, regarding video length, it was observed that
controversial videos tend to be longer on average. This suggests
that controversial videos likely require more substantial content to
stimulate user discussions. Second, it was noted that controversial
videos garnered a higher number of forwards, likes, and comments
compared to non-controversial videos. This implies that contro-
versial videos have a greater propensity to attract attention and
engagement from viewers. Additionally, publishers of controversial
videos tend to have more videos, likes, and followers, which implies
that individuals who disseminate controversial content tend to be
more active.

Figure 3 depicts the distribution of video counts and correspond-
ing likes by publisher. An intriguing observation arises from the
graph, where the distribution of likes and video counts for publish-
ers of controversial videos exhibits a higher degree of scattering,

Figure 3: Comparison of likes and video counts among pub-
lishers. PoC refers to publishers of controversial videos,
while PoNC refers to publishers of non-controversial videos.

Good

FearfulAngry

Sad Shocked

DisgustedHappy

Contro. Video

Non-Contro. Video

Figure 4: Comparison of fine-grained emotions between con-
troversial and non-controversial videos.

suggesting diverse behavior among them. This observation may
suggest two potential explanations: 1) publishers with a low video
count but a high number of likes may represent specialized mar-
keting accounts that attract viewers with sensational content; 2)
publishers with a high video count but a low number of likes could
potentially be engaged in bot-like behavior, actively spreading con-
troversial videos.

Sentiment Analysis. We conducted sentiment analysis on the
textual data present in the crawled dataset, including video descrip-
tions, comments, and ASR text. To perform a fine-grained analysis,
we utilized the CNsenti tool [51], which covers seven emotion cat-
egories: good, happy, sad, angry, fearful, disgusted, and shocked.
Figure 4 illustrates the average scores of these fine-grained emo-
tions. Upon comparison, we observed that controversial videos
exhibited higher scores for emotions like “angry” and “disgusted”,
while non-controversial videos received higher scores for the emo-
tions of “good”, “happy”, and “shocked”.

4 METHOD
We propose the Multi-view Controversy Detection (MVCD) frame-
work, which integrates various modules for detecting controversial
videos. Figure 5 illustrates the architecture of MVCD, comprising
five components: (a) Multimodal Feature Extraction, which extracts
multimodal features by pre-trained models; (b) Modality Awareness
Learning (MAL), which integrates multiple features to learn the
overall controversial features of video content; (c) Contextual Graph
Learning (CGL), which models the relationship between videos and
comments. (d) Inconsistency Enhanced Learning (IEL), which focuses
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Figure 5: Architecture of Multi-view Controversy Detection (MVCD) framework.

on capturing the controversial inconsistency of comments; and (e)
Integration & Prediction, to concatenate the features generated by
the (b)-(d) modules and classify whether the input is controversial.

4.1 Problem Formulation
MVCD aims to detect whether a given video and its associated
content is controversial. Formally, let T denote an input sample
consisting of six elements: video keyframesV , descriptionD, com-
ments C, publisher profiles P, ASR text R, and ground truth label
𝑦. The length of these elements are representes as 𝑛𝑣 , 𝑛𝑑 , 𝑛𝑐 , 𝑛𝑝 ,
and 𝑛𝑟 , respectively. Our objective is to develop a multi-modal
controversy detection model F:

𝑦 = F (V,D, C,P,R |Θ) , (1)

where 𝑦 denotes the binary classification prediction result for a
given sample obtained by model F, and Θ represents the set of all
parameters associated with the model.

4.2 Multimodal Feature Extraction
To effectively capture the diverse characteristics present in various
modalities, we leverage a pretrained Chinese model CN-CLIP [52],
which is trained on large-scale image-text pairs.

Video. To extract frame-level features, we first utilize the ffmpeg
tool6 to extract keyframes from each video. These keyframes are
then passed through the image encoder. The resulting encoded
video representation is denoted as X𝑣 = [x𝑣1, ..., x

𝑣
𝑛𝑣
], where x𝑣

𝑖
∈

R𝑑𝑣 represents the feature vector extracted from the 𝑖-th keyframe,
𝑛𝑣 signifies the total number of keyframes in the video, and 𝑑𝑣
denotes the dimension of the image encoded by Vision Transformer
(ViT) [19] in CN-CLIP.

Text.We employ RoBERTa [33] for text feature extraction in CN-
CLIP. The features extracted from the text elements (description,
publisher’s profile, ASR text) are represented as x𝑑 , x𝑝 , x𝑟 ∈ R𝑑𝑡 ,
where 𝑑𝑡 represents the dimension of the encoded text sequences.
Specifically, for publisher profiles, we concatenate attributes such

6https://git.ffmpeg.org/ffmpeg.git

as nickname, personal introduction, verification information, the
number of videos and likes. As for comments, The features are
represented as X𝑐 = [x𝑐1, ..., x

𝑐
𝑛𝑐
], where x𝑐

𝑖
∈ R𝑑𝑡 represents the

feature vector of the 𝑖-th comment within X𝑐 , and 𝑛𝑐 denotes the
total number of comments.

4.3 Modality Awareness Learning
Features extracted from video keyframes, descriptions, publish-
ers’ profiles, and ASR text are passed through individual Fully
Connected layers (FC) to align multimodal features. These aligned
features are then concatenated and input into a single Transformer
Layer (TL) to capture temporal information. The calculations in-
volved in this process are as follows:

H𝑚𝑜𝑑 = 𝜎

(
W𝑚𝑜𝑑X

𝑚𝑜𝑑 + b𝑚𝑜𝑑

)
,𝑚𝑜𝑑 ∈ {𝑣, 𝑑, 𝑝, 𝑟 }, (2)

H𝑜 = TL
(
Concat

(
[H𝑣,H𝑑 ,H𝑝 ,H𝑟 ]

) )
, (3)

where W𝑣 , W𝑑 , W𝑝 , and W𝑟 denote the weight parameters, while
b𝑣 , b𝑑 , b𝑝 , and b𝑟 represent the corresponding bias parameters.

Considering the diverse impacts of different modalities on the
perception of varied audiences, it is imperative to tackle the chal-
lenges arising from inconsistent and insufficient attention given
to these modalities. To overcome these challenges, we utilize the
Mixture of Expert (MoE) architecture [44] to enhance the overall
modeling performance. The MoE layer consists of a set of𝑚 expert
networks denoted as E(·), along with a gating network referred to
as G(·). The output featureH𝑜 from the previous step is fed into the
gating network G(·) and expert network E(·) to gain the output:

G(H𝑜 ) = Softmax (KeepTopK(W𝑚𝑜𝑒H𝑜 , 𝑘)) , (4)

Z1 =
𝑚∑︁
𝑞=1

G(Ho)𝑞 E𝑞 (Ho), (5)

where W𝑚𝑜𝑒 denotes learnable parameters, KeepTopK [44] is a
function to select Top 𝑘 highest gate values given input feature H𝑜 ,
and 𝑞 denotes the ordinal position of the expert network.

https://git.ffmpeg.org/ffmpeg.git
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4.4 Contextual Graph Learning
To effectively capture the controversy present between videos and
comments, we employ the Graph Convolutional Network (GCN)
[25] to capture the semantic and structural relationships that exist
between these two modalities. The comments feature X𝑐 is aligned
with X𝑣 to establish a unified feature:

H𝑐 = 𝜎
(
W𝑐X𝑐 + b𝑐

)
, (6)

whereW𝑐 denotes the weight parameter, and b𝑐 represents the bias
parameter. We then construct a Video-Context graph denoted as
G = (V, E) for each video, where the set of nodes V consist of
features of video or comment, and an edge exists between a video
and its corresponding comments when the comment is associated
with that specific video.

The initial representations of the nodes can be defined as:

V(0) = [v1, ..., v1+𝑛𝑐 ] = [H𝑣,H𝑐 ] . (7)

During the message-passing process, each node updates its rep-
resentation based on the aggregated information obtained from its
neighboring nodes and its features. This allows the learned repre-
sentation to encompass valuable insights from both the content
and structure of the graph. Specifically, for a given node v𝑖 ∈ V(0) ,
the update rule can be expressed as:

v(𝑙+1)
𝑖

= 𝜎
©«
∑︁
𝑗∈N𝑖

g
(
v(𝑙 )
𝑖

, v(𝑙 )
𝑗

)
+ b(𝑙 )ª®¬ , (8)

where v(𝑙 )
𝑖

represents the hidden state of node 𝑣𝑖 in the 𝑙-th layer of
GCN,𝜎 denotes the Rectified Linear Unit (ReLU) activation function,
N𝑖 denotes the neighbors of node 𝑣𝑖 (including the node itself), g(·)
is the aggregation function, and b(𝑙 ) represents the bias term.

At the layer level, we use the embedding vectors V(0) as input to
a two-layer GCN, resulting in a condensed representation denoted
asV(2) . Incomingmessages from the neighbor setN𝑖 are aggregated
by g(·), which is implemented as a linear function. Thus, for the
𝑙-th layer, the propagation rule is given by:

V(𝑙+1) = 𝜎

(
ÂV(𝑙 )W(𝑙 ) + b(𝑙 )

)
, (9)

where V(𝑙 ) contains all node vectors in the 𝑙-th layer, Â is the
normalized adjacency matrix,W(𝑙 ) is the weight matrix.

At last, we employ MaxPooling to extract the most significant
features for subsequent calculations:

Z2 = MaxPooling
(
V(2)

)
. (10)

4.5 Inconsistency Enhanced Learning
Given the intrinsic inconsistencies observed in controversial com-
ments, which often include discrepancies in content and sentiment,
we propose utilizing an affective matrix and semantic attention
matrix [35] to capture and model these inconsistencies.

Context Affective Computing. To capture and analyze the
affective inconsistencies in comments, we construct an affective
matrix A ∈ 𝑅𝑛𝑐∗𝑛𝑐 based on a set of comments C = {𝑐1, 𝑐2, ..., 𝑐𝑛𝑐 }.
Each element 𝑎𝑖, 𝑗 in A is computed by:

𝑎𝑖, 𝑗 =
��𝑢 (𝑐𝑖 ) − 𝑢

(
𝑐 𝑗
) �� , (11)

where 𝑢 (𝑐𝑖 ) denotes the affective score of comment 𝑐𝑖 calculated
using an external sentiment dictionary SenticNet [8], and | · | rep-
resents the absolute value calculation.

By employing this approach, the weight of the corresponding
edge increases in proportion to the magnitude of sentiment reversal
between every two comments, allowing significant attention to be
directed towards comments that exhibit opposing sentiments.

Context Semantic Computing. We compute the semantic
attention matrix T to measure the semantic inconsistency between
comments. Specifically, for each pair of comment features (x𝑐

𝑖
, x𝑐

𝑗
),

𝑖, 𝑗 ∈ (1, 2, ..., 𝑛𝑐 ), the attention score 𝑡𝑖, 𝑗 is calculated as:

𝑡𝑖, 𝑗 = 𝜎 (x𝑐𝑖W𝑖, 𝑗 )𝜎 (x𝑐𝑗W𝑖, 𝑗 )𝑇 , (12)

whereW𝑖, 𝑗 is a trainable parameter matrix, and (·)𝑇 signifies matrix
transposition.

Fusion & Enhanced.We incorporate the learned affective fea-
tures A and semantic attention features T for a more expressive
representation:

T𝑎 = 𝛼A + (1 − 𝛼)T, (13)
where 𝛼 ∈ R is the hyperparameter. In order to comprehensively
analyze the comment features X𝑐 = [x𝑐1, ..., x

𝑐
𝑛𝑐
] we employ a Bidi-

rectional Long Short-Term Memory (BiLSTM) model to capture
contextual information C = [c1, ..., c𝑛𝑐 ]:

C = BiLSTM
(
X𝑐 ) . (14)

To simultaneously consider these two inconsistencies, we employ
the inner product operation to obtain the output:

O = T𝑎 (CW𝑎), (15)

where W𝑎 is the weight matrix. Subsequently, the MaxPooling
function is applied to derive the final output Z3:

Z3 = MaxPooling (O) . (16)

4.6 Integration & Prediction
To obtain the final integration outputs from the three modules, we
concatenate Z1, Z2, Z3, and pass them through a constructed clas-
sifier to obtain the final outputs. The classifier consists of a stacked
architecture with two fully connected layers comprising layer nor-
malization, ReLU, and dropout. The final probability distributions
are calculated by:

Z𝑜 = Concat ( [Z1,Z2,Z3]) , (17)

p = 𝜎

(
LN

(
W

′
𝑜Z𝑜 + b

′
𝑜

))
W𝑜 + b𝑜 , (18)

where W𝑜 , W
′
𝑜 , b𝑜 and b

′
𝑜 are model parameters, and LN means

Layer Normalization function. The probability matrix p comprises
𝑝0 and 𝑝1, representing the predicted probability for the label being
0 (non-controversy) and 1 (controversy), respectively. Ultimately,
the predicted label 𝑦 is defined as:

𝑦 = argmax ( [𝑝0, 𝑝1]) . (19)

To train the whole framework, we combine three loss functions.
First, we use the cross-entropy loss function to measure dissimilar-
ity between predicted probabilities and ground truth labels. Given
that 𝑦 ∈ {0, 1} denotes the ground truth label, the loss function is
calculated as:

L𝑐𝑒 = −[(1 − 𝑦) log𝑝0 + 𝑦 log 𝑝1] . (20)



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

A Chinese Multimodal Social Video Dataset for Controversy Detection ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Additionally, we employ a balancing loss for the MoE layer to
ensure fair load and importance among experts. The calculation is
as follows:

L𝑚𝑜𝑒 = 𝑤𝑖𝑚𝑝 CV (G(H𝑜 ))2 +𝑤𝑙𝑑 CV (P(H𝑜 ))2 , (21)

where CV denotes the coefficient of variation, P(·) is the smooth
function described by [44], and the hyperparameters𝑤𝑖𝑚𝑝 and𝑤𝑙𝑑

are used to balance expert importance and load. Furthermore, we
add a regularization loss to improve the quality of learned semantic
information:

L𝑟𝑒𝑔 = 𝑤𝑠𝑝𝑎 ∥T∥2𝐹 , (22)
where | | · | |𝐹 is the Frobenius norm of a matrix, and 𝑤𝑠𝑝𝑎 is the
sparsity hyperparameter.

Finally, we sum up the three loss functions to obtain the ultimate
loss function:

L = L𝑐𝑒 + L𝑚𝑜𝑒 + L𝑟𝑒𝑔 . (23)

5 EXPERIMENTS
We conducted experiments to address the following research ques-
tions:

• RQ1: Is our proposed MVCD framework more effective than
traditional and state-of-the-art baselines?

• RQ2: Does our proposed model effectively utilize multi-
modal information, and do the individual modules within
the model provide substantial contributions?

• RQ3: Does the model demonstrate effectiveness in scenarios
with limited availability of comments?

5.1 Baselines
We establish a comprehensive benchmark for controversy detection
by conducting experiments using multiple representative methods
as baselines, including uni-modal and multi-modal models.

Uni-modal. Due to the predominant focus of previous research
on textual modalities, our experiments include several uni-modal
baselines, particularly those based on text modality. We utilize
BERT [15] and RoBERTa [33] as representative baselines for pre-
trained language models. For the pretrained image model, we em-
ploy ViT [19]. In addition, we incorporate representative models
such as TPC-GCN [54] and DTPC-GCN [54] as baselines in the con-
troversy detection task. Furthermore, we use foundation models
known for their state-of-the-art capabilities across various down-
stream tasks, including ChatGLM3-6B [20] and GPT3.5 [6].

Multi-modal. Since multimodal approaches are not yet widely
used in controversy detection, we select related multimodal tasks
such as fake detection and social bot detection. For the fake de-
tection task, we consider two representative models: MCAN [50]
and SVFEND [42]. For the social bot detection task, we include Bot-
MoE [34] as a baseline model. Furthermore, we employ state-of-the-
art foundation models including VideoChat [29], ChatGLM4 [20]
and GPT4 [6] for comparison.

5.2 Experimental Settings
Data Preprocessing. To ensure sample balance, we select an
equal number of controversial and non-controversial videos from
the annotated dataset, resulting in 5,632 videos each. The dataset
is divided into training, validation, and test sets using an 8:1:1

ratio. Data preprocessing includes removing hashtags from video
descriptions and eliminating stopwords such asmentions (@person)
from comments. As for audio, we utilize the Baidu API7 to perform
Automatic Speech Recognition to obtain text.

Implementation Details. In our experiments, we employ CN-
CLIP [52] to generate image and text embeddings with a fixed vector
size of 1024. The Adam [24] optimizer is used to optimize parame-
ters with a learning rate set to 1e-4. The classification dimension is
set to 128, and the batch size is set to 128. Training extends for 100
epochs, incorporating early stopping if the validation score does
not improve for 10 consecutive epochs. For VideoChat, we employ
the gpt-3.5-turbo-16k model for language generation, setting the
frame sampling frequency parameter to 4. In the case of GPT3.5
and GPT4V, the temperature is set to 0.7. More details regarding
the prompts used in the foundation models are presented in the
supplementary materials.

5.3 Experimental Results (RQ1)
Table 3 shows the quantitative results of the evaluation. The exper-
iment results indicate the following observations: MVCD demon-
strates superior performance compared to other approaches, val-
idating its effectiveness in capturing important multimodal clues
for detecting controversial videos.

Surprisingly, the performance of foundation models (GPT3.5,
VideoChat, ChatGLM4, and GPT4V) is not ideal, both in uni-modal
and multimodal scenarios. This could be attributed to the lack of
appropriate training datasets for multimodal controversy detec-
tion, which may prevent large models from fully learning diverse
controversial scenarios.

Regarding SVFEND, which incorporates audio data during the
training process, a notable performance disparity is observed when
compared to all baselines, except for the foundation models. Re-
markably, we observed that the training accuracy of SVFEND
achieves an exceptional value of 0.99, without a corresponding
proportional increase in testing accuracy. Once we eliminated the
audio features from the model, we observed a more reasonable
trend in training accuracy, accompanied by an improvement in
testing. These findings lead us to speculate that including the au-
dio modality during training may result in overfitting, leading to
suboptimal performance in the outcomes.

5.4 Ablation Study (RQ2)
We conduct a series of ablation experiments to evaluate the im-
portance of each modality and module in detecting controversial
videos. The results, as shown in Table 4, indicate that all modules
perform well in the multimodal controversy detection task. Notably,
when combined as a full model (MVCD), it achieves the highest
accuracy of 72.62%. The CGL module exhibits slightly superior
performance compared to the others, highlighting the importance
of modeling the relationships between videos and comments. Fur-
thermore, considering the involvement of multiple modalities in
multimodal controversy detection, we performed ablation experi-
ments on various data features. The experimental results indicate
that each data feature plays a role, with notable contributions from
profile and video features.
7https://vop.baidu.com/server_api

https://vop.baidu.com/server_api
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Table 3: Performance (%) comparison among different methods on MMCD in terms of F1-score, recall, precision, and accuracy.

Modality Video Audio
Text

Method F1-score Recall Precision AccuracyD† C P R K

Uni-modal

- - ✓ ✓ ✓ - - BERT [15] 61.57 63.96 68.57 63.96
- - ✓ ✓ ✓ - - RoBerta [33] 65.54 66.52 68.64 66.52
✓ - - - - - - ViT [19] 64.34 64.84 65.72 64.84
- - ✓ ✓ - - ✓ TPC-GCN [54] 66.84 67.58 69.30 67.58
- - ✓ ✓ - - ✓ DTPC-GCN [54] 67.14 67.14 67.14 67.14
- - ✓ ✓ ✓ ✓ - ChatGLM3 [20] 44.22 48.46 47.67 49.66
- - ✓ ✓ ✓ - - GPT3.5 [6] 36.86 50.44 53.16 50.44

Multi-modal

✓ - ✓ ✓ ✓ - - MCAN [50] 65.09 65.46 66.15 65.46
✓ - ✓ ✓ ✓ - - BotMOE [34] 67.27 67.31 67.40 67.31
✓ ✓ ✓ ✓ ✓ - - SVFEND [42] 57.33 58.66 59.89 58.66
✓ - ✓ ✓ ✓ ✓ - VideoChat [29] 47.58 50.09 50.11 50.09
✓ - ✓ ✓ ✓ ✓ - ChatGLM4 [20] 38.15 49.51 48.39 48.04
✓ - ✓ ✓ ✓ ✓ - GPT4V [6] 58.10 61.06 65.10 60.79
✓ - ✓ ✓ ✓ ✓ - MVCD (ours) 72.46 72.62 73.15 72.62

† Data formats are abbreviated for simplicity (D: Description, C: Comment, P: Profile, R: ASR Text, K: Keyword).

Table 4: Experimental results of ablation study.

Category Method F1 Rec. Prec. Acc.

Feature

w/o V† 68.91 68.99 69.19 68.99
w/o D 71.46 71.47 71.48 71.47
w/o C 69.75 69.79 69.89 69.79
w/o P 68.04 68.20 68.57 68.20
w/o R 70.84 71.03 71.57 71.03

Module

MAL-only 69.75 69.79 69.89 69.79
CGL only 69.94 70.14 70.69 70.14
IEL only 69.16 69.17 69.20 69.17
w/o MoE 70.03 70.05 70.12 70.05

Full Model MVCD (ours) 72.46 72.62 73.15 72.62
† Data formats are abbreviated for simplicity (D: Description, C: Comment, P: Profile,
R: ASR Text, V: Video keyframe).

Table 5: Experimental results of early prediction.

Time Method F1-score Recall Precision Accuracy

0h
MVCD 67.91 67.93 67.99 67.99

CGL & IEL 50.49 50.62 50.63 50.62

<1h
MVCD 67.71 67.76 67.86 67.76

CGL & IEL 50.75 50.88 50.89 50.88

<2h
MVCD 68.46 68.46 68.46 68.46

CGL & IEL 66.52 66.61 66.78 66.61

<3h
MVCD 68.29 68.29 68.29 68.29

CGL & IEL 65.69 65.72 65.78 65.72

<4h
MVCD 69.24 69.26 69.31 69.26

CGL & IEL 64.79 64.84 64.92 64.84

<5h
MVCD 70.41 70.41 70.41 70.41

CGL & IEL 65.16 65.19 65.26 65.19

5.5 Early Prediction (RQ3)
During the initial stages of video publication, despite limited interac-
tion and comments, detecting controversies is crucial for enhancing
content quality and fostering audience engagement. To assess the
model’s performance under such circumstances, we evaluate its ef-
fectiveness using comments posted within 5 hours after the video is
released. We compare two models: the joint model (CGL & IEL) that
incorporates Contextual Graph Learning (CGL) and Inconsistency
Enhanced Learning (IEL) with comments playing a pivotal role,
and the full model MVCD. The experimental results are presented
in Table 5. The joint model (CGL & IEL) achieves relatively low
accuracy rates of 50.62% and 50.88% within 0 and 1 hour, respec-
tively. However, the full model MVCD, aided by the VGI module
that effectively utilizes video content for prediction, yields more
effective results and mitigates the significant drop in performance.
This suggests that multimodal content plays a significant role in
situations where comments are limited.

6 CONCLUSION AND OUTLOOKS
In this work, we released a comprehensive Multimodal Controversy
Dataset (MMCD) in Chinese. To gain a thorough understanding
of the characteristics exhibited by controversial videos, we have
conducted an exploratory analysis of MMCD. Additionally, to facil-
itate further research in this field, we have proposed a Multi-view
Controversy Detection framework, which effectively captures con-
troversies presented within the video content itself, as well as those
arising from the interaction between the video and its associated
comments, or among the comments themselves. Extensive experi-
ments showed the effectiveness of the proposed framework.

Future research should explore integrating summarized view-
points in videos or comments for valuable controversy detection.
Detecting support and opposition in viewpoints is crucial for contro-
versy detection. Emphasizing ethical implications and explainability
of model predictions is essential, especially in sensitive contexts.
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