Leveraging Large Language Models and Cross-Attention Mechanism for
Zero-Shot Relation Extraction with Contrastive Learning

Anonymous EMNLP submission

Abstract

In the zero-shot relation extraction (ZSRE) task,
large language models (LLMs) have shown re-
markable capabilities in predicting unknown
relations, offering significant improvements in
efficiency and flexibility over traditional meth-
ods. However, the probabilistic nature of the
generation process in LLMs may lead to the oc-
currence of hallucinations, causing inaccurate
relation triples be generated. To relieve this
problem, this paper proposes a novel model,
Cross-Attention Contrastive Relation Extrac-
tion (CACRE), which aims at detecting erro-
neous relation triples generated by LLMs and
then effectively distinguishing valid ones. The
CACRE model leverages contrastive learning
and cross-attention mechanisms. Specifically,
contrastive learning is applied to distinguish
between positive and negative relation triples,
enhancing the model’s feature extraction capa-
bility by learning discriminative features. Sub-
sequently, a cross-attention mechanism is em-
ployed to capture the semantic associations be-
tween texts and triples, thereby improving the
model’s ability to understand and extract infor-
mation from the input content. Experimental
results on the DulE2.0 Chinese dataset demon-
strate that CACRE significantly outperforms
baseline models in zero-shot scenario with an
average 12% improvement in precision.

1 Introduction

The objective of zero-shot relation extraction
(ZSRE) is to automatically identify and extract re-
lations between entities from text, neither relying
on predefined relation labels nor domain-specific
annotated data. Traditional relation extraction (RE)
approaches depend heavily not only on given ex-
plicit relation labels (Miwa and Bansal, 2016; Han
et al., 2020), but also on substantial annotated data,
which restricts their ability to generalize across un-
known relation types. Recently, the rapid advance-
ments in large language models (LLMs) (Bubeck
et al., 2023) such as GPT (Radford et al., 2018),

Qwen (Bai et al., 2023) and DeepSeek (Bi et al.,
2024) have propelled the development of ZSRE
tasks. By leveraging their exceptional reasoning
capabilities, LLMs can infer relations (Tang et al.,
2023) for previously unseen types without the need
for additional task-specific training. This capabil-
ity significantly reduces the dependence on anno-
tated datasets and highlights the strong potential of
LLMs for ZSRE tasks (Wei et al., 2023), presenting
a novel approach for advancing RE research.

However, despite their strong generalization ca-
pabilities, LLMs face obvious limitations in ex-
tracting relations, particularly when processing
texts with complex relation descriptions or seman-
tic ambiguities, which can easily cause halluci-
nations (Adlakha et al., 2024; Lin et al., 2024,
Zhou et al., 2024). The incorrect outputs, which
include content that is either irrelevant to the in-
put text or factually inaccurate (Li et al., 2023),
often closely similar with correct data in syn-
tactic structure, making them extremely hard to
distinguish, thereby affecting the reliability of
ZSRE. To address this issue, this paper proposes
a Cross-Attention Contrastive Relation Extraction
(CACRE) model, which achieves semantic align-
ment between texts and triples through a cross-
attention mechanism, and introduces contrastive
learning to further enhance the model’s ability
to distinguish correct from incorrect relational
triples. This model can effectively filter out in-
correct triples generated by LLMs, improving the
overall accuracy of ZSRE.

The proposed CACRE model involves four main
steps. As shown in Figure 1, first, relation triples
are generated by designing specific prompts to
guide LLMs in extracting triples from textual
datasets, which are categorized into anchors, pos-
itives, and negatives to form structured training
data. The negatives are required to have a high
similarity to the anchors or positives. Second, a
cross-attention mechanism (Niu et al., 2021) is ap-
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Figure 1: Model framework.!

plied to capture the information interaction of the
source text with those of the relation triples, pro-
ducing interaction vectors that capture nuanced cor-
relations between the source text and inferred rela-
tions, thereby improving the model’s representation
of relation features. Third, CACRE is optimized
through the contrastive learning, which is an un-
supervised learning strategy (Hastie et al., 2009),
enabling the model to differentiate between correct
and erroneous triples. Finally, distinguishes valid
relations and entities from LLM-generated relation
triples. By employing the aforementioned methods,
this model can effectively mitigate hallucination
and bias issues in LLMs outputs.

The contributions of this paper are summarized
as follows.

* The proposed CACRE model significantly en-
hances the precision and reliability of ZSRE
performed by LLMs, exhibiting exceptional
capabilities in identifying erroneous relations,
particularly in accurately distinguishing incor-
rect triples that closely resemble correct ones.

* The proposed cross-attention mechanism fa-
cilitates bidirectional information exchange
between relation triples and text embeddings,
effectively enhancing the semantic representa-

tion of relations.

* Building upon the concept of contrastive learn-
ing, a projection network module and a fusion
function are designed to effectively calculate
the text and relation triples, integrating local
and global semantics to capture the feature
differences between correct and incorrect ex-
amples.

2 Methodology

This section introduces the four main modules in
the CACRE model. First, task-specific instructions
guide LLMs to extract relation triples, categorized
as anchors, positives, and negatives. Second, the
text and triples are encoded using the RoBERTa-
Chinese-base (Liu et al., 2019), and then, these em-
beddings are joined using a cross-attention mecha-
nism, which enhances their interactions to produce

'The translation marked with * in Figure 1: Extract entity
relations from text and categorize the output in the following
format\n Anchor: (Entity 1, Relation, Entity 2)\n... \n Positive:
(Entity 1, Synonymous Relation, Entity 2)\n...\n Negative:
(Wrong Entity 1, Wrong Relation, Wrong Entity 2)\n...\n
Requirements: The relation pair must meet the following
qualifiers\n The number of triples in the three parts is the
same\n The positive example must have a synonymous relation
and the same entity type as the anchor\n The negative example
should involve a highly similar incorrect relation or entity.



fine-grained and enriched embeddings. Third, the
model is trained with a contrastive learning frame-
work that aligns positive samples with the source
text while distancing negatives in the embedding
space. Finally, the trained model predicts the effec-
tivity of relations and entities based on the text and
the corresponding relation triples.

2.1 REviaLLM

As shown in Figure 1, a custom-designed instruc-
tion guides the DeepSeek V3 (DeepSeek-Al, 2024)
model in producing high-quality structured data.
The instruction was designed to guide DeepSeek
V3 output three types of relation triples—anchors,
positives, and negatives—from each text input. The
instruction constraint specifies that the DeepSeek
V3 should extract relations and entities from a pre-
defined relation set.

Given a text 7, a relation triple R =
{(e1,r,e2)} is defined, where e; and eg are en-
tities, and r represents the relation between them.
Further defined anchor relation triples Rz, posi-
tive relation triples I, and negative relation triples
R,,. The DeepSeek V3 is applied to extract rela-
tion triples R and a function fexact is defined to
express the extraction of relations, resulting in a set
of triples R;:

Rt = fextract(T) = {Ram ) Rpma an }7 (1)

where m is the number in one of the three types.
So, for a single sample S = {T', R;}, R, serve as
anchors, while R, are valid semantic correlations
to R, and are designed to strengthen the model’s
learning of correct relations. In contrast, R,, intro-
duce deliberate errors at the relation triples com-
pared to R, or R,, yet remain highly similar in
form to correct triples.

2.2 Feature Extraction using Encoding and
Cross-Attention Mechanisms

This paper adopts the RoOBERTa-Chinese-base to
encode the text 7" and relation triples R;. S is
transformed into its encoded representation S’ =
{€(T),E(R:)}, where £(T) is the encoded T,
E(Ry) is the encoded R;. Then a cross-attention
mechanism is introduced to compute the semantic
associations between £(7") and £(R;), enabling
the model to capture finer-grained and multidimen-
sional representations of semantic relations. There-
fore, the text vector V1 and the triple-based vector
VR is separately calculated by the attention mech-

anism. Meanwhile, the attention mechanism com-
putes weight matrixes Wt and Wg, quantifying the
fine-grained alignment between the text and the

triples.
KT
Viector = softmax <Q > V, 2)
Vg

where Viector denotes the specific interaction vector,
and when calculating Vr, £(R;) is used as the Key
and Value, £(T') is used as Query, while calculating
VR, E(Ry) is used as the Query and £(T) is used
as the Key and Value. T denotes the transpose
operation, dy, is the dimension of the key vectors.
Further, the Vi and the Vg is dynamically aggre-
gated by follow formula with weight matrix W.

1 Tlheads

Wav ¢ = Wi 5 (3)
Theads *— 1

‘7 = bmm(Wavg, V;/ector)y (4)

where W represents the attention weight matrix W
for the i-th head, W,y is the average of these atten-
tion weights across all heads. The bmm represents
batch matrix multiplication.

2.3 Contrastive Learning

Contrastive learning (Li et al., 2020) is an unsuper-
vised learning approach (Giorgi et al., 2021) that
optimizes the spatial distribution of embeddings
by encouraging semantically similar samples to
cluster closely while pushing dissimilar samples
farther apart. This paper adopts the SImCLR frame-
work (Chen et al., 2020), which excels in semantic
representation learning. To tailor SiImCLR for RE
tasks, the projection network module is enhanced
with specific optimizations. The projection net-
work module is employed to map tensors into a
projection space, which consists of 1D convolution,
activation functions, and a fully connected layer.

For tensors VT and XN/R, denoted as input G =
{VT, VR}, the process is carried out through
through a 1D convolutional layer for local feature
extraction, followed by linear projection and non-
linear activation, ultimately yielding the projected
output:

Xproj = F'(Linear(ConvlD(G))), (5)
where F'(+) is defined as

F(z) = LayerNorm(LeakyReLU(
Linear(W),, - = + by)
Wy +by)), (6)



where z is the input, W), and b, are the param-
eters for the first linear transformation, and W,
and b, are the parameters for the final transforma-
tion. Meanwhile, a residual connection is incorpo-
rated to obtain the final output X = { X, Xgr} =
(X1, Xo, X, XV, X X3 I the input
dimension H matches the projection dimension P,
the residual is directly added. Otherwise, the in-
put is linearly transformed to match the projection
dimension:

X = XprO_] +A- (Veres + bres)7 (7)

where Wyes € REXP Vi, and by € RY are the
weights and biases for the residual connection, and
A is a learnable scaling factor controlling the con-
tribution of the residual.

As shown in Figure 1, the CACRE is optimized
by two key perspectives: enhancing semantic align-
ment between the text and triples, and refining se-
mantic distinctions within the triples themselves.
Additionally, emphasis is placed on enhancing se-
mantic differentiation within triples to strengthen
the model’s ability to discern subtle semantic de-
tails. To achieve this, a novel multi-granularity
InfoNCE loss function is proposed, extending the
traditional InfoNCE loss (Oord et al., 2018) by
incorporating both local and global feature simi-
larities. To further address challenging samples
and enhance the learning capacity of CACRE, a
ratio-based hard negative sample selection strategy
and a dynamic margin adjustment mechanism are
integrated to optimize training efficiency.

First, X is designated as an anchor X, to max-
imize its similarity with the positive sample X,
while minimizing similarity with negative samples
X5,. Then, similarly, the same applies to X, it-
self. The local similarity is computed between the

anchor X, the positive X}, and the negatives Xéi):

1
Sl—(i)_cal - T — Cos (Xa7 Xp) ) (8)
1 i .
Slgcal(i) = T Co8 (Xaa XIS )> , 1 =1,..., Npeg,
9

where 7 is the temperature parameter. The local
similarity is averaged over the sequence length L

to obtain the final local similarity scores:

local Z local ‘ (10)

1 L
local L ZSIQCdl L= 17"‘7Nneg7
(1)

where j represents the time step in the sequence L.
The global representations are obtained by mean-
pooling over the sequence dimension:

1 1
m=7 2 Xl =7 Y Xl
7j=1 j=1
(12)
1 &
=X =T Nee (13)
j=1

Using these mean-pooled representations, the
global similarities are computed as:

1

S;Eobal = ; Cos (Ma7 Mp) ) (14)

S (i) =1+ @Y -1 N
global( i) - COS | fay n” ), s+ s Nneg-
(15)

The final similarity scores are a weighted combi-
nation of the local and global similarities:

S+ =w- Sl_gcal ( ) S;l_obah (16)

ST ( ) =w- SlOCdl( ) (1 - w) ’ Sglobal(i)v
(17

where w controls the contribution of local versus
global similarity.

To further enhance the discriminative ability
against hard negative samples, CACRE selects
hard negative samples in one batch. Let K =
[top;, - Nneg|, top;, is a ratio coefficient used to
determine the number of hard negative samples K
and define:

{ hard( )}z 1 = topk {S ()}fvnelé’ Kl

In addition, a dynamic margin is introduced to ad-
just the difficulty of negatives:

(18)

m = base_margin—+

N,
1 neg
ﬂh%m_NgE:%mﬂﬂ (19)
neg .3



where m is the dynamic margin, base_margin is
the initial margin, and 5 is a scaling factor.

The logits are then defined by concatenating the
positive similarity score with hard negative similar-
ity scores, followed by subtraction of m:

logits = | S*, S, (1) —m, S;.4(2) —m,

S

wd () —m|. (20)
Finally, the multi-granularity InfoNCE loss is
computed as the negative log-likelihood of the pos-

itive similarity:

exp(S™)

exp(S) + 3215, exp(Spuq() — m)}
(2D

L= —log[

2.4 Data Prediction through CACRE

In unsupervised learning, prediction tasks fun-
damentally rely on feature vectors derived from
model outputs. This paper leverages LLMs to ex-
tract relation triples, which are subsequently fed
into the CACRE model. The CACRE model pro-
cesses the text and relation triples to generate cor-
responding feature vectors. Subsequently, the sim-
ilarity between the text and the triples, as well as
the similarity among the triples themselves, is com-
puted and compared against thresholds optimized
during training.

The similarity between the text and the triple
is denoted as Sy, while Sy represents the internal
similarity among the components of the triple. In
Figure 1, when the S is greater than or equal to
threshold 7y, the relation triple is deemed prelimi-
narily reliable, when the Sy is greater than or equal
to threshold 79, the relation triple is regarded as
accurate.

3 Experiments

3.1 Dataset

This experiment uses the DulE2.0 dataset (Li et al.,
2019), an open-source Chinese dataset for entity re-
lation extraction. Because the test set of this dataset
is not publicly available, this paper compares model
improvement performance by selecting 10% of the
training data for model training and 2% for valida-
tion, and the validation set of the original dataset is
used as the test set. The original DulE2.0 dataset
and experimental details are shown in Table 1.

Dataset #Sentences #Triples #Relations
Original Train 171293 310709 48
& Validation 20674 37825 48
Train 18618 128823 48
Experiment Validation 3499 24468 48
Test 20674 37825 48

Table 1: Statistics of DulE2.0 dataset.

3.2 Experimental Environment and Sets

The experiments were conducted on a computing
system equipped with two NVIDIA A800 80GB
PCle GPUs, providing a total of 160GB of memory.
The system operated on Ubuntu 20.04.6 LTS. Table
2 shows the hyperparameter configurations that
were utilized during the model training process.
Due to DeepSeek V3’s excellent ability in ZSRE
demonstrated in Table 3, it was selected as the RE
model to generate training data.

Hyperparameter Value

Pre-training model RoBERTa-Chinese-base

Max-sequence length 128
Learning rate 1x1074
Batch size 32
Projection dimension 512
Epochs 70
Temperature 0.07
Dropout rate 0.2

Base margin 0.08
Topy, 0.8
Weight w 0.7

Table 2: Hyperparameter settings for training functions.

3.3 Evaluation Metric

This experiment evaluates model performance us-
ing the metrics of precision, recall, and F1-score.

3.4 Compared Models

DEPR: The model proposes a dual-head frame-
work for entity and relation prediction, aiming to
jointly tackle entity recognition and RE (Xiao et al.,
2023).

CasRelBLCF: The model addresses overlapping
triples through entity mapping and leverages deep
reinforcement learning to filter distant supervision
noise (Tang et al., 2024).

CECRel: CECRel is a contrastive learning-based
unified model for entity and relation extraction. It
enhances information extraction by leveraging data
augmentation and feature enhancement (Tong et al.,
2025).



Learning Setting Model Compared Models CACRE
P R F1 P R F1
DEPR 71.1 654 68.1 - - -
CasRelBLCF 74.0 686 71.2 - - -
Non-Zero-shot
CECRel 76.8 79.7 74.1 - - -
Electra-based Joint Model 78.9 71.2 74.8 - - -
Chen (Chen and Liu, 2024) - - 73.4 - - -
LLaMA 3:70b 45.6 414 434 579 (+12.3) 40.7 47.8 (+4.4)
Zero-shot Qwen-Plus 61.0 69.0 650 709 (+9.9) 68.6 69.7 (+4.7)
ERNIE 4.0 64.1 744 69.0 789 (+14.8) 72.3 75.5(+6.5)
DeepSeek V3 652 80.1 719 76.6(+11.3) 78.0 77.4 (+5.5)

Table 3: Main experiment results of different models.

Electra-based Joint Model: The model employs
a joint learning approach to mitigate the issue of
entity overlap, thereby improving the accuracy of
RE (Zhu et al., 2020).

Chen (Chen and Liu, 2024): They proposed a multi-
agent cooperative framework that employs multiple
specialized agents to improve LLM performance
in constructing knowledge graphs.

Qwen-Plus: Qwen-Plus is an advanced pre-trained
large language model developed by Alibaba Cloud,
providing powerful natural language processing
capabilities (Bai et al., 2023).

ERNIE 4.0: ERNIE 4.0 is a pre-trained language
model developed by Baidu, offering powerful natu-
ral language processing capabilities by integrating
multiscale knowledge and structured information
(Zhang et al., 2019).

LLaMA 3: LLaMA 3 is the latest language model
developed by Meta, offering efficiency and scala-
bility (Dubey et al., 2024).

DeepSeek V3: DeepSeek V3 is a model specifi-
cally optimized for deep learning tasks, equipped
with powerful feature extraction and classification
capabilities.

3.5 Main Results

Table 3 displays the main results of comparative
experiments. The results of LLMs based on the
experimental dataset. For different learning sets,
baseline models are categorized into two types:
zero-shot and non-zero-shot learning.

Zero-shot: Compared to LLMs that performing
ZSRE, CACRE improves precision by an average
of 12% and recall by 5.3%. Further, directly ap-
plying LLMs for result extraction underperforms
compared to Chen (Chen and Liu, 2024). After in-

tegrating CACRE, DeepSeek’s F1 score increased
by 4% over Chen’s, while ERNIE 4.0 achieved a
2.1% improvement. However, the experimental
results indicate that CACRE has a adverse effect
on recall rate that the average decline is 1.1%, pri-
marily due to the model’s reliance on training data
generated by LLMs, which contains hallucinated
outputs and causes error propagation.
Non-Zero-shot: Experimental results demonstrate
that although directly applying LLMs for RE
does not universally surpass supervised learn-
ing methods, the CACRE yields significant im-
provements. Compared to the Electra-based Joint
Model, DeepSeek-V3 and ERNIE 4.0 with CACRE
achieve 2.6% and 0.7% higher recall rates, respec-
tively. It indicates that CACRE can effectively filter
incorrect relations and entities through contrastive
learning, thereby substantially enhancing RE task
performance.

3.5.1 Experimental Analysis

In order to effectively distinguish negative samples,
CACRE can be viewed as a binary classification
task for positive and negative samples. During
the validation phase, Receiver Operating Charac-
teristic Curve (ROC) as the auxiliary evaluation
metric, as it provides a comprehensive assessment
of the model’s performance across various decision
thresholds.

As shown in Figure 2, this experiment presents
two different ROC curves for comparison: the An-
chor ROC curve reflects the model’s ability to dif-
ferentiate similarities within relation triples and
aims to evaluate its ability to identify positive and
negative samples in relation triples; whereas the
Text ROC curve focuses on evaluating the model’s
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Figure 2: ROC for CACRE performance evaluation.

ability to differentiate between positive and nega-
tive samples in text and relation triples. The ex-
perimental results show that the CACRE model
demonstrated significant advantages in distinguish-
ing positive and negative samples.

3.5.2 Distribution Visualization of Data
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Figure 3: Similarity distributions of anchor and text
samples.

To intuitively demonstrate the learning effective-
ness of the CACRE model, a visual analysis of
the similarity distribution was conducted during
the validation phase. Specifically, the similarity
was calculated the similarity of the text and the
anchor with the positive and the negative samples,
respectively.

As shown in Figure 3, the distribution of Anchor-
Positive similarity is concentrated near 1, signif-
icantly higher than the distribution of Anchor-
Negative similarity. Similarly, the distribution of
Text-Positive similarity tends to show higher simi-
larity values, further confirming the high similarity
between the text and relation triples. In contrast,
the similarity distribution of Text-Negative is lower,
with a notable difference in similarity between pos-
itive and negative samples, indicating that CACRE
can effectively distinguish between positive and
negative samples.

3.6 Ablation Study

This paper includes ablation experiments on each
module of CACRE, with the results summarized in
Table 4.

Model P R F1

DeepSeek V3 65.2 80.1 71.9
CACRE-att 67.0 70.0 68.5
CACRE-pro 732 749 74.0
CACRE 76.6 780 774

Table 4: Submodule performance comparison.

DeepSeeK V3 as a based model, CACRE-pro
refers to the version of the model trained without
the projection layer, while CACRE-att indicates
the removal of the cross-attention mechanism dur-
ing training. The CACRE-att model demonstrated
relatively weaker performance, primarily due to
the incorrect exclusion of numerous true positive
samples, which significantly reduced its recall rate.
CACRE-att showed a 1.8% improvement in preci-
sion, but a 10.1% decrease in recall. CACRE-pro
achieved a 6.5% increase in F1 score compared
to CACRE-att. CACRE demonstrates a substan-
tial improvement in terms of both accuracy and F1
score.

3.7 Case Study

The performance of CACRE on samples was ex-
hibited in Table 5. The table shows two samples
with their similarity scores, regardless of whether
it concerns Text 1 or Text 2, indicate a significantly
higher similarity between the text and positive ex-
amples compared to that between the text and nega-
tive examples. Similarly, the similarity between the
anchor and positive examples is markedly higher
than that between the anchor and negative exam-
ples. These findings provide that the CACRE
model effectively discriminates between negative
samples that are highly similar to the correct triples
but are actually incorrect.

4 Related Work

ZSRE is an important research direction due to
its ability to identify and extract relations with-
out the need for annotated data. Traditional
methods, several approaches (Socher et al., 2013)
proposed cross-modal transfer learning methods
for zero-shot learning, achieving joint embedding
through contrastive learning of textual representa-
tions. Levy et al. (Levy et al., 2017) formulate



Text Relation Triple

Similarity Score

Anchor: [Z16 £, 535 X1

Trans: [First Emperor of Qin, mother, Zhao Ji]
Positive: [®X1F, /L7, EIHE]

Trans: [Zhao Ji, son, First Emperor of Qin]
Negative: [X1F, &5, 16 &)

Trans: [Zhao Ji, mother, First Emperor of Qin]

Input Text 1: ZE45 2 FIRE K 20000 -
Trans: The first being the famous mother
of the First Emperor of Qin, Zhao Ji.

Anchor-Negative: 0.6720
Positive-Anchor: 0.8497
Positive-Text: 0.8767
Negative-Text: 0.7112

Input Text 2: (Rt pfitR) 2—EBHZEE
B - RPHBEALHEORIE A -
Trans: "Savior Charlatan" is a drama film
directed by Lee Chi-Ngai and starring
Tony Leung and others.

Anchor: [$CHEFRE, 3218, ZE8A1H)

Trans: [Savior Charlatan, starred in, Tony Leung]
Positive: [, 15 51, 25 (4]

Trans: [Savior Charlatan, actor, Tony Leung]
Negative: [$HIHE, 518, RFHH]

Trans: [Savior Charlatan, director, Tony Leung]

Anchor-Negative: 0.5691
Positive-Anchor: 0.8273
Positive-Text: 0.9272
Negative-Text: 0.6488

Table 5: Samples analysis.

RE as a machine reading comprehension task by
transforming it into question-answering problems.
Additionally, Shin et al. (Shin et al., 2020) based
on templates are suitable for relations with well-
defined rules but are less flexible. Other methods
use dictionaries and knowledge bases (Trisedya
etal., 2019) for inference rely on existing resources,
but they are limited by the scope of the knowledge
base and similar resources. Recently, LLMs in-
cluding BERT (Devlin et al., 2019), GPT (Radford
et al., 2018), and T5 (Raffel et al., 2020), have
shown great promise for ZSRE by leveraging vast
pre-trained knowledge and strong natural language
reasoning capabilities. However, a notable chal-
lenge in applying LLMs to ZSRE is hallucination
outputs, where models generate semantically incor-
rect yet syntactically plausible relations (Chen and
Li, 2021).

To mitigate hallucination bias in ZSRE, sev-
eral works have introduced contrastive learning
methods. Theodoropoulos et al. (Theodoropoulos
et al., 2021) and Chen et al. (Chen et al., 2020)
utilized contrastive learning frameworks to refine
relation representations, ensuring that the model
can distinguish between valid and erroneous re-
lations. Additionally, Zhou et al. (Zhou et al.,
2019) and Wang et al. (Wang et al., 2022) explored
reinforcement and multi-task learning techniques
to guide the extraction process, reducing halluci-
nation by aligning model outputs with auxiliary
tasks or reward signals. In addition, cross-attention
mechanisms have been explored to capture com-
plex relation dependencies more accurately. Huang
et al. (Huang et al., 2022) demonstrated the effec-
tiveness of cross-attention layers in fusing informa-
tion between different sources for RE, while Wu
et al. (Wu and Shi, 2021) extended this idea by

introducing a cross-type attention mechanism to
jointly extract entities and relations. More recent
approaches have continued to build on these ideas.
Luo et al. (Luo et al., 2023) proposed a hierarchi-
cal attention mechanism to further enhance relation
representation, allowing for better extraction from
nested or complex structures. These methods help
alleviate hallucination outputs by grounding RE
with structured background knowledge.

5 Conclusion

This paper proposes the CACRE model, which
designed to address the common issue of halluci-
natory outputs in ZSRE tasks based on LLMs. By
employing a cross-attention mechanism, CACRE
can quantify the fine-grained semantic relations
and feature representations between the text and
the triples. A multi-granularity fusion function
is used to apply contrastive learning, which en-
ables the model to capture subtle differences and
enhance its learning performance. CACRE demon-
strates robust discriminative capability by effec-
tively identifying and filtering out negative relation
triples, thereby significantly improves the precision
of LLMs in the task of ZSRE.

Limitations

Despite the demonstrated effectiveness of CACRE
in mitigating hallucinated relation triples in ZSRE,
several limitations remain. First, the model’s per-
formance is inherently contingent upon the quality
and distribution of candidate triples generated by
the LLMs, excessive noise or bias in these candi-
dates may constrain the upper bound of CACRE’s
filtering capability. Second, the model exhibits
sensitivity to the selection of decision thresholds



during inference, which introduces challenges in
achieving optimal precision-recall trade-offs across
diverse datasets and application scenarios. Further-
more, the contrastive learning framework presup-
poses the availability of sufficiently informative
positive and negative samples, which may not al-
ways be guaranteed in practical zero-shot settings.
Addressing these limitations is essential for further
enhancing the robustness and generalizability of
CACRE in applications.
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