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Abstract

In the zero-shot relation extraction (ZSRE) task,001
large language models (LLMs) have shown re-002
markable capabilities in predicting unknown003
relations, offering significant improvements in004
efficiency and flexibility over traditional meth-005
ods. However, the probabilistic nature of the006
generation process in LLMs may lead to the oc-007
currence of hallucinations, causing inaccurate008
relation triples be generated. To relieve this009
problem, this paper proposes a novel model,010
Cross-Attention Contrastive Relation Extrac-011
tion (CACRE), which aims at detecting erro-012
neous relation triples generated by LLMs and013
then effectively distinguishing valid ones. The014
CACRE model leverages contrastive learning015
and cross-attention mechanisms. Specifically,016
contrastive learning is applied to distinguish017
between positive and negative relation triples,018
enhancing the model’s feature extraction capa-019
bility by learning discriminative features. Sub-020
sequently, a cross-attention mechanism is em-021
ployed to capture the semantic associations be-022
tween texts and triples, thereby improving the023
model’s ability to understand and extract infor-024
mation from the input content. Experimental025
results on the DuIE2.0 Chinese dataset demon-026
strate that CACRE significantly outperforms027
baseline models in zero-shot scenario with an028
average 12% improvement in precision.029

1 Introduction030

The objective of zero-shot relation extraction031

(ZSRE) is to automatically identify and extract re-032

lations between entities from text, neither relying033

on predefined relation labels nor domain-specific034

annotated data. Traditional relation extraction (RE)035

approaches depend heavily not only on given ex-036

plicit relation labels (Miwa and Bansal, 2016; Han037

et al., 2020), but also on substantial annotated data,038

which restricts their ability to generalize across un-039

known relation types. Recently, the rapid advance-040

ments in large language models (LLMs) (Bubeck041

et al., 2023) such as GPT (Radford et al., 2018),042

Qwen (Bai et al., 2023) and DeepSeek (Bi et al., 043

2024) have propelled the development of ZSRE 044

tasks. By leveraging their exceptional reasoning 045

capabilities, LLMs can infer relations (Tang et al., 046

2023) for previously unseen types without the need 047

for additional task-specific training. This capabil- 048

ity significantly reduces the dependence on anno- 049

tated datasets and highlights the strong potential of 050

LLMs for ZSRE tasks (Wei et al., 2023), presenting 051

a novel approach for advancing RE research. 052

However, despite their strong generalization ca- 053

pabilities, LLMs face obvious limitations in ex- 054

tracting relations, particularly when processing 055

texts with complex relation descriptions or seman- 056

tic ambiguities, which can easily cause halluci- 057

nations (Adlakha et al., 2024; Lin et al., 2024; 058

Zhou et al., 2024). The incorrect outputs, which 059

include content that is either irrelevant to the in- 060

put text or factually inaccurate (Li et al., 2023), 061

often closely similar with correct data in syn- 062

tactic structure, making them extremely hard to 063

distinguish, thereby affecting the reliability of 064

ZSRE. To address this issue, this paper proposes 065

a Cross-Attention Contrastive Relation Extraction 066

(CACRE) model, which achieves semantic align- 067

ment between texts and triples through a cross- 068

attention mechanism, and introduces contrastive 069

learning to further enhance the model’s ability 070

to distinguish correct from incorrect relational 071

triples. This model can effectively filter out in- 072

correct triples generated by LLMs, improving the 073

overall accuracy of ZSRE. 074

The proposed CACRE model involves four main 075

steps. As shown in Figure 1, first, relation triples 076

are generated by designing specific prompts to 077

guide LLMs in extracting triples from textual 078

datasets, which are categorized into anchors, pos- 079

itives, and negatives to form structured training 080

data. The negatives are required to have a high 081

similarity to the anchors or positives. Second, a 082

cross-attention mechanism (Niu et al., 2021) is ap- 083
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Figure 1: Model framework.1

plied to capture the information interaction of the084

source text with those of the relation triples, pro-085

ducing interaction vectors that capture nuanced cor-086

relations between the source text and inferred rela-087

tions, thereby improving the model’s representation088

of relation features. Third, CACRE is optimized089

through the contrastive learning, which is an un-090

supervised learning strategy (Hastie et al., 2009),091

enabling the model to differentiate between correct092

and erroneous triples. Finally, distinguishes valid093

relations and entities from LLM-generated relation094

triples. By employing the aforementioned methods,095

this model can effectively mitigate hallucination096

and bias issues in LLMs outputs.097

The contributions of this paper are summarized098

as follows.099

• The proposed CACRE model significantly en-100

hances the precision and reliability of ZSRE101

performed by LLMs, exhibiting exceptional102

capabilities in identifying erroneous relations,103

particularly in accurately distinguishing incor-104

rect triples that closely resemble correct ones.105

• The proposed cross-attention mechanism fa-106

cilitates bidirectional information exchange107

between relation triples and text embeddings,108

effectively enhancing the semantic representa-109

tion of relations. 110

• Building upon the concept of contrastive learn- 111

ing, a projection network module and a fusion 112

function are designed to effectively calculate 113

the text and relation triples, integrating local 114

and global semantics to capture the feature 115

differences between correct and incorrect ex- 116

amples. 117

2 Methodology 118

This section introduces the four main modules in 119

the CACRE model. First, task-specific instructions 120

guide LLMs to extract relation triples, categorized 121

as anchors, positives, and negatives. Second, the 122

text and triples are encoded using the RoBERTa- 123

Chinese-base (Liu et al., 2019), and then, these em- 124

beddings are joined using a cross-attention mecha- 125

nism, which enhances their interactions to produce 126

1The translation marked with * in Figure 1: Extract entity
relations from text and categorize the output in the following
format\n Anchor: (Entity 1, Relation, Entity 2)\n... \n Positive:
(Entity 1, Synonymous Relation, Entity 2)\n...\n Negative:
(Wrong Entity 1, Wrong Relation, Wrong Entity 2)\n...\n
Requirements: The relation pair must meet the following
qualifiers\n The number of triples in the three parts is the
same\n The positive example must have a synonymous relation
and the same entity type as the anchor\n The negative example
should involve a highly similar incorrect relation or entity.
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fine-grained and enriched embeddings. Third, the127

model is trained with a contrastive learning frame-128

work that aligns positive samples with the source129

text while distancing negatives in the embedding130

space. Finally, the trained model predicts the effec-131

tivity of relations and entities based on the text and132

the corresponding relation triples.133

2.1 RE via LLM134

As shown in Figure 1, a custom-designed instruc-135

tion guides the DeepSeek V3 (DeepSeek-AI, 2024)136

model in producing high-quality structured data.137

The instruction was designed to guide DeepSeek138

V3 output three types of relation triples—anchors,139

positives, and negatives—from each text input. The140

instruction constraint specifies that the DeepSeek141

V3 should extract relations and entities from a pre-142

defined relation set.143

Given a text T , a relation triple R =144

{(e1, r, e2)} is defined, where e1 and e2 are en-145

tities, and r represents the relation between them.146

Further defined anchor relation triples Ra, posi-147

tive relation triples Rp, and negative relation triples148

Rn. The DeepSeek V3 is applied to extract rela-149

tion triples R and a function fextract is defined to150

express the extraction of relations, resulting in a set151

of triples Rt:152

Rt = fextract(T ) = {Ram , Rpm , Rnm}, (1)153

where m is the number in one of the three types.154

So, for a single sample S = {T,Rt}, Ra serve as155

anchors, while Rp are valid semantic correlations156

to Ra and are designed to strengthen the model’s157

learning of correct relations. In contrast, Rn intro-158

duce deliberate errors at the relation triples com-159

pared to Ra or Rp, yet remain highly similar in160

form to correct triples.161

2.2 Feature Extraction using Encoding and162

Cross-Attention Mechanisms163

This paper adopts the RoBERTa-Chinese-base to164

encode the text T and relation triples Rt. S is165

transformed into its encoded representation S′ =166

{E(T ), E(Rt)}, where E(T ) is the encoded T ,167

E(Rt) is the encoded Rt. Then a cross-attention168

mechanism is introduced to compute the semantic169

associations between E(T ) and E(Rt), enabling170

the model to capture finer-grained and multidimen-171

sional representations of semantic relations. There-172

fore, the text vector VT and the triple-based vector173

VR is separately calculated by the attention mech-174

anism. Meanwhile, the attention mechanism com- 175

putes weight matrixes WT and WR, quantifying the 176

fine-grained alignment between the text and the 177

triples. 178

Vvector = softmax
(
QK⊤
√
dk

)
V, (2) 179

where Vvector denotes the specific interaction vector, 180

and when calculating VT, E(Rt) is used as the Key 181

and Value, E(T ) is used as Query, while calculating 182

VR, E(Rt) is used as the Query and E(T ) is used 183

as the Key and Value. ⊤ denotes the transpose 184

operation, dk is the dimension of the key vectors. 185

Further, the ṼT and the ṼR is dynamically aggre- 186

gated by follow formula with weight matrix W . 187

Wavg =
1

nheads

nheads∑
i=1

Wi, (3) 188

Ṽ = bmm(Wavg, Vvector), (4) 189

where Wi represents the attention weight matrix W 190

for the i-th head, Wavg is the average of these atten- 191

tion weights across all heads. The bmm represents 192

batch matrix multiplication. 193

2.3 Contrastive Learning 194

Contrastive learning (Li et al., 2020) is an unsuper- 195

vised learning approach (Giorgi et al., 2021) that 196

optimizes the spatial distribution of embeddings 197

by encouraging semantically similar samples to 198

cluster closely while pushing dissimilar samples 199

farther apart. This paper adopts the SimCLR frame- 200

work (Chen et al., 2020), which excels in semantic 201

representation learning. To tailor SimCLR for RE 202

tasks, the projection network module is enhanced 203

with specific optimizations. The projection net- 204

work module is employed to map tensors into a 205

projection space, which consists of 1D convolution, 206

activation functions, and a fully connected layer. 207

For tensors ṼT and ṼR, denoted as input G = 208

{ṼT, ṼR}, the process is carried out through 209

through a 1D convolutional layer for local feature 210

extraction, followed by linear projection and non- 211

linear activation, ultimately yielding the projected 212

output: 213

Xproj = F (Linear(Conv1D(G))), (5) 214

where F (·) is defined as 215

F (x) = LayerNorm(LeakyReLU( 216

Linear(Wp · x+ bp) 217

·Wy + by)), (6) 218
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where x is the input, Wp and bp are the param-219

eters for the first linear transformation, and Wy220

and by are the parameters for the final transforma-221

tion. Meanwhile, a residual connection is incorpo-222

rated to obtain the final output X = {XT, XR} =223

{XT, Xa, Xp, X
(1)
n , X

(2)
n , . . . , X

(N)
n }. If the input224

dimension H matches the projection dimension P ,225

the residual is directly added. Otherwise, the in-226

put is linearly transformed to match the projection227

dimension:228

X = Xproj + λ · (VwWres + bres), (7)229

where Wres ∈ RH×P , Vw and bres ∈ RP are the230

weights and biases for the residual connection, and231

λ is a learnable scaling factor controlling the con-232

tribution of the residual.233

As shown in Figure 1, the CACRE is optimized234

by two key perspectives: enhancing semantic align-235

ment between the text and triples, and refining se-236

mantic distinctions within the triples themselves.237

Additionally, emphasis is placed on enhancing se-238

mantic differentiation within triples to strengthen239

the model’s ability to discern subtle semantic de-240

tails. To achieve this, a novel multi-granularity241

InfoNCE loss function is proposed, extending the242

traditional InfoNCE loss (Oord et al., 2018) by243

incorporating both local and global feature simi-244

larities. To further address challenging samples245

and enhance the learning capacity of CACRE, a246

ratio-based hard negative sample selection strategy247

and a dynamic margin adjustment mechanism are248

integrated to optimize training efficiency.249

First, XT is designated as an anchor Xa to max-250

imize its similarity with the positive sample Xp251

while minimizing similarity with negative samples252

Xn. Then, similarly, the same applies to Xa it-253

self. The local similarity is computed between the254

anchor Xa, the positive Xp, and the negatives X(i)
n :255

S+
local =

1

τ
cos

(
Xa, Xp

)
, (8)256

S−
local(i) =

1

τ
cos

(
Xa, X

(i)
n

)
, i = 1, . . . , Nneg,

(9)

257

where τ is the temperature parameter. The local258

similarity is averaged over the sequence length L259

to obtain the final local similarity scores: 260

S̄+
local =

1

L

L∑
j=1

S+
local[j], (10) 261

S̄−
local(i) =

1

L

L∑
j=1

S−
local(i)[j], i = 1, . . . , Nneg,

(11)

262

where j represents the time step in the sequence L. 263

The global representations are obtained by mean- 264

pooling over the sequence dimension: 265

µa =
1

L

L∑
j=1

Xa[j], µp =
1

L

L∑
j=1

Xp[j],

(12)

266

µ
(i)
n =

1

L

L∑
j=1

X
(i)
n [j], i = 1, . . . , Nneg. (13) 267

Using these mean-pooled representations, the 268

global similarities are computed as: 269

S+
global =

1

τ
cos

(
µa, µp

)
, (14) 270

S−
global(i) =

1

τ
cos

(
µa, µ

(i)
n

)
, i = 1, . . . , Nneg.

(15)

271

The final similarity scores are a weighted combi- 272

nation of the local and global similarities: 273

S+ = w · S̄+
local + (1− w) · S+

global, (16) 274

S−(i) = w · S̄−
local(i) + (1− w) · S−

global(i),

(17)
275

where w controls the contribution of local versus 276

global similarity. 277

To further enhance the discriminative ability 278

against hard negative samples, CACRE selects 279

hard negative samples in one batch. Let K = 280

⌈topk · Nneg⌉, topk is a ratio coefficient used to 281

determine the number of hard negative samples K 282

and define: 283

{S−
hard(i)}

K
i=1 = topk

[
{S−(i)}Nneg

i=1 , K
]
. (18) 284

In addition, a dynamic margin is introduced to ad- 285

just the difficulty of negatives: 286

m = base_margin+ 287

β
[
S+

global −
1

Nneg

Nneg∑
i=1

S−
global(i)

]
, (19) 288
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where m is the dynamic margin, base_margin is289

the initial margin, and β is a scaling factor.290

The logits are then defined by concatenating the291

positive similarity score with hard negative similar-292

ity scores, followed by subtraction of m:293

logits =
[
S+, S−

hard(1)−m, S−
hard(2)−m,294

. . . , S−
hard(K)−m

]
. (20)295

Finally, the multi-granularity InfoNCE loss is296

computed as the negative log-likelihood of the pos-297

itive similarity:298

L = − log
[ exp(S+)

exp(S+) +
∑K

i=1 exp
(
S−

hard(i)−m
)]

(21)

299

2.4 Data Prediction through CACRE300

In unsupervised learning, prediction tasks fun-301

damentally rely on feature vectors derived from302

model outputs. This paper leverages LLMs to ex-303

tract relation triples, which are subsequently fed304

into the CACRE model. The CACRE model pro-305

cesses the text and relation triples to generate cor-306

responding feature vectors. Subsequently, the sim-307

ilarity between the text and the triples, as well as308

the similarity among the triples themselves, is com-309

puted and compared against thresholds optimized310

during training.311

The similarity between the text and the triple312

is denoted as Sst, while Stt represents the internal313

similarity among the components of the triple. In314

Figure 1, when the Sst is greater than or equal to315

threshold τ1, the relation triple is deemed prelimi-316

narily reliable, when the Stt is greater than or equal317

to threshold τ2, the relation triple is regarded as318

accurate.319

3 Experiments320

3.1 Dataset321

This experiment uses the DuIE2.0 dataset (Li et al.,322

2019), an open-source Chinese dataset for entity re-323

lation extraction. Because the test set of this dataset324

is not publicly available, this paper compares model325

improvement performance by selecting 10% of the326

training data for model training and 2% for valida-327

tion, and the validation set of the original dataset is328

used as the test set. The original DuIE2.0 dataset329

and experimental details are shown in Table 1.330

Dataset #Sentences #Triples #Relations

Original
Train 171293 310709 48
Validation 20674 37825 48

Experiment
Train 18618 128823 48
Validation 3499 24468 48
Test 20674 37825 48

Table 1: Statistics of DuIE2.0 dataset.

3.2 Experimental Environment and Sets 331

The experiments were conducted on a computing 332

system equipped with two NVIDIA A800 80GB 333

PCIe GPUs, providing a total of 160GB of memory. 334

The system operated on Ubuntu 20.04.6 LTS. Table 335

2 shows the hyperparameter configurations that 336

were utilized during the model training process. 337

Due to DeepSeek V3’s excellent ability in ZSRE 338

demonstrated in Table 3, it was selected as the RE 339

model to generate training data.

Hyperparameter Value

Pre-training model RoBERTa-Chinese-base
Max-sequence length 128
Learning rate 1× 10−4

Batch size 32
Projection dimension 512
Epochs 70
Temperature 0.07
Dropout rate 0.2
Base margin 0.08
Topk 0.8
Weight w 0.7

Table 2: Hyperparameter settings for training functions.

340

3.3 Evaluation Metric 341

This experiment evaluates model performance us- 342

ing the metrics of precision, recall, and F1-score. 343

3.4 Compared Models 344

DEPR: The model proposes a dual-head frame- 345

work for entity and relation prediction, aiming to 346

jointly tackle entity recognition and RE (Xiao et al., 347

2023). 348

CasRelBLCF: The model addresses overlapping 349

triples through entity mapping and leverages deep 350

reinforcement learning to filter distant supervision 351

noise (Tang et al., 2024). 352

CECRel: CECRel is a contrastive learning-based 353

unified model for entity and relation extraction. It 354

enhances information extraction by leveraging data 355

augmentation and feature enhancement (Tong et al., 356

2025). 357
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Learning Setting Model Compared Models CACRE

P R F1 P R F1

Non-Zero-shot

DEPR 71.1 65.4 68.1 - - -
CasRelBLCF 74.0 68.6 71.2 - - -
CECRel 76.8 79.7 74.1 - - -
Electra-based Joint Model 78.9 71.2 74.8 - - -

Zero-shot

Chen (Chen and Liu, 2024) - - 73.4 - - -
LLaMA 3:70b 45.6 41.4 43.4 57.9 (+12.3) 40.7 47.8 (+4.4)
Qwen-Plus 61.0 69.0 65.0 70.9 (+9.9) 68.6 69.7 (+4.7)
ERNIE 4.0 64.1 74.4 69.0 78.9 (+14.8) 72.3 75.5 (+6.5)
DeepSeek V3 65.2 80.1 71.9 76.6 (+11.3) 78.0 77.4 (+5.5)

Table 3: Main experiment results of different models.

Electra-based Joint Model: The model employs358

a joint learning approach to mitigate the issue of359

entity overlap, thereby improving the accuracy of360

RE (Zhu et al., 2020).361

Chen (Chen and Liu, 2024): They proposed a multi-362

agent cooperative framework that employs multiple363

specialized agents to improve LLM performance364

in constructing knowledge graphs.365

Qwen-Plus: Qwen-Plus is an advanced pre-trained366

large language model developed by Alibaba Cloud,367

providing powerful natural language processing368

capabilities (Bai et al., 2023).369

ERNIE 4.0: ERNIE 4.0 is a pre-trained language370

model developed by Baidu, offering powerful natu-371

ral language processing capabilities by integrating372

multiscale knowledge and structured information373

(Zhang et al., 2019).374

LLaMA 3: LLaMA 3 is the latest language model375

developed by Meta, offering efficiency and scala-376

bility (Dubey et al., 2024).377

DeepSeek V3: DeepSeek V3 is a model specifi-378

cally optimized for deep learning tasks, equipped379

with powerful feature extraction and classification380

capabilities.381

3.5 Main Results382

Table 3 displays the main results of comparative383

experiments. The results of LLMs based on the384

experimental dataset. For different learning sets,385

baseline models are categorized into two types:386

zero-shot and non-zero-shot learning.387

Zero-shot: Compared to LLMs that performing388

ZSRE, CACRE improves precision by an average389

of 12% and recall by 5.3%. Further, directly ap-390

plying LLMs for result extraction underperforms391

compared to Chen (Chen and Liu, 2024). After in-392

tegrating CACRE, DeepSeek’s F1 score increased 393

by 4% over Chen’s, while ERNIE 4.0 achieved a 394

2.1% improvement. However, the experimental 395

results indicate that CACRE has a adverse effect 396

on recall rate that the average decline is 1.1%, pri- 397

marily due to the model’s reliance on training data 398

generated by LLMs, which contains hallucinated 399

outputs and causes error propagation. 400

Non-Zero-shot: Experimental results demonstrate 401

that although directly applying LLMs for RE 402

does not universally surpass supervised learn- 403

ing methods, the CACRE yields significant im- 404

provements. Compared to the Electra-based Joint 405

Model, DeepSeek-V3 and ERNIE 4.0 with CACRE 406

achieve 2.6% and 0.7% higher recall rates, respec- 407

tively. It indicates that CACRE can effectively filter 408

incorrect relations and entities through contrastive 409

learning, thereby substantially enhancing RE task 410

performance. 411

3.5.1 Experimental Analysis 412

In order to effectively distinguish negative samples, 413

CACRE can be viewed as a binary classification 414

task for positive and negative samples. During 415

the validation phase, Receiver Operating Charac- 416

teristic Curve (ROC) as the auxiliary evaluation 417

metric, as it provides a comprehensive assessment 418

of the model’s performance across various decision 419

thresholds. 420

As shown in Figure 2, this experiment presents 421

two different ROC curves for comparison: the An- 422

chor ROC curve reflects the model’s ability to dif- 423

ferentiate similarities within relation triples and 424

aims to evaluate its ability to identify positive and 425

negative samples in relation triples; whereas the 426

Text ROC curve focuses on evaluating the model’s 427
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Figure 2: ROC for CACRE performance evaluation.

ability to differentiate between positive and nega-428

tive samples in text and relation triples. The ex-429

perimental results show that the CACRE model430

demonstrated significant advantages in distinguish-431

ing positive and negative samples.432

3.5.2 Distribution Visualization of Data433

Figure 3: Similarity distributions of anchor and text
samples.

To intuitively demonstrate the learning effective-434

ness of the CACRE model, a visual analysis of435

the similarity distribution was conducted during436

the validation phase. Specifically, the similarity437

was calculated the similarity of the text and the438

anchor with the positive and the negative samples,439

respectively.440

As shown in Figure 3, the distribution of Anchor-441

Positive similarity is concentrated near 1, signif-442

icantly higher than the distribution of Anchor-443

Negative similarity. Similarly, the distribution of444

Text-Positive similarity tends to show higher simi-445

larity values, further confirming the high similarity446

between the text and relation triples. In contrast,447

the similarity distribution of Text-Negative is lower,448

with a notable difference in similarity between pos-449

itive and negative samples, indicating that CACRE450

can effectively distinguish between positive and451

negative samples.452

3.6 Ablation Study 453

This paper includes ablation experiments on each 454

module of CACRE, with the results summarized in 455

Table 4.

Model P R F1
DeepSeek V3 65.2 80.1 71.9
CACRE-att 67.0 70.0 68.5
CACRE-pro 73.2 74.9 74.0
CACRE 76.6 78.0 77.4

Table 4: Submodule performance comparison.

456

DeepSeeK V3 as a based model, CACRE-pro 457

refers to the version of the model trained without 458

the projection layer, while CACRE-att indicates 459

the removal of the cross-attention mechanism dur- 460

ing training. The CACRE-att model demonstrated 461

relatively weaker performance, primarily due to 462

the incorrect exclusion of numerous true positive 463

samples, which significantly reduced its recall rate. 464

CACRE-att showed a 1.8% improvement in preci- 465

sion, but a 10.1% decrease in recall. CACRE-pro 466

achieved a 6.5% increase in F1 score compared 467

to CACRE-att. CACRE demonstrates a substan- 468

tial improvement in terms of both accuracy and F1 469

score. 470

3.7 Case Study 471

The performance of CACRE on samples was ex- 472

hibited in Table 5. The table shows two samples 473

with their similarity scores, regardless of whether 474

it concerns Text 1 or Text 2, indicate a significantly 475

higher similarity between the text and positive ex- 476

amples compared to that between the text and nega- 477

tive examples. Similarly, the similarity between the 478

anchor and positive examples is markedly higher 479

than that between the anchor and negative exam- 480

ples. These findings provide that the CACRE 481

model effectively discriminates between negative 482

samples that are highly similar to the correct triples 483

but are actually incorrect. 484

4 Related Work 485

ZSRE is an important research direction due to 486

its ability to identify and extract relations with- 487

out the need for annotated data. Traditional 488

methods, several approaches (Socher et al., 2013) 489

proposed cross-modal transfer learning methods 490

for zero-shot learning, achieving joint embedding 491

through contrastive learning of textual representa- 492

tions. Levy et al. (Levy et al., 2017) formulate 493
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Text Relation Triple Similarity Score

Input Text 1: 秦始皇的母亲是赵姬。
Trans: The first being the famous mother
of the First Emperor of Qin, Zhao Ji.

Anchor: [秦始皇,母亲,赵姬]
Trans: [First Emperor of Qin, mother, Zhao Ji]
Positive: [赵姬,儿子,秦始皇]
Trans: [Zhao Ji, son, First Emperor of Qin]
Negative: [赵姬,母亲,秦始皇]
Trans: [Zhao Ji, mother, First Emperor of Qin]

Anchor-Negative: 0.6720

Positive-Anchor: 0.8497

Positive-Text: 0.8767

Negative-Text: 0.7112

Input Text 2:《救世神棍》是一部由李志
毅导演、梁朝伟等人主演的剧情片。
Trans: "Savior Charlatan" is a drama film
directed by Lee Chi-Ngai and starring
Tony Leung and others.

Anchor: [救世神棍,主演,梁朝伟]
Trans: [Savior Charlatan, starred in, Tony Leung]
Positive: [救世神棍,演员,梁朝伟]
Trans: [Savior Charlatan, actor, Tony Leung]
Negative: [救世神棍,导演,梁朝伟]
Trans: [Savior Charlatan, director, Tony Leung]

Anchor-Negative: 0.5691

Positive-Anchor: 0.8273

Positive-Text: 0.9272

Negative-Text: 0.6488

Table 5: Samples analysis.

RE as a machine reading comprehension task by494

transforming it into question-answering problems.495

Additionally, Shin et al. (Shin et al., 2020) based496

on templates are suitable for relations with well-497

defined rules but are less flexible. Other methods498

use dictionaries and knowledge bases (Trisedya499

et al., 2019) for inference rely on existing resources,500

but they are limited by the scope of the knowledge501

base and similar resources. Recently, LLMs in-502

cluding BERT (Devlin et al., 2019), GPT (Radford503

et al., 2018), and T5 (Raffel et al., 2020), have504

shown great promise for ZSRE by leveraging vast505

pre-trained knowledge and strong natural language506

reasoning capabilities. However, a notable chal-507

lenge in applying LLMs to ZSRE is hallucination508

outputs, where models generate semantically incor-509

rect yet syntactically plausible relations (Chen and510

Li, 2021).511

To mitigate hallucination bias in ZSRE, sev-512

eral works have introduced contrastive learning513

methods. Theodoropoulos et al. (Theodoropoulos514

et al., 2021) and Chen et al. (Chen et al., 2020)515

utilized contrastive learning frameworks to refine516

relation representations, ensuring that the model517

can distinguish between valid and erroneous re-518

lations. Additionally, Zhou et al. (Zhou et al.,519

2019) and Wang et al. (Wang et al., 2022) explored520

reinforcement and multi-task learning techniques521

to guide the extraction process, reducing halluci-522

nation by aligning model outputs with auxiliary523

tasks or reward signals. In addition, cross-attention524

mechanisms have been explored to capture com-525

plex relation dependencies more accurately. Huang526

et al. (Huang et al., 2022) demonstrated the effec-527

tiveness of cross-attention layers in fusing informa-528

tion between different sources for RE, while Wu529

et al. (Wu and Shi, 2021) extended this idea by530

introducing a cross-type attention mechanism to 531

jointly extract entities and relations. More recent 532

approaches have continued to build on these ideas. 533

Luo et al. (Luo et al., 2023) proposed a hierarchi- 534

cal attention mechanism to further enhance relation 535

representation, allowing for better extraction from 536

nested or complex structures. These methods help 537

alleviate hallucination outputs by grounding RE 538

with structured background knowledge. 539

5 Conclusion 540

This paper proposes the CACRE model, which 541

designed to address the common issue of halluci- 542

natory outputs in ZSRE tasks based on LLMs. By 543

employing a cross-attention mechanism, CACRE 544

can quantify the fine-grained semantic relations 545

and feature representations between the text and 546

the triples. A multi-granularity fusion function 547

is used to apply contrastive learning, which en- 548

ables the model to capture subtle differences and 549

enhance its learning performance. CACRE demon- 550

strates robust discriminative capability by effec- 551

tively identifying and filtering out negative relation 552

triples, thereby significantly improves the precision 553

of LLMs in the task of ZSRE. 554

Limitations 555

Despite the demonstrated effectiveness of CACRE 556

in mitigating hallucinated relation triples in ZSRE, 557

several limitations remain. First, the model’s per- 558

formance is inherently contingent upon the quality 559

and distribution of candidate triples generated by 560

the LLMs, excessive noise or bias in these candi- 561

dates may constrain the upper bound of CACRE’s 562

filtering capability. Second, the model exhibits 563

sensitivity to the selection of decision thresholds 564

8



during inference, which introduces challenges in565

achieving optimal precision-recall trade-offs across566

diverse datasets and application scenarios. Further-567

more, the contrastive learning framework presup-568

poses the availability of sufficiently informative569

positive and negative samples, which may not al-570

ways be guaranteed in practical zero-shot settings.571

Addressing these limitations is essential for further572

enhancing the robustness and generalizability of573

CACRE in applications.574
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