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ABSTRACT

A common characteristic in integer linear programs (ILPs) is symmetry, allow-
ing variables to be permuted without altering the underlying problem structure.
Recently, GNNs have emerged as a promising approach for solving ILPs. How-
ever, a significant challenge arises when applying GNNs to ILPs with symmetry:
classic GNN architectures struggle to differentiate between symmetric variables,
which limits their predictive accuracy. In this work, we investigate the properties
of permutation equivariance and invariance in GNNs, particularly in relation to
the inherent symmetry of ILP formulations. We reveal that the interaction between
these two factors contributes to the difficulty of distinguishing between symmetric
variables. To address this challenge, we explore the potential of feature augmen-
tation and propose several guiding principles for constructing augmented features.
Building on these principles, we develop an orbit-based augmentation scheme that
first groups symmetric variables and then samples augmented features for each
group from a discrete uniform distribution. Empirical results demonstrate that our
proposed approach significantly enhances both training efficiency and predictive
performance.

1 INTRODUCTION

Integer Linear Programs (ILPs) are fundamental optimization problems characterized by a linear
objective function and linear constraints, where the decision variables are restricted to integer val-
ues. These problems play a critical role in various fields, including operations research, computer
science, and engineering (Pochet & Wolsey, 2006; Liu & Fan, 2018; Watson & Woodruff, 2011;
Luathep et al., 2011; Schöbel, 2001). In practice, many ILPs exhibit a structural property known as
symmetry, where certain permutations of decision variables leave both the problem structure and
the solution set unchanged (Margot, 2003). For example, in the widely used collection of real-world
ILPs, MIPLIB (Gleixner et al., 2021), approximately 32% of its instances display certain symme-
tries.

Classic methods for solving ILPs, such as branch-and-bound and branch-and-cut (Boyd & Mattin-
gley, 2007; Morrison et al., 2016), systematically explore the solution space by breaking it down
into smaller sub-problems and eliminating regions that do not contain optimal solutions. However,
the presence of symmetry in these problems can result in redundant exploration of equivalent solu-
tions, which hampers efficiency. To address this, several approaches have been developed. Margot
(2002) prunes the enumeration tree in the branch and bound algorithm; Ostrowski et al. (2008; 2011)
propose branching strategies based on orbits; Puget (2003; 2006) enhance problem formulations by
introducing symmetry-breaking constraints. A more comprehensive survey of related research is
provided in (Margot, 2009). These techniques reduce the search space by detecting and removing
symmetric solutions, allowing the solver to focus on unique, non-redundant parts of the problem.
By leveraging symmetry in this manner, the overall efficiency and convergence of ILP solvers are
significantly improved. While classic methods have been widely used, they fall short in terms of
efficiency for real-world applications, calling for more advanced approaches.

Recent advancements in machine learning (ML) have opened new avenues for solving ILPs,
offering approaches that enhance both efficiency and scalability. Among these techniques, Graph
Neural Networks (GNNs) have shown significant superiority in capturing the underlying structure
of ILPs. By representing the problem as a graph, GNNs are able to exploit relational information be-
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tween variables and constraints, which allows for more effective problem-solving strategies. Several
categories of works have demonstrated the potential of GNNs in this context. Gasse et al. (2019)
first proposed a bipartite representation of ILPs and applied GNNs to learn efficient branching de-
cisions in branch-and-bound algorithms. Such graph representation was then utilized or enhanced
by many subsequent researchers. Nair et al. (2020) utilized GNNs to predict initial assignments for
ILP solvers to identify high-quality solutions. Khalil et al. (2022) integrated GNNs into the node
selection process of the branch and bound framework. Other notable examples include learning to
select cuts (Paulus et al., 2022), learning to configure (Iommazzo et al., 2020) and so on. A more
comprehensive review of relevant works can be found in Cappart et al. (2023).

Challenges: when above ML-based methods meet symmetry Despite the growing number
of ML-based methods for solving ILPs, only a few works have noticed the intrinsic property of
ILPs—symmetry. This oversight often results in poor performance on problems with significant
symmetries. Typical approaches, such as learning a GNN to predict the optimal solution, face the
following indistinguishability issue when encountering symmetries in ILPs (a specific example is
depicted in Figure 1):

Traditional GNNs are incapable of distinguishing symmetric variables, limiting their effectiveness
on ILPs with symmetry.

Symmetry-breaking in ML: The challenge of symmetry-breaking stems from the limitations of
permutation-equivariant functions in handling data with inherent symmetries. Recent studies, par-
ticularly in chemistry and physics, have explored solutions to similar issues. One approach is to
introduce augmented features into graph- or set-structured data to break symmetry. For example,
Xie & Smidt (2024) introduces equivariant symmetry-breaking sets (SBS), which use symmetry
groups to provide more informative inputs, breaking symmetry and improving computational effi-
ciency. Similarly, Lawrence et al. (2024) extends SBS by incorporating probabilistic methods and
canonicalization techniques for further efficiency. Morris et al. (2024) takes a different approach,
using orbits for symmetry-breaking, offering a simple yet effective solution for graph data. Earlier
works like Smidt et al. (2021), Zhang et al. (2021), and Kaba & Ravanbakhsh (2023) have laid the
foundation for understanding symmetry in neural networks. In the ILP context, a few studies have
also addressed this issue. Chen et al. (2022) tackles the problem of GNNs failing to distinguish fold-
able instances by adding random features to enhance expressiveness. Likewise, Han et al. (2023)
and Chen et al. (2024) add positional embeddings to bipartite ILP representations, helping mitigate
symmetry-related challenges.

Motivation: While the broader literature has extensively explored symmetry-breaking in chemical
and physical systems, research on addressing indistingushability issue in ILPs remains limited. To
date, no studies have fully adapted the advanced symmetry-breaking techniques used in these fields
to ILP problems, nor have they leveraged the unique structural properties of ILPs to tackle symmetry
more effectively. Moreover, there is a notable lack of theoretical analysis and empirical validation re-
garding the efficacy of existing machine learning methods for handling symmetry in ILPs. This gap
highlights the urgent need for more robust, symmetry-aware solutions that can exploit the inherent
symmetries of ILPs, ultimately improving the performance of ILP solvers on symmetric instances
and making them more efficient in real-world applications.

Contributions: Considering the limitation of traditional GNNs in predicting the solutions for ILPs
with symmetric variables, we first explore the inherent formulation symmetry property of these ILPs.
By investigating the interplay between it and the permutation equivariance and invariance of GNNs,
we show that they together lead to the performance limitation. To address it, we exploit feature
augmentation and propose three guiding principles in constructing augmented features, including
i) distinguishability, ii) augmentation parsimony, and iii) isomorphic consistency. The first prin-
ciple enables GNNs to output different values for symmetric variables and the second one avoids
introducing ‘conflict’ training samples that could mislead GNNs to yield wrong predictions. Mean-
while, the second principle aims to keep the augmented features as simple as possible to enhance the
training efficiency. Further, we devise an orbit-based feature augmentation scheme and analyze the
difference between our proposed design and other existing schemes under these principles. Finally,
our proposed orbit-based scheme is tested over classic ILP problems with significant symmetry and
compared with existing schemes to validate the effectiveness of our proposed principles and design.
Our contributions are summarized as follows.
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• Theoretically demonstrating that the interplay between the formulation symmetry and the
properties of permutation equivariance and invariance in GNNs makes classic GNN archi-
tecture incapable of differentiating between symmetric variables.

• Exploring the potential of feature augmentation to address the limitation, and proposing
three guiding principles for the construction of augmented features.

• Following these principles, developing an orbit-based feature augmentation scheme, and
validating that it can achieve a remarkable improvement of the prediction performance of
GNNs for the ILPs with strong symmetry.

2 PRELIMINARIES

Notation: Unless otherwise specified, scalars are denoted by normal font (i.e., x), vectors are de-
noted by bold lowercase letters (i.e., x), and matrices are represented by bold uppercase letters (i.e.,
X). The i-th row and the j-th column of a matrix X are denoted by Xi,: and X:,j , respectively.

2.1 ILP AND SYMMETRY

An integer linear program (ILP) has a formulation as follows:

min
x

c⊤x

s.t. Ax ≤ b

x ∈ Zn,

(1)

where x ∈ Zn are integer decision variables, and c ∈ Rn,A ∈ Rm×n, b ∈ Rm are given co-
efficients. Let X denote the set of all feasible solutions of (1). A symmetry of (1) is a bijection
g : X → X such that c⊤g(x) = c⊤x, ∀x ∈ X . In practice, one often considers symmetries that
permute variables (Def. 1) while retaining the description Ax ≤ b and the objective coefficients c
invariant. Such symmetries are called formulation symmetries (Def. 2). All formulation symmetries
of (1) form a group, which is named symmetry group.
Definition 1. (Permutation) A permutation over a set In = {1, . . . , n} is a bijection π : In → In,
such that for every element i ∈ In (j ∈ In), there exists a unique element j ∈ In (i ∈ In) such that
π(i) = j (π−1(j) = i). The set of all n! permutations over In is denoted by Sn.

In this work, given a permutation π ∈ Sn, when it acts on different objects such as the elements of a
vector, the rows and the columns of a matrix, the notation π will be added with different superscripts
to distinguish them from one another. Specifically, the same permutation π ∈ Sn acting on the
top-most n elements of a vector y, the top-most n rows and the left-most n columns of a matrix X
is denoted by 

πv(y) = [yπ(1), . . . ,yπ(n),yn+1, . . . ]
⊤,

πr(X) =
[
Xπ(1),:, . . . ,Xπ(n),:,Xn+1,:, . . .

]⊤
,

πc(X) =
[
X:,π(1), . . . ,X:,π(n),X:,n+1, . . .

]
.

(2)

Definition 2. (Formulation symmetry) A permutation π ∈ Sn is a formulation symmetry of (1) if
there exists a permutation σ ∈ Sm such that

• πv(c) = c,

• σv(b) = b,

• Aσ(i),π(j) = Ai,j ,∀i, j.

Another important concept in symmetry handling is orbit defined in Def. 3, which refers to the set
of elements that can be transformed into each other through symmetries. We call two variables are
symmetric if they correspond to the same orbit.
Definition 3. (Orbit) Let G be the symmetry group of (1), then the orbit of i ∈ In under G is a set
O = {π(i) | ∀π ∈ G}. All orbits of In under G form a partitioning of In, i.e., {O1, . . . ,OK}, where
Op ∩ Oq = ∅, ∀p ̸= q ∈ {1, . . . ,K} and ∪Kk=1Ok = In.
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2.2 LEARNING TASKS

In this paper, we consider a classic learning task aimed at developing a model fθ : G → Rn to
predict an optimal solution for an ILP instance, where G is the space of the bipartite representation
of the ILP, which will be explained in detail later. While there could be multiple optimal solutions
for an ILP, this work only focus on predicting just one of them, since many practical applications
typically require one solution rather than an exhaustive set. The training of model fθ employs
supervised learning, utilizing a dataset D that consists of (input, label) pairs {(si, x̄i)}Ni=1, where
each si represents an ILP instance and x̄i denotes one of its corresponding optimal solutions. The
model is trained by minimizing a loss function ℓ(·) over all the N instances from the dataset, leading
to the optimization problem minθ

1
N

∑N
i=1 ℓ (fθ(si), x̄i).

2.3 BIPARTITE REPRESENTATION

In the learning task, an ILP instance si is first transformed to an equivalent bipartite graph before be-
ing input to the GNN. Without loss of generality, we consider the following bipartite representation.
Specifically, an ILP (1) is characterized by a bipartite graph {V,W,E}, where

• V = {v1, . . . , vn} is the set of variable nodes with vj ∈ V denoting variable xj . The
variable node vi is associated with a feature hv

j := cj ∈ R.

• W = {w1, . . . , wm} is the set of constraint nodes with wi denoting the i-th constraint. The
constraint node wi is associated with a feature hw

i := bi ∈ R.

• E = {eij ∀(i, j) : Aij ̸= 0} is the set of edges with eij denoting that variable xj appears
in the i-th constraint. The edge eij is associated with a feature he

ij := Aij ∈ R.

An example of the bipartite graph representation is given in Fig. 1. For brevity, we use A :=[
A b
c⊤ 0

]
∈ R(m+1)×(n+1) to denote the aforementioned bipartite representation, where the top-

most m rows denote the constraint nodes and the left-most n columns denote the variable nodes.

3 ISSUES OCCUR WHEN GNNS MEET FORMULATION SYMMETRY

While GNNs excel at capturing the underlying structure of ILPs, their effectiveness is limited when
the ILP problems exhibit specific formulation symmetries. As shown in the example in Fig. 1, the
GNN fails to predict the optimal solution for an ILP instance with symmetry.

Variable nodes Constraint nodes

Graph Representation of the ILP

GNN

ILP Instance

Prediction

Symmetry

Optimal 
Solution
(Label)

Figure 1: Left: An ILP instance where x1 and x2 are symmetric. Middle: A bipartite representation
of the ILP instance. The variable and constraint nodes correspond to their counterparts in the ILP
instance, with edges connecting them denoting the coefficients of variables in constraints. Right:
The outputs for the symmetric variables are identical due to symmetry, thus GNNs cannot correctly
predict the optimal solution.

In the following, we rigorously show that it is the interplay between the inherent properties of GNNs
and the formulation symmetry of ILPs that makes the model incapable of distinguishing between
symmetric variables and predicting the optimal solutions.
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Assumption 1. (Permutation equivariance and invariance) Assume the model fθ is equivalent w.r.t.
permutations acting on the variable nodes (i.e., ∀π ∈ Sn, fθ (π

c(A)) = πv (fθ(A))) and invariant
w.r.t. permutations acting on the constraint nodes (i.e., ∀σ ∈ Sm, fθ(σ

r(A)) = fθ(A))).

Notice that GNNs naturally satisfy the above assumption. Moreover, when such a model is applied
to an ILP instance with formulation symmetry, the elements of the predicted solution corresponding
to the same orbit will be identical. Accordingly, the following proposition (see proof in the Appendix
A.3) will hold.

Proposition 1. Under Assumption 1, if a permutation π ∈ Sn is a formulation symmetry of (1),
then we have fθ(A)i = fθ(A)π(i). Further, the elements of fθ(A) correspond to the same orbit are
identical, i.e., fθ(A)i = fθ(A)j ,∀i, j ∈ O,∀O ∈ Orbit(G).

With Proposition 1, it is not difficult to derive the following corollary (see proof in Appendix A.4).

Corollary 1. Under Assumption 1, the model fθ cannot always correctly predict the optimal solution
of an ILP instance with formulation symmetries.

4 METHODOLOGY

The analysis in the previous section raises a key question: How can we improve the ability of
GNNs to solve ILPs with formulation symmetry? A promising approach is to augment the input
features of the GNN, enabling it to differentiate between symmetric variables. While a similar
idea was adopted in (Chen et al., 2022), where random features were added into the bipartite graph
representation to distinguish what they refer to as ‘foldable’ ILP instances, the approach did not
exploit the underlying symmetry properties, leading to suboptimal performance on ILPs with strong
symmetries. In this section, we first establish three guiding principles for feature augmentation and,
based on these principles, propose an orbit-based feature augmentation scheme to handle symmetries
more effectively.

4.1 PRINCIPLES FOR CONSTRUCTING AUGMENTED FEATURES

Motivated by the existing symmetry-breaking methods (Chen et al., 2022; Xie & Smidt, 2024;
Lawrence et al., 2024) that address symmetry by introducing augmented features into the data, we
tackle the indistinguishability issue in ILPs by incorporating random features into the bipartite graph
representation. Specifically, let z ∈ Rn be an augmented feature sampled from a space V ⊆ Rn,

and it is assigned to the n variable nodes. For brevity, let Ã =

A b
c⊤ 0
z⊤ 0

 ∈ R(m+2)×(n+1) be the

bipartite graph representation incorporating z. In contrast to existing methods that add augmented
features to all nodes in the graph, we focus exclusively on the variable nodes. This strategy tar-
gets the symmetries inherent in the variables, which are sufficient to differentiate the outputs during
solution prediction, while disregarding the constraint symmetries. By doing so, it simplifies the
symmetry groups that need to be processed, improving computational efficiency.

There are three principles the augmented feature z should follow:

• (distinguishability) there exists a function fθ such that fθ(Ã)i ̸= fθ(Ã)j ,∀i ̸= j ∈ O,O ∈
Orbits(A,G).

• (augmentation parsimony) The cardinality of the augmented feature space V should be as
small as possible.

• (isomorphic consistency) If (A, x̄) and (A′, x̄′) are two training samples with isomorphic
instances A and A′ (i.e., ∃π ∈ Sn, σ ∈ Sm such that πc(σr(A)) = A′), then πv(z) =
z′ =⇒ πv(x̄) = x̄′.

The first principle, distinguishability, is a necessity, which enables GNNs to output different values
for symmetric variables. The simplest way to realize it is by assigning distinct features to variables
in the same orbit, i.e., zi ̸= zj ,∀i ̸= j ∈ O. The second principle, augmentation parsimony, plays
a crucial role in the model’s training process. By using a small cardinality of the augmented feature
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space, this guiding principle prevents the model from being overwhelmed by excessive irrelevant
information that could slow down the learning of correct correlations. This enhances training effi-
ciency, as fewer features require less computational effort to learn and stabilize the model, leading
to faster convergence and better overall performance. Note that the core ideas underlying these two
principles are drawn from existing works (Xie & Smidt, 2024; Lawrence et al., 2024; Morris et al.,
2024) and have been adapted to fit our augmentation scheme.

The last principle, isomorphic consistency, enforces that the labels of isomorphic inputs should
remain isomorphic as well, ensuring permutation equivariance of the training samples. Samples that
fail to meet this criterion are termed conflict or inconsistent samples, which can negatively impact
the GNN’s training. Proposition 2 (see proof in the Appendix A.5) reveals that conflict samples will
lead to a higher loss and should be avoided in constructing the training data.
Proposition 2. If the augmented features doesn’t satisfy the principle of isomorphic consistency,
then the minimal loss can not be 0.

4.2 ORBIT-BASED FEATURE AUGMENTATION

Following the aforementioned three guiding principles, we develop a novel feature augmentation
scheme that harnesses the formulation symmetry of ILPs in constructing the augmented features.

Algorithm 1 Orbit-based feature augmentation

1: Input: ILP instance A with orbits {O1, . . . ,OK} .
2: Procedure:
3: Initialize z ← 0
4: for k ∈ {1, . . . ,K} : |Ok| ≥ 2 do ▷ nontrivial orbits
5: C ← {1, . . . , |Ok|}
6: for i ∈ Ok do
7: zi ∼ Uniform(C) ▷ sampling
8: C = C \ {zi} ▷ without replacement
9: end for

10: end for
11: Output: augmented feature z

First, the principle of distinguishability
can be easily achieved; the simplest ap-
proach is to assign a unique augmented
feature to each variable node. This is
equivalent to sampling {zi} from the set
{1, . . . , n} without replacement. How-
ever, the cardinality of the augmented fea-
ture space by such an approach is |V| =
n!, which is too large to ensure a good aug-
mentation parsimony.

Additionally, the isomorphic consistency
property stipulates that the augmented fea-
tures z and z′ for any two training samples
(A, x̄), (A′, x̄′) with isomorphic instances
should satisfy πv(z) = z′ =⇒ πv(x̄) = x̄′. This relation is imposed on not only the augmented
feature but also the label. For ease of illustration, here we introduce the construction of augmented
features first and leave the analysis on how isomorphic consistency is handled to Sec. 4.3.

Further, in accordance with the principle of augmentation parsimony, the augmented features with a
smaller cardinality of their associated space |V| are preferable. Intuitively, zi should be sampled over
a set smaller than {1, . . . , n} while maintaining the distinguishability. For ILPs with symmetry, one
can find that sampling over the orbits can achieve the two targets at once. To this end, we propose
an orbit-based feature augmentation approach as follows. Specifically, consider an ILP instance A
characterized by its orbits {O1, . . . ,OK}. For any orbit Ok ∈ {O1, . . . ,OK} with |Ok| ≥ 2, the
augmented feature {zi}, i ∈ Ok are uniformly sampled from a discrete set C = {1, 2, . . . , |Ok|}
without replacement. For trivial orbits that contain only a single element, we assign zeros as the
corresponding augmented features. The proposed scheme is detailed in Algorithm 1 and is referred
to as Orbit in the remainder of this work.

By leveraging the structural symmetry, the proposed Orbit effectively reduces the cardinality of
the augmented feature space. In many categories of ILPs, there usually exist certain connections
between different orbits, which can be further exploited to reduce the cardinality. Specifically, as-
sume an ILP instance has p ≤ K orbits O1, . . . ,Op with the same cardinality c. The elements

of these orbits form a matrix O =

[
o11 . . . o1c

. . .
op1 . . . opc

]
, where oij ∈ Oi, i ∈ P = {1, . . . , p}.

The formulation symmetry of the instance necessitates that all elements in each column of O be
treated as an integrated unit under any permutations defined by the symmetry group. That is,
∀π ∈ G, π(oij) = oik ⇔ π(oi′j) = oi′k,∀i, i′ ∈ P, k ∈ {1, . . . , c}. For such an instance, the
augmented features added to the variables corresponding to the same column of O can be iden-

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

tical. Accordingly, it suffices to sample augmented features for the variables in one orbit and as-
sign the same features to the corresponding variables in the other orbits, e.g., o1j ← m̄j ,∀j ∈
{1, . . . , c} =⇒ oij ← m̄j ,∀i ∈ {1, . . . , p}, j ∈ {1, . . . , c}. As shown in the example in Appendix
A.1, this updated scheme, named Orbit+, further employs the additional connections among the
orbits in constructing the augmented features, achieving a smaller |V| with enhanced augmentation
parsimony.

4.3 ANALYSIS

In this section, our proposed orbit-based feature augmentation schemes and two other existing
schemes are analyzed with our proposed three principles in Sec. 4.1. Specifically, we will eval-
uate whether the distinguishability and isomorphic consistency are satisfied, as well as assess the
cardinalities of their respective augmented feature spaces. Before proceeding with the analysis, let’s
first introduce two existing feature augmentation schemes.

Random noise from a uniform distribution (Uniform) Chen et al. (2022) noticed the lack of
expressive power of GNNs to distinguish some ILP instances (called as “foldable”), and proposed
to introduce random noise from uniform distribution to both variable and constraint nodes. Here we
consider the case where random noise is added to variable nodes only, as it is sufficient to meet the
distinguishability.

Positional IDs (Position) The second scheme is adding positional IDs to the variable nodes, en-
suring each variable node is associated with a distinct ID. Han et al. (2023) adopted such a trick in
their feature designs, while without discussing insights and necessity.

4.3.1 ON THE PRINCIPLES OF DISTINGUISHABILITY AND ISOMORPHIC CONSISTENCY

The condition outlined in the principle of distinguishability is straightforward to satisfy, provided
that the variable nodes within the same orbit are associated with distinct augmented features. It’s
easy to verify that the Position, Orbit, and Orbit+ schemes all strictly assign distinct augmented
features to variable nodes in the same orbit, while the Uniform scheme does so with probability 1.
Therefore, all these four schemes meet the principle of distinguishability.

Unlike the principle of distinguishability, the principle of isomorphic consistency imposes a more
complex condition, as it applies to both the input instances and the output labels. As demonstrated in
Appendix A.2, sampling strategies can violate this principle, resulting in situations where πv(z) =
z′ but πv(x̄) ̸= x̄′. To address this issue, there are two potential approaches: one is resampling when
πv(z) = z′, while the other replaces x̄ and x̄′ with alternative optimal solutions ȳ and ȳ′, ensuring
that πv(ȳ) = ȳ′. In this paper, we adopt the second approach, as the first one relies on label-
dependent reject sampling, which is infeasible during the testing phase when labels are unavailable.
Specifically, we utilize the SymILO framework proposed by Chen et al. (2024), which supports
dynamically adjusting the labels of the training samples. It jointly optimizes the transformation
of solutions and the model parameters, aiming to minimize the prediction error. We incorporate
this framework into our method to alleviate the impacts of violations of the principle of isomorphic
consistency.

4.3.2 ON THE PRINCIPLE OF AUGMENTATION PARSIMONY

Among the four augmentation schemes, the augmented feature of Uniform is sampled from a contin-
uous uniform distribution. Therefore, the cardinality of its augmented feature space can be infinite,
i.e., cu = +∞. For the Position scheme, its augmented features are uniformly sampled from a
discrete distribution from the set {1, . . . , n}. Accordingly, the cardinality of its feature space is
cp = n!. In comparison, for our proposed Orbit scheme described in Sec. 4.2, the augmented
feature {zi} associated with each orbit Ok ∈ Orbits(A) is sampled from the set {1, . . . , |O|k}.
As a result, the cardinality of our proposed Orbit scheme is co = (|O1|!) · (|O2|!) · . . . (|OK |!),
where

∑K
i=1 |Qi| ≤ n. Further, when the formulation symmetry imposes additional connections

among 1 < p ≤ K orbits, the augmented feature only needs to be sampled for one orbit and can
be reused for the other (p − 1) orbits. Without loss of generality, assume these p orbits are com-
posed by O1,O2, . . . ,Op with |O1| = |O2| = · · · = |Op|. Correspondingly, the cardinality of the
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augmented feature space of Orbit+ is co+ = (|Op|!) · · · · · (|OK |!). It is not difficult to verify that
co+ < co < cp < cu. Correspondingly, our proposed orbit-based augmentation schemes achieve a
better augmentation parsimony.

5 EXPERIMENTS

In this section, we present numerical experiments to validate the effectiveness of the proposed ap-
proaches. The source code is available at https://anonymous.4open.science/r/GNN symmetry ILP-
4851.

5.1 DATASET

We evaluate our proposed approach using three ILP benchmark problems that exhibit significant
symmetry. The descriptions of these benchmarks are as follows:

BPP: The bin packing problem (BPP) is a well-known practical problem where items must be placed
into bins without exceeding capacity limits. The objective is to minimize the total number of bins
used. We generate 500 instances, each with 20 items, following the generation strategies outlined
by Schwerin & Wäscher (1997). These instances include 420 variables and 40 constraints, with an
average of 14 orbits, and orbit cardinalities reaching up to 140.

BIP: The balanced item placement problem (BIP) also involves assigning items to bins. However,
unlike bin packing, the goal is to balance resource usage across bins. We use 300 instances from the
ML4CO competition benchmarks (Gasse et al., 2022). These instances feature 1,083 variables and
195 constraints, with an average of 100 orbits.

SMSP: The steel mill slab design problem (SMSP) is a variant of the cutting stock problem, where
customer orders are assigned to slabs under color constraints, with the aim of minimizing total waste.
We use 380 instances from (Schaus et al., 2011), which range between 22,000 and 24,000 variables
and nearly 10,000 constraints. On average, these instances have 110 orbits, with orbit cardinalities
varying between 111 and 1,000.

Table 1: Statistics about the datasets.

Problem Avg. number

Var. Cons. Orbits
BPP 420 40 14
BIP 1,083 195 100

SMSP 23,000 1,000 110

In our experiments, 60% of the instances are used for
training, and the remaining 40% are reserved for valida-
tion. Since these datasets include only the problem in-
stances, we also gather corresponding solutions. Due to
the complexity of the constraints, obtaining optimal so-
lutions for every instance is not computationally feasi-
ble. Instead, we run the ILP solver SCIP (Gamrath et al.,
2020) for 3,600 seconds on each instance and record the
best solution found within that time limit. The average
numbers of variables, constraints, as well as orbits of each benchmark problem, are summarized in
Table 1.

5.2 BASELINES AND THE PROPOSED METHODS

We consider three baselines (No-Aug, Uniform and Position) which employ different feature aug-
mentation strategies, and compare them to our proposed methods (Orbit and Orbit+).

No-Aug: This is the baseline where no feature augmentation is adopted. To align with other strate-
gies, the augmented features z are set as zeros for all variables. Uniform: As described in Sec.
4.3, this baseline samples each element of z individually from a uniform distribution to distinguish
symmetric variables, i.e., zi ∼ U(0, 1),∀i ∈ [n]. Position: As described in Sec. 4.3, this baseline
assigns unique integer numbers to the elements of z to distinguish between different variables by
their positions. Specifically, the augmented features zi,∀i ∈ [n] can be uniformly sampled from
{1, . . . , n} without replacement. Orbit: This is our proposed augmentation scheme outlined in Al-
gorithm 1, which utilizes the structural information from orbits and adds augmented features within
each orbit individually. Orbit +: This is an enhanced version of the orbit-based feature augmen-
tation scheme mentioned in Section 4.2, which exquisitely assigns the same augmented features to
multiple orbits for certain types of symmetries.
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5.3 EVALUATION METRICS

To evaluate the prediction performance of models trained with different augmented features, the
Top-m% error proposed by Chen et al. (2024) is used as the evaluation metric, which takes into
account the impact of the formulation symmetry on the solutions.

Top-m% error: It is based on the ℓ1-distance between a rounded prediction and its closest sym-
metric solution. Given the label y of a instance and a prediction ŷ, the equivalent solution of y
closest to ŷ is defined as ỹ = π′(y), where π′ = argminπ ∥ŷ − π(y)∥. Based on this observation,
the Top-m% error is defined as:

E(m) =
∑
i∈M

|Round(ŷi)− ỹi|, (3)

where M is the index set of the top m% variables with the smallest values of |Round(ŷj)− ŷj |,∀j.
This error measures the minimum ℓ1-distance between the prediction and all equivalent solutions of
the label. Compared to the ℓ1 distance

∑
i∈M |Round(ŷi) − yi| that ignores the effect of multiple

equivalent solutions caused by formulation symmetry, the metric adopted characterizes the distance
between a prediction and a feasible solution more accurately. With the standard ℓ1-distance, the
error would be non-zero when Round(ŷ) ̸= y, whereas it would be reduced to 0 with (3), as long as
there exists a ỹ = π′(y) and its element ỹi matches Round(ŷi).

5.4 MODEL AND TRAINING SETTINGS

The model architecture follows Han et al. (2023), where four half-layer graph convolutions are used
to extract hidden features and another two-layer perceptron is used to make the final prediction. We
also follow most of their settings for the initial features used in the bipartite representation of ILP
instances. The only difference is we omit the “pos emb” feature as its role is the same as the “Pos”
augmentation strategy in our baselines.

In the training configuration, we utilize the Adam optimizer with a learning rate of 0.0001 and
a batch size of 8. All models are trained for 100 epochs, with the parameters corresponding to
the lowest validation loss preserved for subsequent evaluation. Since all augmented features are
randomly generated, multiple samples should be drawn for each training instance to mitigate over-
fitting. Accordingly, we sample 8 times for each training instance, while only a single sample is
taken for each instance in the test set. The symmetry detection is conducted with the well-developed
tool Bliss, and more details are shown in Appendix A.7.

5.5 MAIN RESULTS

In this section, we present the numerical results comparing different augmented features. As shown
in Table 2, among the three baselines, the Top-m% errors attained by Uniform and those by Position
are much smaller than those by No-Aug. This is natural since the last one does not employ any fea-
ture augmentation. The large error of No-Aug demonstrates the necessity of addressing the issue that
symmetric variables can not be distinguished. Meanwhile, the performance improvement brought
by Uniform and Poisition validates the effectiveness of feature augmentation. Moreover, Position
has a smaller cardinality of augmented feature space, thus its performance is generally better than
that of Uniform.

Compared with the three baselines, our proposed orbit-based feature augmentation methods bring a
notable reduction of the prediction errors. Notice that the reduction of loss from Position to Orbit
is more distinct than that from Uniform to Position. This is because both Uniform and Position
mainly consider enhancing the distinguishability in the feature augmentation but overlooking the in-
herent formulation symmetry of these problems. In contrast, our proposed Orbit-based methods are
symmetry-aware, where the associated augmented features are constructed explicitly based on the
symmetry groups. As a result, the cardinality of the augmented feature space of our proposed Orbit
and that of Orbit+ can be smaller, as analyzed in Sec. 4.3.2. The remarkable improvement of the
prediction accuracy of Orbit and Orbit+ demonstrates the superiority of the symmetry-aware feature
augmentation and validates the effectiveness of our proposed guiding principles for constructing
augmented features. Besides, one can observe that Orbit+ generally attains a better Top-m% error

9
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performance than Orbit. This is in accordance with our expectation since Orbit+ leverages more
symmetry information in constructing the augmented features and further reduces the cardinality of
the feature space.

Table 2: Top-m% errors (↓) of different feature augmentation schemes.

Methods BPP BIP SMSP
30% 50% 70% 90% 30% 50% 70% 90% 30% 50% 70% 90%

No-Aug 3.0 4.8 6.6 9.5 30.4 50.6 71.0 91.1 34.0 57.7 83.0 113.9
Uniform 0.0 0.4 2.4 6.4 4.8 15.9 44.9 80.2 18.5 34.7 53.3 80.0
Position 0.0 0.0 1.3 5.6 4.5 13.4 45.6 81.6 19.3 35.2 53.4 79.8

Orbit 0.0 0.0 1.3 4.3 3.6 8.6 39.0 75.7 0.0 1.5 17.9 51.1
Orbit + 0.0 0.0 0.9 4.3 3.2 5.5 39.4 79.2 0.0 1.0 14.9 50.3

In Fig. 2, the validation losses versus epochs of these baseline feature augmentation methods as
well as our proposed Orbit and Orbit+ are presented. It is evident that the attained validation loss
after convergence satisfies Orbit+ < Orbit < Position < Uniform. This is consistent with the trend
of the Top-m% errors in Table 1. Additionally, one can observe that the validation losses of Orbit
and Orbit+ drop more quickly than those of the baselines. Specifically, Orbit+ merely takes around
20 epochs to reach the smallest loss over the BPP and BIP datasets, while Uniform and Position
take around 30 ∼ 40 epochs. The phenomenon is not surprising, since a smaller cardinality of
augmented space has the potential to achieve better training efficiency as analyzed in Section 4.1.
The results in Fig. 2 and Table 2 confirm that our proposed orbit-based feature augmentation not
only provides more accurate solution predictions but also enhances the training efficiency of the
learning model, offering a competitive approach for solving ILPs with symmetries. Beside the main
results, supplementary numerical results are available in Appendix A.6.
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Figure 2: Validation losses of different schemes.

6 CONCLUSION AND LIMITATION

In this work, we demonstrated that the interaction between the formulation symmetry of ILPs and
the permutation invariance and equivariance properties of GNNs limits the ability of classic GNN
architectures to distinguish between symmetric variables. Exploring the potential of feature aug-
mentation to address this limitation, we proposed three guiding principles for constructing the aug-
mented features. Based on these principles, we developed a new orbit-based feature augmentation
scheme, which can distinctively enhance the prediction performance of GNNs for ILPs with sym-
metry. There are several limitations of our orbit-based augmentation scheme, which also present
opportunities for future research. First, our approach is specifically tailored for ILPs with formu-
lation symmetry, and it is currently unknown whether it can be effectively applied to problems of
other classes. Second, the principle of isomorphic consistency, which underpins our method, is pri-
marily applicable to supervised learning tasks where multiple label choices exist. These limitations
highlight areas for further exploration and potential extension of our approach.
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A APPENDIX

A.1 EXAMPLE OF CONNECTIONS BETWEEN ORBITS

Example 1. Consider a bin-packing problem with 3 items of sizes {1, 3, 5} and up to 3 bins, each
with a capacity of 5. The objective is to minimize the number of bins used while ensuring the total
size of items in each bin does not exceed its capacity. Let xij be a binary variable where xij = 1
if item i is placed in bin j, and yj be a binary variable where yj = 1 if bin j is used. Then this
problem can be formulated as:

min
xij ,yj

y1 + y2 + y3

s.t. xi1 + xi2 + xi3 = 1, i = 1, 2, 3 (4a)
1x1j + 3x2j + 5x3j ≤ 5yj , j = 1, 2, 3 (4b)
xij , yj ∈ {0, 1} (4c)

The formulation symmetries of this problem are arbitrary permutations acting on the indices j,

namely, permutations acting on the columns of matrix X =

x11 x12 x13

x21 x22 x23

x31 x32 x33

y1 y2 y3

. There are 4 orbits,

each corresponding to a row of X . In the basic orbit-based feature augmentation approach described
in Algorithm 1, the augmented features added to the variables in each column of X can be distinct.
However, due to the symmetries inherent in this problem, each column should be treated as an indi-
visible unit. Consequently, the features added to different variables within the same column should
be identical. Specifically, following Orbit+, we only need to sample zk, k = 1, 2, 3 from {1, 2, 3}
for the variables in the first row of X and applies z1 = [z1, z2, z3]

⊤ to the variables in the other
rows. The attained augmented feature associated with the variables x = [X1,:,X2,:,X3,:,X4,:]

⊤

will be zo+ = [z⊤
1 , z⊤

1 , z⊤
1 , z⊤

1 ]⊤. In comparison, following Orbit, the attained augmented feature
zo = [z⊤

1 , z⊤
2 , z⊤

3 , z⊤
4 ]⊤, where the elements of each zi, i = 1, . . . , 4 are individually sampled from

{1, 2, 3}. Obviously, the cardinality of the space of zo+ is smaller.

A.2 EXAMPLES FOR THE PRINCIPLE OF ISOMORPHIC CONSISTENCY IN SECTION 4.1

Consider two isomorphic instances as follows:

min
x1,x2,x3

x1 + x2 + 3x3

s.t. x1 + x2 = 1

x1, x2, x3 ∈ {0, 1}
(5)

min
x1,x2,x3

3x1 + x2 + x3

s.t. x2 + x3 = 1

x1, x2, x3 ∈ {0, 1}
(6)

Let A represent the first instance and A′ represent the second one, then πc(σr(A)) = A′ with
π : π(1) = 3, π(3) = 1, π(2) = 2 and σ : σ(1) = 1. The label of A is x̄ = [0, 1, 0]⊤ and that of
A′ is x̄′ = [0, 0, 1]⊤. Assume the augmented features are z = [1, 2, 0]⊤ for A and z′ = [0, 2, 1]⊤

for A′. Correspondingly, Ã =

[
1 1 0 1
1 1 3 0
1 2 0 0

]
and Ã′ =

[
0 1 1 1
3 1 1 0
0 2 1 0

]
. It can be easily verified

that the property of distinguishability is satisfied by both Ã and Ã′. However, it is evident that
πv(z) = z′ but πv(x̄) ̸= x̄′, so that the property of isomorphic consistency is violated. From the
perspective of GNN, A and A′ are equivalent since πv(z) = z′. However, the two instances (Ã, x̄)
and (Ã′, x̄′) have different labels as πv(x̄) ̸= x̄′. This will result in ‘conflict’ samples, which will
mislead the prediction of GNNs to diverge from the correct solutions.
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A.3 PROOF OF PROPOSITION 1

Without loss of generality, assume the loss function ℓ(·) ≥ 0 is permutation-invariant (i.e.,
ℓ(πv(a), πv(b)) = ℓ(a, b)) and possesses the identity property (i.e., ℓ(a, b) = 0 ⇐⇒ a = b,
examples of such loss functions include mean-squared loss and cross-entropy loss.).

Proof: Since π ∈ Sn is a formulation symmetry, so there exists σ ∈ Sm such that πc(σr(A)) =
A. Besides, fθ has permutation equivariance and invariance properties, so we have fθ(A) =
fθ(π

c(σr(A))) = πv(fθ(σ
r(A))) = πv(fθ(A)), i.e., fθ(A)i = fθ(A)π(i). Further, ∀i, j ∈ O,

there exists π ∈ G such that j = π(i), so fθ(A)i = fθ(A)j .

A.4 PROOF OF COROLLARY 1

Proof: (counter example) Consider an ILP s = min {x3|x1 + x2 + x3 = 1, x1, x2, x3 ∈ {0, 1}},
it has a permutation symmetry (π(1) = 2, π(2) = 1, π(3) = 3) and two optimal solutions
(0, 1), (1, 0). Since indices 1 and 2 can be permuted, thus 1 and 2 are in the same orbit, and
fθ(s)1 = fθ(s)2. However, both the two optimal solutions (0, 1, 0) and (1, 0, 0) have distinct values
for x1 and x2. Therefore, fθ cannot predict any optimal solution of s.

A.5 PROOF OF PROPOSITION 2

Proof: Consider two samples (A, x̄) and (A′, x̄′) where ∃π ∈ Sn, such that πc(A) = A′, and
πv(z) = z′. Accordingly, πc(Ã) = Ã′. After adding augmented features, the total loss of
these two samples is L = ℓ(fθ(Ã), x̄) + ℓ(fθ(Ã′), x̄′). For the second term, it will hold true
that ℓ(fθ(Ã′), x̄′) = ℓ(fθ(π

c(Ã)), x̄′) = ℓ(πv(fθ(Ã)), x̄′) = ℓ(fθ(Ã), (πv)−1(x̄′)), where the
first equality holds since A and A′ are two isomorphic instances. The second equality holds as
fθ is permutation-invariant, and the third equality holds as ℓ(·) is permutation-invariant and π
is a bijection. If the principle of isomorphic consistency is violated, then πv(x̄) ̸= x̄′, namely
x̄ ̸= (πv)−1(x̄′). In this case, given either term in L being 0, the other term will be positive due to
the identity property of ℓ(·). Correspondingly, L = ℓ(fθ(Ã), x̄) + ℓ(fθ(Ã), (πv)−1(x̄′)) > 0.

A.6 ADDITIONAL NUMERICAL RESULTS

we expand our analysis to incorporate two additional evaluation metrics beyond Top-m% errors as
follows.

Objective values (↓) comparing to the ILP solver Instead of directly using the rounded solutions
for calculations—since they are often infeasible—we leverage these predictions as initial points to
expedite the solving process of ILP solvers(Nair et al., 2020; Khalil et al., 2022; Han et al., 2023).
Consistent with established practices, we integrate predictions from the trained models to enhance
the ILP solver CPLEX, following the methodology outlined in (Nair et al., 2020). The results are
shown in Table 3 and Table 4 for datasets BIP and SMSP, respectively. Note that the dataset BPP is
excluded, as its instances can be solved in a matter of seconds.

Table 3: Objective values v.s. solving time on BIP

100s 200s 300s 400s 500s 600s
CPLEX 16.9 16.2 15.8 15.5 15.3 15.2

CPLEX + ”Orbit+” 15.5 15.1 14.9 14.8 14.7 14.6

Table 4: Objective values v.s. solving time on SMSP

100s 200s 300s 400s 500s 600s
CPLEX 37.8 25.2 13.6 12.1 11.3 11.0

CPLEX + ”Orbit+” 13.7 13.1 12.3 11.6 11.1 10.7
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From these results, we observe that our augmentation scheme yields better objective values while
requiring less computational time.

Constraint violations (↓) We also report the total violation of model prediction x̂ with respect
to the constraint Ax̂ ≤ b, i.e., the summation of positive elements in Ax̂ − b. The violation of
predictions from different models is summarized in Table 5.

Table 5: Constrain violations.

BIP SMSP
Uniform 27.84 852.23
Position 22.12 933.76

Orbit 12.89 453.87
Orbit+ 3.68 329.74

From the results, we find that our methods (Orbit, Orbit+) produce predictions with significantly
less constraint violation, further demonstrating the effectiveness of our approach.

A.7 SYMMETRY DETECTION

Detecting a symmetry group G for an ILP is complex and can be computationally intensive. Fortu-
nately, over the years, well-established methods and software tools such as Bliss(Junttila & Kaski,
2011) and Nauty(McKay & Piperno, 2013) have been developed for efficiently detecting the sym-
metries of ILPs, as well as their orbits. In our experiments, the orbits of all instances have been
detected. In Table 6, we report the average time taken to detect symmetry groups in the considered
datasets using Bliss, with the size of the detected subgroup G represented by its logarithmic value
log10 |G|.

Table 6: Average time of symmetry detection.

BPP BIP SMSP
# of Var. 420 1083 23000
log10 |G| 6.9 6.6 213.1
time(s) 0.05 0.06 6.11

From the results, we observe that for smaller problems like BPP and BIP, symmetry detection re-
quires negligible computational time. Even for larger problems, such as SMSP, symmetry group
detection is still accomplished within a few seconds, demonstrating the feasibility of our approach
even for complex instances.
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