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Tight Competitive and Variance Analyses of Matching Policies in
Gig Platforms
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ABSTRACT
The gig economy features dynamic arriving agents and on-demand

services provided. In this context, instant and irrevocable matching

decisions are highly desirable due to the low patience of arriv-

ing requests. In this paper, we propose an online-matching-based

model to tackle the two fundamental issues, matching, and pric-

ing, existing in a wide range of real-world gig platforms, including

ride-hailing (matching riders and drivers), crowdsourcing markets

(pairing workers and tasks), and online recommendations (offering

items to customers). Our model assumes the arriving distributions

of dynamic agents (e.g., riders, workers, and buyers) are accessible

in advance, and they can change over time, which is commonly

referred to as Known Adversary Distributions (KAD).
In this paper, we initiate variance analysis for online matching

algorithms under KAD. Unlike the popular competitive-ratio (CR)

metric, the variance of online algorithms’ performance is rarely

studied due to inherent technical challenges, though it is well linked

to robustness. We focus on two natural parameterized sampling

policies, denoted by ATT(γ ) and SAMP(γ ), which appear as founda-

tional bedrock in online algorithm design.We offer rigorous compet-

itive ratio (CR) and variance analyses for both policies. Specifically,

we show that ATT(γ ) with γ ∈ [0, 1/2] achieves a CR of γ and a

variance of γ · (1 − γ ) · B on the total number of matches with

B being the total matching capacity. In contrast, SAMP(γ ) with
γ ∈ [0, 1] accomplishes a CR of γ (1−γ ) and a variance of γ (1−γ ) ·B
with γ = min(γ , 1/2). All CR and variance analyses are tight and

unconditional of any benchmark. As a byproduct, we prove that

ATT(γ = 1/2) achieves an optimal CR of 1/2.
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1 INTRODUCTION
Markets in the gig economy feature dynamic arriving agents that

are typically called online as opposed to static agents called offline
and an instant decision-making requirement due to the low patience

of online agents. Examples of gig markets include ride-hailing plat-

forms, crowdsourcing markets, and online recommendations. There

are two main categories of studies for gig platforms. The first fo-

cuses on the matching issue regarding how to pair up online and

offline agents in the system, say, e.g., matching (online) riders and

(offline) drivers in ride-hailing [25, 30, 37], pairing (online) workers

and (offline) tasks in crowdsourcing markets [13, 14], and offering

(offline) items to (online) customers in online recommendations [18].

These works aim to design an efficient matching policy to facilitate

as many matches as possible. The second considers another one,

called pricing, [4–6, 22, 26, 38], where they typically assume dy-

namic arriving agents have known or unknown value distributions

and we need to design a pricing strategy to promote the total profit

flowing into the system.

In this paper, we consider the two issues of matching and pricing

simultaneously. Specifically, we assume that the arriving distri-

butions of dynamic agents (e.g., riders in ride-hailing, workers in

crowdsourcing, and buyers in online recommendations) and their

value functions toward prices are all accessible in advance as part of

the input. Our assumptions are inspired by the fact that we can typ-

ically learn and estimate these distributions by applying powerful

machine learning techniques to massive historical data [9, 19, 34].

We present our model in detail as follows.

Matching and Pricing in Gig Economies. We use a bipartite

graph G = (I , J , E) to model the network between a set of offline

(static) agent types I and a set of online (dynamic) agent types J ,
where an edge e = (i, j) indicates the feasibility of matching agents

between types i and j due to practical constraints. Examples include

spatial and temporal constraints between a driver (of type) i and
a rider (of type) j in ride-hailing, and the potential interest of a

customer j toward an item i in online recommendations. We have a

groundset of prices, denoted by A = {ak |k ∈ [K] = {1, 2, . . . ,K}}.

We refer to each tuple f = (i, j,k) with (i, j) ∈ E as an assignment,

which represents to match an online agent j with an offline agent

i and charge j at the price of ak . Thus, our assignment consists of
two parts: matching and pricing. For each offline agent i ∈ I , it has
a capacity bi ∈ Z+ representing an upper bound on the number

of matches involving i . This captures matching caps imposed on i ,
which can be interpreted as the total number of drivers of type i
featuring a specific working location in rideshare, the total amount

of item i in stock in online recommendations, etc.
The online arrival process is as follows. We have a time horizon

ofT rounds and during each round (or time) t ∈ [T ] := {1, 2, . . . ,T },
one single online agent ĵ will be sampled from J such that Pr[ĵ =

1

https://doi.org/XXXXXXX.XXXXXXX
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j] = qj ,t with
∑
j ∈J qj ,t = 1 (called j arrives at t ).1 Let F = { f =

(i, j,k)|(i, j) ∈ E} be the collection of all feasible assignments. For

each f = (i, j,k) ∈ F and t ∈ [T ], it is associated with a probability

pf ,t ∈ (0, 1] and a non-negative profit wf ,t , which denote the

chance of online agent j accepts offline agent i with the price of ak
at time t and the total profit flowing into the system, respectively.

Upon the arrival of online agent j at t , we (as the algorithm) should

either reject j or select an assignment f = (i, j,k) involving j. Our
decision is instant and irrevocable, and it is then followed by a

Bernoulli random choice of j toward the assignment f = (i, j,k):
with probability pf ,t , j accepts f (then i’s capacity gets reduced by

one and we get a profit of wf ,t ); and with probability 1 − pf ,t , j

rejects f and goes away.
2

An input instance can be characterized as

I = {G = (I , J , E),A, {bi },T , {qj ,t }, {pf ,t ,wf ,t }}, whose infor-

mation is all accessible to the algorithm. Our goal is to design a
matching-and-pricing policy such that the total profit is maximized.
Observe that we allow the arrival distributions of online agents

to change over time, which is commonly referred to as Known
Adversarial Distributions (KAD) [12, 40]. In light of this, we refer

to our model as Matching and Pricing under Known Adversarial
Distributions (MP-KAD).

Remarks on the Sources of Randomness in MP-KAD. There

are three sources of randomness in total: the first is random ar-

rivals of online agents (Q1); the second is potentially randomized

choices of assignments made by a policy (Q2); the third is random

acceptance/rejection decisions from online agents over assignments

presented by a policy (Q3). We assume (Q1) and (Q3) are indepen-
dent of each other. Also, the arriving distributions of online agents

in (Q1) and their Bernoulli random choices in (Q3) are all indepen-
dent over time.

1.1 Preliminaries
Competitive Ratio (CR). CR is a metric commonly used to evalu-

ate the performance of online algorithms. Consider a given (online)

policy (or algorithm) ALG and a clairvoyant optimal (OPT-OFF).

Note that ALG is subject to the real-time decision-making require-

ment, i.e., ALG has to make an irrevocable decision upon every

arrival of online agents before observing future arrivals. In contrast,

OPT-OFF is exempt from that requirement: it enjoys the privilege of

observing the full arrival sequence of online agents before optimiz-

ing decisions. Consider a given instance I of MP, and let E[ALG]

and OPT-OFF denote the expected total profit achieved by ALG

and OPT-OFF, respectively. We say ALG achieves a CR of at least

ρ ∈ [0, 1] if E[ALG] ≥ ρ · OPT-OFF for all possible instances I.

Essentially, CR captures the gap between a policy and a clairvoyant

optimal due to the real-time decision-making requirement imposed

on the former.

Variance Analysis in Online Algorithm Design. For online op-
timization problems like MP-KAD, we can run any policy only once
on any given instance. This highlights the importance of variance

analysis in online algorithm design, which offers valuable insights

1
We can always make it equal by creating a dummy node whose arrival simulates

the case of no arrival at t .
2
Generally, the profitwf ,t collected by the system from f = (i , j , k) at t can be

estimated as the price ak charged to agent j minus the payoff for agent i .

into the robustness of related policies. As pointed out by [41], “the

CR-metric reflects only the gap between an online policy (ALG) and

a clairvoyant optimal in terms of their expected performance: it has

no guarantee on the variance or robustness of ALG.” Additionally,

we want to stress that variance analysis plays a critical role in risk
evaluation, particularly for maximization problems as studied here
compared with minimization versions. For minimization problems

(say, minimizing some cost), the information of expectation itself

can help us upper bound the risk. Let X ≥ 0 be the total cost in-

curred by a policy. By applying Markov’s inequality, we can upper

bound the risk as Pr[X ≥ N ] ≤ E[X ]/N for any target N > 0. How-

ever, it is a totally different story for maximization as studied here.

A lower bound on the expected profit offers no guarantee on the

chance of a disastrous event occuring. Specifically, let X denote the

random profit gained by a policy. It is possible that Pr[X ≤ ϵ] ≥ 1−δ
for a given threshold 0 < ϵ ≪ 1 and any 0 < δ < 1 for whatever

given value of E[X ] when the variance of X is missing. However,

after adding the information of any upper bound on the variance,

we can immediately estimate the risk by citing concentration in-

equalities, e.g., Pr[X ≤ ϵ] ≤ Pr[|X − µ | ≥ µ − ϵ] ≤ Var[X ]/(µ − ϵ)2

for any ϵ < µ = E[X ].

Inspired by the work of [41], we focus on the variance on the
total number of successful assignments (scheduled and accepted),
which is due to the randomness as outlined in (Q1, Q2 and Q3); see
Remarks on sources of randomness in MP-KAD.

3
A detailed

discussion on the similarities and differences from the work [41]

can be seen in Section 1.3.

1.2 Benchmark Linear Program (LP)
For ease of presentation, we assume WLOG that bi = 1 for all
i ∈ I by creating bi copies of offline agent i where each has a unit
capacity. Thus, the total capacities B =

∑
i ∈I bi = |I |. For each

assignment f = (i, j,k) ∈ F , let xf ,t be the probability that f is

selected in a clairvoyant optimal OPT-OFF during round t , which
includes the probability that j arrives at t (but excludes that f
is accepted or rejected by j). For each given j ∈ J and i ∈ I , let
Fj = { f = (i, j,k)|(i, j) ∈ E} and Fi = { f = (i, j,k)|(i, j) ∈ E} be
collections of assignments involving j and i , respectively.

max

∑
t ∈[T ]

∑
f ∈F

xf ,t · pf ,t ·wf ,t , (1)∑
f =(i , j ,k )∈Fj

xf ,t ≤ qj ,t ,∀j ∈ J , ∀t ∈ [T ] (2)∑
t ∈[T ]

∑
f =(i , j ,k )∈Fi

xf ,t · pf ,t ≤ bi = 1,∀i ∈ I (3)

0 ≤ xf ,t , ∀f ∈ F . (4)

Lemma 1. The optimal value of LP (1) is a valid upper bound on
the performance of a clairvoyant optimal of MP-KAD.

Proof. For ease of notation, we use OPT-OFF to denote both a

clairvoyant optimal algorithm and its corresponding performance

(i.e., expected amount of profit obtained). For each assignment

f = (i, j,k), let Xf ,t = 1 indicate that f is selected by OPT-OFF

3
As noted by [41], variations in profits can lead to an unbounded variance in

the total profit even for simple deterministic policies; thus, we study an unweighted

version to make our problem technically tractable.

2
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Table 1: Notations used throughout this paper.

[n] Set of integers {1, 2, . . . ,n} for a generic integer n.
G Input network graph G = (I , J , E).
I (J ) Set of offline static agent types (online dynamic types).

A = (ak ) Groundset of prices.

f = (i, j,k) An assignment of matching agents (of type) j and i and charging j a price of ak .
T Time horizon.

qt = (qj ,t ) Arriving distribution at t with
∑
j ∈J qj ,t = 1 for all t ∈ [T ].

pf =(i , j ,k ),t Probability that agent j accepts i with price of ak at time t .

wf ,t Profit associated with assignment f if it is successfully made at t .

bi Matching capacity of agent i ∈ I .
OPT-LP Optimal value of Benchmark LP (1).

OPT-OFF A clairvoyant optimal and its corresponding performance.

OPT-ON An online optimal and its performance (subject to the real-time decision restrictions).

at t (not necessarily accepted by j) with E[Xf ,t ] = xf ,t . Thus, the
performance can be expressed as OPT-OFF =

∑
f ∈F

∑
t ∈[T ]wf ,t ·

pf ,t · E[Xf ,t ] =
∑
f ∈F

∑
t ∈[T ]wf ,t · pf ,t · xf ,t , which matches the

objective of LP (1). To prove Lemma 1, it suffices to show that {xf ,t }
is feasible to LP (1).

Let Yj ,t = 1 indicate that j arrives at t with E[Yj ,t ] = qj ,t . Ob-
serve that for any given j and t ,

∑
f ∈Fj Xf ,t ≤ Yj ,t . Taking expecta-

tion on both sides, we get Constraint (2). For each f = (i, j,k) and t ,
let Zf ,t ∼ Ber(pf ,t ) simulate the random choices of acceptance and

rejection from j over f at t . Note that
∑
f =(i , j ,k )∈Fi

∑
t ∈[T ] Xf ,t ·

Zf ,t ≤ bi due to the matching capacity of bi on offline agent i .
Taking expectation on both sides yields Constraint (3). The last

constraint is trivial. Thus, we justify the feasibility of {xf ,t } to

LP (1) and establish Lemma 1. □

1.3 Main Contributions and Related Work
In this paper, we introduce a stochastic optimization model de-

signed to address two fundamental issues, matching and pricing,

which are prevalent in a wide range of real-world matching mar-

kets. Our focus is on two natural LP-based sampling policies that

serve as foundational elements in online algorithm design: One

includes attenuations, while the other does not. It is important to

emphasize that these two LP-based sampling policies and their vari-

ations appear in various contexts within online matching markets,

as demonstrated by examples in [11, 12, 16, 27, 41]. Therefore, our
primary technical contributions do not lie in algorithm design but
rather in providing rigorous and comprehensive competitive and vari-
ance analyses for these two representative policies, which we expect
can be generalized to other similar settings.

Theorem 1. [Section 2] There is an LP-based sampling policywith
attenuations parameterized with γ ∈ [0, 1/2], denoted by ATT(γ ),
which achieves (1) a competitive ratio (CR) of at least γ for MP-KAD;
(2) a variance of at most γ · (1−γ ) ·B on the total number of successful
assignments, where B =

∑
i ∈I bi , and (3) ATT(γ = 1/2) achieves

an optimal CR of 1/2 for MP-KAD. Both competitive and variance
analyses are tight for any γ ∈ [0, 1/2], which are irrespective of the
benchmark LP.

Theorem 2. [Section 3] There is an LP-based sampling policy
without attenuations parameterized with γ ∈ [0, 1], denoted by

SAMP(γ ), which achieves (1) a competitive ratio (CR) of at least
γ · (1 − γ ) for MP-KAD; (2) a variance of at most γ · (1 − γ ) · B on
the total number of successful assignments, where γ = min(1/2,γ )
and B =

∑
i ∈I bi . Both competitive and variance analyses are tight

for any γ ∈ [0, 1], which are irrespective of the benchmark LP.

Finally, we implement both ATT and SAMP and compare them to

several heuristics on a real dataset provided by DiDi, Inc., collected

in Haikou, China. Detailed results can be seen in the Appendix.

Remarks on Theorems 1 and 2. (1) The tightness of the compet-

itive analysis of ATT(γ ) unconditional of the benchmark LP means

that we can identify an instance of MP-KAD on which ATT(γ )
achieves a CR equal to γ for any γ ∈ [0, 1/2], where the ratio is

computed directly against the clairvoyant optimal by definition

instead of the LP value.
4
Similarly, the tightness of the variance

analysis suggests that we can identify an instance of MP-KAD on

which ATT(γ ) achieves a variance equal to γ on the total number

of successful matches for any γ ∈ [0, 1/2]. The same interpretation

applies to SAMP(γ ). (2) Our analysis indicates that there exists an
instance, where ATT(γ ) achieves the worst (smallest) CR of γ and

the worst (largest) variance of γ (1 − γ )B simultaneously for any

γ ∈ [0, 1/2]; see the example shown in Figure 2. However, that is

not necessarily true for SAMP. The CR worst-scenario instance

for SAMP shown in Figure 3 has a very different structure from

the variance one as illustrated in Figure 4. (3) The optimality of

ATT(γ = 1/2) is unconditional of the benchmark LP. In other words,

no policy can achieve a CR strictly better than 1/2 for MP-KAD

even compared against the clairvoyant optimal directly; see the in-

stance shown in Figure 1. (4) The value ofγ · (1−γ ) strictly increases
when γ ∈ [0, 1/2]. Thus, for ATT(γ ), the worst-scenario (WS) com-

petitive ratio and variance both increase when γ ∈ [0, 1/2], which

suggests a larger profit could come along with a higher variance and

vice versa. For SAMP(γ ), the same trend applies when γ ∈ [0, 1/2],

though the WS variance remains unchanged when γ ∈ [1/2, 1]. (5)

As demonstrated in Theorems 1 and 2, ATT(γ ) attains a strictly su-

perior competitive ratio (CR) while maintaining the same variance

4
Note that the latter option yields only a lower bound on CR since the LP value is

an upper bound on the clairvoyant optimal by Lemma 1.

3
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Table 2: Comparison of the competitive ratio (CR) and variance achieved by the twoLP-based sampling policies,ATT , and SAMP,
in the twomodels proposed by [41] (resultsmarked in blue) and in this paper (marked in red). For the validity of the assessment,
the results in [41] listed below are obtained when ∆ = 1 (the number of resources incurred) since each assignment here could
cost one unit of the corresponding offline agent’s matching capacity only. The terms “conditionally” and “unconditionally”
are with respect to the benchmark LP. The unconditionally optimal CR of 1/2 for MP-KAD contrasts with the conditionally
tight CR of 1− 1/e ∼ 0.632 for the model in [41], primarily due to the strict generalization in the arrival setting from KIID [41]
to KAD, as studied here.

Algorithms Range of γ CR Bounds Variance Bounds Best CR

ATT(γ )
γ ∈ [0, 1] 1 − e−γ (1 − e−2γ − 2γe−γ )T 2

1 − e−1

Condionally Tight

γ ∈ [0, 1/2] γ γ (1 − γ ) · B
1/2

Unconditionally Optimal

SAMP(γ )
γ ∈ [0, 1] 1 − e−γ (1 − e−2γ − 2γe−γ )T 2

1 − e−1

Condionally Tight

γ ∈ [0, 1] γ (1 − γ ) γ (1 − γ ) · B,γ = min(1/2,γ )
1/4

Unconditionally Tight

as SAMP(γ ) for any γ ∈ [0, 1/2]. However, in practice, SAMP en-

joys greater efficiency compared to ATT because it does not require

the computation of attenuation factors, which is necessary for ATT.

Comparison Against the Work of [41]. We outline the distinc-

tions between our work and that of [41] across three different

dimensions. Models. Both studies focus on allocation policy de-

sign within an online-matching-based framework. However, while

they concentrate solely on the matching aspect, our approach en-

compasses both matching and pricing. Additionally, both models

accommodate stochastic arrivals of online agents under known
distributions. In contrast to the assumption of Known Identical In-
dependent Distributions (KIID) in [41], we operate within a more

general setting known as Known Adversary Distributions (KAD),
allowing for dynamic changes in arriving distributions over time.

5

Moreover, the two models introduce randomness differently into

the matching process. In [41], randomness arises from the cost real-

ization: Each match e = (i, j) incurs a random set of static resources.

Any policy can match e only when a sufficient budget remains

for every possibly needed resource. Importantly, once matched, e
is guaranteed to be accepted by j (as no pricing is involved). In

contrast, our model introduces randomness in the two possible

outcomes—acceptance and rejection—of an arriving agent toward

the price included in an assignment. Algorithms. Both papers in-

troduce two parameterized LP-based sampling policies, denoted as

ATT and SAMP. The key distinction lies in the presence of attenua-

tions in ATT whereas SAMP does not incorporate them. However,

it’s worth noting that the two papers propose different benchmark

LPs due to variations in their respective models. Additionally, for

the policy ATT, debilitation factors are computed precisely from the

LP solution, whereas in [41], they are derived through Monte Carlo

5
In practice, KAD (Known Adversary Distributions) is a more realistic arrival

setting than KIID (Known Identical Independent Distributions) because the arriving

distributions of online agents do exhibit variations over time. Please see Figure 8 in

the Appendix for a justification on a real ride-hailing dataset.

simulations.
6 Results. Both papers claim to conduct tight compet-

itive ratio (CR) analyses for the two LP-based sampling policies.

Notably, in [41], the CR tightness is relative to the corresponding

benchmark LP, whereas in our analysis, it is unconditional. Further-

more, our variance bounds eliminate the dependence on the length

of the time horizon T , which is typically assumed to be T ≫ 1 and

can be far larger than the budget B. More differences on the results

can be seen in Table 2.

Other Related Work. There are quite a few previous works that

have studied thematching [24, 30, 36] and pricing issues [3, 8, 17, 35]

in matching markets. Unlike our setting here, most of them assume

at least part of the input is unknown, say, e.g., arriving distributions
of online agents and/or acceptance and rejection probabilities are

unknown. As a result, they proposed some machine-learning-based

frameworks to manage the learning tasks during matching and pric-

ing, among which reinforcement learning and multi-armed bandits

are two of the most common paradigms. Another line of research

studies has considered matching and pricing jointly in ride-hailing

platforms but under an essentially static setting, where requests are

assumed known in advance instead of arriving dynamically [23, 32].

In that case, authors typically utilize integer linear programming

to resolve the matching issue.

Matching and pricing have also received significant attention

in the Operations Research community. We list a few examples as

follows. Özkan and Ward [31] have considered matching policy

design for ride-hailing services, where they assume both drivers

and riders join and depart the system stochastically, and thus, ran-

dom sojourn time is allowed for every agent. Mahavir Varma et al.

[28] have studied a similar setting featured by a two-sided arrival

model, and they mainly utilize MDP-based techniques to address

the matching and pricing issues. Vera et al. [39] have investigated

online resource allocation but focus on evaluating the performance

6
Monte-Carlo simulations are widely used to approximate attenuation factors [1,

7, 12, 20, 27]. Our policy ATT features that all attenuation factors can be pre-computed

explicitly and exactly, which suggests superiority in efficiency in practice; see details

of ATT in Algorithm 1.
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in terms of regrets, the difference in the profit between a policy and

a Prophet, which is very different from the CR metric here.

2 AN LP-BASED SAMPLING POLICY WITH
ATTENUATIONS (ATT)

Slightly abusing the notation, we use {xf ,t } to denote an optimal

solution to LP (1). The overall picture of ATT(γ ) with γ ∈ (0, 1/2]

works as follows: During each time t , we sample an assignment

f = (i, j,k) ∈ Fj with probability (xf ,t /qj ,t ) · (γ/βi ,t ) upon the

arrival of online agent j , where γ represents the target competitive

ratio we aim to achieve, and βi ,t is a pre-calculated attenuation

factor. The formal statement of ATT(γ ) is as follows.

Algorithm 1: A sampling policy with attenuations for

MP-KAD: ATT(γ ),γ ∈ [0, 1/2].

1 Offline Phase:
2 Solve LP (1) and let {xf ,t } be an optimal solution.

3 Compute βi ,t = 1 − γ
∑
t ′<t

∑
f ∈Fi xf ,t ′ · pf ,t ′ for all i ∈ I

and t ∈ [T ].

4 Online Phase:
5 for t = 1, . . . ,T do
6 Let an online agent (of type) j arrive at time t .

7 Sample an assignment f = (i, j,k) ∈ Fj with probability

xf ,t
qj ,t

γ
βi ,t

.

/* At most one assignment will be sampled in
Step (7) since∑
f ∈Fj (xf ,t /qj ,t ) · (γ/βi ,t ) ≤

∑
f ∈Fj xf ,t /qj ,t ≤ 1,

which follows from βi ,t ≥ γ shown in
Ineq. (5) and Const. (2) of LP (1). */

8 if i is safe at t (the capacity of i remains), then
9 Select the assignment f (i.e., assigning j to i and

charging j a price of ak );
10 else
11 Reject f .

2.1 Competitive Analysis of ATT(γ )
Theorem 3. ATT(γ ) with γ ∈ [0, 1/2] achieves a competitive ratio

of γ for MP-KAD.

Proof. We first justify the validity of ATT by showing that the

total sum of probabilities on Step (7) is no larger than one. Note

that for any i and t ,

βi ,t = 1 − γ ·
∑
t ′<t

∑
f ∈Fi

xf ,t ′ · pf ,t ′ ≥ 1 − γ ≥ γ , (5)

where the first inequality is due to Constraint (3) with bi = 1, and

the second follows from γ ≤ 1/2. Thus,

∑
f =(i , j ,k )∈Fj

xf ,t
qj ,t

γ
βi ,t

≤∑
f =(i , j ,k )∈Fj

xf ,t
qj ,t ≤ 1, where the second inequality is due to Con-

straint (2) in LP (1).

For each i and t , let SFi ,t = 1 indicate that offline agent (of type) i
is safe at t , i.e., it has one unit capacity at (the beginning of) t before
any online actions and SFi ,t = 0 otherwise. Let αi ,t = E[SFi ,t ] be

the probability that i is safe at t . For each assignment f , let χf ,t = 1

indicate that f is successfully made at t (scheduled and accepted).

We now show by induction on t ∈ [T ] that (P1) αi ,t = βi ,t and (P2)
E[χf ,t ] = γ · xf ,t · pf ,t for all i ∈ I , t ∈ [T ], and f ∈ F . Consider

the base case t = 1. We see that αi ,t = βi ,t = 1 for all i ∈ I . For each
f = (i, j,k), letX j ,t = 1 indicate that j arrives at t , Yf ,t = 1 indicate

that f gets sampled at t , and Zf ,t = 1 indicate that j accepts f at t .
Thus, for t = 1,

E[χf ,t ] = E[X j ,t · Yf ,t · SFi ,t · Zf ,t ]

= qj ,t · (xf ,t /qj ,t ) · (γ/βi ,t ) · αi ,t · pf ,t = γ · xf ,t · pf ,t . (6)

Now consider a given t > 1 and assume (P1) and (P2) are valid
for all t ′ < t . Consider a given i ∈ I . Note that

αi ,t = E[SFi ,t ] = 1 − E
[ ∑
t ′<t

∑
f ∈Fi

χf ,t ′
]

= 1 −
∑
t ′<t

∑
f ∈Fi

γ · xf ,t ′ · pf ,t ′ = βi ,t ,

where the third equality is due to the inductive assumption (P2)
and the last one follows from the definition of βi ,t . We can verify

that Equation (6) remains valid for the given t and all f as long as

αi ,t = βi ,t for t and all i ∈ I . Thus, we complete the inductive step

on (P1) and (P2). By linearity of expectation, the total expected

profit of ATT(γ ) is equal to

E[ATT(γ )] =
∑
f ∈F

∑
t ∈[T ]

wf ,t ·E[χf ,t ] =
∑
f ∈F

∑
t ∈[T ]

wf ,t ·γ ·xf ,t ·pf ,t ,

which is a fraction of γ of the optimal value of LP (1). By Lemma 1,

we claim that ATT achieves a competitive ratio at least γ . □

i = 1 j = 1

j = 2

j = 3

t = 1 t = 2

q1,1 = 1

q2,1 = 0

q3,1 = 0

q1,2 = 0

q2,2 = 1 − ϵ

q3,2 = ϵ

w1 = 1

w
2 =

0w
3 =

1/ϵ

p = 1,T = 2, x∗f1,t=1
= 1 − ϵ, x∗f3,t=2

= ϵ,

OPT-LP = OPT-OFF = 2 − ϵ,OPT-ON = 1,

E[ATT(γ )] = γ · (2 − ϵ),
E[ATT(γ )]
OPT-OFF

= γ .

Figure 1: An example highlighting the tightness of competi-
tive analysis of ATT(γ ) for any γ ∈ [0, 1/2] and the optimality
of ATT(γ = 1/2), where both claims are unconditional of the
benchmark LP.
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2.2 Tightness of the CR Analysis of ATT(γ ) with
γ ∈ [0, 1/2] and the Optimality at γ = 1/2

Lemma 2. There exists an instance of MP-KAD such that ATT(γ )
achieves a competitive ratio of γ for any γ ∈ [0, 1/2]. Meanwhile,
ATT(γ = 1/2) achieves an optimal competitive ratio of 1/2 forMP-KAD.
Both claims here are irrespective of the benchmark LP.

Example 1. Consider such an instance as shown in Figure 1. We
have one single offline agent with a unit budget that is connected to
three online agents indexed by j = 1, 2, 3, respectively. Set T = 2, and
the arriving distributions at t = 1 and t = 2 are q1 = (1, 0, 0) and
q2 = (0, 1−ϵ, ϵ)with ϵ > 0, respectively. There is one single price, and
thus, each edge itself represents an assignment. For ease of notation,
we use j to index the three edges and the corresponding assignments,
i.e., fj = (i = 1, j, ∗) for j = 1, 2, 3. Set pf ,t = 1 for all f and t , and
the profit on assignments state as follows:wf1,t = 1,wf2,t = 0, and
wf3,t = 1/ϵ for both t = 1, 2. ■

Proof. Consider the example shown in Figure 1. Let OPT-ON,

OPT-OFF, and OPT-LP denote the (expected) performance of an

online optimal policy, that of a clairvoyant optimal, and the op-

timal value of Benchmark LP (1) on the above example. We can

verify the following facts. First, LP (1) has such an optimal solution

that x∗f1,t=1
= 1 − ϵ, x∗f3,t=2

= ϵ with all rest being zeros, and the

corresponding optimal value is OPT-LP = 2 − ϵ . The performance

of a clairvoyant optimal is OPT-OFF = ϵ · (1/ϵ) + (1 − ϵ) = 2 − ϵ ,
while that of an online optimal is OPT-ON = 1, which is subject to

the real-time decision-making requirements. Second, ATT(γ ) with
γ ∈ [0, 1/2] achieves a performance ofγ ·(1−ϵ)+γ ·ϵ ·(1/ϵ) = γ ·(2−ϵ).
Thus, we claim that (1) ATT(γ ) achieves a CR of γ (2−ϵ)/(2−ϵ) = γ
using the benchmark of either LP (1) or the clairvoyant optimal

for any γ ∈ [0, 1/2]; and (2) ATT(γ = 1/2) achieves a CR of 1/2

for MP-KAD, which is optimal since no algorithm can beat the CR

of OPT-ON/OPT-OFF = 1/(2 − ϵ), which approaches 1/2 when

ϵ → 0+. □

2.3 Variance Analysis of ATT(γ )
Recall that for each f ∈ F and t ∈ [T ], χf ,t = 1 indicates

f is successfully made (scheduled and accepted) in ATT(γ ). Let
Hi =

∑
f ∈Fi

∑
t ∈[T ] χf ,t and H =

∑
i ∈I Hi denote the numbers of

successful assignments involving i and in total, respectively. Note

that B =
∑
i ∈I bi = |I |.

Theorem 4. Var[H ] ≤ γ · (1 − γ ) · B with γ ∈ [0, 1/2].

Proof. For each assignment f = (i, j,k), let X j ,t = 1, Yf ,t = 1,

and Zf ,t = 1 indicate that j arrives at t , f gets sampled at t in
ATT(γ ), and j accepts f at t , respectively. For each f = (i, j,k),
letWf ,t = X j ,t · Yf ,t · Zf ,t . Note for each given time t , we have∑
f ∈FWf ,t ≤

∑
j ∈J X j ,t ≤ 1 since at most one single assignment

will be sampled in Step (7) of ATT(γ ). Thus, by the Zero-One Prin-

ciple [15], {Wf ,t | f ∈ F } are negatively associated for each given

t . Observe that Wt := {Wf ,t | f ∈ F } are independent from Wt ′

as long as t , t ′. As a result, we claim {Wf ,t | f ∈ F , t ∈ [T ]} are
negatively associated.

LetWi = {Wf ,t | f ∈ Fi , t ∈ [T ]} for each given i ∈ I . Recall that
Hi =

∑
f ∈Fi

∑
t ∈[T ] χf ,t = 1 indicates that one assignment in Fi is

successfully made in ATT(γ ). Since each i has a unit capacity,Hi = 1

iff there exists at least oneWf ,t ∈ Wi withWf ,t = 1. Consequently,

Hi = min

(
1,
∑
t ∈[T ]

∑
f ∈Fi Wf ,t

)
, which can be viewed as a non-

decreasing function overWi . Therefore, {Hi } can be regarded as a

set of non-decreasing functions over disjoint subsets of negatively

associated random variables of {Wi |i ∈ I }, which suggests that

{Hi |i ∈ I } are also negatively associated [21]. By the result in [33],

Var[H ] = Var[
∑
i ∈I Hi ] ≤

∑
i ∈I Var[Hi ].

Observe that Hi is a Bernoulli random variable with mean

E[Hi ] =
∑
t ∈[T ]

∑
f ∈Fi E[χf ,t ] =

∑
t ∈[T ]

∑
f ∈Fi γ · xf ,t · pf ,t ≤ γ ,

where the second equality is due to Equation (6), while the last

inequality due to Constraint (3) in LP (1). Thus, Var[Hi ] ≤ γ · (1−γ )
since γ ∈ [0, 1/2]. Therefore, we claim that

Var[H ] = Var

[∑
i ∈I

Hi

]
≤
∑
i ∈I

Var[Hi ] ≤ γ · (1 − γ ) · B. □

i = 1

i = 2

i =m

j = 1

j = 2

j =m

e1

e2

em

|I | = |J | = T =m,p = 1,w = 1,qj=t ,t = 1,qj,t ,t = 0,∀t ∈ [T ],

x∗i=t , j=t ,t = 1,∀t ∈ [T ],H =
∑
i ∈I

Hi ,Hi = Ber(γ ),∀i ∈ I ,

Var[H ] = γ · (1 − γ ) ·m = γ · (1 − γ ) · B,

OPT-LP = OPT-OFF =m, E[ATT(γ )]/OPT-OFF = γ .

Figure 2: An example where ATT(γ ) achieves the tight CR
bound of γ and the tight variance bound of γ (1−γ ) · B simul-
taneously for any γ ∈ [0, 1/2].

2.4 Tightness of the Variance Analysis of
ATT(γ ) for any γ ∈ [0, 1/2]

Lemma 3. There exists an instance of MP-KAD such that ATT(γ )
achieves a variance of γ · (1 − γ ) · B on the (random) number of
successful assignments for any γ ∈ [0, 1/2].

Proof. Consider the instance as shown in Figure 2. We have a

graph G = (I , J , E) with |I | = |J | = |E | = m, where E = {(i, j)|i =
j ∈ [m]} that consists ofm edges. There is one single price, and

thus, each edge one-one corresponds to an assignment. For ease

of notation, we use e to represent the corresponding assignment.

Each offline agent type i has a unit capacity b = 1. Let T = m
and during each time t ∈ [T ], j = t arrives with probability one

and no others will arrive. For every assignment e ∈ E and time

t ∈ [T ],we ,t = pe ,t = 1. We can verify that (1) an optimal solution

to LP (1) is as follows: x∗
(i , j),t = 1 if i = j = t ∈ [m] and 0 otherwise;

(2) the optimal LP value and the performance of a clairvoyant

optimal are bothm. Note that ATT(γ )works as follows: during each
round t ∈ [T ] when j = t arrives, ATT(γ ) selects the assignment

e = (i = t, j = t) with probability γ since βi=t ,t = 1.
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Let Hi be the number of successful assignments on i ∈ I . We

claim that Hi ∼ Ber(γ ), and thus, Var[Hi ] = γ · (1 − γ ). Observe
that {Hi } are all independent. Therefore,

Var[H ] =
∑
i ∈I

Var[Hi ] = γ · (1 − γ ) ·m = γ · (1 − γ ) · B,

E[ATT(γ )] =
∑
i ∈I

E[Hi ] = γ ·m.

□

3 AN LP-BASED SAMPLING POLICY
WITHOUT ATTENUATIONS (SAMP)

In this section, we present another LP-based sampling policy but

without attenuations, which is formally stated in Algorithm 2.

Algorithm 2: An LP-based sampling policy SAMP(γ ) for
MP-KAD with γ ∈ [0, 1].

1 Offline Phase:
2 Solve LP (1) and let {xf ,t } be an optimal solution.

3 Online Phase:
4 for t = 1, . . . ,T do
5 Let an online agent (of type) j arrive at time t .

6 Sample an assignment f = (i, j,k) ∈ Fj with probability

γ · xf ,t /qj ,t .

/* At most one assignment will be sampled in
Step (6) since∑
f ∈Fj γ · xf ,t /qj ,t ≤

∑
f ∈Fj xf ,t /qj ,t ≤ 1 by

Const. (2) of LP (1). */

7 if i is safe at t ( i.e., the unit capacity remains), then
8 Select the assignment f (i.e., assigning j to i and

charging j a price of ak );
9 else
10 Reject f .

3.1 Competitive Analysis of SAMP(γ )
Theorem 5. SAMP(γ ) with γ ∈ [0, 1] achieves a competitive ratio

of γ · (1 − γ ) for MP-KAD.

Proof. Consider a given ī and a given time t̄ ∈ [T ]. We show

that ī is safe at (the beginning of) t̄ with a probability of at least

1 − γ . Observe that since ī has a unit capacity, ī is safe at t̄ iff no

successful assignment f ∈ Fī has ever been made before t̄ .
For each t < t̄ , letWt =

∑
f =(ī , j ,∗)∈Fī X j ,t · Yf ,t · Zf ,t , where

X j ,t ∼ Ber(qj ,t ),Yf ,t ∼ Ber(γ ·xf ,t /qj ,t ), and Zf ,t ∼ Ber(pf ,t ) are
all Bernoulli random variables simulating the three independent

random events, which are j arrives at t (X j ,t = 1), f gets sampled

at t in SAMP (Yf ,t = 1), and j accepts f at t (Zf ,t = 1), respectively.

Observe that (1)Wt ∈ {0, 1} since at any time t , there is at most

one single online agent arriving, denoted by j, and at most one

assignment f ∈ Fj gets sampled in Step (6) of SAMP, and (2)

{Wt |1 ≤ t < t̄} are all independent. Let SFī ,t̄ = 1 indicate that ī is

safe at t̄ . We see that ī is safe at t̄ iffWt = 0 for all t < t̄ . Thus,

E[SFī ,t̄ ] = Pr

[ ∧
t<t̄

(Wt = 0)

]
=
∏
t<t̄

Pr[Wt = 0](
by independence of {Wt |t < t̄}

)
=
∏
t<t̄

(
1 − E[Wt = 1]

)
=
∏
t<t̄

(
1 − E

[ ∑
f =(ī , j ,∗)∈Fī

X j ,t · Yf ,t · Zf ,t

] )
=
∏
t<t̄

(
1 −

∑
f =(ī , j ,∗)∈Fī

E[X j ,t ] · E[Yf ,t ] · E[Zf ,t ]
)

(
by independence of {X j ,t ,Yf ,t ,Zf ,t }

)
=
∏
t<t̄

(
1 −

∑
f =(ī , j ,∗)∈Fī

qj ,t · (γ · xf ,t /qj ,t ) · pf ,t

)
=
∏
t<t̄

(
1 −

∑
f =(ī , j ,∗)∈Fī

γ · xf ,t · pf ,t

)
≥ 1 −

∑
t<t̄

∑
f =(ī , j ,∗)∈Fī

γ · xf ,t · pf ,t ≥ 1 − γ . (7)(
by Constraint (3) of LP (1)

)
The analysis above suggests that for any given assignment

¯f =
(ī, j̄, ∗) ∈ Fī , it is successfully made at t̄ by SAMP(γ ), denoted by

χ ¯f ,t̄ = 1, with probability of at least

E[χ ¯f ,t̄ ] = E
[
X j̄ ,t̄ · Y ¯f ,t̄ · SFī ,t̄ · Z ¯f ,t̄

]
≥ (1 − γ ) · γ · x ¯f ,t̄ · p ¯f ,t̄ .

Therefore, we claim that the expected amount of profit gained by

SAMP(γ ) should be at least

E[SAMP(γ )] =
∑
f ∈F

∑
t ∈[T ]

wf ,t · E[χf ,t ] ≥ (1 − γ ) · γ · xf ,t · pf ,t ·

wf ,t

= (1 − γ ) · γ · OPT-LP ≥ (1 − γ ) · γ · OPT-OFF,

where OPT-LP refers to the optimal value of LP-(1) and OPT-OFF

the performance of a clairvoyant optimal, and the last inequality is

due to Lemma 1. We establish the claim that SAMP(γ ) achieves a
competitive ratio of at least γ · (1 − γ ). □

3.2 Tightness of the Competitive Analysis of
SAMP(γ ) for any γ ∈ [0, 1]

Lemma 4. There exists an instance ofMP-KAD such that SAMP(γ )
achieves a competitive ratio of γ · (1 −γ ) for any γ ∈ [0, 1] regardless
of the benchmark LP.

Proof. Consider the instance as shown in Figure 3, which is

almost the same as that in Figure 1 except that the profit on f3
is wf3,t = 1/ϵ2

instead of 1/ϵ for both t = 1, 2. We can verify

the following facts. First, LP (1) has such an optimal solution that

x∗f1,t=1
= 1 − ϵ, x∗f3,t=2

= ϵ with all rest being zeros, and the corre-

sponding optimal value is OPT-LP = 1/ϵ + 1 − ϵ . The performance

of a clairvoyant optimal is OPT-OFF = 1/ϵ+1−ϵ . Second, SAMP(γ )
with γ ∈ [0, 1] samples f1 with probability γ (1 − ϵ) when j = 1

arrives at t = 1, and it samplesf3 with probability γ if j = 3 arrives

at t = 2. As a result, the probability that f1 is successfully made is

γ (1−ϵ) and that of f3 is ϵ ·γ ·E[SFi=1,t=2] = ϵ ·γ · (1−γ · (1−ϵ)) =

7
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ϵ · γ · (1 − γ + γ · ϵ). This suggests SAMP(γ ) gains an expected

amount of profit of γ (1 − ϵ) + (1/ϵ) · γ · (1 − γ + γ · ϵ). Thus, we
claim that SAMP(γ ) achieves a CR of γ (1 − γ ) when ϵ → 0+ based

on the benchmark of either LP (1) or the clairvoyant optimal for

any γ ∈ [0, 1]. □

i = 1 j = 1

j = 2

j = 3

t = 1 t = 2

q1,1 = 1,

q2,1 = 0,

q3,1 = 0,

q1,2 = 0,

q2,2 = 1 − ϵ ,

q3,2 = ϵ .

w1 = 1

w
2 =

0w
3 =

1/ϵ 2

p = 1,T = 2, x∗f1,t=1
= 1 − ϵ, x∗f3,t=2

= ϵ,

OPT-LP = 1/ϵ + 1 − ϵ,OPT-OFF = 1/ϵ + 1 − ϵ,

lim

ϵ→0+

E[SAMP(γ )]
OPT-OFF

= γ (1 − γ ).

Figure 3: An example highlighting the unconditional tight-
ness of competitive analysis of SAMP(γ ) for any γ ∈ [0, 1],
which is irrespective of the benchmark LP.

3.3 Variance Analysis of SAMP(γ )
Recall that for each f ∈ F and t ∈ [T ], χf ,t = 1 indicates f
is successfully made (scheduled and accepted) in SAMP(γ ) with
γ ∈ [0, 1]. Let Hi =

∑
f ∈Fi

∑
t ∈[T ] χf ,t and H =

∑
i ∈I Hi denote

the numbers of successful assignments involving i and in total,

respectively.

Theorem 6. Var[H ] ≤ γ · (1 − γ ) · B, where γ = min(1/2,γ ) and
B =

∑
i ∈I bi with γ ∈ [0, 1].

Proof. For each f = (i, j,k), let X j ,t = 1, Yf ,t = 1, and Zf ,t = 1

indicate that j arrives at t , f gets sampled at t in SAMP(γ ), and
j accepts f at t , respectively. For each f and t , letWf ,t = X j ,t ·

Yf ,t · Zf ,t . Observe that E[Wf ,t ] = γ · xf ,t · pf ,t . For each i and
t , letWi ,t =

∑
f ∈Fi Wf ,t andWi =

∑
t ∈[T ]Wi ,t . Following anal-

yses in the proof of Theorem 5, we have (1) {Wi ,t |t ∈ [T ]} are

independent for each given i ∈ I , and each Wi ,t ∈ {0, 1} with

E[Wi ,t ] =
∑
f ∈Fi γ ·xf ,t ·pf ,t ; and (2) i is not matched in the end, i.e.,

Hi = 0, iffWi = 0. Thus, we see thatHi = min(Wi ,bi ) = min(Wi , 1).

Following similar analyses in the proof of Theorem 4, we can show

that {Wf ,t | f ∈ F , t ∈ [T ]} are negatively associated, and so are

{Hi |i ∈ I }. Therefore, Var[H ] = Var[
∑
i ∈I Hi ] ≤

∑
i ∈I Var[Hi ].

Consider a given i ∈ I . Observe that i is not matched is equiv-

alent to that i stays safe to the end of T , denoted by SFi ,T+1. By

Inequality (7),

E[Hi ] = 1 − Pr[Hi = 0] = 1 − E[SFi ,T+1] ≤ γ ,

which suggests that Var[Hi ] ≤ γ · (1 − γ ) with γ = min(1/2,γ ).
Consequently, we have Var[H ] = Var[

∑
i ∈I Hi ] ≤

∑
i ∈I Var[Hi ] ≤

γ · (1 − γ ) · B. □

3.4 Tightness of the Variance Analysis of
SAMP(γ ) for any γ ∈ [0, 1]

Lemma 5. There exists an instance ofMP-KAD such that SAMP(γ )
achieves a variance ofγ ·(1−γ )·B on the (random) number of successful
assignments for any γ ∈ [0, 1], where γ = min(1/2,γ ).

Proof. Consider the instance as shown in Figure 4, which is al-

most the same as that in Figure 2 except that pf ,t = min(1, (1/2)/γ )
instead of 1 for all f and t . SAMP(γ ) works as follows: during each
round t ∈ [T ] when j = t arrives, SAMP(γ ) selects the assign-

ment f = (i = t, j = t) with probability γ , which suggests f is

successfully made with probability γ · pf = γ .
Let Hi be the number of successful assignments on i ∈ I . We

claim that Hi ∼ Ber(γ ), and thus, Var[Hi ] = γ · (1 − γ ). Observe
that {Hi } are all independent, therefore,

Var[H ] = Var

[∑
i ∈I

Hi

]
=
∑
i ∈I

Var[Hi ]

= γ · (1 − γ ) ·m = γ · (1 − γ ) · B.

□

i = 1

i = 2

i =m

j = 1

j = 2

j =m

e1

e2

em

|I | = |J | = T =m,p = min(1, (1/2)/γ ),

qj=t ,t = 1,qj,t ,t = 0,∀t ∈ [T ],

x∗i=t , j=t ,t = 1,∀t ∈ [T ],

H =
∑
i ∈I

Hi ,Hi = Ber(γ ),∀i ∈ I ,

Var[H ] = γ · (1 − γ ) ·m = γ · (1 − γ ) · B.

Figure 4: An example highlighting the tightness of variance
analysis of SAMP(γ ) for any γ ∈ [0, 1].

4 CONCLUSION
In this paper, we study matching and pricing simultaneously emerg-

ing in various gig platforms.We focus on two fundamental LP-based

sampling algorithms and provide tight competitive and variance

analyses for each of them. Our research opens a few directions.

The immediate one is to extrapolate the current variance-analysis

techniques to more general settings such as a weighted objective,

i.e., the variance of the total profit instead of the total number of as-

signments, and less strict arriving assumptions, e.g., random arrival

order and adversary. We expect more technical challenges there,

which perhaps require us to add extra assumptions to make the

problem tractable.
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A EXPERIMENTAL RESULTS

Table 3: Parameter settings, where |I | and |J | denotes the numbers of driver and rider types, [b,b] denotes the range of capacities
among all driver types, B is the total capacities of all driver types (i.e., the total number of drivers over all types),T is the total
number of online rounds, A is set of basic prices per kilometer, and γ is the parameter in ATT and SAMP.

Duration |I | |J | [b ,b] B T A γ

General Case

8:00-20:00 50 80

{[1,3],[1,7],[1,11],

[1,15],[1,19],[1,23]}

{100,200,...,600} 4200 {2.2,2.4,

...,3.2}

{0.1,0.2,...,0.5}

Special Case with

Large Capacities

{[10,20],[20,30],[30,40],

[40,50],[50,60]}

{750,1250,...,2750} 10 × B {0.2,0.4,...,1.0}
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(a) Competitive ratios when the total serving
capacities B ∈ {100, 200, ..., 600}.
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Figure 5: Results for the general case on a real dataset offered by DiDi, Inc., collected in Haikou, China.
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(c) Variance of SAMP(γ ) when B ∈ {750, 1250,

..., 2750} for different fixed γ values.

Figure 6: Results for the special case of large capacities on a real dataset offered by DiDi, Inc., collected in Haikou, China.

Data Preprocessing. We conduct our experiments on a real-world ride-hailing dataset offered by DiDi Inc., which is collected in Haikou,

China. Each trip record consists of 23 columns, including pick-up and drop-off locations, the timestamp when the trip started and ended, and

the estimated total fare for the order, etc. Following the setting of work [29], we set drivers offline agents while riders are online agents

that arrive dynamically. We focus on the case where longitude and latitude range in (110.18, 110.48) and (19.90, 20.10), respectively, and we

partition the area into 15 × 10 = 150 grids with equal size.

We construct the input instance as follows. Focus on the time window from 8:00 to 20:00 on May 5, 2017. We choose T = 4200 and split

the total 12 hours in the window into T intervals such that each spans 30 seconds. For each grid, we create a driver type i , and sample a

serving capacity bi from [b,b] uniformly at random, which denotes the number of drivers of type i in the system. For each pair of starting
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and ending grids, we create a rider type j , and set its arriving probability at time t (i.e., qj ,t ) as the proportion of its record number among all

rider types during t . We select the top 50 driver types and 80 rider types in terms of their number of records. For each pair of driver-rider

types, we add an edge with probability 1 if the two share the same starting grid; with probability 1/4 if they are adjacent to each other.

In our context of ride-hailing services, the groundset of prices applying to all ride types can be huge due to the large variance in trip

length. Instead, we introduce the groundset of basic prices per kilometer (denoted by A as well) and for each ak ∈ A, the assignment

f = (i, j,k) should be re-interpreted as assigning j to i and charge j at a price of ak per kilometer (and thus, the total price charged to j should
be equal to ak multiplied by its trip length). For each given rider type j and time t , let Fj ,t be the CDF (Cumulative Distribution Function) of

private value distribution of j over basic prices at t , i.e., Fj ,t (ak ) denotes the probability that the expected price (per kilometer) from j is
no larger than ak at time t . Commonly, the (random) private value is set to follow either a normal distribution [38, 42] or an exponential

distribution [6, 26]. In our case, we consider a truncated normal distribution for each Fj ,t , where the mean and variance are estimated

based on samples of records relevant to rider type j at t . In this way, for each assignment f = (i, j,k), we set the acceptance probability of j
accepting f as pf ,t = 1 − Fj ,t (ak ), i.e., the probability that ride type j holds a private value larger or equal to the given price ak . For each
f = (i, j,k), we setwf ,t = λ · ak · κj , where λ refers to the royalty rate and κj is the trip length of rider type j . We set λ to 25% by default [2].

Algorithms. In addition to the two LP-based algorithms ATT and SAMP proposed in this paper, we implement several baselines as follows.

Consider a rider of type j arrives at time t , and let Fj ,t be the collection of safe assignments with respect to j at t (note that Fj ,t may get

reduced as time). Recall that {xf ,t } is an optimal solution to the benchmark LP (1). If Fj ,t is empty, then we have to reject j. Otherwise,

(a) ATT-B (a boosted version of ATT): Samples an assignment f = (i, j,k) ∈ Fj ,t with probability

xf ,t
qj ,t ·βi ,t

/
∑
f ∈Fj ,t

xf ,t
qj ,t ·βi ,t

; (b) SAMP-B (a

boosted version of SAMP) : Sample an assignment f = (i, j,k) ∈ Fj ,t with probability

xf ,t
qj ,t /

∑
f ∈Fj ,t

xf ,t
qj ,t ; (c) GRY: Select an assignment

f ∈ Fj ,t that maximizes pf ,t ·wf ,t (and break ties arbitrarily); (d) UNM: Sample an assignment in Fj ,t uniformly at random.

Computational Complexity of ATT and SAMP. Both ATT and SAMP consist of two parts: Offline Phase and Online Phase. As for
Offline Phase, both ATT and SAMP need to solve the benchmark LP (1) that has N := |E | · K ·T variables. Thus, theoretically the running

time on the part of solving LP (1) can be as low asO∗(N 2+1/6
log(N /δ )) [10], where δ is the relative accuracy and N = |E | · K ·T with K and

T being the total number of prices and online rounds, respectively. For SAMP, Offline Phase involves one extra procedure of computing all

attenuation factors {βi ,t } that takes another O(T · |E | · K). As for Online Phase, both ATT and SAMP just need to sample an assignment

from a one-dimensional vector with a size no larger than |I | · K , which takes O(|I | · K) time. Thus, the dominant part of the running time

will be solving the benchmark LP (1) in Offline Phase. Fortunately, all computations in Offline Phase can be done well before the online

process starts.

Results and Discussions. For each instance, we run all algorithms for 100 times and take the average as the final performance (the total

expected profits obtained). We compute the ratio of the performance of each algorithm to the optimal value of LP (1) as the final competitive

ratio achieved. Additionally, we output the total number of successful assignments (that are scheduled and accepted) and the resulting

variance.

Figure 5a shows the performance of ATT(γ ) is quite stable: its competitive ratios always stay slightly above and almost match the

theoretical lower bounds of γ . This confirms our theoretical prediction in Theorem 1 and highlights the tightness of our competitive-ratio

analysis. Though ATT(γ ) with γ = 1/2 proves optimal in the worst-case, its practical performance seems not as good as the boosted version

ATT-B. This is mainly due to the fact that real-world instances deviate largely from the worst-case version. Figure 5a suggests that when the

total number of arrivals of riders is fixed (T = 4200), heuristics like GRY and UNM are dominated by ATT-B for any given B, showing that

ATT-B can work well in practice. In addition, ATT(0.5) has a prominent advantage over the two heuristics when B is moderate and still

slightly outperforms them even when B is extremely small or large. In contrast, Figure 5c suggests that the variance increases almost linearly

as B for each fixed γ . These results align perfectly with our theoretical upper bounds in Theorem 1.

As for the special case with large capacities, Figure 6a shows that as γ increases, the competitive ratios of SAMP(γ ) will increase as well.
This confirms our theoretical prediction in the first part of Theorem 2. Moreover, SAMP(0.8) and SAMP(1.0) always outperform GRY and

UNM over different choices of B. Although GRY and UNM perform well in the metric of total successful assignments, they fail to achieve a

good competitive ratio finally. This is mainly due to the myopia of heuristic-based strategies: they will run out the supplies very quickly and

lose the opportunities to serve those profitable demands in the future. On the other hand, the LP-based algorithms will optimize the usage of

supplies globally, which results in an extremely high competitive ratio overall. Figure 6c shows that the variance for all instances is upper

bounded by γ̄ · (1 − γ̄ ) · B, as suggested in the second part of Theorem 2.

B GRID PARTITION IN HAIKOU, CHINA.
In our experiments, we focus on the area where longitude and latitude range in (110.18, 110.48) and (19.90, 20.10), respectively, and we

partition the area into 15 × 10 = 150 grids with equal size, as shown in Figure 7.
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Figure 7: Grid partition in Haikou, China.

C JUSTIFICATION OF ASSUMPTIONS IN THE MODEL
First, we validate our KAD (Known Adversary Distributions) arrival assumption by plotting the distribution of the total number of arrivals

for all rider types at various times; see Figure 8. The results demonstrate that the arrival patterns of each rider type do indeed change

significantly over time. Notably, there is a peak-hour trend between 16:00 and 18:00 when most rider types experience their highest arrival

rates.

Second, we validate the dependency of the acceptance probability on rider types and time by plotting the distribution of the number of

trip records at different times for each given rider type and by plotting the distribution of the number of trip records for different rider types

within each predefined time interval, as illustrated in Figure 9 and Figure 10. In Figure 10, it’s evident that for a given time slot between 16:00

and 18:00, acceptance prices are partially concentrated around 3.0 per kilometer, but the distributions still exhibit significant variation across

rider types. Figure 9 reveals that for rider type 4, the charged prices during the afternoon peak hours (from 16:00 to 18:00) are significantly

higher than those for other time slots. This observation suggests an over-demand tendency during the afternoon peak hours.
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Figure 8: The distribution of the total number of arrivals for all rider types at various times on May 5, 2017, which suggests a
peak-hour trend between 16:00 and 18:00 when most rider types experience their highest arrival rates.
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Figure 9: The number of trip records for rider type
4 from 8:00 to 20:00. The charged prices during the
afternoon peak hours (from 16:00 to 18:00) are sig-
nificantly higher than those for other time slots.

2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2
Price Per Kilometer

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
62
64
66
68
70
72
74
76
78

R
id

er
 T

yp
e 

Id

0

2

4

6

8

10

Figure 10: The number of trip records for all rider
types between 16:00 and 18:00.
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