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Ferroptosis-related genes identify tumor immune 
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in cervical cancer 

Xiaocheng Yang1#, Fanxing Yin1#, Qingyang Liu1, Yue Ma2, Hao Zhang1, Panpan Guo1, Wen Wen1, Xu Guo1, 
Yihao Wu1, Zhuo Yang2, Yanshuo Han1

1School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dalian, China; 2Department of Gynecology, Cancer Hospital of 

Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang, China 

Contributions: (I) Conception and design: Y Han, Z Yang; (II) Administrative support: Y Han, Z Yang, X Yang; (III) Provision of study materials or 

patients: X Yang, Q Liu, F Yin; (IV) Collection and assembly of data: F Yin, X Yang, H Zhang; (V) Data analysis and interpretation: X Yang, X Guo, 

Y Han; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.
#These authors contributed equally to this work. 

Correspondence to: Zhuo Yang. 44 Xiaoheyan Road, Dadong District, Shengyang 110004, China; Email: yangzhuo@cancerhosp-ln-cmu.com;  

Yanshuo Han. 2 Dagong Road, Liaodongwan New District, Panjin 124221, China. Email: yanshuohan@dlut.edu.cn.

Background: Cervical cancer (CC) is a disease that affects female health; therefore, timely prevention and 
diagnosis of CC are crucial to decrease its mortality. Ferroptosis, an iron-dependent form of non-apoptotic 
cell death, is involved in tumor progression. However, the role of ferroptosis-related genes (FRGs) in the 
immune microenvironment of cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) 
remains unclear.
Methods: The data sets of CESC patients, including RNA sequencing (RNA-seq) data and clinical 
information, were obtained from The Cancer Genome Atlas (TCGA). The ESTIMATE algorithm was used 
to determine the stromal score, immune score, estimate score, and tumor purity in the CESC patients’ data. 
Additionally, FRGs were identified and used to construct a signature marker for the diagnosis and prognosis 
of CESC. Patients were assigned to a high- or low-risk group based on their median risk score. The tumor 
microenvironment (TME), immune infiltration, and functional enrichment were compared between the low- 
and high-risk groups. Functional analyses, including Gene Ontology (GO) analysis, Kyoto Encyclopedia of 
Genes and Genomes (KEGG) analysis, and single-sample Gene Set Enrichment Analysis (ssGSEA), were 
conducted to explore the underlying mechanisms in the development and prognosis of CESC.
Results: The results showed that the estimate score was suitable for predicting the prognosis of CESC 
patients. Additionally, a prediction model involving four FRGs [phosphatidylethanolamine-binding protein 
1 (PEBP1), dual oxidase 1 (DUOX1), iron-sulfur cluster assembly enzyme (ISCU), and cytochrome b 
(-245) beta subunit (CYBB)] was constructed. The performance of the prognostic model and significant 
clinical characteristics in predicting CESC prognosis was subsequently validated. Our results showed 
that the expression of CYBB affected immune cells. Gene functional enrichment analyses showed that 
these differentially expressed FRGs were mainly enriched in the immunity-related signaling pathways, 
which indicated that FRGs might affect the development and prognosis of CC by regulating the immune 
microenvironment. 
Conclusions: The expression profiles of FRGs are closely related to the TME and the prognostic survival 
of CESC patients. The interaction between ferroptosis and immunity in the development of CC provides 
new insight into the molecular mechanisms of CC.
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Introduction 

Cervical squamous cell carcinoma and endocervical 
adenocarcinoma (CESC) are the fourth most common 
cancer among women worldwide. However, the lack of 
vaccination and screening programs in many developing 
countries has added to the difficulty in diagnosis (1). 
According to the International Agency for Research on 
Cancer (IARC), there are approximately 570,000 new 
cervical cancer (CC) cases and 311,400 deaths each year (2).  
CC accounts for 10–15% of all cancer-related deaths in 
women, second only to breast cancer (BC) in its mortality 
rate (3). Although current treatment strategies, such as 
surgery, radiation, and chemotherapy, show promise for CC 
patients, approximately 75% of patients experience disease 
progression and/or recurrence (4,5). Therefore, there is 
an urgent need to explore the carcinogenic mechanism of 
CESC and develop a new prognostic model of CESC. 

The tumor microenvironment (TME) is closely related 
to CESC development, confirmed by numerous studies 
(6-8). For instance, de Vos van Steenwijk et al. found that 
mature M1 macrophages in tumors were associated with 
better survival, regardless of CD8+ T cell infiltration (6). In 
addition, the expression of low-risk cytochrome b (-245) beta 
subunit (CYBB) is also positively correlated with the degree 
of M1 macrophage infiltration. Meanwhile, treatment 
strategies targeting the TME are booming (9,10). But the 
lack of integration between our knowledge of tumor biology 
and the TME has hindered innovation in cancer therapy. 
It is becoming clear that not only cancer cells but also 
stromal cells should be targeted in carcinoma treatment (11).  
In addition, cancer cells have been shown to produce 
immunosuppression in the TME and then achieve immune 
escape (12). Therefore, a greater in-depth understanding 
of the correlation between the TME and cancer prognosis 
and the exploration of new treatment strategies for CC are 
urgently needed to improve targeted treatment.

In addition, cell death plays a critical role in the 
development of cancer. Cell death can be classified into two 
types, apoptosis and programmed necrosis (13). The type of 
ferroptosis studied in this work is an iron-dependent, non-
apoptotic form of regulated cell death (RCD) characterized 
by iron-dependent lipid peroxidation (14). There are two 

critical events of the induction of ferroptosis which are 
Fe2+ accumulation and lipid peroxidation. Also, ferroptosis 
can be inhibited by iron chelators and lipophilic. Fe3+ is 
imported into cells by the transferrin receptor, then it will 
be converted to Fe2+. However, excess Fe2+ leads to the 
Fenton reaction which will produce lipid reactive oxygen 
species (ROS). The ROS will cause ferroptosis (15). The 
challenge of cancer treatment is to kill cancer cells while 
ensuring the safety of normal cells. Recent research has 
identified that cancer cells absorb more iron than normal 
cells, and the iron dependence of cancer cells makes them 
vulnerable to iron-catalyzed necrosis (16). Therefore, 
several studies are currently investigating the regulation of 
ferroptosis in various cancers, including pancreatic cancer, 
brain tumors, ovarian cancer, and BC (17-20) because 
ferroptosis is seen as a promising mechanism for killing 
drug-resistant cancer cells. For instance, the inactivation 
of (Glutathione Peroxidase 4) GPX4 is fatal to cancer cells 
in the mesenchymal state (21). An increasing number of 
ferroptosis-related genes (FRGs) have been discovered 
recently, and researchers hope to analyze the expression of 
FRGs to predict the overall survival (OS) of cancer patients. 
Several cancers, such as liver cancer, BC, and glioma, 
have been extensively studied (22-24), but CESC is rarely 
studied. So, confirming the role of ferroptosis in CESC is 
needed.

However, the relationship between ferroptosis and TME 
is unclear. Understanding the interactions may provide 
novel strategies to treating cancer (25). In a recent study, 
researchers found that ferroptosis can promote tumor 
growth by driving the polarization of macrophages in the 
TME (26). Another recent study showed that hypoxia-
inducible factor (HIF) pathways is a positive trigger for 
ferroptosis in clear-cell carcinoma (CCC) (27). So, different 
with other reports which focused on constructing FRGs, 
we not only built a solid prediction model, but also tried to 
explain the connection between TME and ferroptosis by 
analyzing CYBB.

As with most solid tumors, CC has always been 
classified by the clinical staging classification system. As 
recommended by the CC staging guidelines from the 
Federation International of Gynecology and Obstetrics 
(FIGO), imaging modalities (e.g., chest X-rays) are 
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initially used to evaluate the cancer stage, followed by the 
development of an appropriate treatment plan (28,29). 
However, the guidelines have limited usefulness in 
assessing the prognosis of patients with positive lymph 
nodes (30). Currently, with the accumulation of large-
scale cancer genome data, the identification of cancer 
molecular subtypes using multi-omics data is approaching 
the goal of personalized medicine (31). Therefore, we made 
some classified innovations based on the TCGA-derived 
patient data. This study performed classification using 
the “consensus clustering” method and demonstrated the 
classification reliability by evaluating survival in different 
subtypes, cluster heat map, and silhouette width. 

This study employed the ESTIMATE and CIBERSORT 
algorithms to analyze CESC tissue samples from TCGA-
CESC database and to calculate the proportion of tumor-
infiltrating immune cells (TICs) and stromal components 
in the samples. We also used a single-sample Gene Set 
Enrichment Analysis (ssGSEA) to assess the enrichment 
scores of particular gene sets in every single sample (32).  
Moreover, a series of analyses on FRGs in CESC was 
conducted, including univariate and multivariate Cox 
regressions, and a prognostic model consisting of 
phosphatidylethanolamine-binding protein 1 (PEBP1), dual 
oxidase 1 (DUOX1), iron-sulfur cluster assembly enzyme 
(ISCU), and CYBB was established. We also performed 
immune cell infiltration analysis to explore how ferroptosis 
effects on TME. In the crossover analysis with the immune 
microenvironment, CYBB was identified as a predictive 
biomarker and was used in the follow-up GSEA and 
immune infiltration analysis.

We present the following article in accordance with the 
REMARK reporting checklist (available at https://dx.doi.
org/10.21037/atm-21-6265).

Methods

Data collection 

The Cancer Genome Atlas (TCGA, https://cancergenome.
nih.gov/) was used to download CESC RNA sequencing 
(RNA-seq) transcriptome data. A total of 309 samples, 
including 306 tumor samples and 3 normal samples, were 
obtained. We obtained 60 FRGs from previous papers 
(22), and 259 from an authoritative public database from 
the website (https://www.zhounan.org/ferrdb/operations/
download.html) (https://cdn.amegroups.cn/static/public/
atm-21-6265-1.pdf). Finally, 267 FRGs were identified after 

intersection (Figure S1). The present study did not require 
approval from an ethics committee because TCGA and 
FerrDb are publicly accessible databases. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

Calculation of immune, stromal, and estimate scores

The ESTIMATE package (version 1.0.13) in R (version 
4.0.5) was used to predict the proportion of immune 
mechanism components in the TME for each sample. 
The package generates immune scores, stromal scores, 
and estimate scores, where higher scores indicate a greater 
proportion of components corresponding to the TME.

Differentially expressed genes (DEGs) selected between the 
high and low groups identified by immune and stromal 
scores

The 306 tumor samples were labeled ‘high’ or ‘low’ based 
on a comparison with the immune and stromal score median 
scores. The gene expression was differentiated by the 
“limma” R package. DEGs were generated by comparison 
between the high- and low-score samples. DEGs required a 
fold change greater than 1 and a false discovery rate (FDR) 
<0.05 to be considered statistically significant.

Survival analyses 

The “survival” (version 3.2-13) and “survminer” packages 
(version 0.4.9) in R were used to perform the survival 
analyses. Kaplan-Meier survival curves and log-rank tests 
were used to explore the differences in scores between the 
high and low groups. 

Functional enrichment analysis and protein-protein 
interaction network (PPI)

The “clusterProfiler” (version 3.18.1), “enrichplot” (version 
1.10.2), and “ggplot2” (version 3.3.5) packages were 
used for the analyses, and items with an FDR <0.05 were 
considered significantly enriched. The STRING database 
was used to construct a PPI network. 

Relationship between CYBB and tumor immunoreaction

Two gene sets, Hallmark and C7, were used for the analysis, 
and the entire transcriptome of all tumor samples was 

https://dx.doi.org/10.21037/atm-21-6265
https://dx.doi.org/10.21037/atm-21-6265
https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
https://www.zhounan.org/ferrdb/operations/download.html
https://www.zhounan.org/ferrdb/operations/download.html
https://cdn.amegroups.cn/static/public/atm-21-6265-1.pdf
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used for the GSEA. The gene sets with an FDR <0.05 
were considered significant. In addition, to understand 
the proportion of immune cells in each sample, the 
CIBERSORT algorithm was used to estimate the degree 
of infiltration. Furthermore, the correlation between 
the expression level of CYBB and the infiltration level of 
different immune cell types was calculated.

Establishment and validation of the prognostic model

We used a univariate Cox regression to identify FRGs with 
potential prognostic significance in the CESC samples. We 
then identified DEGs in the immune score and stromal 
score groups. CYBB was identified after intersection. 
Subsequently, we performed a multivariate Cox regression 
analysis for each prognostic gene associated with 
ferroptosis, and four genes were identified as candidates for 
a prognostic model. The risk score formula for each sample 
was presented as follows: risk score= β1x1 + β2x2 + … + βpxp 
(where βp denotes the coefficient and x p represents the gene 
expression level). To verify the accuracy and the sensitivity 
of the model, we used the “timeROC” package (version 
0.4) in R to draw a time-dependent receiver operating 
characteristic curve (ROC). A Principal Component 
Analysis (PCA) was performed using the function “prcomp” 
in R to illustrate the accuracy of the assessment based on 
the high- and low-risk scores. Additionally, t-distributed 
Stochastic Neighbor Embedding (t-SNE) was performed 
using the “Rtsne” R package (version 0.15) to investigate 
the distribution of different groups.

Univariate and multivariate Cox regression analyses

A univariate regression analysis was used to assess the 
prognostic value of the risk score and clinical characteristics 
(age, grade, tumor, and metastasis). Subsequently, variables 
with P<0.05 were identified, and a multiple Cox regression 
analysis was performed to determine which variables could 
independently predict patient survival.

Consensus clustering (CC) for cancer typing

The consensus clustering (CC) algorithm is a method for 
cancer typing (33). It is performed by the “Execute CC” 
function built into the “CancerSubtypes” R package (version 
1.12.1 for version 3.10 of Bioconductor). This cancer typing 
software uses multi-omics data to identify cancer subtypes 
and provides a standard framework for data preprocessing, 

feature selection, cancer subtype recognition, result 
validation, and visualization (31). To verify the results, we 
used clustering heat maps and the cumulative distribution 
function (CDF) to select the most appropriate number of 
clusters. Based on the number of candidate clusters, survival 
analysis was performed. The number of clusters with the 
most significant differences in survival was selected as the 
final number for CESC typing.

Statistical analysis

Pearson’s correlational analysis was performed to explore 
the relationships among the variables. Paired independent 
sample t-tests were conducted using the Mann-Whitney 
test to assess differences between the high- and low-risk 
groups. Statistical analyses were performed and visualized 
using R version 4.0.5. 

Results

The workflow scheme

The analysis approach of the present study is shown in 
Figure 1. Firstly, the transcriptomic RNA-seq data of 309 
samples (Table S1) were downloaded from the TCGA 
database, and then the prognostic signature was established 
using a multiple Cox regression. Additionally, we used 
ESTIMATE, CIBERSORT, and consensus clustering 
algorithms to analyze the data. The CYBB and IFNG 
(Interferon gamma) genes were obtained by the intersection 
of the FRGs following the univariate Cox analysis, and the 
DEGs were obtained by using the ESTIMATE algorithm. 
Then, we focused on CYBB for the subsequent analyses, 
including the survival analysis, Gene Set Enrichment 
Analysis (GSEA), and the related TICs. A prognostic model 
was subsequently established based on the identification of 
four FRGs, including CYBB, and evaluated using various 
methods. Finally, the consensus clustering algorithm was 
used to classify the obtained data.

Survival analysis based on immune score, stromal score, 
and estimate score

The data from the TCGA database were scored, and the 
higher the score, the higher the relative content of specific 
cells. After scoring each sample, we divided the immune 
scores, stromal scores, and estimate scores into high and 
low groups, aiming to explore the association between 

https://cdn.amegroups.cn/static/public/ATM-21-6265-supplementary.pdf


Annals of Translational Medicine, 2021 Page 5 of 18

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021 | https://dx.doi.org/10.21037/atm-21-6265

Figure 1 The workflow diagram summarizing the analyses. TCGA, The Cancer Genome Atlas; GSEA, Gene Set Enrichment Analysis; 
ssGSEA, single-simple Gene Set Enrichment Analysis; TICs, Tumor-infiltrating Immune cells; FGRs, Ferroptosis-related Genes; CC, 
Consensus Clustering.

309 cases in TCGA

Ferroptosis-related Genes (FRGs)

Four genes signature model

Independent Prognostic Value CYBB 
(Survival and GSEA)

Related Tumor-infiltrating 
Immune Cells (TICs)

Genes in common
Correlation Analysis

single-sample Gene Set 
Enrichment Analysis (ssGSEA) 

ImmuneScore and Stromal 
Score

Tumor-infiltrating 
Immune Cells (TICs) Consensus Clustering (CC)

scores and survival time. The immune score and stromal 
score represent the ratio of immune cells and stromal cells 
in the entire TME, respectively, while the estimate score 

is the sum of the immune and stromal scores. As shown 
in Figure 2A, the high immune score group had a higher 
five-year survival rate than the low immune score group. 
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Figure 2 Correlations between the immune, stromal, and estimate scores and the 5-year survival rate. (A) After determining the median 
immune score, patients are assigned to a high- or low-score group. The Kaplan-Meier survival analysis indicates P=0.051 using the log-rank 
test. (B) Survival analysis based on the median stromal score, where P=0.279 (log-rank test). (C) Kaplan-Meier survival analysis based on the 
median estimate score, where P=0.018 (log-rank test).
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Although there was no significant relationship between the 
proportion of stromal cells and the survival rate, as shown 
in Figure 2B, the estimate score was positively correlated 
with the 5-year survival rate (Figure 2C). Furthermore, 
the results showed that the estimate score was a better 
prognostic predictor of CESC than the immune score or 
the stromal score. 

DEGs of the immune score and stromal score and their 
enriched immune function

Heat maps were drawn to describe the difference in gene 
expression between different groups divided by the median 
(Figure 3A,3B). A total of 1,067 DEGs were identified in 
the immune score group. Among them, 643 genes were 
upregulated, and 424 were downregulated (Figure 3A,3C).  
In the stromal score group, a total of 947 DEGs were 

identified, of which 917 genes were upregulated and 30 
were downregulated (FDR <0.05, logFC >1), as shown in  
Figure 3B and Figure 3D. The DEGs from the different 
subgroups  were  intersected in  upregulat ion and 
downregulation categories. 

Specif ical ly,  there were 408 identical  genes in 
upregulation and 17 identical genes in downregulation. In 
total, 425 DEGs were identified as potential key factors 
in determining the CESC TME. Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analyses were performed on these DEGs. 
The GO analysis demonstrated that the DEGs mainly 
mapped onto leukocyte cell-cell adhesion, lymphocyte 
differentiation, regulation of leukocyte cell-cell adhesion, 
regulation of T cell activation, T cell activation, and other 
immune-related functions (Figure 3E). In contrast, the 
KEGG analysis revealed that many DEGs mapped to 
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Figure 3 The heatmaps, Venn plots, GO, and KEGG enrichment analyses of the DEGs. (A) Patients are assigned to a high- or low-score 
group according to the median immune score. The abscissa represents each sample, whereas the ordinate represents the DEGs. In the figure, 
red represents high expression and blue represents low expression, indicating the differences in gene expression between the two groups. (B) 
According to the median stromal score, patients are assigned to a high- or low-score group. The abscissa and ordinate are consistent with 
those in (A). (C) The upregulated intersection of DEGs from the immune and stromal scores. (D) the downregulated intersection of DEGs 
from the immune and stromal scores. (E,F) The GO and KEGG analyses on 425 DEGs, with thresholds of P<0.05 and q<0.05. GO, Gene 
Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; DEGs, Differentially Expressed Genes. 

cytokine-cytokine receptor interaction, chemokine signaling 
pathway, and viral protein interaction with cytokine and 
cytokine receptor pathway (Figure 3F). Overall, the primary 
functions of the identified DEGs appeared to be related to 
immune activity, also illustrating the importance of these 
DEGs in the CESC TME.

Intersection analysis of FRGs and the TME

A total of 267 FRGs were included in this study, 53 of which 
were identified as significant by univariate Cox analysis 
(Figure 4A). To further explore the underlying mechanism, 
we used the STRING database to build a PPI network 

(Figure 4B). Then, these 53 genes were intersected with the 
425 previously identified TME-related DEGs, and finally, 
two genes, CYBB and IFNG, were found (Figure 4C). After 
survival analysis, we found a significant correlation between 
CYBB and prognosis (Figure 4D).

Establishment of the FRG prognostic risk model

After selecting CYBB, we found three other factors, namely 
PEBP1, DUOX1, and ISCU, through the multivariate Cox 
regression analysis (P<0.05). Subsequently, we constructed 
the following prognostic model: (–0.3149) × CYBB 
expression + (–1.1396) × DUOX1 expression + (–0.8738) × 

B C

D

A

E F

Up

Down

Stromal

Stromal

Immune

Immune



Yang et al. Ferroptosis and TME in CC

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021 | https://dx.doi.org/10.21037/atm-21-6265

Page 8 of 18

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time, years

152 127 82 49 34 26 21 14 12 9 8 6 6 4 4 2 2 2 0 0 0
152 101 60 43 28 18 14 13 11 10 8 7 5 1 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time, years

Microenvironment Genes Cox Ferroptosis Genes

423 2 51
P=0.034

CYBB high low

S
ur

vi
va

l p
ro

ba
bi

lit
y

1.00 

0.75 

0.50 

0.25 

0.00

high

lowC
Y

B
B

BA

C D

Figure 4 The forest plot, protein-protein interaction network, Venn plot, and Kaplan–Meier survival analysis. (A) The forest plot of 53 
genes obtained by univariate Cox analysis (P<0.05). (B) The protein-protein interaction network, where CYBB has many connections and is 
relatively important. (C) The Venn plot, where CYBB and IFNG are found. (D) The single gene survival analysis, where CYBB is significantly 
correlated with prognosis (P<0.05).

PEBP1 expression + (–0.9232) × ISCU expression. After the 
prognostic model was established, each sample was assigned 
a risk score. To perform the survival analysis, all samples 
were divided into high and low groups based on their risk 
score (Figure 5A). We found that low-risk patients lived 
significantly longer than high-risk patients. As the risk score 
increased, the number of deaths increased (Figure 5B-D).  
The results of “PCA” and “t-SNE” confirmed the 
accuracy of our CESC sample classification (Figure 5E,5F). 

Additionally, a ROC analysis was conducted to verify 
the accuracy and sensitivity of the model. The AUC of 
the prognostic model was greater than 0.7 for the 3-year 
survival predictions in all groups (Figure 5G), indicating 
that the model demonstrated excellent accuracy. Then, we 
obtained data from the Human Protein Atlas (HPA) (https://
www.proteinatlas.org/) to demonstrate the expression of 
PEBP1, ISCU, CYBB, and DUOX1 at the protein level in 
cervical and CESC tissues (Figure 5H-O).

https://www.proteinatlas.org/
https://www.proteinatlas.org/
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Figure 5 Establishment of a ferroptosis-related four-gene model to predict the prognosis for CESC and the immunohistochemistry 
validation. (A) Kaplan-Meier analysis on the overall survival of high- (red) and low-risk (blue) groups (P<0.001). (B) Ranking of risk scores 
across all samples. (C) Patients are divided into two groups according to the risk score, and their survival is analyzed. Each dot represents 
a sample; blue represents survival, while red represents death. (D) Heat maps showing the expression levels of the four genes in all samples 
from the high- and low-risk groups. (E) The results of the “t-SNE” prognostic model in high-risk (red) and low-risk (blue) CESC groups. (F) 
The results of the “PCA” prognostic model in high-risk (red) and low-risk (blue) CESC groups. (G) ROC analysis showing that the larger 
area under the curve indicates higher accuracy. The AUC values were 0.7 and 0.716 in two years and 0.710 in three years. (H) Protein levels 
of PEBP1 in normal cervical tissues (antibody: CAB013493). (I) Protein levels of PEBP1 in CESC tissues (antibody: CAB013493). (J) Protein 
levels of ISCU in normal cervical tissues (antibody: CAB006329). (K) Protein levels of ISCU in CESC tissues (antibody: CAB006329). 
(L) Protein levels of CYBB in normal cervical tissues (antibody: HPA051227). (M) Protein levels of CYBB in CESC tissues (antibody: 
HPA051227). (N) Protein levels of DUOX1 in normal cervical tissues (antibody: HPA023544). (O) Protein levels of DUOX1 in CESC 
tissues (antibody: HPA023544). (H-O) The protein expression data covering normal cervical tissues and CESC tissues types was derived 
from antibody-based protein profiling using IHC. The staining method, a formalin-fixed paraffin embedded tissue section is stained using 
a primary antibody directed towards a specific protein target. A solution containing the primary antibody is added to the tissue section and 
the antibodies are allowed some time to find and bind to their target. After this step, unbound and surplus antibodies are washed away and 
the secondary antibody is added. The secondary antibody, which carries a linker molecule with HRP enzymes, is also allowed some time 
to bind to the primary antibody, followed by another washing step. After this, 3,3' DAB is added. The HRP enzyme transforms the DAB 
substrate into a brownish precipitate that is deposited in the tissue at the site of the reaction, thus producing a visual representation of where 
the primary antibody first bound its target. CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma; PCA, Principal 
Component Analysis; ROC, Receiver Operating Characteristic Curve; t-SNE, t-distributed Stochastic Neighbor Embedding; HRP, 
horseradish peroxidase; DAB, diaminobenzidine.
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Independent factor analysis of the prognostic model and 
immune cell infiltration analysis

To analyze whether the model could predict prognosis 
independently, we firstly conducted a univariate Cox 
regression analysis. Results showed that T stage (HR: 3.897, 
95% CI: 1.908–7.961, P<0.001), N stage (HR: 3.222, 95% 
CI: 1.685–6.162, P<0.001), and risk score (HR: 1.390, 95% 

CI: 1.142–1.692, P=0.001) were significantly associated with 
CESC prognosis (Figure 6A) and all three were identified as 
risk factors. Subsequently, we performed a multivariate Cox 
regression analysis, finding that risk score was an independent 
risk factor for CESC (HR: 1.404, 95% CI: 1.150–1.715, 
P<0.001). Although not as significant as the risk score, T 
stage (HR: 2.680, 95% CI: 1.264–5.683, P=0.010) and N 
stage (HR: 2.790, 95% CI: 1.424–5.465, P=0.003) were also 
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Figure 6 Independent analysis on the prognostic models of clinical outcomes and differential analysis of immune cells and functions between 
the high and low-risk groups in samples. (A) Univariate Cox regression analysis. The stage data from TCGA were not perfect enough, so 
these two factors were not analyzed. (B) Multivariate Cox regression analysis. A hazard ratio greater than 1 was considered a high-risk factor; 
otherwise, it was a low-risk factor. (C) Comparison of 16 immune cells between the high and low-risk groups. NS, not significant; *,  P<0.05; 
**, P<0.01; ***, P<0.001. (D) Differences in 13 immune-related biological processes between the high- and low-risk groups. TCGA, The 
Cancer Genome Atlas.

identified as independent prognostic risk factors (Figure 6B). 
In addition, ssGSEA analyses were performed to show the 
differences in immune cells and related immune functions 
between the high and low risk groups. We found that aDCs 
(activated dendritic cells) (P<0.001), iDCs (interdigitating 
dendritic cells) (P<0.001), pDCs (plasmacytoid dendritic 
cells) (P<0.001), DCs (dendritic cells) (P<0.001), and APC 
(antigen presenting cells) co-inhibition (P<0.05), all of which 
are responsible for antigen processing and presentation, were 
significantly inhibited in the high-risk group (Figure 6C).  
Furthermore, excluding Th1 cells, Th2 cells and Treg, the 
other nine types of immune cells (B cells, CD8+ T cells, 
macrophages, mast cells, neutrophils, T helper cells, NK 

cells, Tfh, and TIL) in the low-risk group were significantly 
higher than those in the high-risk group (all P<0.05). In 
terms of immune function, all functions were inhibited in the 
high-risk group, among which 10 types showed significant 
differences, including APC co-inhibition, CCR, check-in 
point, cytolytic activity, HLA, inflammation-promoting, 
MHC class I, parainflammation, T cell co-inhibition, T cell 
co-stimulation, and Type I IFN response (Figure 6D).

CYBB as a potential regulator of TME status

We divided the samples into high- and low-CYBB 
expression groups according to the CYBB expression 
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Figure 7 GSEA on the high- and low-CYBB expression groups and the correlational analysis on immune cells. (A) Hallmark Gene Sets 
for analysis. Each color represents a genome with a different function, with the ES value shown on the left ordinate and the genes in the 
gene set on the horizontal ordinate. (B) Enrichment of the high-CYBB expression group in the C7 Collection. (C) Each column represents 
one sample, different colors represent different immune cells, and the length represents cell proportion. (D) The heat map showing the 
correlations between immune cells, with blue representing positive correlations, red representing negative correlations, and the numbers on 
the lower left representing P-values for significance tests. GSEA, Gene Set Enrichment Analysis; ES, Enrichment Score.

level. Next, we used the HALLMARK and C7 gene set 
collections to perform GSEA on the samples to identify 
the functions that might be affected. We found when 
using HALLMARK in the high-CYBB expression group 
(Figure 7A) that genes were mainly enriched in immune-
related processes, such as allograft rejection, apoptosis, 
complement, and interferon response (alpha and gamma). 
When C7 (related to the immune system) was used, 3,717 
gene sets were identified as significant at FDR <25%, and 
2,526 gene sets were significantly enriched at a nominal 
P<0.01 (Figure 7B). However, in the low-expression group 
using the two collections, it remained almost impossible to 
identify a statistically significant gene set.

The relationship between CYBB and immune cell 
infiltration

To further demonstrate the correlation between CYBB 
expression levels and the immune microenvironment, the 
CIBERSORT algorithm was used to analyze the proportion 
of tumor-infiltrating cells in each sample and the correlation 
of 21 immune cells in the CESC samples (Figure 7C,7D). 
After conducting the difference and correlational analyses, 
11 immune cells related to CYBB expression were obtained 
from the intersection. Among them, seven CYBB expression 
levels (T cells CD8, T cells CD4 memory activated, 
T cells gamma delta, macrophages M1, macrophages 
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Figure 8 Immune cells associated with CYBB expression. (A) Green represents the low-CYBB expression group, and red represents the high-
CYBB expression group. The horizontal axis represents the type of immune cell, and the vertical axis represents the proportion of immune 
cells. P<0.05 indicates a significant difference between the high- and low-CYBB expression groups of immune cells. (B) Correlation analysis 
illustrating that CYBB expression is significantly related to 12 immune cells, including T cells and CD8 T cells (CD4 activated, memory T 
cells gamma delta, macrophages M1, M2, macrophages dendritic cells resting, mast cells resting, NK cells activated, dendritic cells activated, 
mast cells activated, eosinophils, and T cells CD4 memory resting). The R-value is marked, and the Pearson coefficient is used for the 
correlation test. (C) Eleven types of immune cells associated with CYBB expression are represented by the Venn diagram, which exhibits a 
significant difference between the high- and low-CYBB expression groups and sufficient correlation in the scatter diagram.

M2, dendritic cells resting, and mast cells resting) were 
positively correlated, and four (NK cells activated, dendritic 
cells activated, mast cells activated, and eosinophils) were 
negatively correlated (Figure 8A-C). These results indicate 
that the expression level of CYBB can affect immune cells.

The CC algorithm used for CESC subtyping and the 
analysis of the differences in immune cell infiltration

The “CancerSubtypes” package in R was used for the 
cancer typing. The CC algorithm was adopted to build 
a typing model with K=2–10. The results identified that 
the model was most robust when the grouping number 
was limited to five (Figure 9A) and showed a significant 

difference in the survival of patients when divided into five 
groups (P=8.64E–05). Therefore, the results of the five-
group comparisons were used in the final analysis. The five 
groups contained 68 patients, 50 patients, 121 patients, 35 
patients, and 30 patients, respectively. To illustrate whether 
immune cell infiltration also differed among the five groups, 
an ssGSEA was conducted and heat maps were used to 
visualize the results of 16 immune cells and 13 immune-
related biological processes (Figure 9B). The results showed 
that there were significant differences in immune cells and 
related biological processes among the five groups. The 
heat maps showed that the enrichment degree of almost 
all immune cells and immune-related biological processes 
was the highest in group 3, and lowest in groups 2 and 5, 
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Figure 9 Classification and immunity infiltration. (A) The consensus clustering method is adopted for division. The CESC tissue samples 
are eventually divided into five groups. The evaluation methods include survival curve, cluster heat map, and silhouette width. (B) The 
immunoinfiltration analysis on 16 types of immune cells and 13 related biological processes is performed in five groups. (C) The analysis of 
the differences between eight types of immune cells and related processes in five groups is shown. As a result, aDCs, DCs, iDCs, and pDCs 
are seen to be significantly enriched in the third group. pDCs are also enriched in the fourth group (P<0.05). T cell co-stimulation and 
TILs in the third group are significantly higher than those in the other four groups (P<0.05). The above results reflect the better survival of 
patients in the third group. CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma.

while that of the first and fourth groups was relatively low. 
Interestingly, DCs, iDCs, pDCs, aDCs, TIL, CD8+ T cells, 
and the related process T cell co-stimulation were found 
to be the most highly expressed in group 3, which also 
explained the better survival outcomes of patients in group 
3 in the CESC sub-typing analysis (Figure 9C).

Discussion

In the present study, we used the TCGA database to 
identify and analyze relevant genes that could potentially 
play an important role in both the CESC TME and 

ferroptosis. After performing a series of bioinformatics 
analyses, we found that CYBB is an indicator of the TME 
status in CESC patients, which may be of great significance 
for future research. 

It is well known that the TME plays an essential role 
in the occurrence and metastasis of tumors. Exploring 
the composition of the TME is extremely useful for 
finding new targets for tumor therapy. Our analysis of 
transcriptome data from CESC patients in the TCGA-
CESC database suggests that the immune component of 
the TME contributes to CESC patients’ prognosis. In 
particular, the estimate score (the proportion of immune 
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and stromal components in the TME) was significantly 
correlated with tumor development, indicating the 
importance of the interaction between cancer cells and 
immune cells. Meanwhile, we also found that ferroptosis is 
closely related to the TME in CESC. Ferroptosis, a form 
of RCD, is distinct from apoptosis, necrosis, pyroptosis, 
and autophagy (34). In addition, an increasing amount of 
evidence shows that ferroptosis is closely related to the 
occurrence, progression, and inhibition of cancer (35). 
However, the role of ferroptosis in patients with CESC 
is not well understood, especially the mechanism of the 
association and interaction between ferroptosis and the 
TME. In this study, we established a four-gene ferroptosis-
associated model to predict the prognosis of patients with 
CESC, aim to illustrate the relationship between ferroptosis 
and the TME with CYBB.

CYBB encodes the β chain of cytochrome B. At present, 
only a few articles have focused on the role of CYBB in the 
immune microenvironment and ferroptosis. For instance, 
Long et al. suggested that the expression level of CYBB in 
lung adenocarcinoma was higher in normal tissues than in 
cancer tissues, and a high expression of CYBB predicted 
better patient survival (36). CYBB is also widely believed 
to be associated with chronic granulomatous disease (37). 
The phagocytic NADPH oxidase consists of five subunits, 
of which the enzyme component is GP91-phox, or NOX2, 
encoded by the CYBB gene on the X chromosome (38,39). 
Moreover, when NOX2 is assembled on the phagolysosome, 
it produces intracellular ROS, and assembly on the plasma 
membrane leads to extracellular ROS formation (40). As 
we know, ROS plays an important role in the ferroptosis 
mechanism (15) insofar as ROS leads to lipid peroxidation, 
which in turn results in ferroptosis (41). Interestingly, 
the presence of ROS in myeloid-derived suppressor cells 
(MDSCs) may have undesirable consequences. In addition, 
studies have shown that cancer-associated fibroblasts can 
induce a high expression of CYBB in MDSC to produce 
ROS and inhibit T cell proliferation (42). Furthermore, 
NOX2 composed of CYBB regulates adaptive immunity 
in several ways, including antigen presentation and cross 
signaling between T cells and B cells. NOX2 is recruited 
to the early phagosomes of dendritic cells and ensures the 
expression of ROS, otherwise the over-acidified phagosomes 
lead to excessive antigen degradation, resulting in impaired 
crosspresentation (43-45).

Using the HALLMARK and C7 gene set collections 
to perform GSEA to analyze CYBB, we found that genes 
mainly enriched in immune-related processes. We also 

performed an immune infiltration analysis of CYBB, and 
our results are worthy of attention. An increase in cytotoxic 
T lymphocyte (expressing CD8) and helper T cells 
(expressing CD4) that were positively correlated with CYBB 
expression was associated with improved prognosis (7). As 
CYBB is an important part of NADPH oxidase, the positive 
correlation between CYBB and subtypes M1-like and M2-
like macrophages can be explained to a certain extent. 
Phenotype M1 is pro-inflammatory and anti-tumorigenesis, 
while phenotype M2 is anti-inflammatory and pro-
tumorigenesis (46). Furthermore, increased infiltration 
of M1 macrophages is a favorable prognostic factor for 
survival of HPV-related CC patients (6). In summary, the 
role of CYBB in the TME is more subtle and complex than 
in ferroptosis. Our data analysis shows that CYBB is a low-
risk gene, and its high expression in tumors indicates better 
patient survival.

Three other genes, DUOX1, PEBP1, and ISCU, were 
included in the prognostic model established in this study. 
Similar to CYBB, DUOX1, a type of NADPH oxidase, also 
regulates ROS (47). Studies have revealed that DUOX1 
has the potential to become a key factor in the prognosis 
and treatment of liver cancer, and high levels of DUOX1 
contribute to a better prognosis for liver cancer patients (48). 
In addition, a previous study demonstrated that DUOX1 
is downregulated in BC and seems to play a role in breast 
carcinogenesis (49), and another recent study demonstrated 
that a high expression of DUOX1 is beneficial for CESC 
patients’ survival (50). These findings suggest that using 
DUOX1 knockout animal models will be important in the 
further exploration of the mechanism of tumor inhibition 
or promotion. PEBP1 is considered a metastasis suppressor 
gene (51), and its decreased expression is often associated 
with cancer invasion and metastasis (52). PEBP1 also forms 
complexes with 15-Lipoxygenases (15-LO), resulting in the 
production of hydroperoxy-PE, which ultimately leads to 
ferroptosis (53). The expression of ISCU has been reported 
to help regulate iron metabolism (54). ISCU has also been 
identified as a low-risk FRG in another study on papillary 
thyroid carcinoma (55).

ISCU plays a role in protecting tumor cells from 
ferroptosis, while the other three genes (CYBB, DUOX1, 
and PEBP1) promote ferroptosis. Our results demonstrated 
that all four genes were positively correlated with the 
prognosis of CESC patients. However, the effect of these 
genes on patient survival needs to be further verified. For 
example, the complex roles of ROS regulated by DUOX1 
and CYBB in the TME have not been fully elucidated.
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What also interested us was the obvious difference 
in DCs between the two risk groups in the ferroptosis 
prognostic model, indicating that there were significant 
differences in antigen processing and presentation between 
them. Furthermore, patients in the low-risk group also 
had a higher percentage of B cells, T helper cells, CD8+ T 
cells, and NK cells than those in the high-risk group, which 
is consistent with their ability to kill tumor cells (56,57). 
Additionally, activation of HLA, T cell co-stimulation, and 
Type I IFN response processes in the low-risk group also 
explains the more favorable prognosis in low-risk CESC 
patients.

Although we have identified many important findings, 
the present study has several limitations. All the prognostic 
model information in this paper came from TCGA 
database, while other data validation was lacking. TCGA 
database is limited by numerous factors, such as region, 
race, and sample size. Although it is representative to some 
extent, it is not comprehensive. As a result, the prognostic 
model and the hypothesis proposed in this paper need to be 
verified in future experiments.

Conclusions 

The expression profiles of FRGs are closely related to the 
TME and the prognosis of CESC patients. The interaction 
between ferroptosis and immunity in the development of 
CC provides a new insight into the molecular mechanisms 
underlying this disease.
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Figure S1 Venn plot of 267 ferroptosis-related genes found after 
intersection.

Table S1 Clinical information of 307 samples

Variables Number (%)

Total 307

Age

≤55 224 (72.9)

>55 83 (27.03)

Survival 

Alive 71 (23.1)

Death 236 (76.8)

T stage

T1 141 (45.9)

T2 72 (23.4)

T3 21 (6.8)

T4 10 (3.2)

TX 62 (20.2)

M 

M0 116 (37.8)

M1 10 (3.2)

MX 181 (58.9)

N

N0 135 (44.0)

N1 60 (19.5)

NX 112 (36.5)

Histopathological grade

G1 18 (5.8)

G2 136 (44.3)

G3 120 (39.0)

G4 1 (0.3)

GX 32 (10.4)

Driver Suppressor

Marker
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