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Abstract

With the rapid growth in language processing001
applications, fairness has emerged as an impor-002
tant consideration in data-driven solutions. Al-003
though various fairness definitions have been004
explored in the recent literature, there is lack005
of consensus on which metrics most accu-006
rately reflect the fairness of a system. In this007
work, we propose a new formulation – ACCU-008
MULATED PREDICTION SENSITIVITY, which009
measures fairness in machine learning models010
based on the model’s prediction sensitivity to011
perturbations in input features. The metric at-012
tempts to quantify the extent to which a sin-013
gle prediction depends on a protected attribute,014
where the protected attribute encodes the mem-015
bership status of an individual in a protected016
group. We show that the metric can be theo-017
retically linked with a specific notion of group018
fairness (statistical parity) and individual fair-019
ness. It also correlates well with humans’ per-020
ception of fairness. We conduct experiments021
on two text classification datasets – JIGSAW022
TOXICITY, and BIAS IN BIOS, and evaluate023
the correlations between metrics and manual024
annotations on whether the model produced a025
fair outcome. We observe that the proposed026
fairness metric based on prediction sensitiv-027
ity is statistically significantly more correlated028
with human annotation than the existing coun-029
terfactual fairness metric.030

1 Introduction031

Ongoing research is increasingly emphasizing032

the development of methods which detect and miti-033

gate unfair social bias present in machine learning-034

based language processing models. These methods035

come under the umbrella of algorithmic fairness036

which has been quantitatively expressed with nu-037

merous definitions (Mehrabi et al., 2019b; Jacobs038

and Wallach, 2021). These fairness definitions are039

broadly categorized into two types, i.e, individual040

fairness and group fairness. Individual fairness041

(e.g., counter-factual fairness (Kusner et al., 2017))042

is aimed at evaluating whether a model gives simi- 043

lar predictions for individuals with similar personal 044

attributes (e.g., age or race). On the other hand, 045

group fairness (e.g., statistical parity (Dwork et al., 046

2012)) evaluates fairness across cohorts with same 047

protected attributes instead of individuals (Mehrabi 048

et al., 2019b). Although these two broad categories 049

of fairness define valid notions of fairness, hu- 050

man understanding of fairness is also used to mea- 051

sure fairness in machine learning models (Dhamala 052

et al., 2021). Existing studies often consider only 053

one or two these verticals of measuring fairness. 054

In our work, we propose a formulation based on 055

models sensitivity to input features – the accumu- 056

lated prediction sensitivity, to measure fairness of 057

model predictions. We establish its theoretical rela- 058

tionship with statistical parity (group fairness) and 059

individual fairness (Dwork et al., 2012) metrics. 060

We then demonstrate the correlation between the 061

proposed metric and human perception of fairness 062

using empirical experiments. 063

Researchers have proposed metrics to quantify 064

fairness based on a model’s sensitivity to input 065

features. Specifically, Maughan and Near (2020); 066

Ngong et al. (2020) propose a prediction sensitiv- 067

ity metric that attempts to quantify the extent to 068

which a single prediction depends on a protected 069

attribute. The protected attribute encodes the mem- 070

bership status of an individual in a protected group. 071

Prediction sensitivity can be seen as a form of fea- 072

ture attribution, but specialized to the protected 073

attribute. In our work, we extend their concept of 074

prediction sensitivity to propose accumulated pre- 075

diction sensitivity. Akin to the metric proposed by 076

(Maughan and Near, 2020; Ngong et al., 2020), our 077

metric also relies on model output’s sensitivity to 078

changes in input features. Our metric generalizes 079

their notion of sensitivity, where the model sen- 080

sitivity to various input features can be weighted 081

non-uniformly. We show that the formulation fol- 082

lows certain properties for the chosen definitions 083
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of group and individual fairness and also present084

several methodologies to select weights assigned to085

sensitivity of model’s output to input features. For086

each selection, we present the correlation between087

the accumulated prediction sensitivity and human088

assessment of the model-output fairness.089

We define our metric in Section 3 and present090

bounds on it (under settings when a classifier fol-091

lows the selected group fairness or individual fair-092

ness constraints) in Sections 4 and 5, respectively.093

Next, given that the human perception of fairness094

is not theoretically defined, we present an empir-095

ical study on two text classification tasks in Sec-096

tion 6. We request a group of annotators to anno-097

tate whether they think that model output is biased098

against a specific gender and observe that the pro-099

posed metric correlates positively with more biased100

outcomes. We then observe correlations between101

our metric and the stated human understanding of102

fairness. We find that not only the proposed ac-103

cumulated prediction sensitivity metric correlates104

positively with human perception of bias, but also105

beats an existing baseline based on counterfactual106

fairness.107

2 Related Work108

Multiple efforts have looked into defining, mea-109

suring, and mitigating biases in NLP models (Sun110

et al., 2019; Mehrabi et al., 2019a; Sheng et al.,111

2021). Dwork et al. (2012) and Kusner et al. (2017)112

focus on individual fairness and propose novel clas-113

sification approaches to ensure that a classification114

decision is fair towards an individual. Another set115

of works focus on group fairness. Corbett-Davies116

et al. (2017) present fair classification to ensure117

population from different race groups receive simi-118

lar treatment. Hardt et al. (2016) focus on shifting119

the cost of incorrect classification from disadvan-120

taged groups. Zhao and Chang (2020) measure121

group fairness in local regions. Finally, Kearns122

et al. (2019) combine the best properties of the123

group and individual notions of fairness.124

Multiple recent works also focus on developing125

new dataset and associated metrics to capture var-126

ious types of biases. For example, Dhamala et al.127

(2021) and Nangia et al. (2020) propose dataset128

and metrics to measure social biases and stereo-129

types in language model generations, Bolukbasi130

et al. (2016); Caliskan et al. (2017); Manzini et al.131

(2019) define metrics to access gender and race132

biases in word vector representations, and Wang133

et al. (2019) define metrics to quantify and miti- 134

gate biases in visual recognition task. Ethayarajh 135

(2020) propose Bernstein bounds to represent un- 136

certainty about the bias. Majority of these bias 137

metrics are automatically computed, for example, 138

using a regard classifier (Sheng et al., 2019), sen- 139

timent classifier (Dhamala et al., 2021), toxicity 140

classifier (Dixon et al., 2018) or true positive rate 141

difference between privileged and underprivileged 142

groups (De-Arteaga et al., 2019b). A few works 143

additionally validate the alignment of these auto- 144

matically computed bias metrics with human un- 145

derstanding of biases by collecting annotations 146

of biases on a subset of test data from crowd- 147

workers (Sheng et al., 2019; Dhamala et al., 2021). 148

Blodgett et al. (2021, 2020) discuss the limitations 149

of several of these bias datasets and measurements. 150

However, the majority of existing bias metrics 151

are specific to the model type and the application 152

domain used, they may not be tested for correlation 153

with human judgement of biases, and their relation- 154

ship to existing definitions of fairness has not been 155

explored. Additionally, metrics such as true pos- 156

itive or error difference between groups requires 157

ground truth labels, thereby making their compu- 158

tation in real-time systems difficult. Speicher et al. 159

(2018) have attempted to present unified approach 160

to measuring group and individual fairness via in- 161

equality indices, however we note that such metrics 162

are non-trivial to extend to unstructured data such 163

as text. For example, gender information in a text 164

may be subtle (e.g. mention of softball) and it is 165

unclear whether presence of this word should be 166

considered to impact the genderness of the text. Ac- 167

cumulated prediction sensitivity metric, presented 168

in this paper, attempts to address all the above limi- 169

tations of existing bias metrics. We acknowledge 170

that the proposed metric is yet to be associated with 171

other notions of fairness (e.g. preference based no- 172

tion of fairness (Zafar et al., 2017)). 173

3 Accumulated Prediction Sensitivity 174

Below, we define accumulated prediction sen- 175

sitivity, a metric that capture the sensitivity of a 176

model to protected attributes. 177

Definition 1 (Accumulated Prediction sensitivity). 178

Let x ∈ X be a feature vector drawn from the 179

input space X . Let w,v be stochastic vectors 180

whose entries are non-negative values that sum to 181

one. Given x, let f be a K-class classifier, such 182

that f(x) = [f1(x), .., fk(x), .., fK(x)] denotes 183
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the K-dimensional probability output generated by184

the classifier. We define accumulated prediction185

sensitivity P as:186

P = wTJv; where J(k, i) =

∣∣∣∣∂fk(x)

∂xi

∣∣∣∣ . (1)187

J is a matrix1 such that the (k, i)th entry is188 ∣∣∣∂fk(x)
∂xi

∣∣∣, where xi is the ith entry in x. The product189

wTJ sums the absolute derivatives |∂fk(x)
∂xi
| across190

fk, k = 1, ..,K and returns a vector of summed191

derivatives with respect to each xi ∈ x. The prod-192

uct of v withwTJ further averages the derivatives193

across all the features xi ∈ x to yield the scalar P .194

The value ∂fk(x)
∂xi

captures the expected change195

in model output for the kth class given a perturba-196

tion in xi. If xi is a protected feature, arguably a197

smaller value of ∂fk(x)
∂xi

implies a fairer model; as198

then the model’s outcome does not change sharply199

with changes in xi. To capture the sensitivity of the200

model with respect to the protected features, one201

also needs to choose v judiciously. For example,202

given the explicit set of protected features in x, one203

can select v such that only entries corresponding to204

those features are assigned a non-zero value, while205

the rest are set to zero. Given this heuristic, we206

expect the value P to be smaller for fairer models.207

In the following sections, we connect the accumu-208

lated prediction sensitivity to two known notions209

of fairness and human perception of fairness.210

4 Relation to Group Fairness: Statistical211

Parity212

Given a set of protected features (e.g. gender), a213

model satisfies statistical parity if model outcome214

is independent of the protected features (we note215

that identifying protected features may not always216

be feasible in the real world). We represent the217

feature vector x = [xp,xl], where xp is the set218

of protected features and xl is the remainder. Ac-219

cordingly, we choose v to be a vector such that the220

entries that sum |∂fk(xp)
∂xi

|∀xp ∈ xp in J are non-221

zero; and zero otherwise. This choice is intuitive as222

then we sum the gradients in J that correspond to223

protected features and measure model’s sensitivity224

to them. The predictor f(x) will satisfy statistical225

parity if f(xp,xl) = f(x′
p,xl)∀xp 6= x′

p. Given226

this, we state the following theorem.227

1Note that we use the following notation scheme in this
paper – bold capital letters for matrices, bold small letters for
vectors and un-bolded letters for scalars.

Theorem 1. Given a vector v with non-zero entries 228

corresponding to xp and zero entries for xl, if 229

the predictor f(x) satisfies statistical parity with 230

respect to xp, accumulated prediction sensitivity 231

will be zero. 232

Proof: If f(x) satisfies statistical parity with 233

respect toxp, the values ∂fk(x)
∂xp
∀xp ∈ xp will be all 234

zeros. This is due to the fact that the function fk(x) 235

can not be defined based on entries xp ∈ xp for 236

it to be independent of them. Therefore, for every 237

multiplication in the product Jv, either the entry 238
∂fk(x)
∂xp

will be 0 or the entry in v corresponding to 239

xl will be 0. Hence, P will be 0. 240

Appendix A presents empirical results in com- 241

puting P on a synthetic dataset. We construct a 242

dataset where a feature (hair length) correlates with 243

a protected attribute (gender). We show that if the 244

modeler unintentionally uses the correlated feature 245

while attempting to build a classifier with statistical 246

parity, our metric can be used for evaluation. 247

5 Relation to Individual Fairness 248

Dwork et al. (2012) state the notion of indi- 249

vidual based fairness as: "We interpret the goal 250

of mapping similar people similarly to mean 251

that the distributions assigned to similar people 252

are similar". They propose adding a Lipschitz 253

property constraint during the classifier optimiza- 254

tion. Given a loss function L defined to opti- 255

mize the parameters θ of the classifier f(x), a 256

distance function d(x,x′) that computes distance 257

between data-points x,x′, another distance func- 258

tion D(f(x)),f(x′)) that computes distance be- 259

tween classifier predictions on x,x′ and a constant 260

L, Dwork et al. (2012) propose the following con- 261

strained optimization. 262

min
θ
L; such that

D(f(x)),f(x′)) < Ld(x,x′);∀x,x′ ∈X.
(2) 263

It is natural to choose an Lp norm (Bourbaki, 264

1987) for d and D. For a classifier f that is trained 265

with the above constrained optimization and the 266

choice of distance metrics D, d is an Lp norm, we 267

state the following. 268

Theorem 2. If the predictor f(x) is trained with 269

the constrained optimization stated in Eq. (2), the 270

accumulated prediction sensitivity will be upper 271

bounded by L. 272

Proof: We restate the constraint in Eq. (2) as 273

(Note that the inequality sign does not change as 274
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distance metricsD, d are required to be positive for275

x 6= x′)276

∀x 6= x′, L >
D(f(x),f(x′))

d(x,x′)
. (3)277

Given the inequality holds for any pair of x,x′,278

it must also hold for an x′ of the following choice.279

x′ = x + [0, 0,∆xi, 0, 0], where ∆xi is a scalar280

perturbation in the ith entry in x. For a chosen Lp281

norm, Eq (3) becomes282

L >
[
∑K

k=1 |fk(x)− fk(x′)|p]
1
p

|∆xi|
283

>
[|fk(x)− fk(x′)|p]

1
p

|∆xi|
. (4)284

Since each entry |fk(x)− fk(x′)|p, k = 1, ..K285

is expected to be non-zero and zeroing out all such286

entries (but one) will yield a lower value than the287

summation
∑K

k=1 |fk(x) − fk(x′)|p. We can re-288

write Eq. (4) as:289

|fk(x)− fk(x+ [0, 0,∆xi, 0, 0])|
|∆xi|

.290

We can further chose ∆xi such that it is small291

perturbation, leading to the following.292

L > lim
∆xi→0

|fk(x)− fk(x+ [0, 0,∆xi, 0, 0])|
|∆xi|

=
∣∣∣∂fk(x)

∂xi

∣∣∣.293

Therefore, each entry in J is upper bounded by294

L. As vectors v,w are stochastic and they com-295

pute weighted averages of bounded entries in J , P296

(defined in Eq. (1)) must be less than or equal to L.297

We also note that as L becomes larger, the con-298

straint in the Eq. (2) becomes looser. Therefore, a299

higher value of L during optimization is expected300

to loosen the fairness constraint as well as the301

bound on fairness sensitivity. This aligns with our302

intuition of lower values of P for fairer models. We303

compute value of L on a synthetically generated304

classification data, optimized with the individual305

fairness constraint in equation 2. The results are306

presented in Appendix B.307

6 Correlations with Human Perception308

of Fairness309

While the conditional statistical parity and in-310

dividual fairness establish theoretical constraints311

on the model behaviour (e.g. independence from 312

protected features and similarity in prediction out- 313

comes for similar data-points), humans may carry a 314

different notion of fairness for model outcomes on 315

individual data-points. This notion may be based 316

on their understanding of cultural norms, which 317

in turn effect their decisions in identifying which 318

model outputs could be considered biased. In this 319

section, we present experiments that correlate ac- 320

cumulated prediction sensitivity with human per- 321

ception of fairness. 322

6.1 Human Perception of Fairness 323

Given a data-point x and model prediction f(x), 324

we assign one of the K classes to the data-point. In 325

order to evaluate the human perception of fairness 326

on the data-point, we request a group of annotators 327

to evaluate the model prediction (taken as the arg- 328

max of the model output) and assess whether they 329

believe the output is biased. For instance, given the 330

social/cultural norms, a profession classifier assign- 331

ing a data-point “she worked in a hospital” to nurse 332

instead of doctor can be perceived as biased. To 333

correlate the accumulated prediction sensitivity P 334

with the human understanding of fairness, we con- 335

duct experiments on two text classification datasets. 336

We describe the datasets below, followed by our 337

choices for w and v. 338

6.2 Datasets 339

We experiment with our proposed metric on two 340

classification tasks, i.e, occupation classification 341

on Bias in Bios dataset (De-Arteaga et al., 2019a)2 342

and toxicity classification with Jigsaw Toxicity 343

dataset3. We focus on these two datasets as they 344

have been investigated in several previous studies 345

(Pruksachatkun et al., 2021) and have been reported 346

to carry significant presence of bias. BIAS IN BIOS 347

data (De-Arteaga et al., 2019a) is purposed to 348

train occupation classifier which predicts occupa- 349

tion given the biography of an individual. For this 350

data, the task classifier is an occupation classifica- 351

tion model which is composed of a standard LSTM- 352

based encoder combined with the output layer of 353

28 nodes, i.e, number of occupation classes. JIG- 354

SAW TOXICITY dataset is commonly used to train 355

toxic classifier which is tasked to predict if an in- 356

put sentence is toxic or not. This dataset has input 357

sentences as the comments from Wikipedia’s talk 358

2The data is available at
https://github.com/microsoft/biosbias

3The data is available at https://www.kaggle.com/c/jigsaw-
unintended-bias-in-toxicity-classification
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page edits labeled with the degree of toxicity. In359

this dataset, the task classifier is a binary classi-360

fier trained to predict whether a comment is toxic361

or not. We labeled the samples with >0.5 toxic-362

ity score as toxic and others as non-toxic to train363

the task classifier. The task classifier trained with364

Jigsaw Toxicity dataset achieved an AUC of 0.957.365

Table 4 in appendix summarizes the train/test/valid366

split for the 2 datasets.367

6.3 Selecting the vectors w368

The vectorw sums up the absolute partial deriva-369

tives of fk(x) with respect to a given feature370

xi, ∀k = 1, ..,K. In our setup, we consider in-371

put features to be the word embeddings and the372

matrix J is computed over the same. Given a D-373

dimensional word embedding, K classes and N374

words in x, J will be a matrix of size (K)×(DN).375

In all our experiments, we choose w to be a uni-376

form vector with entries 1/K. Such a choice as-377

signs equal weight to the partial derivatives com-378

puted over each class. One may chose to put a379

higher weight on derivatives computed over a spe-380

cific class, if there is a reason to believe that the381

accumulated prediction sensitivity should be in-382

formed more with respect to that class. For in-383

stance, for a classifier that stratifies medical images384

into various diseases (Agrawal et al., 2019), dispar-385

ity in model performance with respect to malicious386

diseases can be considered more costly. Therefore,387

derivatives for classes that represent more mali-388

cious disease can be weighted higher.389

6.4 Selecting the vectors v390

Through the vector v, we aim to select words in391

x that carry gendered information. We use two for-392

mulations for the the vector v as discussed below.393

6.4.1 Using a list of gendered words394

In this setup, we use the set of gendered words395

from (Bolukbasi et al., 2016) and assign entries in396

v corresponding to those words as 1/(Ng × D),397

where Ng is the count of gendered words in the398

data-point.399

6.4.2 Using a Protected Status Model (PSM)400

While prior work has used word matching to401

a pre-defined corpus of tokens describing various402

demographic cohorts (Bolukbasi et al., 2016), these403

corpus do not contain words that stereotypically are404

associated with a particular cohort but may not be405

explicitly tied to that cohort. For example, the406

word “volleyball” is associated with females in the407

analysis presented by (Dinan et al., 2020).408

To capture this nuance, we propose using another 409

classifier (that acts on the same dataset as used to 410

train the original classifier, for which we aim to 411

compute P ) and using it to identify tokens contain- 412

ing information about the protected attribute (e.g. 413

gender). We discuss the model training below. 414

Protected Status Model: To extend accumu- 415

lated prediction sensitivity to settings with no ex- 416

plicit protected attribute, we train a protected status 417

model g. Given the data-point x, goal of the PSM 418

model g(x) is to predict the protected attributes. 419

Given a trained g(x), we then compute another 420

matrix Jg, where the (j, i)th entry is |∂gm(x)
xi
| (gm 421

is the probability outcomes corresponding to the 422

mth protected attribute class; e.g. male in a gen- 423

der classifier). We then define an entry vi ∈ v 424

as
∑

j Jg(m, i) (the vector v is normalized to be 425

stochastic). Intuitively, the sum
∑

j Jg(m, i) cap- 426

tures the model output sensitivity with respect to 427

the input features xi and is expected to higher if xi 428

carries more gendered information. 429

In our experiments, we train separate PSM mod- 430

els for gender sensitivity computation on Bias-in- 431

bios and Jigsaw data-sets, as each data-point in 432

these data-sets is additionally labeled with a bi- 433

nary gender class (male/female)4. Gender PSMs 434

predicts the associated gender given the datapoint 435

x. Training PSM on the same datasets used to 436

train the task classifier f helps capture the gender 437

stereotypes present in the respective datasets. For 438

instance, in a given dataset, if the word “volley- 439

ball” appears more often in the data-points that 440

correspond to the female gender, the gender clas- 441

sifier’s sensitivity to this word is expected to be 442

high as the classifier may pay higher emphasis to 443

this word for gender classification. We use the 444

same model architecture as the task classifiers for 445

PSM. PSM for gender classification achieve an 446

accuracy of 98.79% (Male Acc:98.84% Female 447

Acc:98.17%) and 95.39% (Male Acc:95.92% Fe- 448

male Acc:96.22%) for Bias in bios and Jigsaw Tox- 449

icity datasets, respectively. These accuracies are 450

computed over the same train/test split as the task 451

classifier. 452

6.4.3 Using Word Embedding Vectors 453

In addition to using the list of gendered words 454

and PSM, we also test with a setting where we mul- 455

tiply the word embedding vectors to the proposed 456

formulations of v. We stack the word embedding 457

4We note that this is a limitation of this work as gender
can be non-binary.
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Individual Fairness Metrics Bias in Bios Jigsaw Toxicity

Corr. MI Corr. MI
P1 (uniform w,v) 0.206 0.013 0.117 0.007
CF (Garg et al., 2019) 0.326 0.025 0.214 0.022
P4 (v set using gendered words) 0.34 0.037 0.227 0.054
P5 (v set using gendered words and embedding vectors) 0.363 0.098 0.295 0.061
P2 (v set using PSM) 0.397 0.102 0.358 0.097
P3 (v set using PSM and embedding vectors) 0.441 0.105 0.374 0.101

Table 1: Point bi-serial correlations (Corr.) and Mutual Information (MI) between different individual fairness
metrics with human annotations on Bios in Bias and Jigsaw toxicity datasets. Bold numbers are the correlations
where we see statistically significant increase over CF baseline. The metric variants are sorted based on the
correlation values. We use the bootstrap method to compute statistical significance (Koehn, 2004) at p-value<0.05.

vectors for each word xi ∈ x to obtain a vector458

of embeddings ei. We perform an element-wise459

multiplication of the embedding vectors ei with the460

vector with entries 1/(Ng×D) for gendered words461

or
∑

j Jg(j, i) obtained using PSM. This choice is462

motivated based upon the findings in (Han et al.,463

2020). They leverage the magnitude of embedding464

vectors in determining saliency of the input words465

for the classification task at hand. Their proposed466

methodology computes saliency maps over the fea-467

tures xi ∈ x by multiplying embedding vectors468

with partial derivatives of the class probabilities469

with respect to embedding vectors themselves.470

6.5 Fairness Metrics471

We experiment with six fairness metrics. Out of472

the six, one metric is a baseline based on counter-473

factual fairness and the rest are variants of the ac-474

cumulated prediction sensitivity P .475

Counter-factual Fairness (CF) : We use the476

counter-factual fairness definition mentioned in477

Garg et al. (2019) and compute the metric as the dif-478

ference in model predictions between the original479

sample f(x) and its corresponding counter-factual480

gendered sample f(x̂). We take the L1 norm of481

the vector f(x) − f(x̂). For example, we take482

the difference in predictions between the sample483

"She practices dentistry" and "He practices den-484

tistry", which is the corresponding counter-factual485

sample. We use the definitional gender token sub-486

stitutions from Bolukbasi et al. (2016) to create487

counter-factual samples.488

P1: Uniformly weighted prediction sensitivity :489

In this setting, the values of w and v are set to490

uniform values 1
K and 1

DN , respectively. This is a491

weak baseline as the choice of v does not provide492

any information regarding the gender-ness of the493

input words.494

P2: Weighted Prediction Sensitivity based on495

PSM : In this setting, w is chosen to be a uniform 496

vector, while v is chosen based on the PSM model. 497

P3: Weighted Prediction sensitivity + Embed- 498

ding weights : In this setting, v is chosen based 499

on the PSM model (akin to the metric in P2) which 500

is further multiplied element-wise with the word 501

embedding vectors. 502

P4: Hard gender weights based Prediction sen- 503

sitivity : In this metric, we use the list of gendered 504

words described in section 6.4.1 to determine v. 505

The value of entries in v is set to 1
DNg

. 506

P5: Hard gender weights based prediction sen- 507

sitivity + Embeddings: This setting is same as 508

above, except entries in v are further multiplied 509

element-wise with the word embedding vectors. 510

6.6 Evaluation 511

To evaluate whether the proposed prediction sen- 512

sitivity correlates with human perception of fair- 513

ness, we collect annotations from crowd work- 514

ers using the Amazon Mechanical Turk platform. 515

Crowd workers are asked to annotate if a model 516

prediction appears to be a biased prediction or not. 517

For Bias in Bios dataset, each sample presented to 518

the annotators has the biography and occupation 519

predicted by the model. We collect annotations on 520

a random sample of the test set. For each biogra- 521

phy and a predicted occupation, we ask annotators 522

to label if the prediction is indicative of bias or if 523

it is unbiased. Bias refers to a situation where an 524

occupation is incorrectly predicted based on the 525

gender associated with the biography. For instance, 526

if the input biography is “she studied at Harvard 527

Medical School and practices dentistry.” and is 528

predicted as nurse, then we call this prediction bi- 529

ased since the biography fits better for a doctor. In 530

case of unbiased predictions, the prediction is not 531

expected to be influenced by the gender content in 532

the biography. Table 3 presents a sample of exam- 533

6



Example from the Bias in Bios dataset
TC

PSM

Example from the Jigsaw Toxicity dataset

TC

PSM

Table 2: Heat map for the vectorswTJ (top entry in each row) and v (bottom entry in each row) per input word xi.
Darker color indicates higher magnitude. These vectors are multiplied to compute ACCUMULATED PREDICTION
SENSITIVITY. TC: Task Classifier, PSM: Protected Status Model.

EXAMPLES OF UNBIASED SAMPLES (The predicted
profession is unrelated to gender stereotype about professions)

BIO: She received a master’s degree in computer science from
the university of North Carolina at Chapel Hill.
Predicted Profession: Computer Scientist

BIO: He received a master’s degree in computer science from
the university of North Carolina at Chapel Hill.
Predicted Profession: Computer Scientist

EXAMPLES OF BIASED SAMPLES (Strongly biased pre-
dictions are based on associating a specific gender to a specific
profession even when there are evidences against it in the bi-
ography)

BIO: Mary has 25 years of experience in data analytics, busi-
ness intelligence and information governance with fortune 100
companies.
Predicted Profession: Nurse

BIO: He achieved a masters degree in nursing from the uni-
versity of north Carolina at chapel hill
Predicted Profession: Computer Scientist

Table 3: Examples of biased/unbiased outcomes shown
to the M-turk annotators

ples provided to the annotators for the Bias in bios534

dataset. Each page in the annotation task consisted535

of ten biography-profession pairs. We collect anno-536

tations for each biography-profession pair from at537

least three annotators and pick the label with major-538

ity vote. Similarly for Jigsaw Toxicity dataset, each539

sample presented to the annotators contains the text540

and associated toxicity predicted by the model.541

We restrict the set of annotators to be master an-542

notators and the location of annotators to be Unites543

States. Based on the initial pilot studies conducted544

in the Amazon Mechanical Turk platform, we setup545

a payment rate to ensure a fair compensation of at546

least 15$/hour for all annotators that work at an av-547

erage pace. We annotated 900 test data-points from548

each dataset. We note that these test data-points549

were misclassified by the classifiers f trained for550

each dataset. While such a sampling may not con-551

form to the true distribution of biased/unbiased 552

model outcomes on the overall test set, we expect 553

to get more biased samples amongst the misclassi- 554

fied samples. The distribution between biased and 555

unbiased outputs was about 55:45 for Bias in Bios 556

and 50:50 for Jigsaw Toxicity. For the Bias in Bios 557

and Jigsaw Toxicity datsets, we obtained a Fliess’ 558

kappa of 0.43 and 0.47, respectively, amongst the 559

three annotators. This is considered a moderate 560

level of agreement, which we believe is expected 561

for an relatively ambiguous task to identify model 562

outcomes influenced by gender. We compute mu- 563

tual information and bi-serial correlations as the pri- 564

mary measures of association between the human 565

annotations and the accumulated model sensitivity. 566

7 Results 567

Table 1 lists the bi-serial correlations and mutual 568

information between manual annotations and the 569

different fairness metrics. First, we observe that 570

correlations of the baseline with human judgement 571

are mediocre (0.326 and 0.214) compared to the 572

human judgement. We attribute this to the fact 573

that the metric attempts to quantify a fairly sub- 574

jective assessment of bias that may have different 575

interpretation (as also pointed out by the moderate 576

level of annotation agreement across annotators). 577

However, the proposed variants of P have stronger 578

correlations compared to the counter-factual base- 579

line (except the method P1). As expected, we see 580

the smallest correlation for P1, since this metric 581

does not account for gender-ness in v. However, 582

metrics that determine v based on PSM prediction 583

sensitivity and gendered words get higher corre- 584

lations over P1 and the CF baseline. Variant of 585

P with v informed using the embedding vectors 586

further lead to improved correlations. We also ob- 587

serve weaker statistical significance in the case of 588

Jigsaw Toxicity due to a weaker PSM. We attribute 589

7



this to the noise present in gender annotations for590

Jigsaw Toxicity dataset. Hence, the performance591

of PSM in predicting the protected status is crucial592

for accurately measuring fairness.593

7.1 Discussion594

In order to further analyse the effect of PSM, we595

look into heat-maps capturing wTJ and v sepa-596

rately. As a reminder, the first quantity captures597

the weighted average of partial derivatives of class598

probabilites with respect to the input features, while599

the second quantity computes the weights assigned600

to sum up the aforementioned averages. Table 2601

shows while v mostly captures gendered words602

such as “she”, “her” and “woman”, it also captures603

words such as “social”, “architecture” and “cheated”604

to carry more gendered information compared to605

other words. While these words conventionally are606

not gendered, for the datasets at hand, they seem to607

provide information whether the input data-point608

belongs to male/female gender. We also note that609

wTJ weighs on occupation specific tokens such610

as "physician", "executive", etc.611

This finding supports our motivations to compute612

v based on PSM and capturing feature attributions613

assigned to tokens that are implicitly related to a614

specific gender (instead of the definitional gender615

tokens only). Hence, by incorporating PSM in616

computing P , we can capture bias present in non-617

trivial gendered tokens.618

8 Considerations for Accumulated619

Prediction Sensitivity Metric620

While the results showcase the promise of our621

metric, we draw the attention of the reader to the622

following considerations: (1) We observed that623

the metric quality depends on choice of the hyper-624

parameters w and v. In this regard, our metric is625

not different from other metrics that also depend626

on a hyper-parameter choice. For example, any627

classifier based metric has a threshold parameter628

and counterfactual fairness metrics rely on hyper-629

parameters such as the selected gendered words. (2)630

Our metric only works for models for which gradi-631

ents can be computed. Most modern deep learning632

based models carry this property. (3) Lastly, we633

note that it is hard to interpret the absolute value of634

the proposed metric. The metric value should be635

used for relative comparison of two models which636

share input feature space and label space.637

In addition, we note two considerations for rely-638

ing on a PSM classifier. First, training it requires639

access to gender labels. Second, the PSM model 640

itself could be biased. Given that gender labels may 641

not always be available for the dataset used to train 642

model at hand, we study the impact of transferring 643

a PSM model trained on a different dataset on com- 644

puting our metric. We also evaluate the effect of 645

bias in PSM model on the overall metric value and 646

present results in the Appendix D. We make obser- 647

vations such as the quality of the metric degrades 648

as PSM becomes more biased. Based on these ob- 649

servations, we recommend that if modeler is not 650

able to obtain high performance PSM models, they 651

fall back to using sources such as gendered words 652

for computing the vector v. 653

9 Conclusion 654

Evaluating fairness is a challenging task as it 655

requires selecting a notion of fairness (e.g. group 656

or individual fairness) and then identifying met- 657

rics that can capture these notions of fairness while 658

evaluating a classifier. Additionally, certain notions 659

of fairness may not be well defined and can change 660

based upon social norms (e.g. “volleyball” being 661

closely associated with females); that may seep 662

into the dataset at hand. In this work, we define 663

an accumulated prediction sensitivity metric that 664

relies on the partial derivatives of model’s class 665

probabilities with respect to input features. We 666

establish properties of this metric with respect to 667

the three verticals of fairness metrics: group, indi- 668

vidual and human-perception based. We provide 669

bounds on the metric’s value when a predictor is 670

expected to carry statistical parity or is trained with 671

individual fairness. We also evaluate this metric 672

with fairness as perceived through human evalua- 673

tion of model outputs. We test variants of the pro- 674

posed metric against an existing baseline derived 675

from counter-factual fairness and observe better 676

mutual information and correlation. Specifically, a 677

variant of the metric that relies on a Protected Sta- 678

tus Model (that identifies tokens that carry gender 679

information but may not conventionally be consid- 680

ered gendered) yields the best correlation with the 681

human evaluation. 682

In the future, one can associate the proposed 683

formulation with other categories of group and in- 684

dividual fairness (Mehrabi et al., 2019a). We also 685

aim to test the metric on other datasets with other 686

protected attributes (e.g. race, nationality). Finally, 687

we can compare the metric across these datasets to 688

compare trends across protected groups. 689
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10 Broader Impact690

This work can be used to evaluate bias in models,691

and thus used to evaluate models serving human692

consumers. As with all metrics, the metric does not693

capture all notions of bias, and thus should not be694

the only consideration for serving models. While695

this is a valid risk, this is one that is not specific696

to prediction sensitivity. Good use of this metric697

requires users to be cognizant of these strengths698

and weaknesses. We also note that the metric re-699

quires defining protected attributes (e.g. gender)700

and our work carries the limitation that the selected701

datasets contain binary gender annotations. Defin-702

ing protected attributes may not always be possible703

and when possible, the protected attribute classes704

may not be comprehensive.705
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A Obtaining prediction sensitivity on887

classifier trained for statistical parity888

Let us consider a classification task on whether889

to hire a person given the following features: x1 is890

the person’s educational experience in years, x2 is891

their hair length and x3 is their gender. We synthet-892

ically generate data for individuals in this dataset.893

x1 is drawn uniformly randomly between 0 and 10.894

x3 is (again) considered to be binary gender (set 0895

for male and 1 for female drawn from a bernoulli896

distribution) and x2 is drawn from a Gaussian dis-897

tribution conditioned on x3. x2 ∼ N (2, 10) (Gaus-898

sian distribution with a mean 2 and variance 10) if899

x3 = 0 and x2 ∼ N (10, 10) if x3 = 1. We sample900

10,000 data-points from the above distribution to901

generate a dataset. Let us consider two cases with902

two different classifiers.903

Case 1: Classifier depends on x1, x2 In this904

case, the modeler only deems x3 to be the protected905

feature. Let us assume that they build a classifier as906

shown in equation 5. Lets assume that the modeler907

assigns a hire decision if f > 0.5, otherwise not.908

f = σ((x1 − 5) + (x2 − 6)) (5)909

Given only x3 is considered as the protected910

feature by the modeler, they will set the vector v to911

[0, 0, 1]T . Let us assume that the modeler sets P as912

913

P =
[

1
2

1
2

] [∣∣ ∂f1
∂x1

∣∣ ∣∣ ∂f1
∂x2

∣∣ ∣∣ ∂f1
∂x3

∣∣∣∣ ∂f2
∂x1

∣∣ ∣∣ ∂f2
∂x2

∣∣ ∣∣ ∂f2
∂x3

∣∣
]0

0
1

 (6)914

We recommend the modeler computes ∂x2
∂x3

and915
∂x1
∂x3

and if they are non-zero, use the chain rule in916

equation 7 to compute P .917

∂fk([x1, x2])

∂x3
=
∂fk([x1, x2])

∂x2

∂x2

∂x3
(7)918

For the dataset generated above, we compute the919

partials ∂x2
∂x3

and ∂x1
∂x3

. Additionally, since x3 is a dis-920

crete variable, we approximate partial derivatives921

using all available right-difference quotients and922

left-difference quotients, as shown in equation 9.923

In order to compute ∂x2
∂x3

at x3 = xm3 (where xm3924

denotes the value of x3 for the mth data-point), we925

use the corresponding value of the feature x2 = xm2926

in the mth data-point and all other available pairs927

(xn2 , x
n
2 ), n 6= m.928

∂x2

∂x3

∣∣∣
x3=xm

3

= Mean
(xm2 − xn2
xm3 − xn3

)
(8)929

The mean above is computed over all n 6= m. 930

Similarly, 931

∂x1

∂x3

∣∣∣
x3=xm

3

= Mean
(xm1 − xn1
xm3 − xn3

)
(9) 932

Given the dataset we generated, we compute val- 933

ues for ∂x1
∂x3

∣∣∣
x3=xm

3

and ∂x2
∂x3

∣∣∣
x3=xm

3

for an arbitrarily 934

chosen m. We obtain values of 7.98 and 0.01, re- 935

spectively. Note that we expect the second value 936

to be 0, but due to noise in gradient approximation 937

obtain a non-zero value. We re-write equation 6 as 938

shown below and plug in the values of the partials. 939

We obtain a non-zero value of P in this case. 940

P =
[

1
2

1
2

] [∣∣ ∂f1
∂x1

∣∣ ∣∣ ∂f1
∂x2

∣∣ ∣∣ ∂f1
∂x3

∣∣∣∣ ∂f2
∂x1

∣∣ ∣∣ ∂f2
∂x2

∣∣ ∣∣ ∂f2
∂x3

∣∣
]0

0
1

 (10) 941

=
[

1
2

1
2

] [∣∣ ∂f1
∂x1

∣∣ ∣∣ ∂f1
∂x2

∣∣ ∣∣ ∂f1
∂x2

∂x2
∂x3

∣∣∣∣ ∂f2
∂x1

∣∣ ∣∣ ∂f2
∂x2

∣∣ ∣∣ ∂f2
∂x2

∂x2
∂x3

∣∣
]0

0
1


(11)

942

Case 2: Classifier only depends only on x1 943

In this case, the modeler deems both x2, x3 to be 944

protected features and builds a classifier as depicted 945

below. 946

f = σ(x1 − 5) (12) 947

Lets assume that the modeler assigns a hire deci- 948

sion if f > 0.5, otherwise not. Additionally, given 949

x2 and x3 are protected features, P is set to 950

P =
[

1
2

1
2

] [∣∣ ∂f1
∂x1

∣∣ ∣∣ ∂f1
∂x2

∣∣ ∣∣ ∂f1
∂x3

∣∣∣∣ ∂f2
∂x1

∣∣ ∣∣ ∂f2
∂x2

∣∣ ∣∣ ∂f2
∂x3

∣∣
]0

1
2
1
2

 (13) 951

Given that the classifier does not explicitly rely 952

on x2 and x3, we can rewrite equation 14 as 953

P =
[

1
2

1
2

] [∣∣ ∂f1
∂x1

∣∣ ∣∣ ∂f1
∂x1

∂x1
∂x2

∣∣ ∣∣ ∂f1
∂x1

∂x1
∂x3

∣∣∣∣ ∂f2
∂x1

∣∣ ∣∣ ∂f2
∂x1

∂x1
∂x2

∣∣ ∣∣ ∂f2
∂x1

∂x1
∂x3

∣∣
]0

1
2
1
2


(14) 954

We obtain the partial derivatives ∂x1
∂x2

∣∣∣
x2=xm

2

and 955

∂x1
∂x3

∣∣∣
x3=xm

3

. For an arbitrary chosen xm1 , we obtain 956

values of 0.01 and -0.01. While we expect both 957

these values to be zero given our data construction, 958

they are non-zero due to the gradient approxima- 959

tion. Barring the noise in gradient computation, P 960

is 0 in this case. 961
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Figure 1: Plot showing the values of the accumulated
prediction sensitivity and L

B Prediction sensitivity for classifier962

trained with individual fairness963

We conduct a simulation, where we obtain the964

proposed metric for increasing values of L. We965

generate a synthetic dataset with a single feature966

drawn uniformly randomly between 0 and 10. The967

label y of a given datapoint is set to 0 if the feature968

value is less than 5 or 1 otherwise. Let us assume969

we build a linear classifier f = θx, where x is970

denotes scalar feature. We optimize equation 2 and971

obtain value of θ that satisfies the constraint and972

minimizes a chosen L. Let D and d be L1 norms973

and L = (y − f)2. We optimize for the value974

of θ, and Figure shows the value of accumulated975

prediction sensitivity with increasing value of L976

between the range 0 to 0.2. We observe the metric977

closely follows value of L till 0.1. We note that L978

will equal θ in this case and the optimal value of θ979

in the absence of any constraint is 0.1.980

C Dataset Statistics981

Dataset Train Valid Test

BIASINBIOS 107,171 71,447 91,917
JIGSAWTOXI. 1,443,900 360,974 97,320

Table 4: Dataset statistics

D Considerations for using PSM982

Classifier983

Training a PSM classifier requires access to gen-984

der labels which might not be available for the985

dataset used to train the model under evaluation. 986

To overcome this, we evaluate training a PSM clas- 987

sifier on a different dataset and then applying it 988

on the dataset of interest. In Table 5, the last two 989

rows record the correlation and mutual informa- 990

tion values of a PSM classifier trained on Bias in 991

Bios (tested on Jigsaw) and trained on Jigsaw Tox- 992

icity (tested on Bias in Bios), respectively. While 993

we beat the CF baseline using the PSM trained on 994

another dataset, comparison to the setting where 995

v is set using gendered words presents a mixed 996

picture. P3 (v set using PSM trained on Jigsaw 997

Toxicity) has a slightly higher correlation of 0.365 998

compared to 0.363 in the P5 setting. However, P3 999

has a slightly worse MI of 0.091 compared to P5. 1000

The related experiment for Jigsaw toxicity where 1001

v is set using PSM trained on Bias in Bios yields 1002

similar mixed observations when compared to P5. 1003

We also conducted a synthetic experiment 1004

wherein we deliberately add bias to the PSM classi- 1005

fier. We reduce the number of ‘female’ datapoints 1006

by 50% leading to about 18% reduction in the re- 1007

call for the ‘female’ class (while the ‘male’ class 1008

accuracy remains the same). We observe that the 1009

metric quality also degrades in this case, leading to 1010

a correlation of 0.259 with human judgement, in 1011

case of the Bias in Bios data. This correlation is 1012

worse than the CF baseline. 1013

Given these results, we observe that using the 1014

PSM classifier improves upon other baselines only 1015

when it is relatively un-biased in performance 1016

across genders and matched to the dataset at hand. 1017

Therefore, we recommend setting v using gendered 1018

words if a strong PSM classifier is difficult to ob- 1019

tain. 1020
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Individual Fairness Metrics Bias in Bios Jigsaw Toxicity

Corr. MI Corr. MI
P5 (v set using gendered words and embedding vectors) 0.363 0.098 0.295 0.061
P3 (v set using PSM and embedding vectors) 0.441 0.105 0.374 0.101
P3 (v set using PSM(Bias in Bios) and embedding vec-
tors)

0.238 0.083

P3 (v set using PSM(Jigsaw Toxicity) and embedding
vectors)

0.365 0.091

Table 5: Point bi-serial correlations (Corr.) and Mutual Information (MI) between different individual fairness
metrics with human annotations on Bios in Bias and Jigsaw toxicity datasets. Bold numbers are the correlations
where we see statistically significant increase over CF baseline. The metric variants are sorted based on the
correlation values. We use the bootstrap method to compute statistical significance (Koehn, 2004) at p-value<0.05.
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