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ABSTRACT

Excessive abstraction is a critical challenge in solving games with ordered sig-
nals—a subset of imperfect information games—that impairs AI performance.
This issue is caused by extreme implementations of imperfect recall, which dis-
card historical information. This paper presents KrwEmd, the first practical algo-
rithm to address this issue. We first introduce the k-recall winrate feature, which
not only qualitatively distinguishes signal infosets by leveraging future and, more
importantly, historical game information, but also quantitatively reflects their sim-
ilarity. We then develop the KrwEmd algorithm, which clusters signal infosets
using Earth Mover’s Distance to assess discrepancies between their features. Ex-
perimental results show that KrwEmd significantly enhances AI gameplay perfor-
mance compared to existing algorithms.

1 INTRODUCTION

Abstraction refers to the process of simplifying complex games by grouping similar states or actions
into broader categories, thereby improving decision-making and computational efficiency. Among
these methods, imperfect recall abstraction further enhances computational efficiency by relaxing
the memory consistency constraint on solvers. Recently, artificial intelligence systems employing
imperfect recall abstraction have successfully developed strategies that outperformed human experts
in no-limit Texas Hold’em poker, a popular testbed for imperfect information games, even under
limited computational resources (Moravčı́k et al., 2017; Brown & Sandholm, 2018; 2019).
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Figure 1: In a 3-phase game hand ab-
straction task, the current goal is to
group hands A and B, which share
the same future trajectory despite
following different historical paths.
When using a future considered only
approach, both hands are assigned
identical features.

The hand abstraction task in Texas Hold’em can be framed
as an unsupervised representation learning process, where
we aim to learn efficient representations of game states by
grouping similar hands. These representations enable the AI
to generalize across different but related scenarios, applying
a unified strategy to abstracted groups of hands, ultimately
simplifying the game-solving computations. In imperfect
recall setting (Waugh et al., 2009b; Johanson et al., 2013),
hand abstraction in the late game does not strictly depend
on the results of hand abstraction in the early game. Due to
considerations of computational simplicity, imperfect recall
abstraction is frequently implemented in an extreme manner,
completely disregarding past memory and focusing solely on
future information (Gilpin & Sandholm, 2006; 2007a; Gilpin
et al., 2007; Gilpin & Sandholm, 2008; Ganzfried & Sand-
holm, 2014). Although these implementations reduce com-
putational complexity, the loss of historical information hin-
ders solvers’ performance by limiting the AIs’ ability to maintain a comprehensive global perspec-
tive. Recent research (Fu et al., 2024) has shown that constructing hand features, used to categorize
hands, solely based on future information—often referred to as future considered only—can lead
to excessive abstraction, where hands with significant differences are often grouped into the same
category, as shown in Figure 1. As the game progresses, the issue becomes increasingly apparent,
leading to a spindle-shaped distribution of distinct features: fewer in the early and late phases, with
a peak in the middle phases. This pattern fails to capture the continuous rise in the number of equiv-
alence classes of hands throughout the game. Constructing hand features with historical information
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in addition to future data can mitigate excessive abstraction by enriching the historical details of
features and allowing for finer distinctions between hands.

However, two unresolved issues remain. First, as introduced by Fu et al. (2024), the k-recall out-
come feature incorporates historical information. While it can be determined whether two features
are identical, it lacks the ability to discern the extent of differences between features. Consequently,
the k-recall outcome isomorphism (KROI) identified using this feature cannot be further refined us-
ing clustering algorithms, such as k-means, to adjust the number of categories, making it challenging
to develop an effective hand abstraction algorithm that integrates historical information. Second, due
to the inability to adjust the number of centroids, Fu et al. (2024) only compared the performance
between two maximum centroid cases: one with the integration of historical information (KROI)
and the other without (potential outcome isomorphism, POI). Although KROI significantly outper-
forms POI in this scenario, the comparison is inconclusive because KROI identifies more abstracted
infosets than POI. Therefore, it does not conclusively prove that abstraction algorithms integrating
historical information are necessarily superior when the number of abstracted infosets is the same.

This paper presents a framework for constructing hand features based on winrates, particularly the
k-recall winrate feature, which utilizes significantly fewer data but still achieves approximately 90%
of the resolution of KROI through its derived k-recall winrate isomorphism. By combining the earth
mover’s distance with the k-recall winrate feature, we developed KrwEmd, the first hand abstraction
algorithm that integrates historical information, and designed an efficient computational method.
We validated our approach in the Numeral211 game environment, where KrwEmd demonstrated
superior performance to POI under the same abstracted infosets number condition. Additionally, in
clustering scenarios, KrwEmd also outperformed other imperfect recall abstraction algorithms.

2 BACKGROUND AND NOTATION

Generally, Texas Hold’em-style poker games are modeled as imperfect-information games. How-
ever, for the task of hand abstraction, games with ordered signals (Gilpin & Sandholm, 2007b; Fu
et al., 2024) offer a better theoretical tool. The game with ordered signals is a subclass of imperfect-
information games, where the nodes (also referred to as histories, states, or trajectories) are further
subdivided into two mutually independent parts: signals and public nodes. This allows for each
aspect to be studied in isolation. Under this framework, the hand abstraction task in Texas Hold’em-
style games is modeled as signal abstraction. Heads-up limit Texas Hold’em (HULHE) and heads-up
no-limit Texas Hold’em (HUNL) are important AI testbeds. The rules for HULHE are provided in
the Appendix A, and the dealing rules for HUNL are the same as those in HULHE.

2.1 GAMES WITH ORDERED SIGNALS

Definition 1. A structure G̃ =
〈
T̃ , Ñ , ρ, Ã, PaÃ, γ, Θ, ς, ϑ, ω,⪰, u

〉
formally defines a game with

ordered signals, where:

• T̃ =
〈
Ṽ , ṽ0, Z̃, PaṼ

〉
is a public tree consisting of a finite set of public nodes Ṽ , a unique

initial node ṽ0 ∈ Ṽ , a finite set of terminal public nodes Z̃ ⊆ Ṽ , and a predecessor function
PaṼ : Ṽ+ → H̃ , mapping each non-initial node ṽ+ ∈ Ṽ+ to its immediate predecessor h̃ ∈ H̃ .
Here, Ṽ+ = Ṽ \{ṽ0} is the set of non-initial nodes, while H̃ = Ṽ \Z̃ is the set of internal nodes.

• Ñ = N∪{sp} is a finite set of augmented players, where sp refers to a spectator who observes the
public information of the game without influencing its progression. N = {0, 1, . . . , n} denotes
the set of players, with 0 representing a special player, commonly referred to as chance or nature,
whose actions correspond to random events. The set of rational players (i.e., non-chance players)
is denoted by N+ = N\{0}, and the set of augmented rational players is given by Ñ+ = N+ ∪
{sp}. The player function ρ̃ : H̃ → N partitions the set H̃ among players. The set of decision
public nodes is defined as H̃+ =

⋃
i∈N+

H̃i, where H̃i = {h̃ ∈ H̃ | ρ(h̃) = i}, while the set of
chance public nodes is given by H̃0 = H̃ \ H̃+.

• Ã = A+∪Ã0 is a finite set of actions. The setA+ includes the actions available to rational players,
while Ã0 = {a0} denotes the set of actions available to the chance player. Notably, Ã0 contains
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only one action, a0, which represents a placeholder action in the public tree where the chance
player reveals a signal. The function PaÃ : Ṽ+ → Ã defines an action partition of Ṽ+, mapping
each non-initial public node ṽ+ to the action a ∈ Ã that immediately leads to the occurrence of
ṽ+. The function A(h̃ ∈ H̃) = {a′ ∈ Ã | [∃ṽ+ ∈ Ṽ+](PaÃ(ṽ+) = a′ ∧ PaṼ (ṽ+) = h̃)}
confines the available actions of each internal public node.

• γ : Ṽ → N+ is a phase partition of Ṽ , assigning to each public node ṽ a value corresponding to
the number of chance public nodes encountered along the path from the initial public node ṽ0 to
and including ṽ, thereby defining the phase of ṽ. The maximum phase in the game is denoted by
Γ, and notably, γ(ṽ0) = 1, indicating that ṽ0 is a chance public node.

• Θ =
〈
Θ, θ0, PaΘ

〉
is a signal tree with height Γ, consisting of a finite set of signals Θ, a unique

initial signal θ0, and a predecessor function PaΘ : Θ(+) → Θ \ Θ(Γ), mapping each non-initial
signal to its immediate predecessor. Here, Θ(r) denotes the set of signals revealed in phase r =
1, . . . ,Γ; specifically, Θ(0) = {θ0}. Θ(+) = Θ\Θ(0) represents the set of non-initial signals. The
depth of a signal θ ∈ Θ is denoted by dΘ(θ), and all terminal signals in Θ (i.e., signals without
successors) necessarily have a depth of Γ.

• ς : Ω 7→ [0, 1] is a chance probability function that assigns a probability of occurrence to each
successive pair of signals, with Ω = {(θ, θ′) ∈ Θ × (Θ \ Θ(Γ)) | PaΘ(θ′) = θ}. Additionally,
for each θ ∈ Θ \ Θ(Γ), the sum of the probabilities for all θ′ ∈ S(θ) is equal to 1, where
S(θ) = {θ′ ∈ Θ(+) | PaΘ(θ′) = θ}.

• ϑ = (ϑ1, . . . , ϑn, ϑsp) is a tuple of observation functions, with ϑi : Θ 7→ Ψi mapping each θ ∈ Θ
to its corresponding signal infoset (i.e., information set), such that signals within the same signal
infoset ψ ∈ Ψi cannot be distinguished by the augmented rational player i ∈ Ñ+. Furthermore,
all elements ψ ∈ Ψi collectively form a partition of Θ.

• ω = (ω1, . . . , ωn) is a tuple of survival functions, where ωi(ṽ ∈ Ṽ ) := 1player i is still participating at ṽ .
• ⪰ is a total order over the terminal signals with respect to the set of players N+, where
⪰ (θ ∈ Θ(r), i ∈ N+, j ∈ N+) := 1player i is ranked no lower than player j at θ.

• Signals and public nodes constitute the nodes of an ordered game. The corresponding sets are
defined as follows:
– H

(r)
0 = H̃

(r)
0 × Θ(r−1), and for j ∈ N+, H(r)

j = H̃
(r)
j × Θ(r), r = 1, . . . ,Γ, where H̃(r)

i =

{h̃ ∈ H̃i | γ(h̃) = r}, i ∈ N .
– Z(r) = Z̃(r) ×Θ(r), where Z̃(r) = {z̃ ∈ Z̃ | γ(h̃) = r}, r = 1, . . . ,Γ.

– H(r) =
⋃
i∈N H

(r)
i and V (r) = Z(r) ∪H(r).

– H =
⋃Γ
r=1H

(r), Z =
⋃Γ
r=1 Z

(r), and V =
⋃Γ
r=1 V

(r).
• u = (u1, . . . , un) is a tuple of utility functions, where ui : Z 7→ R. In the final phase, for
z = (z̃, θ) ∈ Z(Γ), it is required that if ωi(z̃)ωj(z̃) ⪰ (θ, i, j) = 1, then ui(z̃, θ) ≥ uj(z̃, θ).

2.2 STRATEGIES AND NASH EQUILIBRIUM IN GAMES WITH ORDERED SIGNALS

Rational players make decisions based on their observations of signals (i.e., signal infoset) and the
current non-terminal public node. Signals within the same signal infoset necessarily share the same
depth, where dθ(ψ) denotes the depth of ψ ∈ Ψi. A rational player has access to more information
than the spectator, including all information available to the spectator. For any i ∈ N+ and ∀θ ∈ Θ,
we have ϑi(θ) ⊆ ϑsp(θ).
A rational player i ∈ N+ chooses a strategy σi : Qi 7→ [0, 1] from Σi, the set of available strategies
for player i. Here,Qi = {(h̃, ψ, a) ∈ H̃i×Ψi×A+ | γ(h̃) = dΘ(ψ)∧a ∈ A(h̃)}, and the condition∑
a∈A(h̃) σi(h̃, ψ, a) = 1 must be satisfied. When all rational players select their strategies, a

strategy profile σ : Q 7→ [0, 1] is formed, where σ = ⊕i∈N+
σi ∈ Σ 1 and Q =

⋃
i∈N+

Qi, and the

1Given the functionsf1 : A1 7→ B1 and f2 : A2 7→ B2, a new function f = f1 ⊕ f2 is defined such that
f : A1 ⊕A2 7→ B1 ∪B2, with

f(x) =

{
f1(x) if x ∈ A1 \A2,

f2(x) if x ∈ A2 \A1.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

probability of reaching each node v = (ṽ, θ) ∈ V can be compute as follow:

π(σ, (ṽ, θ)) =


1 if (ṽ, θ) = (ṽ0, θ0),

ς(PaΘ(θ), θ)π(σ, (PaṼ (ṽ), PaΘ(θ))) if PaṼ (ṽ) ∈ H̃0,

σ(PaṼ (ṽ), ϑi(PaΘ(θ)), PaÃ(ṽ))π(σ, (PaṼ (ṽ), PaΘ(θ))) if PaṼ (ṽ) ∈ H̃+.

The expected payoff for rational player i ∈ N+, given a strategy profile σ ∈ Σ, is ûi(σ) =∑
z∈Z π(σ, z)ui(z). A strategy profile σ∗ ∈ Σ is a Nash equilibrium if, for all i ∈ N+, the

following holds:
ûi(σ

∗) ≥ max
σ′
i∈Σi

ûi(σ
∗
−i ⊕ σ′

i).

2.3 SIGNAL ABSTRACTION IN GAMES WITH ORDERED SIGNALS

Abstraction is a simplified perception of the game from the player’s perspective. α = (α1, ., αn)
is a signal (infoset) abstraction profile, with αi : θ 7→ Ψαi , a signal (infoset) abstraction, mapping
each θ ∈ Θ to its corresponding abstracted signal infoset ψ̂ ∈ Ψαi for i ∈ N+. Each abstracted
infoset ψ̂ can be further subdivided into several signal infosets within Ψi. These finer signal infosets
collectively form a partition of ψ̂.

In general, two signal abstractions cannot be directly compared in terms of performance. However,
in certain specific cases, a special relationship known as refinement exists between them. Consider
two abstractions αi and βi. If, for every ψ̂ ∈ Ψβi , there exists one or more abstracted signal infosets
in Ψαi such that their union forms a partition of ψ̂, then αi is said to refine βi, denoted as αi ⊒ βi.
The signal-abstracted game G̃α is derived by substituting ϑi with αi in G̃.

The concepts of perfect and imperfect recall are originally associated with imperfect-information
games, indicating whether players are required to remember all the information encountered
throughout the game. Since games with ordered signals are a subset of imperfect-information games,
we extend the notion of signal perfect/imperfect recall to this framework. In a game G̃, a player
i ∈ Ñ+ is said to have signal perfect recall if, for any two signals θ′1, θ

′
2 ∈ ψ′, every predecessor

θ1 of θ′1 corresponds to a predecessor θ2 of θ′2 such that θ2 ∈ ϑi(θ1) and θ1 ∈ ϑi(θ2). When all
players in the game G̃ have signal perfect recall, the game itself is said to have signal perfect recall.
In a game with signal perfect recall, denoted by G̃, let αi represent the signal abstraction for player
i ∈ N+. The abstraction profile (αi, ϑ−i) refers to a scenario in which player i employs the signal
abstraction αi, while the other players do not use any signal abstraction. If the game G̃(αi,ϑ−i) re-
tains signal perfect recall, then αi is considered a signal abstraction with perfect recall; otherwise, it
is considered a signal abstraction with imperfect recall.

3 RELATED WORK

Our research focuses on hand abstraction techniques in AI systems for Texas Hold’em-style games
(i.e. the signal abstraction in games with ordered signals), building on the foundational works of
Shi & Littman (2001) and Billings et al. (2003). These seminal studies introduced game abstraction
to simplify games while preserving key characteristics, initially relying on manual hand abstraction
by experts. The first automated hand abstraction was developed by Gilpin & Sandholm (2006), fol-
lowed by a more formal model for games with ordered signals in Texas Hold’em by Gilpin & Sand-
holm (2007b). They introduced the concept of lossless isomorphism (LI) through signal rotation.
Despite LI’s theoretical elegance, its low compression rates limited its use in large-scale games. In
contrast, lossy abstractions, which balance accuracy and scalability, showed greater potential. Meth-
ods such as the expectation-based clustering (Ehs) and the histogram-based potential-aware method
were later introduced by Gilpin & Sandholm (2007a) and Gilpin et al. (2007). Studies by Gilpin &
Sandholm (2008) and Johanson et al. (2013) later showed that the potential-aware method outper-
formed Ehs in larger-scale games. In addition, Johanson et al. (2013) introduced the use of earth
mover’s distance (EMD) in the potential-aware method, while Ganzfried & Sandholm (2014) pro-
posed a more efficient approximation algorithm, PaEmd, to further optimize this approach. This
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methodology was further extended by Brown et al. (2015) to distributed environments, making
PaEmd the state-of-the-art solution for large-scale imperfect-information games.

Recently, Fu et al. (2024) proposed several novel tools, including abstraction resolution and com-
mon refinement. They introduced two signal abstractions: potential outcome isomorphism (POI),
which maximizes the number of abstracted signal infosets based on future information, and k-recall
outcome isomorphism (KROI), which does so by incorporating historical information. They argued
that current algorithms, which focus future considered only, tend to excessive abstraction, yet their
work did not provide a practical signal abstraction algorithm, leaving an open challenge.

4 WINRATE ISOMORPHISM

We begin by illustrating why historical information cannot be ignored in games with ordered signals.
Consider a player in HULHE with two distinct signal infosets: [9♢Q♡;Q♣9♢9♡;K♣; 4♢] and
[9♢Q♡;K♣4♢9♡;Q♣; 9♢], where [9♢Q♡] is the hole cards. Despite these two signal infosets
having the same hand strength, they differ in timing: in the first, the player forms a Full House by the
Flop, encouraging an optimistic early-game strategy. In the second, the player completes the hand
only by the River, leading to more cautious early play. A player’s strategy is observed by opponents,
influencing their decisions, and in turn, the opponent’s decisions are observed by the player, further
shaping the player’s strategy. This dynamic results in a completely different game scenario and
highlights that, despite the two infosets having equal strength by the River, their strategic differences
prevent them from being grouped together. A player’s confidence in their current signal infoset
guides their strategy, and winrate is a critical factor influencing this confidence.

We introduce isomorphism frameworks for winrate-based features, including potential winrate iso-
morphism (PWI) and k-recall winrate isomorphism (KRWI). These frameworks serve as signal ab-
stractions where the term isomorphism refers to the equivalence relations (reflexive, symmetric, and
transitive) satisfied by the abstracted signal infosets. In particular, this transitivity property helps de-
termine whether two infosets belong to the same abstracted signal infoset. To avoid ambiguity, we
refer to the abstracted signal infosets defined in these frameworks (POI, KROI, PWI, KRWI) as
signal infoset equivalence classes. Two infosets are classified in the same equivalence class if they
share an identical defined feature.

As the name suggests, a winrate-based feature is a set of data that reflects the strength of a signal
infoset by rolling it out to its subsequent terminal signals and comparing the players’ ranks pairwise.
Winrate-based features distinguish signal infosets and require far less data compared to outcome-
based features, which use histograms representing specific outcomes as the infoset progresses to the
next phase. For example, in future considered only settings in heads-up Texas Hold’em, a Preflop
winrate-based feature can be represented using only three data points (win, draw, loss), whereas an
outcome-based feature might require C(50, 3) data points (i.e., the number of combinations of three
community cards dealt from a 52-card deck after the player’s two hole cards). Clearly, fewer data
points reduce both time and space complexity. Nonetheless, this raises concerns about a potential
loss in resolution. In this section, we argue for the use of winrate-based features and demonstrate
that they do not significantly compromise resolution.

PWI and KRWI (as well as POI and KROI) share a similar isomorphism construction process, as
outlined in Algorithm A1. The primary distinction between them lies in the construction operator
for the (winrate-based) features, FEATURE, used in lines 5 and 12. The isomorphism construction
process begins by iterating over all signal infosets in Ψ

(r)
i , the signal infoset space for rational

player i in phase r, and collecting their features. These features are then deduplicated and stored in
lexicographical order within the set C(r)i , implemented as a vector. In C(r)i , the index of each feature
serves as an identifier for a signal infoset equivalence class. A hash table, CI(r)i , is then used to
map a feature to its corresponding signal infoset equivalence class identifier. Finally, the algorithm
revisits Ψ(r)

i to associate each signal infoset’s identifier with that of its corresponding signal infoset
equivalence class, storing this mapping in D(r)

i , the isomorphism map. The function Indexi(r, ·) is
a domain-specific mapping that assigns a unique identifier to each signal infoset at phase r, ranging
from 0 to |Ψ(r)

i | − 1. In Texas Hold’em-style games, one possible implementation of this function
is through lossless isomorphism (Gilpin & Sandholm, 2007b; Waugh, 2013).
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4.1 POTENTIAL WINRATE ISOMORPHISM

Potential winrate isomorphism (PWI) is a signal abstraction that classify signal infosets based on
its potential winrate features. These features focus on the distribution of a player’s winrate over
terminal signals after passing through a given signal infoset, without considering the history of how
the player reached the signal infoset. Specifically, for player i in phase r, the potential winrate
feature associated with ψ ∈ Ψ

(r)
i is defined as

pf
(r)
i (ψ) = (pf

(r),0
i (ψ), pf

(r),1
i (ψ), . . . , pf

(r),n
i (ψ)), (1)

where

• pf (r),0i (ψ) denotes the probability that player i ranks lower than least one other player in the
terminal signals, after passing through ψ.

• pf (r),li (ψ), for l > 0, denotes the probability that player i ranks no lower than any other player
and ranks higher than exactly l − 1 other players in the terminal signals, after passing through ψ.

In the terminal phase, the winrate feature is computed by directly calculating the game outcomes
for players within the given signal infoset. In contrast, during non-terminal phases, we employ a
recursive approach to simplify the calculation of the winrate feature, thereby avoiding the need to
enumerate every signal infoset down to the terminal phase. The recursive formula is given by

pf
(r),l
i (ψ) =

∑
ψ′∈Ψ

(r+1)
i

ψ⊑ψ′

pf
(r+1),l
i (ψ′)P (ψ|ψ′), (2)

where ψ ⊑ ψ′ indicates that there exist θ ∈ ψ and θ′ ∈ ψ′ such that θ is a predecessor of θ′.

Preflop Flop Turn River
LI 169 1286792 55190538 2428287420

PWI 169 1028325 1850624 20687
POI 169 1137132 2337912 20687

W/O (%) 100.0 90.43 79.16 100.0
WD/OD 3/C(50, 3) 3/47 3/46 3/3

Table 1: The number of signal infoset equivalence
classes identified by LI, PWI, and POI in each phase
of HULHE and HUNL, with W/O indicating the ratio
of signal infoset equivalence classes identified by PWI
to those identified by POI, and WD/OD indicating the
ratio of data used by PWI to that used by POI.

The PWI algorithm is derived from the
POI algorithm (Fu et al., 2024), and the
details of the PWI algorithm are elabo-
rated in Appendix C.2. Unlike POI, PWI
also uses the potential winrate feature in
non-terminal phases to identify different
signal infoset equivalence classes, while
POI relies on the potential outcome fea-
ture (which captures the distribution of
the signal infoset equivalence class for
future signal infoset). In non-terminal
phases, the potential winrate feature is
a simplified version of the potential out-
come feature. Unsurprisingly, PWI also results in excessive abstraction similar to POI. As shown
in Table 1, in HULHE and HUNL, the number of signal infoset equivalence classes identifiable
by lossless isomorphism increases with each phase, indicating that the game becomes increasingly
complex. However, the number of signal infoset equivalence classes identifiable by PWI and POI
first increases and then decreases, showing a spindle-shaped pattern. And we observed that when
only future information is considered, winrate-based features may lead to greater information loss
compared to outcome-based features. For instance, in the River phase, the number of signal infoset
equivalence classes identified by PWI is only 79.16% of that identified by POI.

4.2 K-RECALL WINRATE ISOMORPHISM

As Fu et al. (2024) mentioned, supplementing historical information can enhance the ability of
signal abstraction to identify signal infoset equivalence classes. Inspired by KROI’s construction
approach, we developed the k-recall winrate isomorphism (KRWI), where k-recall refers to recalling
information from the previous k phases. The key difference is that instead of using k-recall outcome
features to distinguish between different signal infosets, KRWI utilizes k-recall winrate features.

In a game with signal perfect recall, all signals within the signal infoset ψ have their predecessors at
phase r′, which belong to the identical signal infoset ψ′. For player i at phase r, the signal infoset

6
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Preflop Flop Turn River

Recall 0 0 1 0 1 2 0 1 2 3
KRWI 169 1028325 1123442 1850624 34845952 37659309 20687 33117469 529890863 577366243
KROI 169 1137132 1241210 2337912 38938975 42040233 20687 39792212 586622784 638585633

W/O (%) 100.0 90.43 90.51 79.16 89.49 89.58 100.0 83.23 90.33 90.41

Table 2: The number of signal infoset equivalence classes identified by KRWI, and KROI in each
phase and k of HULHE and HUNL, with W/O indicating the ratio of signal infoset equivalence
classes identified by KRWI to those identified by KROI.

ψ ∈ Ψ
(r)
i has a k-recall winrate feature (k < r) represented as a numerical array with a dimension

of (k + 1)(n+ 1):

rf
(r,k)
i (ψ) = (pf

(r)
i (ψ); pf

(r−1)
i (ψ); . . . ; pf

(r−k)
i (ψ)), (3)

where pf (r
′)

i (ψ) denotes the potential winrate feature for the predecessor signal infoset ψ′ of ψ at
phase r′, for r′ < r. Since we have stored all the potential winrate features of ψ ∈ Ψ

(r)
i through

PC(r)i ,PD(r)
i and assigned them unique identifiers in Algorithm A2. To save storage space and

facilitate retrieval, what we actually store is

rfi
(r,k)
i (ψ) = (PD(r)

i [ψ],PD(r−1)
i [ψ], . . . ,PD(r−k)

i [ψ]). (4)

PD(r′)
i [ψ] is the identifier for the potential winrate feature of the predecessor ψ′ of ψ in the r′ phase,

for r′ ≤ r. For algorithm details, please refer to Appendix C.3.

Similar to how the potential winrate feature simplifies the potential outcome feature, the k-recall
winrate feature is a simplified version of the k-recall outcome feature. Moreover, it is evident that
0-RWI (KRWI when k = 0) identifies the same infoset equivalence classes as the PWI. Table
2 presents the number of signal infosets identified by KRWI and KROI, as well as their ratio in
HULHE and HUNL. Notably, while the resolution ratio of PWI to POI can fall below 80%, when
k is set to its maximum value, i.e., r − 1, the ratio of KRWI to KROI can reach nearly 90% at a
minimum, with most of the information retained. Additionally, it is clear that KRWI identifies a
significantly greater number of signal infoset equivalence classes than POI, which refines all signal
abstraction algorithms based on the future considered only approach, such as EHS and the previous
state-of-the-art PaEmd (Fu et al., 2024).

5 K-RECALL WINRATE ABSTRACTION WITH EARTH MOVER’S DISTANCE

Building on the previously introduced winrate isomorphism framework, this section explores the
application of k-recall winrate features to further abstract signal infosets. While outcome-based
features focus solely on categorization, winrate-based features enable differentiation between cat-
egories by providing comparable numerical values, i.e., winrate values and vectors. Intuitively,
the similarity between features corresponds to the similarity of infoset equivalence classes. Con-
sequently, clustering algorithms can be employed to further group the infoset equivalence classes
identified by PWI into appropriately sized abstracted signal infosets, facilitating their application in
solving large-scale game problems.

For the signal infosets ψ, ψ′ of player i at phase r, we can define the distance of their k-recall winrate
feature as

d(rf
(r,k)
i (ψ), rf

(r,k)
i (ψ′)) =

k∑
j=0

wj · Emd(pf (r−j)i (ψ), pf
(r−j)
i (ψ′)). (5)

Among equation 5, Emd is the operator used to calculate the earth mover’s distance (EMD) (Rubner
et al., 2000). The Earth Mover’s Distance (EMD) can be formulated as a linear programming prob-
lem. Given two distributions p = (p1, p2, . . . , pn) and q = (q1, q2, . . . , qm) over two sets of points,
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and a distane matrix D = [dij ]n×m representing the ground distances between each point in p and
q, the goal is to find the optimal flow F = [fij ]n×m that minimizes the total transportation cost

Emd(p, q) = min

n∑
i=1

m∑
j=1

wijdij

subject to the following constraints:
m∑
j=1

fij = pi, ∀i = 1, 2, . . . , n (flow conservation for p)

n∑
i=1

fij = qj , ∀j = 1, 2, . . . ,m (flow conservation for q)

fij ≥ 0, ∀i, j (non-negativity constraint)

where fij represents the amount of flow from pi to qj . Since it requires solving linear program-
ming equations, the computational complexity of the EMD is sensitive to the dimensionality of the
histograms, and approximate algorithms are usually used for larger-scale problems. However, the
dimensionality of winrate-based features is small, with a dimension of 3 in a two-player scenario,
so we attempt to use a fast algorithm for accurately computing the EMD (Bonneel et al., 2011).
w0, . . . , wk are hyperparameters used to control the importance of EMD at each phase r, . . . , r− k,
and the idea behind this design is to transform the similarity between two infoset equivalence classes
into a linear combination of the EMD distances between their k-recall winrate features’ winrates
across different phases. We use the KMeans++ algorithm (Arthur & Vassilvitskii, 2007) to cluster
the signal infoset equivalence classes of KRWI. We named this algorithm KrwEmd.

6 EXPERIMENTAL SETUP

Preflop Flop Turn

LI 100 2260 62020

Recall 0 0 1 0 1 2
KRWI 100 2234 2248 3957 51000 51070
KROI 100 2250 2260 3957 51176 51228

W/O (%) 100.0 99.29 99.47 100.0 99.67 99.69
WD/OD 3/38 3/37 - 3/3 - -

Table 3: The number of signal infoset equivalence
classes identified by LI, KRWI, and KROI in each phase
of HULHE and HUNL, with W/O indicating the ratio of
signal infoset equivalence classes identified by KRWI to
those identified by KROI, and WD/OD indicating the ra-
tio of data used by 0-RWI (PWI) to that used by 0-ROI
(POI).

We conducted experiments on the Nu-
meral211 Hold’em (Fu et al., 2024)
testbed. Numeral211 is a two-player
three-phase Taxes Hold’em-style game
with more complex hand systems than
the Leduc Hold’em (Southey et al.,
2005) and Rhode Island Hold’em (Shi &
Littman, 2001) test environments, mak-
ing it suitable for studying hand ab-
straction issues. Detailed rules are in-
cluded in Appendix B. Table 3 shows
the number of signal infoset equivalence
classes recognized by KRWI and KROI,
along with lossless isomorphism, in Nu-
meral211 Hold’em.

Let α = (α1, α2) be the signal abstraction we would like to assess. We will test the strength of
the signal abstraction by measuring exploitability of the approximate equilibrium derived using the
CSMCCFR algorithm (Zinkevich et al., 2007; Lanctot et al., 2009) in different abstracted signal
infoset scales. We gauge the performance over exploitability. For doing that, we consider both
symmetric and asymmetric abstraction scenarios.

In two-player games with ordered signals, exploitability measures the extent to which a player’s
strategy deviates from a Nash equilibrium. For a given strategy profile σ = (σ1, σ2), the exploitabil-
ity ϵ(σ) is computed as the difference between the game’s expected total payoff at a Nash equilib-
rium σ∗ and the expected total payoff of the strategy being played against its best response. Formally,
this is defined as

ϵ(σ) =
1

2
( max
σ′
1∈Σ1

û1(σ
′
1 ⊕ σ2)− û1(σ∗) + max

σ′
2∈Σ2

û2(σ1 ⊕ σ′
2)− û2(σ∗)),

which is measured in terms of milli blinds (antes) per game (mb/g) in Numeral211.
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In this symmetric abstraction setting, we measure the exploitability of approximate equilibrium
that is yielded when both the players in the game employ signal abstraction in the original game.
However, it may lead to the abstraction pathology (Waugh et al., 2009a). To avoid such problems, we
illustrate the theoretical performance of the signal abstraction under evaluation through asymmetric
abstraction. The approximate equilibrium in the signal abstracted games G̃(α1,ϑ2) and G̃(ϑ1,α2) is
obtained to obtain σ∗,1 and σ∗,2, respectively. Finally, we concatenate the two strategies to get
σ′ = (σ∗,1

1 , σ∗,2
2 ) and check the exploitability of σ′.

Regarding KrwEmd, we set the distance matrix:

D =

[
0 1 2
1 0 1
2 1 0

]

For a two-player game, its meaning is quite clear. Taking the first row as an example: transitioning
from a loss to a loss costs 0, transitioning to a draw costs 1, and transitioning to a win costs 2.

7 EXPERIMENT

Firstly, we assess the performance of KRWI (2-RWI) in comparison to other isomorphism frame-
works—KROI (2-ROI), POI (0-ROI), and lossless isomorphism (LI). Note that POI is the common
refinement of existing future considered only signal abstraction algorithms. Moreover, since previ-
ous works (KROI) could not control the number of abstracted infosets, they were unable to demon-
strate whether incorporating historical information in signal abstraction outperformed abstraction
with the same number of abstracted infosets. To address this, we included KrwEmd with the num-
ber of abstracted signal infosets set to match that of POI for a fair comparison in the isomorphism
frameworks experiment. Note here, that 0-RWI and 0-ROI share the same capability of recogniz-
ing singal infoset equivalence classes in Preflop, while 0-ROI, 1-RWI, and 1-ROI show differences
in identifying these equivalence classes on the Flop (with incremental improvements), but the dif-
ferences are quite small, as shown in Table 3. Thus, we can directly allow clustering of KrwEmd
abstraction use the signal infoset equivalence classes identified by POI in Preflop and Flop, and only
perform clustering in Turn. Here, we design four sets of hyper-parameters (w0, w1, w2) in equa-
tion 5, i.e., exponentially decreasing: (16, 4, 1), linearly decreasing: (7, 5, 3), constant: (1, 1, 1),
and increasing: (3, 5, 7) in the importance of historical information. We only show the result of
best- and worst-performing parameters (to make the figure neat). The full figures appear in the Ap-
pendix E. Figure 2a shows the result of symmetric abstraction, while Figure 2b shows the result
of asymmetric abstraction. We observed that although the exploitability differed between the two
experiments, the relative rankings of each group remained consistent (i.e., if A outperformed B in
symmetric abstraction, it also did so in asymmetric abstraction). This consistent performance across
experiments indicates the absence of abstraction pathology. As expected, overfitting was observed
in the symmetric abstraction scenario, though it was only significant for POI. The performance dif-
ference between 2-RWI and 2-ROI is small, which is related to the fact that the number of signal
infoset equivalence classes identified by 2-RWI and 2-ROI in Numeral211 is similar (W/O gener-
ally exceeds 99%). However, in HULHE and HUNL, where W/O drops to around 90%, we believe
significant differences exist. Most importantly, KrwEmd, outperforms POI—even with the worst
parameter configuration(increasing importance).

Next, we compared KrwEmd’s performance with the currently applied future considered only algo-
rithms, EHS and PaEmd. It should be noted that POI is the common refinement both for Ehs and
PaEmd, meaning that the maximum number of signal infoset equivalence classes they can recog-
nize will not exceed that of POI. We set a compression rate that is 10 times lower than that of POI,
while not performing abstraction for Preflop. The final number of abstracted signal infosets is set
to 100, 225, 396 for Preflop, Flop and Turn. To exclude the influence of random events on perfor-
mance, we generated 3 sets of abstractions for Ehs and PaEmd each. KrwEmd used hyperparameters
(w3,0, w3,1, w3,2;w2,0, w2,1) in Turn and Flop, which are exponentially decreasing (16, 4, 1; 4, 1),
linearly decreasing (7, 5, 3; 5, 3), constant (1, 1, 1; 1, 1), and increasing (3, 5, 7; 5, 7) in the impor-
tance of historical information. Additionally, since PaEmd uses approximate EMD calculations, its
approximate distance is asymmetric, making it difficult for the algorithm to converge. We truncated
after 1000 iterations on a single core, with an average cost of 1427.7s, while Ehs and KrwEmd both

9
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Figure 2: The isomorphism frameworks experi-
ment was trained for 5.5 × 1010 iterations, with
(a) representing the symmetric abstraction set-
ting and (b) representing the asymmetric abstrac-
tion setting. Both instances of KrwEmd outper-
form POI, while the performance of 2-RWI and
2-ROI shows almost no difference in the Nu-
meral211 environment.

Figure 3: Performance comparison of KrwEmd
versus other imperfect recall signal abstraction
algorithms considering only future information,
trained for 3.7× 1010 iterations. All instances of
KrwEmd outperform the benchmark, and com-
parisons between KrwEmd instances indicate
that late-game information is more important
than early-game information.

achieved convergent clustering results, requiring an average of 12.3 and 96.7 iterations, with average
time costs of 11.2s and 341.4s, respectively.

Figure 3a presents the results of the symmetric abstraction setting, while Figure 3b shows the results
for the asymmetric abstraction setting. We observed that both symmetric and asymmetric abstrac-
tions maintained consistent performance, similar to the isomorphism frameworks experiment, with-
out significant abstraction pathologies, despite noticeable overfitting in all abstraction algorithms
under the symmetric setting. The experimental results indicate that KrwEmd significantly outper-
forms both Ehs and PaEmd across all parameter configurations. Furthermore, we validated that the
importance of historical information decreases progressively from the late game to the early game,
although this time the best-performing parameter decreased exponentially rather than linearly, as
seen in the isomorphism frameworks experiment.

By providing a fair comparison, these two experiments validate that considering historical informa-
tion is indeed more effective than the future considered only approach in signal abstraction.

8 CONCLUSION, LIMITATION, AND FUTURE WORK

This research introduces the first imperfect recall signal abstraction algorithm that considers histor-
ical information. This algorithm has the ability to adjust the scale of the abstracted signal infosets.
Based on this, we fully verified that the imperfect recall signal abstraction algorithms considering
historical information is superior to that only considering future information. Imperfect recall ab-
straction should be reexamined to introduce historical information and avoid excessive abstraction.
Krwemd can help existing AIs achieve better performance.

KrwEmd is more competitive than previous algorithms; however, it inevitably introduces significant
computational overhead. This is because KrwEmd uses the KMeans algorithm, whose time com-
plexity scales proportionally with the size of the input data (in our case, the size of the KRWI signal
infoset equivalence classes). In contrast, future considered only algorithms perform KMeans cluster-
ing using PWI as input, which is much smaller in scale. In Appendix D, we present an acceleration
method that reduces the computational cost of calculating the Earth Mover’s Distance in KrwEmd
to a scale comparable to that of future considered only algorithms. However, the complexity of the
clustering algorithm remains dependent on the size of the KRWI.

There are two potential directions for future improvements. The first is to adopt distributed com-
puting and approximation algorithms to reduce computational complexity. The second is to explore
non-KMeans algorithms and leverage machine learning techniques to incorporate historical infor-
mation more effectively. Regardless of the approach, incorporating historical information in hand
abstraction will help build more powerful poker game AI systems.
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A HEADS-UP LIMIT TEXAS HOLD’EM RULES

Rank Hand Prob. (%) Description Example
1 Royal flush 0.000154 The five highest cards (10, J, Q, K,

A) of the same suit. Ties are broken
by the suit.

A♠K♠Q♠J♠T♠

2 Straight flush 0.00139 Five consecutive cards of the same
suit. Ties are broken by the highest
card.

9♠8♠7♠6♠5♠

3 Four of a kind 0.0240 Four cards of the same rank. Ties
are broken by the rank of the four
cards.

9♡9♠9♢9♣K♣

4 Full house 0.1441 Three cards of one rank and two of
another. Ties are broken by the rank
of the three cards, then the two.

Q♢Q♡Q♣9♢9♡

5 Flush 0.1965 Five cards of the same suit. Ties are
broken by the highest card, then the
next highest, and so on.

A♡K♡7♡5♡2♡

6 Straight 0.3925 Five consecutive cards, not all of
the same suit. Ties are broken by
the highest card.

10♢9♡8♣7♢6♡

7 Three of a kind 2.1128 Three cards of the same rank. Ties
are broken by the rank of the three
cards.

K♣K♡K♠J♢8♡

8 Two pair 4.7539 Two cards of one rank, two of an-
other rank. Ties are broken by the
higher pair, then the lower pair.

Q♣Q♡9♠9♣5♢

9 One pair 42.2569 Two cards of the same rank. Ties
are broken by the rank of the pair,
then the next highest card.

J♡J♠A♢7♣4♡

10 High card 50.1177 None of the above. Ties are broken
by the highest card, then the next
highest card, and so on.

A♠K♡8♣7♢2♡

Table 4: Hand ranks of Heads-Up Limit Texas Hold’em

Heads-up limit texas hold’em is played according to the following rules:

1. Blinds: The game begins with two players posting blinds. The small blind is 5 chips, and
the big blind is 10 chips.

2. Hole Cards: Each player is dealt two private hole cards.

3. Deck: A standard 52-card deck is used, consisting of 4 suits (spades, hearts, clubs, dia-
monds), each containing 13 cards (2 through Ace).

4. First Betting Phase (Preflop): Following the deal of the hole cards, a phase of betting
begins with the player to the left of the big blind. The bet size is fixed at 10 chips.

5. Flop: After the first betting phase, three community cards (the Flop) are dealt face up in
the center of the table.

6. Second Betting Phase: A second phase of betting takes place, starting with the player to
the left of the dealer. The bet size remains 10 chips.

7. Turn: After the second betting phase, a fourth community card (the Turn) is dealt face up.

8. Third Betting Phase: A third phase of betting occurs. The bet size increases to 20 chips.

9. River: After the third betting phase, a fifth and final community card (the River) is dealt
face up.

10. Fourth Betting Phase: A final phase of betting takes place. The bet size remains 20 chips.
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11. Showdown: If no player folds by the end of the final betting phase, both players reveal
their hole cards. The player with the highest-ranking hand, using any combination of their
hole cards and the community cards, wins the pot. If the hands are tied, the pot is split
evenly. Table 4 shows the hand rankings.

12. Betting Structure: During each betting phase, players have the option to fold, call, or
raise. In each phase, betting is capped at 4 bets (1 bet and 3 raises).

B NUMERALL211 HOLD’EM RULES

Rank Hand Prob. (%) Description Example
1 Straight flush 0.321 3 of cards with consecutive rank

and same suit. Ties are broken by
highest card.

T♠9♠8♠

2 Three of a kind 1.587 3 of cards with the same rank. Ties
are broken by the card’s rank.

T♠T♡T♣

3 Straight 4.347 3 of cards with consecutive rank.
Ties are broken by the highest card
rank.

T♠9♡8♣

4 Flush 15.799 3 of cards with the same suit. Ties
are broken by the highest card rank,
then second highest card rank, then
third highest card rank.

T♠8♠6♠

5 Pair 34.065 2 of cards with the same rank. Ties
are broken by the rank of the pair,
then by the rank of the third card.

T♠T♡8♣

6 High card 43.881 None of the above. Ties are
broken by comparing the highest
ranked card, then the second high-
est ranked card, and then the third
highest ranked card

T♠8♡6♣

Table 5: Hand ranks of Numeral211 Hold’em

Numeral211 Hold’em is played according to the following rule:

1. Ante: Each player antes 5 chip into the pot at the start of the hand.
2. Hole Card: Both players are dealt one private card face down, known as the hole card.
3. Deck: The deck consists of a standard poker deck, excluding the Jokers, Kings, Queens,

and Jacks, resulting in a total of 40 cards. There are four suits: spades (♠), hearts (♡), clubs
(♣), and diamonds (♢), each containing ten cards numbered 2 through 9, and including the
ten (T) and ace (A).

4. First Betting Phase: Following the deal of hole cards, a phase of betting occurs. Players
can choose to check or bet, with the bet size set at 10 chips.

5. Flop: After the initial betting phase, a single community card, termed the Flop, is revealed
from the deck.

6. Second Betting Phase: Another phase of betting takes place after the Flop, with the bet
size increasing to 20 chips.

7. Turn: After the Second betting phase, another community card, termed the Turn, is re-
vealed from the deck.

8. Third Betting Phase: Another phase of betting takes place after the Turn, with the bet size
still set at 20 chips.

9. Showdown: If neither player folds, a showdown occurs. Players reveal their cards, aiming
to form the best possible hand. The player with the highest-ranked hand wins the pot. In the
case of a tie, the pot is split evenly. Table 5 show the hand ranks of Numeral211 Hold’em.
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10. Betting Options: Throughout the game, players have options to fold, call, or raise. In each
betting phase, the total sum of bets and raises is limited to a maximum of 4, with fixed bet
sizes of 10 chips in the first phase and 20 chips in the last two betting phases.

C ALGORITHM DETAILS

C.1 PSUDOCODE FOR ISOMORPHISM CONSTRUCTOR

Algorithm A1 describes the isomorhpism constructor for isomorphism frameworks (POI, KROI,
PWI, KRWI).

Algorithm A1 Isomorphism Constructor
Require:

Indexi(r, ·) : Ψ(r)
i 7→ N. Signal infoset index function for player i.

1: procedure ISOMORPHISMCONSTRUCTOR(r, Ψ(r)
i , FEATURE(·))

2: Initialize C(r)i vector as empty.
3: Initialize D(r)

i array arbitrarily with length |Ψ(r)
i |.

4: for ψ ∈ Ψ
(r)
i do

5: feature← FEATURE(ψ).
6: Append feature to C(r)i .
7: end for
8: Eliminate duplicates from C(r)i .
9: Sort the elements of C(r)i in lexicographical order.

10: Construct hash table CI(r)i from C(r)i . Store the index lexid and value feature of C(r)i in
CI(r)i as key-value pairs (feature, lexid).

11: for ψ ∈ Ψ
(r)
i do

12: feature← FEATURE(ψ), idx← Indexi(r, ψ).
13: Update D(r)

i [idx] with CI(r)i [feature].
14: end for
15: return (C(r)i ,D(r)

i ).
16: end procedure

C.2 POTENTIAL WINRATE ISOMORPHISM

Algorithm A2 describes the computation process for potential winrate isomorphism. This algorithm
operates in reverse, starting from the game’s final phase Γ.
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Algorithm A3 K-Recall Winrate Isomorphism
Require:

Indexi(r, ·) : Ψ(r)
i 7→ N. Signal infoset index function for player i.

PD(r)
i : N 7→ N. Potential winrate isomorphism map.

1: procedure KRECALLWINRATEISOMORPHISM(Ψi, k)
2: for r = 1 to Γ do
3: k′ ← MIN(r − 1, k).
4: FEATUREFUNC← KRECALLWINRATEFEATURE(·, r, k′).
5: (RC(r,k

′)
i ,RD(r,k′)

i )← ISOMORPHISMCONSTRUCTOR(r, Ψ(r)
i , FEATUREFUNC).

6: end for
7: return (RC(1,0)i ,RD(1,0)

i ), . . . , (RC(k+1,k)
i ,RD(k+1,k)

i ), . . . , (RC(Γ,k)i ,RD(Γ,k)
i ).

8: end procedure
9: procedure KRECALLWINRATESFEATURE(ψ, r, k)

10: initial a empty vector feature.
11: for s = r to r − k do
12: ψ′ ← the predecessor signal infoset of ψ in the s phase for player i.
13: idx← Indexi(s, ψ

′), abs← PD(s)
i [idx].

14: Append feature with abs.
15: end for
16: return feature
17: end procedure

Algorithm A2 Potential Winrate Isomorphism
Require:

Indexi(r, ·) : Ψ(r)
i 7→ N. Signal infoset index function for player i.

1: procedure POTENTIALWINRATEISOMORPHISM(Ψi)
2: for r = Γ to 1 do
3: if r == Γ then
4: FEATUREFUNC← POTENTIALWINRATEFEATURELASTPHASE(·).
5: else
6: FEATUREFUNC← POTENTIALWINRATEFEATURE(·, r, PC(r+1)

i ,PD(r+1)
i ).

7: end if
8: (PC(r)i ,PD(r)

i )← ISOMORPHISMCONSTRUCTOR(r, Θ(r)
i , FEATUREFUNC).

9: end for
10: return (PC(1)i ,PD(1)

i ), . . . , (PC(Γ)i ,PD(Γ)
i ).

11: end procedure
12: procedure POTENTIALWINRATESFEATURELASTPHASE(ψ)
13: return pf (Γ)i (ψ) ▷ compute according Equation equation 1
14: end procedure
15: procedure POTENTIALWINRATEFEATURE(ψ, r, PC(r+1)

i , PD(r+1)
i )

16: featureψ ← zero array with length N + 1

17: for ψ′ ∈ Ψ
(r+1)
i , such that ∃θ′ ∈ ψ′,∃θ ∈ ψ: ς(θ, θ′) > 0 do

18: idx← Indexi(r + 1, ϑ′), abs← PD(r+1)
i [idx], featureψ′ ← PC(r+1)

i [abs].
19: for j = 0 to N do
20: featureψ[j]← featureψ[j] + featureψ′ [j]P (ψ|ψ′) ▷ Equation equation 2
21: end for
22: end for
23: end procedure

C.3 K-RECALL WINRATE ISOMORPHISM

Algorithm A3 constructs the k-recall winrate isomorphism using the k-recall winrate feature. This
process requires the prior construction of the potential winrate isomorphism map PD(r)

i using Al-
gorithm A2.
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D ACCELERATING DISTANCE COMPUTING FOR K-RECALL WINRATE
FEATURES

Algorithm A4 Distance Batch
Require:
RC(r,k)i : N 7→ Nk+1. K-recall winrate feature set.
PC(r)i : N 7→ [0, 1]N+1. Potential winrate feature set.
PD(r)

i : N 7→ N. Potential winrate isomorphism map.
rc = (pc(r), . . . , pc(r−k)). K-recall winrate feature of the input centroid.

Ensure:
Distances of all k-recall winrate feature with centroid.

1: procedure DISTANCEBATCH(w0, . . . , wk, rc, r, k)
Initial phase s empty earth mover’s distance vector EmdDis(s) for s = r, . . . , r − k.
Initial empty output distance vector Dis.

2: for t = 0 to k do
3: for pf in PC(s)i do
4: Append EmdDis(r−t) with Emd(pf, rc[t])
5: end for
6: end for
7: for rfi inRC(r,k)i do
8: dis← 0.
9: for t = 0 to k do

10: dis← dis+ wt ∗ EmdDis(r−t)[PD(r−t)
i [rfi[t]]].

11: end for
12: Append Dis with dis.
13: end for

return Dis.
14: end procedure

KrwEmd is based on the KMeans++ clustering algorithm, where in each iteration, the distance
(equation 5) between every centroid and each k-recall winrate feature must be calculated. The cen-
troids are predefined, but the scale of k-recall winrate features varies depending on the game. For
instance , as shown in Table 2, in the River phase of HULHE, this number reaches an astounding
577366243. Computing the distance involves performing k Earth Mover’s Distance (EMD) calcula-
tions for every centroid-feature pair, which is highly computationally expensive.

It’s important to note that k-recall winrate features are actually combinations of multiple potential
winrate features. To optimize the process, we first calculate the EMD between centroids and po-
tential winrate features in the corresponding phase. We then express the distance between centroids
and k-recall winrate features as a linear combination of these precomputed EMDs.

Algorithm A4 is responsible for computing the distance between a given centroid rc =
(pc(r), . . . , pc(r−k)) and all k-recall winrate features, where rc[t] = pc(t) represents the poten-
tial winrate feature in phase t. Lines 2-5 enumerate all potential winrate features in phase t for
the centroid and compute the corresponding EMD distance. Lines 7-12 indicate that, for a k-recall
winrate feature, it is sufficient to retrieve its corresponding k+1 potential winrate features and, us-
ing precomputed distances, apply the weights w0, . . . , wk to obtain the centroid’s distance to that
k-recall winrate feature. This approach reduces the computational burden of EMD to the scale of
potential winrate features. For example, in the River phase of HULHE and HUNL, this optimization
results in a compression ratio of 169+1028325+1850624+20687

577366243 = 0.0050225, substantially reducing
the computational cost.

However, it must be acknowledged that the overall complexity of the KrwEmd distance calculation
still depends on the scale of the k-recall winrate features, as determined by lines 7-13, which remains
a significant computational expense.
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E SUPPLEMENTARY DATA FOR ISOMORPHISM FRAMEWORKS EXPERIMENT

Figure 4 show all of the result in isomorphism frameworks experiment.
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Figure 4: All data within experiment 1
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