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Abstract

Out-of-distribution (OOD) detection is essential for reliable deployment of deep
models in real-world scenarios. Advances in pre-trained multimodal foundation
models have enabled zero-shot OOD detection using only in-distribution (ID)
labels. Recent methods in this direction expand the label space with auxiliary labels
to facilitate the discrimination between IDs and OODs. Inspired by the probabilistic
formulation via Binomial distribution, we further discover the key factors that
theoretically affect zero-shot OOD detection performance: the cardinality of the
auxiliary label set, the similarity between labels and samples, and the uncertainty of
the similarity scores. From the theoretical analysis, existing methods that construct
fixed, single-modality auxiliary labels surely have limited effectiveness. To address
these issues, we propose Refer-OOD, a framework that adaptively generates, filters,
and retrieves multimodal references that explicitly account for these factors. It
consists of three modules: reference acquisition, feature mapping, and decision
module. Experiments across multiple benchmarks demonstrate that Refer-OOD
consistently improves zero-shot OOD detection with both vision-language models
(VLMs) and multimodal large language models (MLLMs).

1 Introduction

The rapid advancement of deep learning has led to significant progress in computer vision tasks
such as image classification and object detection. However, despite the strong performance on
in-distribution (ID) data, deep learning models still struggle with out-of-distribution (OOD) samples.
Model predictions on OOD samples may be incorrect yet overconfident, undermining the reliability
of these models in real-world applications [1} 2| [3]]. Therefore, developing effective OOD detection
methods is crucial for enhancing both model capability and safety.

Leveraging powerful feature representation and prior knowledge of pre-trained multimodal foundation
models, zero-shot OOD detection [4] using only ID labels has garnered increasing attention. Recent
methods along this direction distinguish OOD samples by expanding the label space with auxiliary
OQD labels, either sampled from a semantic pool [, |6] or generated via large language models
(LLMs) [7, 8]], and then classifying input images into ID/OOD groups based on CLIP [9]. Despite
the great research progress, how to gather theoretically relevant auxiliary information for zero-shot
OOD detection is still under-explored.

In this paper, inspired by recent works that model the OOD scores with Binomial distribution and
infer the mathematical performance metric thereby [} 6], we further discover that the performance of
zero-shot OOD detection is closely related to the cardinality of label set, the similarity probabilities
of ID and OOD samples within the constructed OOD label set, and the uncertainty of the similarity
result. From this insight, previous methods that construct auxiliary (OOD) labels deviate from known
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Figure 1: Comparison of two zero-shot OOD detection pipelines. Left: conventional methods mine a
fixed set of OOD labels based on the ID label set from a semantic pool. : our proposed approach
dynamically constructs reference sets by generating, filtering, and retrieving multimodal data related
to the test sample at inference time.

ID labels within a single-modality framework are sub-optimal, ultimately resulting in degraded
performance.

To address these issues and enhance zero-shot OOD detection, we propose Refer-OOD, which
adaptively generates, filters, and retrieves multimodal references to increase the activation probability
of OOD samples while maintaining the activation probability of ID samples. The comparison
between conventional methods and Refer-OOD is illustrated in Figure[I] The entire detection process
is implemented through three key modules (detailed in Figure[2): (1) a reference acquisition module
for obtaining relevant references through generation, filtering and retrieval, (2) a feature mapping
module that evaluates the relevance of the input image to the constructed references, and (3) a decision
module that classifies samples as either ID or OOD. Theoretically, Refer-OOD can enhance OOD
detection capability by dynamically integrating relevant references. Meanwhile, it is less sensitive to
the reference set size.

We perform extensive experiments on coarse-grained and fine-grained OOD detection benchmarks
using both traditional Vision-Language Models (VLMs) and Multimodal Large Language Models
(MLLMs). The results show that Refer-OOD substantially improves model zero-shot performance
in challenging OOD detection tasks. Moreover, our method consistently achieves state-of-the-art
performance across various OOD detection benchmarks.

Our main contributions can be summarized as follows:

* We establish a theoretical framework for zero-shot OOD detection, based on which the key
factors influencing detection performance and limitations in existing methods are identified.

* We propose Refer-OOD, a novel framework that comprehensively addresses all critical
factors through adaptive label generation, similarity distribution regulation, and multimodal
enhancement.

* We evaluate our method equipped with either VLMs or MLLMs and the results on both
fine-grained and coarse-grained benchmarks verify the superiority of our method.

2 Related works

VLMs for Traditional Out-of-Distribution Detection. Pre-trained vision language models (VLMs)
[9} [10] often require fine-tuning for effective adaptation to downstream tasks. For OOD detection,
existing approaches either optimize visual or textual prompts [[L1}, 12} 13|14} 15/ [16] or introduce
OOD-specific regularization terms [14, (15} 16} |17, [18} [19]. However, these methods are computation-
ally expensive and may undermine the generalization ability of pre-trained VLMs. Fine-tuning on ID
data often leads to overfitting on seen categories, thereby reducing the model’s ability to generalize to
unseen ones and degrading OOD detection performance.

Zero-shot Out-of-Distribution Detection. Preserving VLMs’ generalization ability while avoiding
fine-tuning drawbacks, zero-shot OOD detection has emerged as a promising alternative. Leveraging
the powerful representational capacity of pre-trained models, methods of this direction [20, 21} 22|
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23 24]] bypass additional training by designing OOD detection scores to optimize the separability
between IDs and OODs. Some approaches [25} 26| 27, 28] operate purely on the classification
outputs of ID labels, while others [4}, |6} [7, 8 29} [30] introduce auxiliary OOD labels to recast the
problem as a binary classification task distinguishing ID from OOD samples. However, constructing
an appropriate OOD label set remains a non-trivial and open challenge.

Retrieval-Augmented Generation Methods. Retrieval-Augmented Generation (RAG) [31] com-
bines generation with external knowledge retrieval to improve factual accuracy across various
language tasks [32} 133/ [34]. Recent works[35,136,137] extend RAG to multimodal settings by incorpo-
rating visual or auditory information, enabling richer context for generation. In this paper, we show
that RAG can also enhance OOD detection by supporting retrieval-based reasoning over multimodal
references.

3 Problem Analysis

3.1 Preliminaries

Zero-shot OOD detection. Zero-shot OOD detection aims to identify whether a test sample is
in-distribution (ID) or out-of-distribution (OOD), using only ID class labels. Formally, given an ID
label set Y™ of c classes, and a test image from either ID or OOD domains, i.e., x € X™ U X" with
Xin N xout = (), the goal is to learn a detector h(z; V) : 2 — {ID, OOD}.

OOD detection with auxiliary labels. To facilitate the identification of OOD samples, recent works
propose to augment the label space with auxiliary OOD labels, either by sampling from a semantic
pool [55} [6] or generatlng labels via LLMs [[7]. Let Y°" = {y", ..., y"} denote the constructed
OOD label set of size m. For a given image € X" U X°%, its semantic similarity with an auxiliary
label yo™" € Y™, can be computed as s; = sim(z, y?™) € [0,1]. By applying a threshold ), this
score can be converted into a binary label b; = 1,,>,, which indicates the input is positive (OOD
sample) with probability p; = P(s; > ¥|y?™, x) according to the label y".

Probabilistic approximation. [5l 6] model the binary score b; as a random variable following
Bernoulli distribution with probability p;. For z € X™, the aggregated binary score S™(z) =
>, biis then a Poisson binomial variable with probablhtles {pi}m . S can be defined similarly
with probabilities {p{™}* ;. According to the binomial approximation rules [38], as m increases, S™
and S°" can be approxunated as normal distributions:

Sin ~ ./\[(n,bpin7 mpin(l _ pin) _ mvin)’ Sout ~ N(m oul7 mpoul(l _ pout) m,Uout) (1)

where p" = E;[pi"],v!" = Var;[pi"], p°* = E;[pS"!], v** = Var;[p?"]. This leads to a closed-form
approximation of the false positive rate (FPR) at a target true positive rate (TPR) A € (0, 1]:
1 1 in(1 — __ qyin in out
FPRy = - 4 & oerf (| 2o P") —v erf ! (2 — m<p —r™) e
2 2 pout(]_ _ pout) _ qou \/2pout out _ Qqout

where erf(z) = % fOI e~ dt and a lower FPR » indicates better detection performance.

3.2 Theoretical Analysis for Performance Enhancement
How can we minimize the FPR?

According to Equation (), FPR), is primarily influenced by four factors: pi", P m, and the
similarity function sim(-). For simplicity, we fix the factor A = 0.5 in our analysis.

Effect of pi", p?"t, m on FPR. Let ¢ denoting the formula input to function erf(-) in Equation (@),

7 .
the partial derivatives of FPRg 5 with respect to p™, p°"* and m are:

OFPRos _  /m . ,—C? . 1 >
opin ™ € (2p0u1(1 out)_QvouL)% - 07
2 out | in in,_out out
9FPRos _ _ /m  ,—C¢° p4p —2p7p" —2v 3)
Oop°Ht ™ (2pou|(1 poul) 2¢0u) 2 -7
OFPRo.5 __ 1 . —<2 . P 7p° in Olll
om — 2y/mm € \/onm (1—pout) —2p0ut — 0 when p < p
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These results indicate that FPR( 5 generally increases with pi" and decreases with p°'! in most
cases [3]. When p™ < p°*, increasing m further reduces FPRq 5. Therefore, an ideal Y°* should
have sufficiently large size m, and the labels y?" € Y°" (i = 1,...,m) should make ID samples
yield low pi" while OOD samples yield high p"t. Moreover, the relationship among m, p™ and p°t
is more interdependent in practice. As m increases, some y" € V°"' may be irrelevant to most
x € X, causing p™* to drop and eventually close to p'™.

Existing methods typically construct a fixed large-scale auxiliary label set Y°" by sampling or
generating labels with the minimal similarity to )™ [5,[6]. The constructed Y°* may suppress p™ for
ID inputs. However, for OOD inputs, this does not necessarily guarantee that the expectation p°"
is high enough. In practice, since Y°" is finite and fixed, there always Iz € X" such that Vy"' €
yout sim(z, o) < 1. To address the dependence between m, p'™ and p°*, [5] proposes to filter
uncommon or synonymous words from )°" to increase the possibility of J°"* being activated by
X°". However, such constructing strategy still faces the inherent limitation of uncontrollable p"*
due to unknown X°". To address above issues, we propose to (1) construct Y°" adaptively by
generating relevant labels conditioned on the test input, rather than using a fixed set in contrast

to Y,

Effect of sim(-) on FPR. Prior works [5}[6, 7, 23] typically compute similarity between a test image
and a single reference label, which inevitably introduces high variance and limits the reliability of
similarity-based decisions. We consider a more general setting where each class y; € {Y™, Y°"'} is
associated with n; diverse references {r;, },., (e.g., diverse text or images). The average similarity
score is deﬁped as §; = ni Nl Sie = ni Yopiy sim(z, 1, ), where {s?k s are assumed i.i.d.
with mean zi" (or u2") and variance o?. By the central limit theorem, 5" ~ N (ul", 02 /n;), and
similarly for 5". Then, the probability p; for ID or OOD inputs can be approximated by:

A Y — i Y —
W=1—erf| —2% ], pM™=1—erf|[ == |. 4
D; ( o7 /m) D; < o7 /m) )
Reducing the variance to 07 /n; leads to sharper similarity distributions. When p9" > ¢ > ",
increasing n; raises p" while suppressing pi", thereby enhancing separability and reducing FPR. In
contrast, existing works using a single reference increase uncertainty and yield less discriminative
similarity estimates. Therefore, we propose to (2) use multiple diverse references per class rather
than relying on a single reference label.

4 Method

How can we construct a valid reference set?

Adaptive generation and filtering. According to theoretical analysis (1), we propose an adaptive
reference generation strategy that dynamically constructs candidate labels conditioned on test samples,
controllably improving the alignment with test data distribution and increasing p°"'. To stabilize p'",
a filtering mechanism is performed to discard labels overly similar to known ID classes.

Multimodal retrieval. According to theoretical analysis (2), to overcome the limitation of a single
reference label, we introduce a modality enhancement strategy that retrieves additional image
representations via an online browser API. This increases modality diversity and improves OOD
detection accuracy, especially for fine-grained samples.

Overall method. We propose Refer-OOD, a unified OOD detection framework based on adaptive
generation and modality enhancement. Our method comprises three modules (Fig. 2): (1) the
Reference Acquisition Module, which obtains multimodal reference samples; (2) the Feature Mapping
Module, which evaluates the relevance of x to ); (3) the Decision Module, which determines whether
the input z belongs to ID or OOD.

4.1 Reference Acquisition Module

The reference acquisition module consists of three sequential steps: generation, filtering, and retrieval,
aiming to construct high-quality textural and visual references for zero-shot OOD detection.
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Figure 2: Detailed framework of Refer-OOD method. Refer-OOD comprises three modules: (1)
Reference Acquisition Module, which obtains textual and visual references; (2) Feature Mapping
Module, which evaluates the relevance of = to ) (OOD score for VLM-based and textual description
for MLLM-based method); (3) Decision Module, which determines whether the input = belongs to
ID or OOD.

Generation Phase. In the generation phase, we leverage a Multimodal Large Language Model
(MLLM) M to produce textual labels that are semantically aligned with the input image x. With a

prompt p,, M generates a set of candidate OOD labels out.

yout = TOPy (prm(Vlz, pper)7 m), ®)

where pa (Y|, pper) represents the probability distribution of MLLM generated labels ) given x
and prompt p,.. Unlike prior methods that rely on fixed or predefined OOD label set, our approach
generates sample-specific labels on-the-fly. This adaptive generation explicitly increases the activation
probability of OOD samples on p®™, as theoretically analyzed in Section

Filtering Phase. To enhance semantic distinctiveness and avoid overlap between ID and OOD labels,
we apply a filtering step that removes candidate OOD labels overly similar to known ID labels )™.
This results in a refined OOD label set:
Y=yt € Y| max sim(y, o) <7}, ©)
yl; eym
where 7 denotes a predefined threshold. This filtering ensures a low similarity between ID and OOD
classes, thereby stabilizing p".

Retrieval Phase. Given the final label sets Y°" and )™, we retrieve relevant visual references from
external sources such as online search engines. The retrieval process returns the top-n! images most
semantically relevant to each label set:

I™ = TOPL (prew(Z|V*"), m;), I = TOPZ(preur(Z|V™), 1), )

K3

where prei(Z | V) denotes the probability of retrieving image Z given label set ).

Optimization Design. The reference acquisition module aims to construct reference sets that are
relevant, informative and discriminative. In the generation phase, we optimize the prompt forms to
guide the MLLM toward producing the highest semantically aligned labels. In the retrieval phase, we
leverage the inherent ranking mechanism of the search engine to obtain top-ranked image references.
This design makes the generation probability pa, and the retrieval probability p;. feasible and
optimal.

4.2 Feature Mapping Module

The Feature Mapping Module aims to assess the relevance of the input sample relative to the
constructed references with Vision-Language Model (VLM) or Multi-Modal Large Model (MLLM).
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With similar underlying targets, these two models are different in output formats: VLM quantifies the
probability differences as OOD scores, whereas MLLM generates textual descriptions that emphasize
these differences.

VLM-based Mapping Module. We define a unified similarity function between a test sample = and
each (textual or visual) reference set {r;, },* ; corresponding to class y; € Y™ U Y°", where n; = 1
for textual reference and n; = n£ for visual references, as follows:

wa) = @) E(EG))
= @ RGP

where E(-) denotes either textual encoder 7'(-) or visual encoder I(-) depending on the modality of
74, . The OOD score for each modality follows the general form:

®)

e (z) v (z)

A(x)= max —p— — max —_—,
( ) ve{l,...,c} Z;n:—’i( edj (z) BUE{C-{-I,.A.,m—i—c} Z;l_;n eaj(l‘)

&)

where (3 is a balancing factor. The score for comparing the test image with textual references is
denoted as A, and with visual references is Apy. Finally, the overall multimodal detection score is
fused with weight coefficient a:

AVLM({E) = OzAIQI(!L') + (1 — OZ)AIQT(LC). (10)

MLLM-based Mapping Module. The MLLM generates reasoning descriptions based on textual
reference (Y™, Y°U) or visual references (Z', Z°%), prompted by Prea> €Xpressed as:

Anim (@) = M(prey[2[| V]| V™),

ou in (11)
Ahrim (2) = M (e[| ZM][Z),

Amiiv(z) = {

where Al v aqd Al m are the reason_ing texts generated by comparing the input sample x with
the textual and visual references, respectively.

4.3 Decision Module

The Decision Module is responsible for determining whether a test sample x belongs to ID or OOD
category based on the obtained mapping results.

VLM-based Decision Module. For VLM model, the decision process relies on the computed
detection score and a predefined threshold \:

ID, Avim > A

hyim(z) = {OOD, Aviag < A (12)

where ) is typically set such that 95% of in-distribution (ID) data is correctly classified as ID.

MLLM-based Decision Module. For MLLM model, the decision process is directly based on the
model-generated text Ay v, prompted by p, for final answer:

haviim () = M(P sl |Z][AmLim) (13)

which ensures that the model makes the final textual judgment (ID/OOD) based on the input sample
z and the relevance of corresponding references.

5 Experimental Analysis

5.1 Experimental Settings

Datasets. We classify OOD detection into coarse-grained and fine-grained tasks. Coarse-grained
OQOD detection follows the traditional setup [39], where ID and OOD belong to distinct datasets.
Common ID datasets include CUB-200 [40]], Stanford-Cars [41]], Food-101 [42], Oxford-Pet [43]],
and ImageNet-1K [44], and OOD datasets include iNaturalist [45], SUN [46], Places [47], and
Texture [48]]. Fine-grained OOD detection is more challenging, with ID and OOD samples from the
same dataset but differing at the subcategory level. Datasets are constructed by splitting categories
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Table 1: Performance comparison for VLM-based methods on coarse-grained datasets.

Method iNaturalist SUN Places Texture Average
FPRY95, AUROC FPRY95), AUROCt FPRY95| AUROCt FPRY95] AUROC? FPR95| AUROCT

MCM 3.27 99.31 1.68 99.64 2.63 99.42 291 99.30 2.63 99.41
CLIPN 2.20 99.46 0.88 99.78 1.83 99.59 3.11 99.22 2.00 99.51
EOE 0.03 99.99 0.02 100.0 0.21 99.94 0.66 99.76 0.23 99.92
NegLabel 0.33 99.91 0.74 99.78 1.98 99.46 1.82 99.51 1.21 99.66
CSP 0.25 99.93 0.28 99.92 1.67 99.55 0.98 99.73 0.79 99.78
Refer-OOD-VLM  0.01 100.0 0.01 100.0 0.12 99.97 0.06 99.99 0.03 99.99

Table 2: Performance comparison for VLM-based methods on fine-grained datasets.

CUB Stanford-Cars Food Oxford-Pet Average
Method FPR95| AUROCT FPR95| AUROCT FPR95| AUROCtT FPR95| AUROCtT FPRY95| AUROCT
MCM 83.72 67.50 84.02 68.76 44.10 91.37 64.03 84.88 68.97 78.20
CLIPN 83.89 67.36 82.92 69.37 42.46 91.28 68.88 85.03 69.54 78.39
EOE 74.13 73.18 77.60 70.98 39.66 91.54 55.17 90.30 61.64 81.50
NegLabel 81.23 71.92 79.62 70.18 42.85 90.88 64.56 87.45 67.06 80.10
CSP 80.48 69.88 78.05 70.58 52.00 89.54 62.97 89.25 68.37 79.81

Refer-OOD-VLM  60.64 80.88 58.74 75.45 34.40 91.50 38.19 92.28 47.99 85.02

within CUB-200, Oxford-Pet, Food-101, and Stanford-Cars. Note that OOD categories are disjoint
from ID categories.

Experimental Setup. We use Bing image search and a Chrome retrieval plugin for retrieval. The
Qwen-vl model [49] and the CLIP [9]] with ViT-B/16 serves as the MLLM and VLM backbone,
respectively. More comparison results are shown in the Appendix.

Evaluation Metrics. For VLM-based models, we report: (1) FPR95 (false positive rate at 95% TPR)
and (2) AUROC (area under the ROC curve). For MLLM-based models, we evaluate: (1) F1 score
(harmonic mean of precision and recall) and (2) ACC (accuracy of ID label predictions).

Comparative Methods. We compare two versions of our method (named Refer-OOD-VLM and
Refer-OOD-MLLM according to different feature mapping and decision modules) with state-of-the-
art zero-shot OOD detection methods. For Refer-OOD-VLM, we include MCM [25]], CLIPN [19],
NegLabel [6], CSP [5] and EOE [7] as comparative methods. Since MLLM-based OOD detection is
unexplored, we define a straightforward baseline where the model is provided with the input data and
the corresponding ID labels, and asked to determine whether the sample belongs to ID.

5.2 Main results

Results of VLM-based methods. Table[I]and Table 2] present the performance of the VLM-based
methods in coarse-grained and fine-grained OOD detection tasks. In the coarse-grained task, VLM-
based methods achieve strong performance across all datasets, with an average AUC above 99%,
benefiting from CLIP’s ability to differentiate datasets with large semantic gaps. Refer-OOD-VLM
outperforms all other methods on these datasets. In the fine-grained task, where ID and OOD samples
are more semantically similar, all methods face increased difficulty. Nevertheless, Refer-OOD-VLM
achieves more superior performance, improving FPR95 by an average of 13.65% over EOE [[7]].

Results of MLLM-based methods. Table [3land Table ] evaluate MLLLM-based models in coarse-
grained and fine-grained OOD detection tasks. “Vanilla” refers to the constructed baseline. In the
coarse-grained task, both MLLM-based methods excel at distinguishing OOD samples with large
semantic gaps, achieving near-perfect accuracy. Refer-OOD-MLLM further enhances performance.
In the fine-grained task, Refer-OOD-MLLM outperforms the vanilla approach across most datasets
and metrics, especially showing great precision gains on Stanford-Cars and Food datasets.

5.3 Component Analysis

Analysis for Refer-OOD-VLM. As shown in Table [5] both textual and visual references have a
positive influence on the model’s performance. The dynamic label generation strategy in Refer-OOD-
VLM outperforms the fixed label approach used in the EOE method, with an AUROC increase of



246
247

248
249

251

252

254
255
256

257

258
259
260
261
262
263
264

Table 3: Performance comparison for MLLM-based methods on coarse-grained datasets.

Method iNaturalist SUN Places Texture Average
Precisionf F11  Precisionf] F11 Precisionf F11 Precisionf F11 Recall} Precision] FI11
Vanilla 100.0 83.76 99.67 83.66 99.05 83.45 99.06 83.56  72.49 99.44 83.60
Refer-OOD-MLLM 100.0 90.38 100.0 90.38 99.24 90.06 99.32 90.09 82.75 99.63 90.16

Table 4: Performance comparison for MLLM-based methods on fine-grained datasets.

Method CUB Stanford-Cars Food Oxford-Pet Average
Recallt Precisionf F11  Recallt Precision] F1T Recallt Precisiont FI11 Recallt Precisionf F17 Recallf Precisionf FI11
Vanilla 8235 60.43 69.70  86.17 59.12 70.12 91.83 64.74 75.94  80.64 70.42 75.18 85.24 63.67 72.73
Refer-OOD-MLLM ~ 85.29 63.50 72.80 76.59 79.12 77.83  79.59 83.87 81.67 85.48 92.98 89.07 81.73 79.86 80.34

11.14% on the CUB dataset. All modules effectively complement each other, boosting the average
AUROC by 18.14% compared to the baseline.

Analysis for Refer-OOD-MLLM. Table 6| presents the component effectiveness analysis for Refer-
OOD-MLLM, reporting detection (F1) and prediction (ACC) performance. Again, both the textual
and visual references enhance model performance.

5.4 Case Study

Case study for Refer-OOD-VLM. Figures|3a|to|3d|show the class probability scores. For the ID
sample American bulldog, Refer-OOD-VLM achieves high confidence on the correct label while
effectively suppressing the logits of OOD labels. For the OOD sample Beagle, EOE misclassifies it
as a similar ID category due to the absence of appropriate OOD labels. In contrast, Refer-OOD-VLM
assigns high confidence to a semantically correct OOD label, reducing confusion and improving
detection accuracy.

1D Label

00D Label 0O0D label: Staffordshire Bull Terrier

ID Label
00D Label

Question: According to references, the
image shows?
Answer: This conclusion is based on
several features:
1. Build and Structure: ...

2. Head Shape: ...
(a) EOE(American bulldog) (b) EOE(Beagle) 3. Jaw and Snout: ...

It aligns more closely with the American Pit

ICI!]OSELe\ Bull Terrier than the Staffordshire Bull
Terrier.

ID Label
00D Label

Question: According to the analysis, is the
image ID or OOD?
Answer: ID. American Pit Bull Terrier.

(d) Refer-OOD-VLM (e) Refer-OOD-MLLM

(c) Refer-OOD-VLM .
(American bulldog)

(American bulldog) (Beagle)

Figure 3: Case study on Refer-OOD detection. (a)-(d) shows the class probability scores for VLM-
based methods, and (¢) shows Refer-OOD-MLLM result.

Case study for Refer-OOD-MLLM. Figure |3¢|illustrates one type of error made by the vanilla
MLLM-based method. More illustrations in the Appendix include: (1) misclassifying ID samples
as OOD, (2) predicting incorrect labels for ID samples, and (3) misclassifying OOD samples as
ID. Refer-OOD-MLLM addresses these issues by incorporating valid multi-modality sets. For
ID misdetection, Refer-OOD-MLLM enhances semantic understanding for accurate identification.
For ID misclassification, it refines predictions using ID and OOD labels. For OOD misdetection,
Refer-OOD-MLLM generates precise OOD labels to correctly classify OOD samples.
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Table 5: Effectiveness of each module in Refer-OOD-VLM.
CUB Stanford-Cars Food Oxford-Pet
FPRY5, AUROCT | FPR95, AUROCT | FPR95, AUROCT | FPR95, AUROCT

Baseline Fixed Textual Dynamic Textual Visual

v 8039 6734 | 6383 7207 | 5512 9179 | 8358 8293
v v 7353 6816 | 6489 7602 | 3435 9223 | 7015  84.06
v v 6765 7188 : 6277 7124 | 5006 8694 | 4776 9227
v v 49.02  83.02 | 5319 7508 | 3944 9222 | 3433 9237
v v V6569 7441 | 6064  79.62 | 4918  87.66 | 41.79 9191
v v v 5294 8548 | 5106 7727 | 3283 9231 | 2985 9381

Table 6: Effectiveness of each module in Refer-OOD-MLLM.

. X CUB Standford-Cars Food Oxford-Pet
Baseline Textual Visual , , ,
F11 ACCT . FI7 ACCT . F1t ACCT ¢ F1t ACCt
v 69.70 49.01 170.12 68.08 1 75.94 82.65 175.18 77.41
v v 71.65 57.84 175.93 71.27 ! 86.17 76.53 1 88.13 8225
v v 72.80 55.88 77.83 75.53 81.67 70.40 89.07 85.48

5.5 Ablations

We further conduct ablation studies on the parameters, score functions, and foundation models. Please
refer to the Appendix for all supporting figures and tables.

Effect of n!. Figureexamines visual retrieval quantity n.. Increasing n! improves model perfor-
mance by reducing similarity variance and enhancing separability.

Effect of m. Figure[5]presents the performance of different methods as the number of generated labels
increases. In contrast, Refer-OOD consistently achieves stronger results, even with fewer generated
labels. Moreover, while other methods are sensitive to the value of m, Refer-OOD demonstrates
higher robustness.

Effect of 3&c. Figure[f|evaluates 3 on fine-grained datasets. Performance improves as 3 increases,
with optimal results near 3 = 1, balancing ID and OOD labels’ contributions. Figure[7]explores c,
which balances textual labels and image features in Equation (I0). Introducing visual modality with
well-balanced o outperforms single-modality approaches.

Effect of 7. Table |11]investigates the effect of the filtering threshold 7. The optimal 7 typically
correlates with the semantic gap between the ID and OOD datasets.

On score functions. Table [[2] compares Refer-OOD-VLM’s performance using standard scoring
functions, including MSP [50], Energy [51]], and MaxLogits [52]]. Table@]compares scoring function
variants in Eq.[9] using max vs. sum over class logits.

On VLMs, MLLMs and APIs. We conduct comparative experiments across different VLMs,
MLLMs and retrieval APIs. Table[E]evaluates VLM backbones including CLIP [9], ALIGN [53]],
and AItCLIP [54]], showing that Refer-OOD consistently outperforms the comparative model across
all architectures. Table[T5and Table [I6l demonstrate that the results with GPT-4o are consistent with
those with Qwen. Table|17|shows Refer-OOD’s performance across different online retrieval APIs
including Baidu and Google, which aligns with the results using Bing.

6 Conclusion

In this paper, we present a theoretical analysis on the zero-shot OOD detection paradigm, identifying
key factors that influence detection performance, including label set size, similarity distributions,
and metric uncertainty. Based on these insights, we propose Refer-OOD, a novel framework that
systematically optimizes these factors through multimodal relevant references integration. Extensive
experiments on both fine-grained and coarse-grained benchmarks validate the effectiveness of Refer-
OOD, showing consistent improvements over prior methods.

Broader Impacts and Limitation. Our work promotes the reliable deployment of deep models
in wide real-world scenarios, specifically on zero-shot OOD detection with pre-trained multimodal
models. While our method outperforms existing approaches and maintains stable performance even
with a reduced number of references, it incurs extra inference cost and possible security risks due to
reference generation and retrieval.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer:[Yes]
Justification: A summary of the paper’s contribution is provided in conclusion.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: See Section 6.
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511 Guidelines:

512 * The answer NA means that the paper has no limitation while the answer No means that
513 the paper has limitations, but those are not discussed in the paper.

514 * The authors are encouraged to create a separate "Limitations" section in their paper.
515 * The paper should point out any strong assumptions and how robust the results are to
516 violations of these assumptions (e.g., independence assumptions, noiseless settings,
517 model well-specification, asymptotic approximations only holding locally). The authors
518 should reflect on how these assumptions might be violated in practice and what the
519 implications would be.

520 * The authors should reflect on the scope of the claims made, e.g., if the approach was
521 only tested on a few datasets or with a few runs. In general, empirical results often
522 depend on implicit assumptions, which should be articulated.

523 * The authors should reflect on the factors that influence the performance of the approach.
524 For example, a facial recognition algorithm may perform poorly when image resolution
525 is low or images are taken in low lighting. Or a speech-to-text system might not be
526 used reliably to provide closed captions for online lectures because it fails to handle
527 technical jargon.

528 * The authors should discuss the computational efficiency of the proposed algorithms
529 and how they scale with dataset size.

530 * If applicable, the authors should discuss possible limitations of their approach to
531 address problems of privacy and fairness.

532 * While the authors might fear that complete honesty about limitations might be used by
533 reviewers as grounds for rejection, a worse outcome might be that reviewers discover
534 limitations that aren’t acknowledged in the paper. The authors should use their best
535 judgment and recognize that individual actions in favor of transparency play an impor-
536 tant role in developing norms that preserve the integrity of the community. Reviewers
537 will be specifically instructed to not penalize honesty concerning limitations.

538 3. Theory assumptions and proofs

539 Question: For each theoretical result, does the paper provide the full set of assumptions and
540 a complete (and correct) proof?

541 Answer: [Yes]

542 Justification: See Section 3.

543 Guidelines:

544 » The answer NA means that the paper does not include theoretical results.

545 * All the theorems, formulas, and proofs in the paper should be numbered and cross-
546 referenced.

547 * All assumptions should be clearly stated or referenced in the statement of any theorems.
548 * The proofs can either appear in the main paper or the supplemental material, but if
549 they appear in the supplemental material, the authors are encouraged to provide a short
550 proof sketch to provide intuition.

551 * Inversely, any informal proof provided in the core of the paper should be complemented
552 by formal proofs provided in appendix or supplemental material.

553 * Theorems and Lemmas that the proof relies upon should be properly referenced.

554 4. Experimental result reproducibility

555 Question: Does the paper fully disclose all the information needed to reproduce the main ex-
556 perimental results of the paper to the extent that it affects the main claims and/or conclusions
557 of the paper (regardless of whether the code and data are provided or not)?

558 Answer: [Yes]

559 Justification: See Section 5 and supplemental material for implementation details.

560 Guidelines:

561 » The answer NA means that the paper does not include experiments.

15



562
563
564
565
566
567
568
569
570
571
572
573
574
575

577
578
579
580

582
583

585
586
587
588
589
590
591

592

593
594
595

596

597
598

599

600
601
602
603
604
605
606
607
608
609
610
611

612

614

615
616

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: We include training and implementation details, but not code. Our code will
be available if the paper is accepted.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See Section 5 and supplemental material for implementation details.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: Not Applicable.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See Section 5 and supplemental material for implementation details.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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9.

10.

11.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: See Section 6.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]
Justification: See Section 6.

Guidelines:
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12.

13.

14.

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: See References.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: Not Applicable.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
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15.

16.

Justification: Not Applicable.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Not Applicable.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: Not Applicable.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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