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Abstract

Out-of-distribution (OOD) detection is essential for reliable deployment of deep1

models in real-world scenarios. Advances in pre-trained multimodal foundation2

models have enabled zero-shot OOD detection using only in-distribution (ID)3

labels. Recent methods in this direction expand the label space with auxiliary labels4

to facilitate the discrimination between IDs and OODs. Inspired by the probabilistic5

formulation via Binomial distribution, we further discover the key factors that6

theoretically affect zero-shot OOD detection performance: the cardinality of the7

auxiliary label set, the similarity between labels and samples, and the uncertainty of8

the similarity scores. From the theoretical analysis, existing methods that construct9

fixed, single-modality auxiliary labels surely have limited effectiveness. To address10

these issues, we propose Refer-OOD, a framework that adaptively generates, filters,11

and retrieves multimodal references that explicitly account for these factors. It12

consists of three modules: reference acquisition, feature mapping, and decision13

module. Experiments across multiple benchmarks demonstrate that Refer-OOD14

consistently improves zero-shot OOD detection with both vision-language models15

(VLMs) and multimodal large language models (MLLMs).16

1 Introduction17

The rapid advancement of deep learning has led to significant progress in computer vision tasks18

such as image classification and object detection. However, despite the strong performance on19

in-distribution (ID) data, deep learning models still struggle with out-of-distribution (OOD) samples.20

Model predictions on OOD samples may be incorrect yet overconfident, undermining the reliability21

of these models in real-world applications [1, 2, 3]. Therefore, developing effective OOD detection22

methods is crucial for enhancing both model capability and safety.23

Leveraging powerful feature representation and prior knowledge of pre-trained multimodal foundation24

models, zero-shot OOD detection [4] using only ID labels has garnered increasing attention. Recent25

methods along this direction distinguish OOD samples by expanding the label space with auxiliary26

OOD labels, either sampled from a semantic pool [5, 6] or generated via large language models27

(LLMs) [7, 8], and then classifying input images into ID/OOD groups based on CLIP [9]. Despite28

the great research progress, how to gather theoretically relevant auxiliary information for zero-shot29

OOD detection is still under-explored.30

In this paper, inspired by recent works that model the OOD scores with Binomial distribution and31

infer the mathematical performance metric thereby [5, 6], we further discover that the performance of32

zero-shot OOD detection is closely related to the cardinality of label set, the similarity probabilities33

of ID and OOD samples within the constructed OOD label set, and the uncertainty of the similarity34

result. From this insight, previous methods that construct auxiliary (OOD) labels deviate from known35
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Figure 1: Comparison of two zero-shot OOD detection pipelines. Left: conventional methods mine a
fixed set of OOD labels based on the ID label set from a semantic pool. Right: our proposed approach
dynamically constructs reference sets by generating, filtering, and retrieving multimodal data related
to the test sample at inference time.

ID labels within a single-modality framework are sub-optimal, ultimately resulting in degraded36

performance.37

To address these issues and enhance zero-shot OOD detection, we propose Refer-OOD, which38

adaptively generates, filters, and retrieves multimodal references to increase the activation probability39

of OOD samples while maintaining the activation probability of ID samples. The comparison40

between conventional methods and Refer-OOD is illustrated in Figure 1. The entire detection process41

is implemented through three key modules (detailed in Figure 2): (1) a reference acquisition module42

for obtaining relevant references through generation, filtering and retrieval, (2) a feature mapping43

module that evaluates the relevance of the input image to the constructed references, and (3) a decision44

module that classifies samples as either ID or OOD. Theoretically, Refer-OOD can enhance OOD45

detection capability by dynamically integrating relevant references. Meanwhile, it is less sensitive to46

the reference set size.47

We perform extensive experiments on coarse-grained and fine-grained OOD detection benchmarks48

using both traditional Vision-Language Models (VLMs) and Multimodal Large Language Models49

(MLLMs). The results show that Refer-OOD substantially improves model zero-shot performance50

in challenging OOD detection tasks. Moreover, our method consistently achieves state-of-the-art51

performance across various OOD detection benchmarks.52

Our main contributions can be summarized as follows:53

• We establish a theoretical framework for zero-shot OOD detection, based on which the key54

factors influencing detection performance and limitations in existing methods are identified.55

• We propose Refer-OOD, a novel framework that comprehensively addresses all critical56

factors through adaptive label generation, similarity distribution regulation, and multimodal57

enhancement.58

• We evaluate our method equipped with either VLMs or MLLMs and the results on both59

fine-grained and coarse-grained benchmarks verify the superiority of our method.60

2 Related works61

VLMs for Traditional Out-of-Distribution Detection. Pre-trained vision language models (VLMs)62

[9, 10] often require fine-tuning for effective adaptation to downstream tasks. For OOD detection,63

existing approaches either optimize visual or textual prompts [11, 12, 13, 14, 15, 16] or introduce64

OOD-specific regularization terms [14, 15, 16, 17, 18, 19]. However, these methods are computation-65

ally expensive and may undermine the generalization ability of pre-trained VLMs. Fine-tuning on ID66

data often leads to overfitting on seen categories, thereby reducing the model’s ability to generalize to67

unseen ones and degrading OOD detection performance.68

Zero-shot Out-of-Distribution Detection. Preserving VLMs’ generalization ability while avoiding69

fine-tuning drawbacks, zero-shot OOD detection has emerged as a promising alternative. Leveraging70

the powerful representational capacity of pre-trained models, methods of this direction [20, 21, 22,71
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23, 24] bypass additional training by designing OOD detection scores to optimize the separability72

between IDs and OODs. Some approaches [25, 26, 27, 28] operate purely on the classification73

outputs of ID labels, while others [4, 6, 7, 8, 29, 30] introduce auxiliary OOD labels to recast the74

problem as a binary classification task distinguishing ID from OOD samples. However, constructing75

an appropriate OOD label set remains a non-trivial and open challenge.76

Retrieval-Augmented Generation Methods. Retrieval-Augmented Generation (RAG) [31] com-77

bines generation with external knowledge retrieval to improve factual accuracy across various78

language tasks [32, 33, 34]. Recent works[35, 36, 37] extend RAG to multimodal settings by incorpo-79

rating visual or auditory information, enabling richer context for generation. In this paper, we show80

that RAG can also enhance OOD detection by supporting retrieval-based reasoning over multimodal81

references.82

3 Problem Analysis83

3.1 Preliminaries84

Zero-shot OOD detection. Zero-shot OOD detection aims to identify whether a test sample is85

in-distribution (ID) or out-of-distribution (OOD), using only ID class labels. Formally, given an ID86

label set Y in of c classes, and a test image from either ID or OOD domains, i.e., x ∈ X in ∪ X out with87

X in ∩ X out = ∅, the goal is to learn a detector h(x;Y in) : x→ {ID,OOD}.88

OOD detection with auxiliary labels. To facilitate the identification of OOD samples, recent works89

propose to augment the label space with auxiliary OOD labels, either by sampling from a semantic90

pool [5, 6] or generating labels via LLMs [7]. Let Yout = {yout
1 , . . . , yout

m } denote the constructed91

OOD label set of size m. For a given image x ∈ X in ∪ X out, its semantic similarity with an auxiliary92

label yout
i ∈ Yout, can be computed as si = sim(x, yout

i ) ∈ [0, 1]. By applying a threshold ψ, this93

score can be converted into a binary label bi = 1si≥ψ, which indicates the input is positive (OOD94

sample) with probability pi = P (si ≥ ψ|yout
i , x) according to the label yout

i .95

Probabilistic approximation. [5, 6] model the binary score bi as a random variable following96

Bernoulli distribution with probability pi. For x ∈ X in, the aggregated binary score Sin(x) =97 ∑m
i=1 b

in
i is then a Poisson binomial variable with probabilities {pin

i }mi=1. Sout can be defined similarly98

with probabilities {pout
i }mi=1. According to the binomial approximation rules [38], as m increases, Sin99

and Sout can be approximated as normal distributions:100

Sin ∼ N (mpin,mpin(1− pin)−mvin), Sout ∼ N (mpout,mpout(1− pout)−mvout), (1)

where pin = Ei[pin
i ], v

in = Vari[pin
i ], p

out = Ei[pout
i ], vout = Vari[pout

i ]. This leads to a closed-form101

approximation of the false positive rate (FPR) at a target true positive rate (TPR) λ ∈ (0, 1]:102

FPRλ =
1

2
+

1

2
· erf

(√
pin(1− pin)− vin

pout(1− pout)− vout erf−1(2λ− 1) +

√
m(pin − pout)√

2pout(1− pout)− 2vout

)
, (2)

where erf(x) = 2√
π

∫ x
0
e−t

2

dt and a lower FPRλ indicates better detection performance.103

3.2 Theoretical Analysis for Performance Enhancement104

How can we minimize the FPR?105

According to Equation (2), FPRλ is primarily influenced by four factors: pin, pout, m, and the106

similarity function sim(·). For simplicity, we fix the factor λ = 0.5 in our analysis.107

Effect of pin
i , p

out
i ,m on FPR. Let ζ denoting the formula input to function erf(·) in Equation (2),108

the partial derivatives of FPR0.5 with respect to pin, pout and m are:109 
∂FPR0.5

∂pin =
√

m
π · e−ζ2 · 1

(2pout(1−pout)−2vout)
1
2
≥ 0,

∂FPR0.5

∂pout = −
√

m
π · e−ζ2 · p

out+pin−2pinpout−2vout

(2pout(1−pout)−2vout)
3
2
≤ 0,

∂FPR0.5

∂m = 1
2
√
πm

· e−ζ2 · pin−pout√
2pout(1−pout)−2vout

≤ 0,when pin ≤ pout.

(3)
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These results indicate that FPR0.5 generally increases with pin and decreases with pout in most110

cases [5]. When pin ≤ pout, increasing m further reduces FPR0.5. Therefore, an ideal Yout should111

have sufficiently large size m, and the labels yout
i ∈ Yout (i = 1, . . . ,m) should make ID samples112

yield low pin
i while OOD samples yield high pout

i . Moreover, the relationship among m, pin and pout113

is more interdependent in practice. As m increases, some yout
i ∈ Yout may be irrelevant to most114

x ∈ X out, causing pout to drop and eventually close to pin.115

Existing methods typically construct a fixed large-scale auxiliary label set Yout by sampling or116

generating labels with the minimal similarity to Y in [5, 6]. The constructed Yout may suppress pin for117

ID inputs. However, for OOD inputs, this does not necessarily guarantee that the expectation pout118

is high enough. In practice, since Yout is finite and fixed, there always ∃x ∈ X out such that ∀yout
i ∈119

Yout, sim(x, yout
i ) ≪ 1. To address the dependence between m, pin and pout, [5] proposes to filter120

uncommon or synonymous words from Yout to increase the possibility of Yout being activated by121

X out. However, such constructing strategy still faces the inherent limitation of uncontrollable pout
i122

due to unknown X out. To address above issues, we propose to (1) construct Yout adaptively by123

generating relevant labels conditioned on the test input, rather than using a fixed set in contrast124

to Y in.125

Effect of sim(·) on FPR. Prior works [5, 6, 7, 25] typically compute similarity between a test image126

and a single reference label, which inevitably introduces high variance and limits the reliability of127

similarity-based decisions. We consider a more general setting where each class yi ∈ {Y in,Yout} is128

associated with ni diverse references {rik}
ni

k=1 (e.g., diverse text or images). The average similarity129

score is defined as s̄i = 1
ni

∑ni

k=1 sik = 1
ni

∑ni

k=1 sim(x, rik), where {sik}
ni

k=1 are assumed i.i.d.130

with mean µin
i (or µout

i ) and variance σ2
i . By the central limit theorem, s̄in

i ∼ N (µin
i , σ

2
i /ni), and131

similarly for s̄out
i . Then, the probability pi for ID or OOD inputs can be approximated by:132

pin
i = 1− erf

(
ψ − µin

i√
σ2
i /ni

)
, pout

i = 1− erf

(
ψ − µout

i√
σ2
i /ni

)
. (4)

Reducing the variance to σ2
i /ni leads to sharper similarity distributions. When µout

i > ψ > µin
i ,133

increasing ni raises pout
i while suppressing pin

i , thereby enhancing separability and reducing FPR. In134

contrast, existing works using a single reference increase uncertainty and yield less discriminative135

similarity estimates. Therefore, we propose to (2) use multiple diverse references per class rather136

than relying on a single reference label.137

4 Method138

How can we construct a valid reference set?139

Adaptive generation and filtering. According to theoretical analysis (1), we propose an adaptive140

reference generation strategy that dynamically constructs candidate labels conditioned on test samples,141

controllably improving the alignment with test data distribution and increasing pout. To stabilize pin,142

a filtering mechanism is performed to discard labels overly similar to known ID classes.143

Multimodal retrieval. According to theoretical analysis (2), to overcome the limitation of a single144

reference label, we introduce a modality enhancement strategy that retrieves additional image145

representations via an online browser API. This increases modality diversity and improves OOD146

detection accuracy, especially for fine-grained samples.147

Overall method. We propose Refer-OOD, a unified OOD detection framework based on adaptive148

generation and modality enhancement. Our method comprises three modules (Fig. 2): (1) the149

Reference Acquisition Module, which obtains multimodal reference samples; (2) the Feature Mapping150

Module, which evaluates the relevance of x to Y ; (3) the Decision Module, which determines whether151

the input x belongs to ID or OOD.152

4.1 Reference Acquisition Module153

The reference acquisition module consists of three sequential steps: generation, filtering, and retrieval,154

aiming to construct high-quality textural and visual references for zero-shot OOD detection.155
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Figure 2: Detailed framework of Refer-OOD method. Refer-OOD comprises three modules: (1)
Reference Acquisition Module, which obtains textual and visual references; (2) Feature Mapping
Module, which evaluates the relevance of x to Y (OOD score for VLM-based and textual description
for MLLM-based method); (3) Decision Module, which determines whether the input x belongs to
ID or OOD.

Generation Phase. In the generation phase, we leverage a Multimodal Large Language Model156

(MLLM) M to produce textual labels that are semantically aligned with the input image x. With a157

prompt pper, M generates a set of candidate OOD labels Ỹout:158

Ỹout = TOPY(pM(Y|x, pper),m), (5)

where pM(Y|x, pper) represents the probability distribution of MLLM generated labels Y given x159

and prompt pper. Unlike prior methods that rely on fixed or predefined OOD label set, our approach160

generates sample-specific labels on-the-fly. This adaptive generation explicitly increases the activation161

probability of OOD samples on pout, as theoretically analyzed in Section 3.2.162

Filtering Phase. To enhance semantic distinctiveness and avoid overlap between ID and OOD labels,163

we apply a filtering step that removes candidate OOD labels overly similar to known ID labels Y in.164

This results in a refined OOD label set:165

Yout = {yout
i ∈ Ỹout | max

yin
j ∈Y in

sim(yout
i , yin

j ) < τ}, (6)

where τ denotes a predefined threshold. This filtering ensures a low similarity between ID and OOD166

classes, thereby stabilizing pin.167

Retrieval Phase. Given the final label sets Yout and Y in, we retrieve relevant visual references from168

external sources such as online search engines. The retrieval process returns the top-nI
i images most169

semantically relevant to each label set:170

Iout = TOPI(pretr(I|Yout), nI
i), I in = TOPI(pretr(I|Y in), nI

i), (7)

where pretr(I | Y) denotes the probability of retrieving image I given label set Y .171

Optimization Design. The reference acquisition module aims to construct reference sets that are172

relevant, informative and discriminative. In the generation phase, we optimize the prompt forms to173

guide the MLLM toward producing the highest semantically aligned labels. In the retrieval phase, we174

leverage the inherent ranking mechanism of the search engine to obtain top-ranked image references.175

This design makes the generation probability pM and the retrieval probability pretr feasible and176

optimal.177

4.2 Feature Mapping Module178

The Feature Mapping Module aims to assess the relevance of the input sample relative to the179

constructed references with Vision-Language Model (VLM) or Multi-Modal Large Model (MLLM).180
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With similar underlying targets, these two models are different in output formats: VLM quantifies the181

probability differences as OOD scores, whereas MLLM generates textual descriptions that emphasize182

these differences.183

VLM-based Mapping Module. We define a unified similarity function between a test sample x and184

each (textual or visual) reference set {rik}
ni

k=1 corresponding to class yi ∈ Y in ∪ Yout, where ni = 1185

for textual reference and ni = nI
i for visual references, as follows:186

ai(x) =
|⟨I(x),Ei[E(rik)]⟩|
|I(x)| · |Ei[E(rik)]|

, (8)

where E(·) denotes either textual encoder T (·) or visual encoder I(·) depending on the modality of187

rik . The OOD score for each modality follows the general form:188

A(x) = max
v∈{1,...,c}

eav(x)∑m+c
j=1 eaj(x)

− β max
v∈{c+1,...,m+c}

eav(x)∑c+m
j=1 eaj(x)

, (9)

where β is a balancing factor. The score for comparing the test image with textual references is189

denoted as AI2T, and with visual references is AI2I. Finally, the overall multimodal detection score is190

fused with weight coefficient α:191

AVLM(x) = αAI2I(x) + (1− α)AI2T(x). (10)

MLLM-based Mapping Module. The MLLM generates reasoning descriptions based on textual192

reference (Y in, Yout) or visual references (I in, Iout), prompted by prea, expressed as:193

AMLLM(x) =

{
AT

MLLM(x) = M(prea||x||Yout||Y in),

AI
MLLM(x) = M(prea||x||Iout||I in),

(11)

where AT
MLLM and AI

MLLM are the reasoning texts generated by comparing the input sample x with194

the textual and visual references, respectively.195

4.3 Decision Module196

The Decision Module is responsible for determining whether a test sample x belongs to ID or OOD197

category based on the obtained mapping results.198

VLM-based Decision Module. For VLM model, the decision process relies on the computed199

detection score and a predefined threshold λ:200

hVLM(x) =

{
ID, AVLM ≥ λ

OOD, AVLM < λ.
(12)

where λ is typically set such that 95% of in-distribution (ID) data is correctly classified as ID.201

MLLM-based Decision Module. For MLLM model, the decision process is directly based on the202

model-generated text AMLLM, prompted by pans for final answer:203

hMLLM(x) = M(pans||x||AMLLM), (13)

which ensures that the model makes the final textual judgment (ID/OOD) based on the input sample204

x and the relevance of corresponding references.205

5 Experimental Analysis206

5.1 Experimental Settings207

Datasets. We classify OOD detection into coarse-grained and fine-grained tasks. Coarse-grained208

OOD detection follows the traditional setup [39], where ID and OOD belong to distinct datasets.209

Common ID datasets include CUB-200 [40], Stanford-Cars [41], Food-101 [42], Oxford-Pet [43],210

and ImageNet-1K [44], and OOD datasets include iNaturalist [45], SUN [46], Places [47], and211

Texture [48]. Fine-grained OOD detection is more challenging, with ID and OOD samples from the212

same dataset but differing at the subcategory level. Datasets are constructed by splitting categories213
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Table 1: Performance comparison for VLM-based methods on coarse-grained datasets.

Method
iNaturalist SUN Places Texture Average

FPR95↓ AUROC FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
MCM 3.27 99.31 1.68 99.64 2.63 99.42 2.91 99.30 2.63 99.41
CLIPN 2.20 99.46 0.88 99.78 1.83 99.59 3.11 99.22 2.00 99.51
EOE 0.03 99.99 0.02 100.0 0.21 99.94 0.66 99.76 0.23 99.92

NegLabel 0.33 99.91 0.74 99.78 1.98 99.46 1.82 99.51 1.21 99.66
CSP 0.25 99.93 0.28 99.92 1.67 99.55 0.98 99.73 0.79 99.78

Refer-OOD-VLM 0.01 100.0 0.01 100.0 0.12 99.97 0.06 99.99 0.03 99.99

Table 2: Performance comparison for VLM-based methods on fine-grained datasets.

Method
CUB Stanford-Cars Food Oxford-Pet Average

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
MCM 83.72 67.50 84.02 68.76 44.10 91.37 64.03 84.88 68.97 78.20
CLIPN 83.89 67.36 82.92 69.37 42.46 91.28 68.88 85.03 69.54 78.39
EOE 74.13 73.18 77.60 70.98 39.66 91.54 55.17 90.30 61.64 81.50

NegLabel 81.23 71.92 79.62 70.18 42.85 90.88 64.56 87.45 67.06 80.10
CSP 80.48 69.88 78.05 70.58 52.00 89.54 62.97 89.25 68.37 79.81

Refer-OOD-VLM 60.64 80.88 58.74 75.45 34.40 91.50 38.19 92.28 47.99 85.02

within CUB-200, Oxford-Pet, Food-101, and Stanford-Cars. Note that OOD categories are disjoint214

from ID categories.215

Experimental Setup. We use Bing image search and a Chrome retrieval plugin for retrieval. The216

Qwen-vl model [49] and the CLIP [9] with ViT-B/16 serves as the MLLM and VLM backbone,217

respectively. More comparison results are shown in the Appendix.218

Evaluation Metrics. For VLM-based models, we report: (1) FPR95 (false positive rate at 95% TPR)219

and (2) AUROC (area under the ROC curve). For MLLM-based models, we evaluate: (1) F1 score220

(harmonic mean of precision and recall) and (2) ACC (accuracy of ID label predictions).221

Comparative Methods. We compare two versions of our method (named Refer-OOD-VLM and222

Refer-OOD-MLLM according to different feature mapping and decision modules) with state-of-the-223

art zero-shot OOD detection methods. For Refer-OOD-VLM, we include MCM [25], CLIPN [19],224

NegLabel [6], CSP [5] and EOE [7] as comparative methods. Since MLLM-based OOD detection is225

unexplored, we define a straightforward baseline where the model is provided with the input data and226

the corresponding ID labels, and asked to determine whether the sample belongs to ID.227

5.2 Main results228

Results of VLM-based methods. Table 1 and Table 2 present the performance of the VLM-based229

methods in coarse-grained and fine-grained OOD detection tasks. In the coarse-grained task, VLM-230

based methods achieve strong performance across all datasets, with an average AUC above 99%,231

benefiting from CLIP’s ability to differentiate datasets with large semantic gaps. Refer-OOD-VLM232

outperforms all other methods on these datasets. In the fine-grained task, where ID and OOD samples233

are more semantically similar, all methods face increased difficulty. Nevertheless, Refer-OOD-VLM234

achieves more superior performance, improving FPR95 by an average of 13.65% over EOE [7].235

Results of MLLM-based methods. Table 3 and Table 4 evaluate MLLM-based models in coarse-236

grained and fine-grained OOD detection tasks. “Vanilla” refers to the constructed baseline. In the237

coarse-grained task, both MLLM-based methods excel at distinguishing OOD samples with large238

semantic gaps, achieving near-perfect accuracy. Refer-OOD-MLLM further enhances performance.239

In the fine-grained task, Refer-OOD-MLLM outperforms the vanilla approach across most datasets240

and metrics, especially showing great precision gains on Stanford-Cars and Food datasets.241

5.3 Component Analysis242

Analysis for Refer-OOD-VLM. As shown in Table 5, both textual and visual references have a243

positive influence on the model’s performance. The dynamic label generation strategy in Refer-OOD-244

VLM outperforms the fixed label approach used in the EOE method, with an AUROC increase of245
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Table 3: Performance comparison for MLLM-based methods on coarse-grained datasets.

Method
iNaturalist SUN Places Texture Average

Precision↑ F1↑ Precision↑ F1↑ Precision↑ F1↑ Precision↑ F1↑ Recall↑ Precision↑ F1↑
Vanilla 100.0 83.76 99.67 83.66 99.05 83.45 99.06 83.56 72.49 99.44 83.60

Refer-OOD-MLLM 100.0 90.38 100.0 90.38 99.24 90.06 99.32 90.09 82.75 99.63 90.16

Table 4: Performance comparison for MLLM-based methods on fine-grained datasets.
Method

CUB Stanford-Cars Food Oxford-Pet Average

Recall↑ Precision↑ F1↑ Recall↑ Precision↑ F1↑ Recall↑ Precision↑ F1↑ Recall↑ Precision↑ F1↑ Recall↑ Precision↑ F1↑
Vanilla 82.35 60.43 69.70 86.17 59.12 70.12 91.83 64.74 75.94 80.64 70.42 75.18 85.24 63.67 72.73

Refer-OOD-MLLM 85.29 63.50 72.80 76.59 79.12 77.83 79.59 83.87 81.67 85.48 92.98 89.07 81.73 79.86 80.34

11.14% on the CUB dataset. All modules effectively complement each other, boosting the average246

AUROC by 18.14% compared to the baseline.247

Analysis for Refer-OOD-MLLM. Table 6 presents the component effectiveness analysis for Refer-248

OOD-MLLM, reporting detection (F1) and prediction (ACC) performance. Again, both the textual249

and visual references enhance model performance.250

5.4 Case Study251

Case study for Refer-OOD-VLM. Figures 3a to 3d show the class probability scores. For the ID252

sample American bulldog, Refer-OOD-VLM achieves high confidence on the correct label while253

effectively suppressing the logits of OOD labels. For the OOD sample Beagle, EOE misclassifies it254

as a similar ID category due to the absence of appropriate OOD labels. In contrast, Refer-OOD-VLM255

assigns high confidence to a semantically correct OOD label, reducing confusion and improving256

detection accuracy.

(a) EOE(American bulldog) (b) EOE(Beagle)

(c) Refer-OOD-VLM
(American bulldog)

(d) Refer-OOD-VLM
(Beagle)

(e) Refer-OOD-MLLM
(American bulldog)

Figure 3: Case study on Refer-OOD detection. (a)-(d) shows the class probability scores for VLM-
based methods, and (e) shows Refer-OOD-MLLM result.

257

Case study for Refer-OOD-MLLM. Figure 3e illustrates one type of error made by the vanilla258

MLLM-based method. More illustrations in the Appendix include: (1) misclassifying ID samples259

as OOD, (2) predicting incorrect labels for ID samples, and (3) misclassifying OOD samples as260

ID. Refer-OOD-MLLM addresses these issues by incorporating valid multi-modality sets. For261

ID misdetection, Refer-OOD-MLLM enhances semantic understanding for accurate identification.262

For ID misclassification, it refines predictions using ID and OOD labels. For OOD misdetection,263

Refer-OOD-MLLM generates precise OOD labels to correctly classify OOD samples.264
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Table 5: Effectiveness of each module in Refer-OOD-VLM.
Baseline Fixed Textual Dynamic Textual Visual

CUB Stanford-Cars Food Oxford-Pet
FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

✓ 80.39 67.34 63.83 72.07 55.12 91.79 83.58 82.93
✓ ✓ 73.53 68.16 64.89 76.02 34.35 92.23 70.15 84.06
✓ ✓ 67.65 71.88 62.77 77.24 50.06 86.94 47.76 92.27
✓ ✓ 49.02 83.02 53.19 75.08 39.44 92.22 34.33 92.37
✓ ✓ ✓ 65.69 74.41 60.64 79.62 49.18 87.66 41.79 91.91
✓ ✓ ✓ 52.94 85.48 51.06 77.27 32.83 92.31 29.85 93.81

Table 6: Effectiveness of each module in Refer-OOD-MLLM.
Baseline Textual Visual

CUB Standford-Cars Food Oxford-Pet
F1↑ ACC↑ F1↑ ACC↑ F1↑ ACC↑ F1↑ ACC↑

✓ 69.70 49.01 70.12 68.08 75.94 82.65 75.18 77.41
✓ ✓ 71.65 57.84 75.93 71.27 86.17 76.53 88.13 82.25
✓ ✓ 72.80 55.88 77.83 75.53 81.67 70.40 89.07 85.48

5.5 Ablations265

We further conduct ablation studies on the parameters, score functions, and foundation models. Please266

refer to the Appendix for all supporting figures and tables.267

Effect of nI
i. Figure 4 examines visual retrieval quantity nI

i. Increasing nI
i improves model perfor-268

mance by reducing similarity variance and enhancing separability.269

Effect ofm. Figure 5 presents the performance of different methods as the number of generated labels270

increases. In contrast, Refer-OOD consistently achieves stronger results, even with fewer generated271

labels. Moreover, while other methods are sensitive to the value of m, Refer-OOD demonstrates272

higher robustness.273

Effect of β&α. Figure 6 evaluates β on fine-grained datasets. Performance improves as β increases,274

with optimal results near β = 1, balancing ID and OOD labels’ contributions. Figure 7 explores α,275

which balances textual labels and image features in Equation (10). Introducing visual modality with276

well-balanced α outperforms single-modality approaches.277

Effect of τ . Table 11 investigates the effect of the filtering threshold τ . The optimal τ typically278

correlates with the semantic gap between the ID and OOD datasets.279

On score functions. Table 12 compares Refer-OOD-VLM’s performance using standard scoring280

functions, including MSP [50], Energy [51], and MaxLogits [52]. Table 13 compares scoring function281

variants in Eq. 9, using max vs. sum over class logits.282

On VLMs, MLLMs and APIs. We conduct comparative experiments across different VLMs,283

MLLMs and retrieval APIs. Table 14 evaluates VLM backbones including CLIP [9], ALIGN [53],284

and AltCLIP [54], showing that Refer-OOD consistently outperforms the comparative model across285

all architectures. Table 15 and Table 16 demonstrate that the results with GPT-4o are consistent with286

those with Qwen. Table 17 shows Refer-OOD’s performance across different online retrieval APIs287

including Baidu and Google, which aligns with the results using Bing.288

6 Conclusion289

In this paper, we present a theoretical analysis on the zero-shot OOD detection paradigm, identifying290

key factors that influence detection performance, including label set size, similarity distributions,291

and metric uncertainty. Based on these insights, we propose Refer-OOD, a novel framework that292

systematically optimizes these factors through multimodal relevant references integration. Extensive293

experiments on both fine-grained and coarse-grained benchmarks validate the effectiveness of Refer-294

OOD, showing consistent improvements over prior methods.295

Broader Impacts and Limitation. Our work promotes the reliable deployment of deep models296

in wide real-world scenarios, specifically on zero-shot OOD detection with pre-trained multimodal297

models. While our method outperforms existing approaches and maintains stable performance even298

with a reduced number of references, it incurs extra inference cost and possible security risks due to299

reference generation and retrieval.300
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NeurIPS Paper Checklist463

The checklist is designed to encourage best practices for responsible machine learning research,464

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove465

the checklist: The papers not including the checklist will be desk rejected. The checklist should466

follow the references and follow the (optional) supplemental material. The checklist does NOT count467

towards the page limit.468

Please read the checklist guidelines carefully for information on how to answer these questions. For469

each question in the checklist:470

• You should answer [Yes] , [No] , or [NA] .471

• [NA] means either that the question is Not Applicable for that particular paper or the472

relevant information is Not Available.473

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).474

The checklist answers are an integral part of your paper submission. They are visible to the475

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it476

(after eventual revisions) with the final version of your paper, and its final version will be published477

with the paper.478

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.479

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a480

proper justification is given (e.g., "error bars are not reported because it would be too computationally481

expensive" or "we were unable to find the license for the dataset we used"). In general, answering482

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we483

acknowledge that the true answer is often more nuanced, so please just use your best judgment and484

write a justification to elaborate. All supporting evidence can appear either in the main paper or the485

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification486

please point to the section(s) where related material for the question can be found.487

IMPORTANT, please:488

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",489

• Keep the checklist subsection headings, questions/answers and guidelines below.490

• Do not modify the questions and only use the provided macros for your answers.491

1. Claims492

Question: Do the main claims made in the abstract and introduction accurately reflect the493

paper’s contributions and scope?494

Answer:[Yes]495

Justification: A summary of the paper’s contribution is provided in conclusion.496

Guidelines:497

• The answer NA means that the abstract and introduction do not include the claims498

made in the paper.499

• The abstract and/or introduction should clearly state the claims made, including the500

contributions made in the paper and important assumptions and limitations. A No or501

NA answer to this question will not be perceived well by the reviewers.502

• The claims made should match theoretical and experimental results, and reflect how503

much the results can be expected to generalize to other settings.504

• It is fine to include aspirational goals as motivation as long as it is clear that these goals505

are not attained by the paper.506

2. Limitations507

Question: Does the paper discuss the limitations of the work performed by the authors?508

Answer: [Yes]509

Justification: See Section 6.510
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Guidelines:511

• The answer NA means that the paper has no limitation while the answer No means that512

the paper has limitations, but those are not discussed in the paper.513

• The authors are encouraged to create a separate "Limitations" section in their paper.514

• The paper should point out any strong assumptions and how robust the results are to515

violations of these assumptions (e.g., independence assumptions, noiseless settings,516

model well-specification, asymptotic approximations only holding locally). The authors517

should reflect on how these assumptions might be violated in practice and what the518

implications would be.519

• The authors should reflect on the scope of the claims made, e.g., if the approach was520

only tested on a few datasets or with a few runs. In general, empirical results often521

depend on implicit assumptions, which should be articulated.522

• The authors should reflect on the factors that influence the performance of the approach.523

For example, a facial recognition algorithm may perform poorly when image resolution524

is low or images are taken in low lighting. Or a speech-to-text system might not be525

used reliably to provide closed captions for online lectures because it fails to handle526

technical jargon.527

• The authors should discuss the computational efficiency of the proposed algorithms528

and how they scale with dataset size.529

• If applicable, the authors should discuss possible limitations of their approach to530

address problems of privacy and fairness.531

• While the authors might fear that complete honesty about limitations might be used by532

reviewers as grounds for rejection, a worse outcome might be that reviewers discover533

limitations that aren’t acknowledged in the paper. The authors should use their best534

judgment and recognize that individual actions in favor of transparency play an impor-535

tant role in developing norms that preserve the integrity of the community. Reviewers536

will be specifically instructed to not penalize honesty concerning limitations.537

3. Theory assumptions and proofs538

Question: For each theoretical result, does the paper provide the full set of assumptions and539

a complete (and correct) proof?540

Answer: [Yes]541

Justification: See Section 3.542

Guidelines:543

• The answer NA means that the paper does not include theoretical results.544

• All the theorems, formulas, and proofs in the paper should be numbered and cross-545

referenced.546

• All assumptions should be clearly stated or referenced in the statement of any theorems.547

• The proofs can either appear in the main paper or the supplemental material, but if548

they appear in the supplemental material, the authors are encouraged to provide a short549

proof sketch to provide intuition.550

• Inversely, any informal proof provided in the core of the paper should be complemented551

by formal proofs provided in appendix or supplemental material.552

• Theorems and Lemmas that the proof relies upon should be properly referenced.553

4. Experimental result reproducibility554

Question: Does the paper fully disclose all the information needed to reproduce the main ex-555

perimental results of the paper to the extent that it affects the main claims and/or conclusions556

of the paper (regardless of whether the code and data are provided or not)?557

Answer: [Yes]558

Justification: See Section 5 and supplemental material for implementation details.559

Guidelines:560

• The answer NA means that the paper does not include experiments.561
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• If the paper includes experiments, a No answer to this question will not be perceived562

well by the reviewers: Making the paper reproducible is important, regardless of563

whether the code and data are provided or not.564

• If the contribution is a dataset and/or model, the authors should describe the steps taken565

to make their results reproducible or verifiable.566

• Depending on the contribution, reproducibility can be accomplished in various ways.567

For example, if the contribution is a novel architecture, describing the architecture fully568

might suffice, or if the contribution is a specific model and empirical evaluation, it may569

be necessary to either make it possible for others to replicate the model with the same570

dataset, or provide access to the model. In general. releasing code and data is often571

one good way to accomplish this, but reproducibility can also be provided via detailed572

instructions for how to replicate the results, access to a hosted model (e.g., in the case573

of a large language model), releasing of a model checkpoint, or other means that are574

appropriate to the research performed.575

• While NeurIPS does not require releasing code, the conference does require all submis-576

sions to provide some reasonable avenue for reproducibility, which may depend on the577

nature of the contribution. For example578

(a) If the contribution is primarily a new algorithm, the paper should make it clear how579

to reproduce that algorithm.580

(b) If the contribution is primarily a new model architecture, the paper should describe581

the architecture clearly and fully.582

(c) If the contribution is a new model (e.g., a large language model), then there should583

either be a way to access this model for reproducing the results or a way to reproduce584

the model (e.g., with an open-source dataset or instructions for how to construct585

the dataset).586

(d) We recognize that reproducibility may be tricky in some cases, in which case587

authors are welcome to describe the particular way they provide for reproducibility.588

In the case of closed-source models, it may be that access to the model is limited in589

some way (e.g., to registered users), but it should be possible for other researchers590

to have some path to reproducing or verifying the results.591

5. Open access to data and code592

Question: Does the paper provide open access to the data and code, with sufficient instruc-593

tions to faithfully reproduce the main experimental results, as described in supplemental594

material?595

Answer: [No]596

Justification: We include training and implementation details, but not code. Our code will597

be available if the paper is accepted.598

Guidelines:599

• The answer NA means that paper does not include experiments requiring code.600

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/601

public/guides/CodeSubmissionPolicy) for more details.602

• While we encourage the release of code and data, we understand that this might not be603

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not604

including code, unless this is central to the contribution (e.g., for a new open-source605

benchmark).606

• The instructions should contain the exact command and environment needed to run to607

reproduce the results. See the NeurIPS code and data submission guidelines (https:608

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.609

• The authors should provide instructions on data access and preparation, including how610

to access the raw data, preprocessed data, intermediate data, and generated data, etc.611

• The authors should provide scripts to reproduce all experimental results for the new612

proposed method and baselines. If only a subset of experiments are reproducible, they613

should state which ones are omitted from the script and why.614

• At submission time, to preserve anonymity, the authors should release anonymized615

versions (if applicable).616
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• Providing as much information as possible in supplemental material (appended to the617

paper) is recommended, but including URLs to data and code is permitted.618

6. Experimental setting/details619

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-620

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the621

results?622

Answer: [Yes]623

Justification: See Section 5 and supplemental material for implementation details.624

Guidelines:625

• The answer NA means that the paper does not include experiments.626

• The experimental setting should be presented in the core of the paper to a level of detail627

that is necessary to appreciate the results and make sense of them.628

• The full details can be provided either with the code, in appendix, or as supplemental629

material.630

7. Experiment statistical significance631

Question: Does the paper report error bars suitably and correctly defined or other appropriate632

information about the statistical significance of the experiments?633

Answer: [NA]634

Justification: Not Applicable.635

Guidelines:636

• The answer NA means that the paper does not include experiments.637

• The authors should answer "Yes" if the results are accompanied by error bars, confi-638

dence intervals, or statistical significance tests, at least for the experiments that support639

the main claims of the paper.640

• The factors of variability that the error bars are capturing should be clearly stated (for641

example, train/test split, initialization, random drawing of some parameter, or overall642

run with given experimental conditions).643

• The method for calculating the error bars should be explained (closed form formula,644

call to a library function, bootstrap, etc.)645

• The assumptions made should be given (e.g., Normally distributed errors).646

• It should be clear whether the error bar is the standard deviation or the standard error647

of the mean.648

• It is OK to report 1-sigma error bars, but one should state it. The authors should649

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis650

of Normality of errors is not verified.651

• For asymmetric distributions, the authors should be careful not to show in tables or652

figures symmetric error bars that would yield results that are out of range (e.g. negative653

error rates).654

• If error bars are reported in tables or plots, The authors should explain in the text how655

they were calculated and reference the corresponding figures or tables in the text.656

8. Experiments compute resources657

Question: For each experiment, does the paper provide sufficient information on the com-658

puter resources (type of compute workers, memory, time of execution) needed to reproduce659

the experiments?660

Answer: [Yes]661

Justification: See Section 5 and supplemental material for implementation details.662

Guidelines:663

• The answer NA means that the paper does not include experiments.664

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,665

or cloud provider, including relevant memory and storage.666
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• The paper should provide the amount of compute required for each of the individual667

experimental runs as well as estimate the total compute.668

• The paper should disclose whether the full research project required more compute669

than the experiments reported in the paper (e.g., preliminary or failed experiments that670

didn’t make it into the paper).671

9. Code of ethics672

Question: Does the research conducted in the paper conform, in every respect, with the673

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?674

Answer: [Yes]675

Justification: The research conducted in the paper conforms, in every respect, with the676

NeurIPS Code of Ethics.677

Guidelines:678

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.679

• If the authors answer No, they should explain the special circumstances that require a680

deviation from the Code of Ethics.681

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-682

eration due to laws or regulations in their jurisdiction).683

10. Broader impacts684

Question: Does the paper discuss both potential positive societal impacts and negative685

societal impacts of the work performed?686

Answer: [Yes]687

Justification: See Section 6.688

Guidelines:689

• The answer NA means that there is no societal impact of the work performed.690

• If the authors answer NA or No, they should explain why their work has no societal691

impact or why the paper does not address societal impact.692

• Examples of negative societal impacts include potential malicious or unintended uses693

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations694

(e.g., deployment of technologies that could make decisions that unfairly impact specific695

groups), privacy considerations, and security considerations.696

• The conference expects that many papers will be foundational research and not tied697

to particular applications, let alone deployments. However, if there is a direct path to698

any negative applications, the authors should point it out. For example, it is legitimate699

to point out that an improvement in the quality of generative models could be used to700

generate deepfakes for disinformation. On the other hand, it is not needed to point out701

that a generic algorithm for optimizing neural networks could enable people to train702

models that generate Deepfakes faster.703

• The authors should consider possible harms that could arise when the technology is704

being used as intended and functioning correctly, harms that could arise when the705

technology is being used as intended but gives incorrect results, and harms following706

from (intentional or unintentional) misuse of the technology.707

• If there are negative societal impacts, the authors could also discuss possible mitigation708

strategies (e.g., gated release of models, providing defenses in addition to attacks,709

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from710

feedback over time, improving the efficiency and accessibility of ML).711

11. Safeguards712

Question: Does the paper describe safeguards that have been put in place for responsible713

release of data or models that have a high risk for misuse (e.g., pretrained language models,714

image generators, or scraped datasets)?715

Answer: [Yes]716

Justification: See Section 6.717

Guidelines:718
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• The answer NA means that the paper poses no such risks.719

• Released models that have a high risk for misuse or dual-use should be released with720

necessary safeguards to allow for controlled use of the model, for example by requiring721

that users adhere to usage guidelines or restrictions to access the model or implementing722

safety filters.723

• Datasets that have been scraped from the Internet could pose safety risks. The authors724

should describe how they avoided releasing unsafe images.725

• We recognize that providing effective safeguards is challenging, and many papers do726

not require this, but we encourage authors to take this into account and make a best727

faith effort.728

12. Licenses for existing assets729

Question: Are the creators or original owners of assets (e.g., code, data, models), used in730

the paper, properly credited and are the license and terms of use explicitly mentioned and731

properly respected?732

Answer: [Yes]733

Justification: See References.734

Guidelines:735

• The answer NA means that the paper does not use existing assets.736

• The authors should cite the original paper that produced the code package or dataset.737

• The authors should state which version of the asset is used and, if possible, include a738

URL.739

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.740

• For scraped data from a particular source (e.g., website), the copyright and terms of741

service of that source should be provided.742

• If assets are released, the license, copyright information, and terms of use in the743

package should be provided. For popular datasets, paperswithcode.com/datasets744

has curated licenses for some datasets. Their licensing guide can help determine the745

license of a dataset.746

• For existing datasets that are re-packaged, both the original license and the license of747

the derived asset (if it has changed) should be provided.748

• If this information is not available online, the authors are encouraged to reach out to749

the asset’s creators.750

13. New assets751

Question: Are new assets introduced in the paper well documented and is the documentation752

provided alongside the assets?753

Answer: [NA]754

Justification: Not Applicable.755

Guidelines:756

• The answer NA means that the paper does not release new assets.757

• Researchers should communicate the details of the dataset/code/model as part of their758

submissions via structured templates. This includes details about training, license,759

limitations, etc.760

• The paper should discuss whether and how consent was obtained from people whose761

asset is used.762

• At submission time, remember to anonymize your assets (if applicable). You can either763

create an anonymized URL or include an anonymized zip file.764

14. Crowdsourcing and research with human subjects765

Question: For crowdsourcing experiments and research with human subjects, does the paper766

include the full text of instructions given to participants and screenshots, if applicable, as767

well as details about compensation (if any)?768

Answer: [NA]769
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Justification: Not Applicable.770

Guidelines:771

• The answer NA means that the paper does not involve crowdsourcing nor research with772

human subjects.773

• Including this information in the supplemental material is fine, but if the main contribu-774

tion of the paper involves human subjects, then as much detail as possible should be775

included in the main paper.776

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,777

or other labor should be paid at least the minimum wage in the country of the data778

collector.779

15. Institutional review board (IRB) approvals or equivalent for research with human780

subjects781

Question: Does the paper describe potential risks incurred by study participants, whether782

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)783

approvals (or an equivalent approval/review based on the requirements of your country or784

institution) were obtained?785

Answer: [NA]786

Justification: Not Applicable.787

Guidelines:788

• The answer NA means that the paper does not involve crowdsourcing nor research with789

human subjects.790

• Depending on the country in which research is conducted, IRB approval (or equivalent)791

may be required for any human subjects research. If you obtained IRB approval, you792

should clearly state this in the paper.793

• We recognize that the procedures for this may vary significantly between institutions794

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the795

guidelines for their institution.796

• For initial submissions, do not include any information that would break anonymity (if797

applicable), such as the institution conducting the review.798

16. Declaration of LLM usage799

Question: Does the paper describe the usage of LLMs if it is an important, original, or800

non-standard component of the core methods in this research? Note that if the LLM is used801

only for writing, editing, or formatting purposes and does not impact the core methodology,802

scientific rigorousness, or originality of the research, declaration is not required.803

Answer: [NA]804

Justification: Not Applicable.805

Guidelines:806

• The answer NA means that the core method development in this research does not807

involve LLMs as any important, original, or non-standard components.808

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)809

for what should or should not be described.810
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