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ABSTRACT

Robust high-dimensional classification under heavy-tailed distributions without
losing efficiency, is a central challenge in modern statistics and machine learning.
However, most existing linear discriminant analysis (LDA) methods are sensitive to
deviations from normality and may suffer from suboptimal performance in heavy-
tailed settings. This paper investigates the robust LDA problem with elliptical
distributions in high-dimensional data. Our approach constructs stable discriminant
directions by leveraging a robust spatial sign-based mean and covariance estimator,
which allows accurate estimation even under extreme distributions. We demonstrate
that SSLDA achieves an optimal convergence rate in terms of both misclassification
rate and estimate error. Our theoretical results are further confirmed by extensive
numerical experiments on both simulated and real datasets. Compared with state-
of-the-art approaches, the SSLDA method offers superior improved finite sample
performance and notable robustness against heavy-tailed distributions.

1 INTRODUCTION

High-dimensional data is increasingly prevalent in various real-world applications, such as genomic
data(Schäfer & Strimmer, 2005), investment portfolio data(Ledoit & Wolf, 2003), and fMRl decod-
ing(Shi et al., 2009). High-dimensional classification problems have garnered significant interest in
recent decades. LDA is extensively utilized among numerous classification methods owing to its
efficacy in practical applications. However, in high-dimensional settings, the classical LDA reveal
the following critical limitations. Firstly, the precision matrix is either non-estimable or exceed-
ingly challenging to estimate because to the singularity and irreversibility of the covariance matrix;
Secondly, there is a compounding of errors in the estimation of unknown parameters. Bickel &
Levina (2004) discovered that the efficacy of classical LDA may resemble that of random guessing in
high-dimensional samples, despite the validity of the Gaussian assumption.

These limitations have resulted in the advancement of enhanced LDA techniques founded on certain
sparse assumptions to address high-dimensional classification contexts. One typical strategy involves
incorporating regularisation into the classification direction vector, such as the ℓ1 regularization
(Witten & Tibshirani, 2009; Mai et al., 2012; Clemmensen et al., 2011) or the ℓ2 regularization (Guo
et al., 2007), among others. Another specific strategy involves assuming that the covariance matrix Σ
and the mean difference δ = µ1 − µ2 are sparse, hence facilitating consistent estimation of them. In
Bickel & Levina (2004), a naive Bayes rule or the independence principle is presented by substituting
Σ with the diagonal of the sample covariance matrix. Shao et al. (2011) proposed a sparse LDA
method based on thresholding methodology and demonstrated the resultant can theoretically achieve
the Bayes error. Tibshirani et al. (2002) and Fan & Fan (2008) proposed the nearest shrunken centroid
estimation and the features annealed independent rule, wherein variable selection is executed through
soft and hard thresholding criteria, respectively.

In contrast to the aforementioned approaches that separately estimation of Σ−1 and δ, some straight-
forward and efficient classifiers are introduced that directly estimate the product β∗ = Σ−1δ by
assumes the sparsity of the discriminant direction. Cai & Liu (2011) introduced the linear program-
ming discriminant rule for sparse linear discriminant analysis based on direct estimation of β∗ via
limited ℓ1 minimization. The direct sparse discriminant analysis investigated in Mai et al. (2012)
represents another widely utilised sparse LDA approach, which is both computationally efficient
and relatively straightforward to comprehend, as it reformulates the high-dimensional LDA into a
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penalised linear regression framework. To address the lack of adaptivity and theoretical guarantees in
existing high-dimensional LDA methods, Cai & Zhang (2019) proposed an adaptive and tuning-free
procedure that accounts for heteroscedasticity and achieves minimax optimality. In general, direct
estimate β∗ offers a considerable computational advantage over existing approaches that necessi-
tate separate estimations of them; it is more economical and has strong performance, even when
covariance or mean differences are not consistently assessed.

Note that LDA shows high sensitivity to outliers (Hastie, 2009), particularly in high-dimensional
datasets. Robust estimation of the mean and covariance is essential for the efficacy of LDA. Optimized
LDA performance occurs when normality and homoscedasticity are met (Croux et al., 2008). It is
critical to point out that traditional robust mean estimation techniques, such as the coordinate-wise
median and geometric median, experience degradation in high-dimensional spaces, as their error
bounds are proportional to the dimensionality. Numerous research investigate robust mean estimate
for tainted data in high dimensions, such as Tukey’s median and Iterative Filtering(Diakonikolas et al.,
2019; 2017). Recent works have concentrated on reducing the spectral norm of weighted sample
covariance and estimating the mean by a weighted average (Cheng et al., 2019; Zhu et al., 2022).
Motivated by this methodology, in Deshmukh et al. (2023), the ℓ1 norm of an outlier indicator vector
is reduced subject to a constraint on the spectral norm of the weighted sample covariance, resulting
in an order-optimal robust estimate of the mean. Based on ℓ1 norm, Li et al. (2019) introduces
a robust discriminant analysis criterion, which is an upper bound of the theoretical framework of
Bhattacharyya optimality.

However, most existing methods work well under (sub-) Gaussian assumptions but poorly on heavy-
tailed distributions. For more general distributions, Fang & Anderson (1990) demonstrated that the
Fisher rule remains best for elliptical distributions, which encompasses multivariate normal-t and
double exponential distributions. Wakaki (1994) explored Fisher’s linear discriminant function for a
wide class of elliptical symmetric distributions sharing a common covariance matrix. To improve
discriminant analysis method robustness and efficiency, Andrews et al. (2011) examined linear and
quadratic discriminant classification with a mixture of multivariate-t distributions. Bose et al. (2015)
endeavored to extend linear and quadratic discriminant analysis to elliptically symmetric distributions.
Some studies have investigated the efficacy of classification and theoretical intricacies associated with
elliptical distributions (e.g., Cai & Liu (2011); Shao et al. (2011); Yang et al. (2023)). Han et al. Han
et al. (2013) successfully generalized these principles to broader distributions utilizing the Gaussian
linkage approach. Recently, by allowing each observation to originate from its own elliptically
symmetric distribution, Houdouin et al. (2024) develops an innovative, robust, and model-free
discriminant analysis algorithm.

Within the framework of elliptical distributions, employing a spatial-sign-based methodology has
shown significant effectiveness, even in high-dimensional situations (Oja, 2010; Raninen et al.,
2021). Under high-dimensional elliptical populations, Li & Zhou (2017) investigates spatial-sign
covariance matrix on its asymptotic spectral behaviors. Wang et al. (2015) introduced a nonparametric
one-sample test utilizing the multivariate spatial sign transformation for elliptically distributed data.
Based on spatial ranks and inner standardization, Feng & Sun (2016) present spatial-sign-based
test methodologies for high-dimensional one-sample localization problems. In the context of the
two-sample location problem, Feng et al. (2016) proposed a robust multivariate-sign-based procedures
and Huang et al. (2023) advocated for a two-sample inverse norm sign test. See Zou et al. (2014),
Feng & Liu (2017), Zhang et al. (2022), Feng (2024), and the references therein for more related
studies on spatial sign-based approaches.

In this work, we introduce a high-dimensional sparse LDA method designed to directly estimate the
’discriminant direction’ under the assumption of elliptical distribution. The main contributions of the
paper are summarized as below.

• We establish theoretical results for Spatial-sign based linear discriminant analysis (SSLDA)
in the sparse scenario.

• We show the consistency and rate of convergence results both misclassification rate and
estimate error by assuming that the data is elliptically distributed.

• We employ the sample spatial median and the spatial sign covariance matrix by directly
estimate ’discriminant direction’, which we demonstrate to be robust and efficient under
fairly general assumptions.
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• Empirical studies are employed to evaluate image classification performance using datasets
of braeburn apples and white cabbages. Results demonstrate that the proposed approach
outperforms existing methods, showing promising performance in accuracy and efficiency.

• Code is available at https://github.com/RobustC/SSLDA, supporting real and complex-
valued data.

The rest of the paper is organized as follows. A robust classification method, named SSLDA, is
present in Section 2. In Section 3, we investigate the asymptotic properties of SSLDA. Section 4
showcases the results of numerical simulations, while Section 5 demonstrates a real-world application
to image classification. Finally, discussion and limitation are present in Section 6.

Notation: For a vector v = (v1, . . . , vp)
′, we define ∥v∥0 =

∑p
j=1 1{vj ̸= 0}, ∥v∥1 =

∑p
j=1 |vj |

and ∥v∥2 =
√∑p

j=1 v
2
j , ∥v∥∞ = max1≤j≤p |vj |, where 1(·) is the indicator function that returns 1

if the condition inside the brackets is true, and 0 otherwise. For a matrix M = (aij)p×q , we define the
matrix ℓ1 norm ∥M∥L1 = max1≤j≤q

∑p
i=1 |aij |, the elementwise ℓ∞ norm ∥M∥∞ = max{|aij |}.

λmin(M) and λmax(M) denote the smallest and largest eigenvalues of M. an ≍ bn signifies
an = O(bn) and bn = O(an) for any positive number sequences {an} and {bn}. For any random
variable X ∈ R, we define the sub-Gaussian norm as ∥X∥ψ2

:= supk≥1 k
−1/2

(
E|X|k

)1/k
.

2 ROBUST CLASSIFICATION METHOD

In the context of classifying between two p-dimensional normal distributions, N(µ1,Σ) (designated
as class 1) and N(µ2,Σ) (designated as class 2), both sharing the same covariance matrix Σ,
we consider a random vector Z that originates from one of these distributions with equal prior
probabilities. The task is to determine the class to which Z belongs. When the parameters µ1, µ2,
and Σ are known, Fisher’s linear discriminant rule provides a straightforward solution. This rule is
given by:

ψF(Z) = 1 {(Z− µ)′Ωδ ≥ 0} ,
where µ = µ1+µ2

2 is the midpoint between the two mean vectors, δ = µ1 − µ2 is the difference
between the two mean vectors, Ω = Σ−1 is the inverse of the covariance matrix.

According to this rule, Z is classified into class 1 if ψF(Z) = 1, and into class 2 otherwise. Fisher’s
linear discriminant is the optimal classifier in this scenario, as it coincides with the Bayes rule when
the prior probabilities for the two classes are equal.

In practice, we often don’t know the true parameters, so we estimate them using samples. Suppose
{Xk; 1 ≤ k ≤ n1} and {Yk; 1 ≤ k ≤ n2} are independent and identically distributed random sam-
ples from N(µ1,Σ) and N(µ2,Σ), respectively. Set µ̂1 and µ̂2 are the sample means of these two
samples, respectively. And Σ̂ = 1

n

(
n1Σ̂1 + n2Σ̂2

)
, n = n1 + n2 where Σ̂1, Σ̂2 are the sample

covariance matrix of these two samples, respectively. So Z is classified into class 1 if

(Z− µ̂)′Ω̂δ̂ ≥ 0

where µ̂ = µ̂1+µ̂2

2 , δ̂ = µ̂1 − µ̂2 and Ω̂ = Σ̂−1. When the dimension p is larger than the sample
sizes, Σ̂ is not invertible. So the above classification rule can not work well. Consequently, many
literatures consider the high dimensional linear discriminant analysis, such as Cai & Liu (2011); Le
et al. (2020); Park et al. (2022). In an important work, Cai & Liu (2011) proposed a direct estimation
approach to sparse linear discriminant analysis. They estimate β∗ = Ωδ directly by the solution to
the following optimization problem:

β̂ ∈ argmin
β∈Rp

{
∥β∥1 subject to

∥∥∥Σ̂β − (µ̂1 − µ̂2)
∥∥∥
∞

≤ λn

}
, (1)

where λn is a tuning parameter. The constrained ℓ1 minimization method (1) is known to be an
effective way for reconstructing sparse signals, see Donoho et al. (2005) and Candes & Tao (2007).
Then, they proposed a new classification rule: Z is classified into class 1 if

(Z− µ̂)′β̂ ≥ 0.

3

https://github.com/RobustC/SSLDA


162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

However, the above methods are all constructed based on the sample means and covariance matrix
which do not perform very well for heavy-tailed distributions. In this paper, we assume X and Y are
generated from the elliptical distribution with density

|Λ|−1/2g
(
(x− µk)

′Λ−1(x− µk)
)
, k = 1, 2,

respectively, where g(·) is a decreasing function. Without loss of generality, we assume that tr(Λ) =
p. If the covariance matrix Σ = Cov(X) = Cov(Y ) exist, Σ = ωΛ with positive parameter
ω = p−1tr(Σ) ∈ R.Fang & Anderson (1990) showed that Fisher’s rule is still optimal for elliptical
distributions. Since the constant ω does not affect the decision rule, we can, without loss of generality,
set ω = 1. In this case, we use the sample spatial median and spatial-sign covariance matrix to
replace the sample mean and covariance matrix.

We often use the spatial median to estimate µ, i.e.

µ̃1 = argmin
µ∈Rp

n1∑
i=1

∥Xi − µ∥2, µ̃2 = argmin
µ∈Rp

n2∑
i=1

∥Yi − µ∥2 (2)

Let U(x) = x
∥x∥2

I(x ̸= 0). Then the sample spatial sign covariance matrix is defined as

Ŝ1 =
1

n1

n1∑
i=1

U(Xi − µ̃1)U(Xi − µ̃1)
′, Ŝ2 =

1

n2

n2∑
i=1

U(Yi − µ̃2)U(Yi − µ̃2)
′ (3)

and the population spatial-sign covariance matrix is estimated by Ŝ = 1
n

(
n1Ŝ1 + n2Ŝ2

)
. We

estimate γ∗ = Λ−1δ directly by the solution to the following optimization problem:

γ̂ ∈ argmin
γ∈Rp

{
∥γ∥1 subject to

∥∥∥pŜγ − (µ̃1 − µ̃2)
∥∥∥
∞

≤ λn

}
, (4)

and the corresponding classification rule is Z is classified into class 1 if

(Z− µ̃)′γ̂ ≥ 0. (5)

where µ̃ = µ̃1+µ̃2

2 .

3 THEORETICAL RESULTS

The optimal misclassification rate in this case is

R :=
1

2
P

(
(X − µ1)

′Ωδ < −1

2
δ′Ωδ

)
+

1

2
P

(
(Y − µ2)

′Ωδ ≥ 1

2
δ′Ωδ

)
.

As in the work of Shao et al. (2011), under the assumption of elliptical distribution, for any p-
dimensional non-random vector u with ∥u∥2 = 1 and any t ∈ R,

P
(
u′Ω1/2(X − µ1) ≤ t

)
=: Ψ(t)

is a continuous distribution function symmetric about 0 and does not depend on u. Given {Xk} and
{Yk}, the conditional classification error of the linear programming discriminant (LPD) rule is

Rn := 1− 1

2
Ψ

(
− (µ̃− µ1)

′
γ̂

(γ̂′Σγ̂)
1/2

)
− 1

2
Ψ

(
(µ̃− µ2)

′
γ̂

(γ̂′Σγ̂)
1/2

)
.

where γ̂ is given in (4). The efficacy of the LPD rule can be effectively gauged through the
difference (or ratio) between Rn and R. Let ∆p = δ′Ωδ = ω−1δ′Λ−1δ. {σii = Σii}pi=1 denote
the corresponding marginal variances. Refer to Cai & Liu (2011), we need provide the following
conditions before presenting the difference and ratio between Rn and R.

(C1) n1 ≍ n2, log p ≤ n, c−1
0 ≤ λmin(Σ) ≤ λmax(Σ) ≤ c0, max

1≤i≤p
σii ≤ K and ∆p ≥ c1 for

some constant K > 0 and c0, c1 > 0.

4
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(C2) Define ζk = E
(
ξ−ki

)
, ξi = ∥Xi − µ∥2 , νi = ζ−1

1 ξ−1
i . (1) ζkζ−k1 < ζ ∈ (0,∞) for

k = 1, 2, 3, 4 and all p. (2) lim supp λmax(S) < 1 − ψ < 1 for some positive constant ψ.
(3) νi is sub-gaussian distributed, i.e. ∥νi∥ψ2

≤ Kν <∞.

Condition (C1) is the same as condition (C1) in Cai & Liu (2011), which is commonly used conditions
in the high dimensional setting. Condition (C2) are consistent with conditions (A1-A2) in Feng
(2024), which ensure the consistency of the spatial median estimator (2).

Then, we having the following theoretical results.

THEOREM 3.1. Let λn = C
√
∆p log p/n with C being a sufficiently large constant. Suppose

(C1)-(C2) hold and

∥Λ−1δ∥1
∆

1/2
p

+
∥Λ−1δ∥21

∆2
p

= o

(√
n

log p

)
. (6)

Then we have as n→ ∞ and p→ ∞,

Rn −R→ 0

in probability.

THEOREM 3.2. Let λn = C
√
∆p log p/n withC being a sufficiently large constant and n

p log p → 0.
Suppose (C1)-(C2) hold and

∥Λ−1δ∥1∆1/2
p + ∥Λ−1δ∥21 = o

(√
n

log p

)
.

Then
Rn
R

− 1 = O

((
∥Λ−1δ∥1∆1/2

p + ∥Λ−1δ∥21
)√ log p

n

)
with probability greater than 1−O

(
p−1
)
. In particular, if (C1)-(C2) hold and

∥Λ−1δ∥0∆p = o

(√
n

log p

)
,

then
Rn
R

− 1 = O

(
∥Λ−1δ∥0∆p

√
log p

n

)
with probability greater than 1−O

(
p−1
)
.

Theorem 3.1 and 3.2 is similar to the results in Theorem 2 and 4 in Cai & Liu (2011). Theorem 3.1
show the consistency of our proposed method and Theorem 3.2 establish the rate of convergence.

4 SIMULATION STUDIES

In this section, we investigate the empirical performance of the SSLDA method.

4.1 IMPLEMENTATION OF SSLDA

The estimate of γ∗ is obtained by solving ℓ1 minimization problem of (4). This convex optimazation
problem can be reformulated as the following linear program

min

p∑
j=1

uj

subject to: − γj ≤ uj for all1 ≤ j ≤ p,

+ γj ≤ uj for all1 ≤ j ≤ p, (7)

− pσ̂′
kγ̂k + δ̃k ≤ λn for all1 ≤ k ≤ p,

+ pσ̂′
kγ̂k + δ̃k ≤ λn for all1 ≤ k ≤ p,

5
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where (δ̃1, · · · , δ̃p) := δ̃ and (σ̂1, · · · , σ̂p) := Ŝ. We applied the CLIME method (Cai et al.,
2011) to solve (7). We replace Ŝ in (4) by Ŝρ = Ŝ + ρIp×p with a small positive number ρ (e.g.,
ρ =

√
log p/n).

The algorithm’s tuning parameter λ = λn can be optimized through empirical 10-fold cross-validation
(CV). To implement this, partition the sets {1, 2, · · · , n1} and {1, 2, · · · , n2} into 2K subgroupsGik,
where i = 1, 2, k = 1, 2, · · · ,K. This division naturally separates the sample data {Xi; 1 ≤ i ≤ n1}
and {Yj ; 1 ≤ j ≤ n2} into K validation subsets Xk := {Xi,Yj : i ∈ G1k, j ∈ G2k}, 1 ≤ k ≤ K.
Denote µ̃(k), Ŝ(k) be defined in (2) and (3) derived from {Xk,Yk; 1 ≤ k ≤ n1}\Xk. Based on µ̃(k),
Ŝ(k), we can obtain γ̂ for a given λn by (4). The final selection of λ boils down to

λ̂ = max
λ

K∑
k=1

 ∑
i∈G1k

I
(k)
i1 +

∑
j∈G2k

I
(k)
j2

 ,

where I(k)j1 = 1 if Xi ∈ Xk stisfies (5), else I(k)j1 = 0; let I(k)j2 = 1 if Yj ∈ Xk not stisfies (5), else

I
(k)
j2 = 0, and we choose K = 10 in this paper.

4.2 SIMULATION RESULTS

We compare the numerical performance of the SSLDA method with fellowing methods:

• LS-LDA: The least square formulation for classification proposed by Mai et al. (2012).
• CODA: Copula discriminant analysis classifier (CODA) for high-dimensional data proposed

by Han et al. (2013).
• LDA-CLIME: Linear programming discriminant for high-dimensional data clssification

using CLIME method proposed by Cai et al. (2011).
• AdaLDA: An adaptive algorithm (Cai & Zhang, 2019) for high dimensional LDA.
• SSLDA: Sparse spatial-sign based linear discriminant analysis.

In the simulation studies, we fix the sample sizes n = 400 and varied p to be
{100, 200, 300, 500, 800}. Let µ1 = 0,µ2 = (1, · · · , 1, 0, · · · , 0), where the number of 1’s is
s0 = 10. For each class g (g = 1, 2), the p-dimensional predictors x are sampled from the following
four elliptical distributions:

(I) Multivariate normal distribution: Z ∼ N (µg,Σ).

(II) Multivariate t2-distribution, data are generated from standardized t2√
2

with mean µg and Σ.

(III) Standardized multivariate mixture normal distribution MNN,κ,10 = [κN(µg,Σ) + (1 −
κ)N(µg, 10

2Σ)]/
√
κ+ 102(1− κ). κ is chosen to be 0.8.

(IV) Cauchy distribution.

Based on the above four distributions, we considered the following two models.

• Model 1: Σi,j = 1− 0.5× 1{|i− j| ≠ 0}, i, j = 1, · · · , p.

• Model 2: Σi,j = 0.8|i−j|, i, j = 1, · · · , p.

In line with the simulation parameters outlined in Cai & Liu (2011), this study fixes n1 = n2 = 200.
The average classification errors for the test samples and the standard deviations based on 100
replications are reported in Table 1 and Table 2. These tables present the performance of SSLDA in
comparison with four state-of-the-art LDA variants and similarity-based methods. In addition, we
also compared SSLDA with several widely used general-purpose machine learning classifiers, and the
simulation results for these classifiers are provided in the Appendix C. Table 1 and Table 2 summarize
results across four distinct distributions of varying dimensionality, which serve to characterize the
level of noise in the original data distribution. The results show that SSLDA consistently outperforms
both the LDA-based baselines and the general-purpose classifiers under both Model 1 and Model

6
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Table 1: The average classification error and the standard error (in brackets) for the test samples in
percentage for Model 1 over 100 Monte Carlo replications. (%)

Distribution p SSLDA LDA-CLIME CODA LS-LDA AdaLDA
Normal 100 2.46(0.087) 2.93(0.088) 2.75(0.083) 2.98(0.093) 3.70(0.103)

200 2.26(0.072) 2.60(0.076) 2.68(0.086) 2.71(0.082) 3.55(0.089)
300 2.26(0.073) 2.31(0.074) 2.34(0.077) 2.57(0.083) 3.42(0.095)
500 2.19(0.078) 2.17(0.090) 2.37(0.092) 2.34(0.084) 3.30(0.093)
800 2.14(0.082) 2.65(0.085) 2.48(0.094) 2.20(0.076) 3.11(0.093)

t2 100 9.36(0.151) 10.91(0.156) 10.84(0.149) 11.26(0.190) 18.01(0.669)
200 9.23(0.141) 10.81(0.160) 10.40(0.172) 10.62(0.166) 18.30(0.539)
300 8.95(0.122) 10.65(0.160) 10.64(0.191) 10.75(0.194) 18.80(0.592)
500 8.89(0.171) 11.05(0.155) 10.26(0.170) 9.77(0.156) 18.57(0.586)
800 9.24(0.118) 12.55(0.184) 10.11(0.123) 9.95(0.172) 18.06(0.573)

MNN,κ,10 100 10.78(0.167) 15.17(0.228) 12.28(0.174) 16.69(0.246) 25.27(0.489)
200 10.14(0.128) 13.91(0.211) 11.95(0.166) 13.66(0.187) 26.85(0.438)
300 10.47(0.149) 12.64(0.163) 11.37(0.154) 12.57(0.179) 27.40(0.475)
500 10.37(0.148) 12.31(0.159) 11.96(0.177) 11.67(0.172) 28.34(0.505)
800 10.22(0.186) 12.20(0.170) 11.43(0.175) 11.52(0.161) 30.52(0.648)

Cauchy 100 15.43(0.179) 19.43(0.251) 25.81(1.271) 20.60(0.843) 48.96(0.410)
200 15.69(0.208) 19.19(0.203) 24.28(1.047) 18.19(0.252) 49.51(0.342)
300 16.77(0.209) 20.11(0.183) 25.45(1.215) 17.53(0.240) 49.93(0.220)
500 15.05(0.202) 18.45(0.162) 23.69(1.101) 18.59(0.511) 50.01(0.347)
800 15.24(0.146) 19.00(0.177) 25.37(1.187) 17.94(0.502) 48.75(0.268)

Table 2: The average classification error and the standard error (in brackets) for the test samples in
percentage for Model 2 over 100 Monte Carlo replications. (%)

Distribution p SSLDA LDA-CLIME CODA LS-LDA AdaLDA

Normal 100 17.78(0.213) 18.00(0.186) 18.08(0.214) 17.93(0.197) 19.21(0.273)
200 17.57(0.207) 20.11(0.218) 18.01(0.216) 18.51(0.227) 19.33(0.219)
300 18.52(0.205) 21.65(0.206) 18.59(0.177) 18.50(0.201) 19.09(0.237)
500 18.44(0.178) 21.65(0.206) 18.35(0.189) 16.87(0.207) 19.32(0.214)
800 18.80(0.161) 25.02(0.243) 18.96(0.184) 17.44(0.205) 19.62(0.223)

t2 100 22.95(0.215) 26.82(0.280) 24.60(0.229) 26.28(0.281) 30.89(0.529)
200 24.35(0.200) 27.46(0.243) 25.73(0.263) 26.82(0.296) 31.94(0.448)
300 24.31(0.272) 28.68(0.245) 25.79(0.296) 27.12(0.325) 31.98(0.356)
500 23.18(0.218) 30.85(0.267) 26.43(0.286) 26.31(0.261) 31.47(0.381)
800 23.66(0.253) 32.32(0.252) 27.30(0.256) 27.18(0.248) 34.71(0.636)

MNN,κ,10 100 24.61(0.227) 33.57(0.382) 26.62(0.266) 31.23(0.258) 34.98(0.524)
200 24.21(0.235) 35.86(0.393) 27.45(0.281) 29.28(0.259) 37.66(0.560)
300 24.66(0.213) 36.10(0.438) 28.18(0.338) 28.64(0.259) 39.32(0.604)
500 25.75(0.224) 32.74(0.330) 29.19(0.305) 28.66(0.273) 39.96(0.578)
800 26.02(0.223) 31.30(0.279) 29.80(0.357) 28.54(0.265) 39.64(0.544)

Cauchy 100 26.75(0.230) 35.05(0.316) 37.78(0.796) 33.93(0.355) 47.59(0.559)
200 26.74(0.233) 34.28(0.303) 38.18(0.751) 35.62(0.962) 49.78(0.264)
300 26.77(0.186) 36.07(0.354) 38.47(0.681) 35.58(0.718) 48.64(0.399)
500 27.35(0.250) 36.62(0.299) 42.26(0.612) 33.11(0.193) 49.50(0.240)
800 26.48(0.239) 38.68(0.240) 38.12(0.441) 33.60(0.182) 49.20(0.344)

2. Moreover, as the tail of the original distribution thickens, the advantage of SSLDA becomes
more pronounced, particularly for the Cauchy distribution, highlighting its robustness in challenging
high-dimensional settings.
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To further investigate the impact of truly influential features number on classification performance,
we fixed n1 = n2 = 200 and p = 100, and examined the classification error rates of four distinct
methods across different s0 values. We run the four methods on each s0 ∈ [5, 80], each repeated
for 100 times. The averaged misclassification errors in percentage versus various s0 are illustrated
in Figure 1. It can be observed in Figure 1 that SSLDA performs the best (blue curve) in different
distributions, especially in heavy-tailed distributions (such as Cauchy distribution). The experimental
results further highlight the superiority of the SSLDA method under high-dimensional heavy-tailed
settings, demonstrating its versatility in handling both sparse and dense mean vector configurations
with equal effectiveness.

In addition to classification accuracy, we also compared the computational efficiency of SSLDA with
the competing methods. The running time results, presented in the Appendix C, show that SSLDA is
efficient, and in some cases is even faster than certain competitors.
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(a) Normal distribution
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(b) t2 distribution
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(c) MNN,κ,9 distribution
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Figure 1: Average misclassification errors of five methods over 100 Monte Carlo replications
(n1 = n2 = 200, p = 100) for different numbers of features s0 and distributions. Top row: Model 1;
Bottom row: Model 2.

5 REAL DATA APPLICATION

In this section, we apply the SSLDA classifier to the analysis of the real dataset to further examine
the performance of the proposed rule.

Datasets. There are 636 JPG images of two groups, braeburn apple and white cabbage, with quantities
of 492 and 144 (i.e. n1 = 492, n2 = 144), respectively. All images are 100×100 pixels in size. This
image set is sourced from https://www.kaggle.com/datasets/moltean/fruits. The task of this dataset is
to perform image classification on these images of Braeburn apples and white cabbages, to correctly
distinguish between apples and cabbages. Figure 2 shows example images from each group along
with the dataset’s preprocessing stages. Each RGB image was converted to grayscale (black and
white) using a assigned RGB ratio. Subsequently, an ORB (Oriented FAST and Rotated BRIEF)
keypoint detector (Rublee et al., 2011; Daradkeh et al., 2021) was used to determine the descriptors
of keypoints for each grayscale image, and then calculate the column mean of the descriptors for
simple dimensionality reduction (p = 32). This process is implemented in JupyterLab 4.0.11 using
the OpenCV library and the Python 3.6 programming language.

To evaluate performance, we randomly split the data into equal training and test sets without replace-
ment. Each of the four methods is applied to the training set and assessed on the testing set, repeated
100 times.
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Figure 2: Preprocessing steps for the image dataset.

Results. To evaluate algorithm efficacy in the classification task, the following metrics are employed:

Specificity =
TN

TN + FP
, Sensitivity =

TP
TP + FN

,

Precision =
TP

TP + FP
, Accuracy =

TP + TN
TP + TN + FP + FN

,

where TP (True Positives) and TN (True Negatives) represent correct classifications for positive (class
1) and negative (class 2) cases, respectively. FP (False Positives) and FN (False Negatives), on the
other hand, indicate misclassifications. All these metrics fall within the range of 0 to 1. A higher score
suggests that the classification algorithm is performing well, while a lower score indicates subpar
performance. An algorithm hitting a perfect score of 1 across the board is essentially considered the
gold standard.

Table 3 shows the performance of different methods on the real-world dataset, which gives the four
metrics of different methods. From Table 3, we can observe that SSLDA achieving the highest values
for Specificity, Precision and Accuracy. Although SSLDA does not achieve the highest Sensitivity
value, its performance is comparable to that of the other three methods. This results further confirms
the reliability of SSLDA classifier method in high-dimensional scenario.

Table 3: Comparisons of average (standard deviation) classification accuracy of Apple and Cabbage
datasets over 100 replications.

Method Specificity Sensitivity Precision Accuracy
SSLDA 0.9585 (0.0172) 0.9271 (0.0217) 0.8847 (0.0168) 0.9505 (0.0112)
LDA-CLIME 0.9197 (0.0212) 0.9382 (0.0265) 0.8001 (0.0431) 0.9244 (0.0169)
CODA 0.7116 (0.0461) 0.9668 (0.0216) 0.5340 (0.0381) 0.7761 (0.0336)
LS-LDA 0.9475 (0.0158) 0.8841 (0.0430) 0.8524 (0.0363) 0.9315 (0.0134)
AdaLDA 0.8954 (0.0204) 0.9418 (0.0276) 0.7544 (0.0364) 0.9071 (0.0155)

6 DISCUSSION AND LIMITATION

Reliable classification for high-dimensional data, especially in the case of heavy-tail or untidy data, is
typically a tricky for the applied statistician. This paper proposed a robust classification approach that
capable of handling heavy-tailed data. The findings from the simulation trials showcase its superior
enhanced finite sample prowess and notable computational efficiency both in synthetic data and real
data. The primary limitation of this approach is its reliance on a stringent assumption of elliptical
symmetric distribution.

9
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REPRODUCIBILITY STATEMENT

The proposed SSLDA algorithm and models are described in the main text and ap-
pendix. All source code and datasets used in our experiments are publicly available on
https://github.com/RobustC/SSLDA, with preprocessing steps and parameter settings fully doc-
umented. This ensures that the results reported in this paper can be reproduced.
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Supplementray Material of "Spatial Sign based Direct Sparse Linear
Discriminant Analysis for High Dimensional Data"

A LEMMA

LEMMA A.1. Under (C1) and (C2), we have with probability greater than 1−O(p−1),

∥pŜΛ−1δ − (µ̃1 − µ̃2)∥∞ ≤ λn (8)

Proof. By the triangle inequality, we have

∥pŜΛ−1δ − (µ̃1 − µ̃2)∥∞
≤ ∥pŜΛ−1δ − pSΛ−1δ∥∞ + ∥pSΛ−1δ − δ∥∞ + ∥µ̃1 − µ1∥∞ + ∥µ̃2 − µ2∥∞

According to the proof of Theorem 7.1 in Feng (2024), we have

∥µ̃k − µk∥∞ ≤ C
√
log p/n, k = 1, 2, ∥pŜ− pS∥∞ ≤ C

√
log p/n

for some large enough constant C > 0 with probability larger than 1−O(p−1). So

∥pŜΛ−1δ − pSΛ−1δ∥∞ ≤ ∥Λ−1δ∥1∥pŜ− pS∥∞ ≤ λn/4.

Additionally,

∥pSΛ−1δ − δ∥∞ = ∥(pS−Λ)Λ−1δ∥∞ ≤ ∥Λ−1δ∥1∥pS−Λ∥∞ ≤ λn/4

by the assumption.

B PROOF OF THEOREMS

B.1 PROOF OF THEOREM 3.1

Proof. By the definition of γ̂, we have∣∣∣p(Λ−1δ)′Ŝγ̂ − (Λ−1δ)′(µ̃1 − µ̃2)
∣∣∣ ≤ λn

∥∥Λ−1δ
∥∥
1
+ ∥δ̃ − δ∥∞

∥∥Λ−1δ
∥∥
1

≤ 2λn
∥∥Λ−1δ

∥∥
1
. (9)

By (8), we have∣∣∣p(Λ−1δ)′Ŝγ̂ − δ′γ̂
∣∣∣ ≤ λn∥γ̂∥1 + ∥δ̃ − δ∥∞∥γ̂∥1 ≤ 2λn

∥∥Λ−1δ
∥∥
1
, (10)

and together with (9) implies

|(γ̂ −Λ−1δ)′δ| ≤ 4λn
∥∥Λ−1δ

∥∥
1
. (11)

Then we have

|(µ̃− µ1)
′γ̂ +

1

2
δ′Λ−1δ| ≤ |(µ̃− µ)′γ̂|+ 1

2
|δ′γ̂ − δ′Λ−1δ|

≤ |(µ̃− µ)′γ̂|+ 2λn
∥∥Λ−1δ

∥∥
1

≤ C

√
log p

n

∥∥Λ−1δ
∥∥
1
+ 2λn

∥∥Λ−1δ
∥∥
1
. (12)

Similarly, we have

|(µ̃− µ2)
′γ̂ − 1

2
δ′Λ−1δ| ≤ C

√
log p

n

∥∥Λ−1δ
∥∥
1
+ 2λn

∥∥Λ−1δ
∥∥
1
. (13)

Next, considering the denominator in Rn. We have

∥Σγ̂ − δ∥∞ ≤ ∥Σγ̂ − pŜγ̂∥∞ + 2λn ≤ C
∥∥Λ−1δ

∥∥
1

√
log p

n
+ 2λn.
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Thus we have

|γ̂′Σγ̂ − γ̂′δ| ≤ C
∥∥Λ−1δ

∥∥2
1

√
log p

n
+ 2λn

∥∥Λ−1δ
∥∥
1
.

According to (11), we have

|γ̂′Σγ̂ − δ′Λ−1δ| ≤ C
∥∥Λ−1δ

∥∥2
1

√
log p

n
+ 6λn

∥∥Λ−1δ
∥∥
1
. (14)

Suppose δ′Λ−1δ ≥M for some M > 0. By (6), (12) and (14), we have∣∣∣∣ (µ̃− µ1)
′γ̂√

γ̂′Σγ̂

∣∣∣∣ ≥ C

∣∣∣∣δ′Λ−1δ√
γ̂′Σγ̂

∣∣∣∣ ≥ C((δ′Λ−1δ)−1 + o(1))−1/2 ≥ CM1/2,

this implies that
|Rn −R| ≤ exp(−CM). (15)

Suppose δ′Λ−1δ ≤M , by (6), and (14), yields∣∣∣∣ γ̂′Σγ̂

δ′Λ−1δ
− 1

∣∣∣∣ = o(1). (16)

And together with (12), we have∣∣∣∣ (µ̃− µ1)
′γ̂√

γ̂′Σγ̂
+

(1/2)δ′Λ−1δ√
γ̂′Σγ̂

∣∣∣∣ ≤ C
|Λ−1δ|

(δ′Λ−1δ)1/2
λn. (17)

By (14), we have∣∣∣∣ 1√
γ̂′Σγ̂

− 1√
δ′Λ−1δ

∣∣∣∣ ≤ C∥Λ−1δ∥21
√

log p/n+ 6∥Λ−1δ∥1λn
√
γ̂′Σγ̂

√
δ′Λ−1δ

(√
γ̂′Σγ̂ +

√
δ′Λ−1δ

)
≤C(δ′Λ−1δ)−3/2

(
∥Λ−1δ∥21

√
log p

n
+ ∥Λ−1δ∥1λn

)
. (18)

and∣∣∣∣ (1/2)δ′Λ−1δ√
γ̂′Σγ̂

− 1

2
(δ′Λ−1δ)1/2

∣∣∣∣ ≤ C
∥Λ−1δ∥21

(δ′Λ−1δ)1/2

√
log p

n
+ C

∥Λ−1δ∥1
(δ′Λ−1δ)1/2

λn =: rn. (19)

By condition 1, (17) and (19),
Rn = R× (1 +O(1)rn(δ

′Λ−1δ)1/2 exp(O(1)(δ′Λ−1δ)1/2rn)). (20)

By the assumption δ′Λ−1δ ≤M and the condition (6), we have (∥Ωδ∥1+∥Ωδ∥21)
√
log p/n = o(1),

thusRn = (1+o(1))R, when letting n, p→ ∞ first and thenM → ∞. The proof is completed.

B.2 PROOF OF THEOREM 3.2

Proof. According to Lemma 6 in Lu & Feng (2025), we know ∥pS−Σ∥∞ = O(p−1/2). Additionally,
by Lemma 7 in Lu & Feng (2025), we have ∥pŜ− pS∥∞ = Op(

√
log p/n). Thus, ∥pŜ−Σ∥∞ =

Op(
√
log p/n) if n

p log p → 0. Since

∥Σ(γ̂ −Λ−1δ)∥∞ ≤∥pŜ(γ̂ −Λ−1δ)∥∞ + ∥(pŜ−Σ)(γ̂ −Λ−1δ)∥∞

≤2λn + C∥γ̂ −Λ−1δ∥1

√
log p

n

≤2λn + C∥Λ−1δ∥0

√
log p

n
∥γ̂ −Λ−1δ∥∞

≤2λn + C∥Λ−1∥L1
∥Λ−1δ∥0

√
log p

n
∥Σ(γ̂ −Λ−1δ)∥∞, (21)

together with ∥Λ−1∥L1
∥Λ−1δ∥0

√
log p
n = o(1) implies that ∥Σ(γ̂ − γ)∥∞ ≤ Cλn, we have

|γ̂′Σγ̂ − γ̂′ΣΛ−1δ| ≤ C∥Λ−1δ∥1λn,
and

|γ̂′ΣΛ−1δ − δ′Λ−1δ| ≤ C∥Λ−1δ∥1λn.
The remaining steps refer to the proof of (20), and the proof is completed.
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C ADDITIONAL COMPARING METHODS AND RESULTS

We additionally conducted supplementary experiments to provide a more comprehensive evaluation
of our proposed method. In addition to the LDA variants and similarity-based methods presented
in the main simulation study, we compared our approach with several widely used general-purpose
machine learning classifiers, including Random Forest (RF, Breiman (2001)), Extreme Gradient
Boosting (XGBoost, Chen et al. (2015)), Support Vector Machine (SVM, Pisner & Schnyer (2020)),
Neural Network (NN, Ripley (2007)), K-Nearest Neighbors (KNN, Dasarathy (1991)), LightGBM
(LGBM, Ke et al. (2017)), and Logistic Regression (LG, Hosmer Jr et al. (2013)).

The results, summarized in Table 4 (Model 1) and Table 5 (Model 2), show that our method consis-
tently achieves lower classification error rates than these general-purpose classifiers across a range
of distributions and model settings. The advantage is especially pronounced in high-dimensional
scenarios, highlighting the robustness and adaptability of our SSLDA approach.

We also assessed computational efficiency (Table 6). Our method is competitive in terms of running
time, often comparable to or faster than standard classifiers and other LDA-based or similarity-based
methods. These supplementary experiments demonstrate that our approach achieves a favorable
balance between accuracy and efficiency, reinforcing its practical value for high-dimensional classifi-
cation tasks.

Table 4: The average classification error and the standard error (in brackets) for the test samples in
percentage for Model 1 over 100 Monte Carlo replications. (%)

Distribution p RF XGBoost SVM NN KNN LGBM LG

Normal 100 7.60(0.28) 10.85(0.28) 2.66(0.14) 7.93(0.28) 10.69(0.29) 10.76(0.29) 8.15(0.26)
200 7.56(0.27) 9.23(0.28) 5.15(0.22) 11.25(0.32) 14.58(0.36) 8.58(0.26) 16.88(0.43)
300 9.75(0.36) 11.19(0.34) 5.47(0.23) 14.41(0.42) 17.61(0.35) 10.71(0.34) 45.94(0.61)
500 12.38(0.43) 12.01(0.30) 12.35(0.36) 21.66(0.35) 25.33(0.43) 11.18(0.27) 45.73(0.60)
800 11.27(0.34) 12.60(0.34) 14.82(0.41) 24.79(0.41) 32.40(0.36) 11.63(0.30) 46.32(0.57)

t2 100 18.35(0.34) 18.95(0.34) 13.46(0.29) 17.06(0.31) 21.60(0.39) 17.88(0.32) 17.45(0.34)
200 18.02(0.36) 19.10(0.36) 12.87(0.32) 18.18(0.29) 28.19(0.49) 18.35(0.37) 25.70(0.40)
300 17.85(0.36) 17.38(0.33) 14.20(0.30) 20.44(0.37) 28.99(0.46) 17.15(0.32) 47.70(0.51)
500 18.25(0.35) 18.80(0.33) 28.45(0.70) 27.02(0.42) 42.30(0.48) 18.46(0.32) 45.70(0.58)
800 20.35(0.40) 20.26(0.38) 41.25(0.63) 29.78(0.42) 40.12(0.46) 19.50(0.32) 47.48(0.57)

MNN,κ,10 100 14.99(0.38) 17.75(0.33) 12.48(0.32) 11.43(0.24) 17.15(0.33) 16.96(0.34) 16.81(0.37)
200 15.45(0.37) 14.95(0.02) 29.38(0.53) 10.04(0.26) 20.39(0.31) 14.87(0.32) 25.24(0.43)
300 18.30(0.34) 18.18(0.34) 42.35(0.57) 14.93(0.35) 26.58(0.36) 17.28(0.33) 46.41(0.49)
500 17.00(0.34) 21.89(0.34) 48.89(0.41) 16.87(0.39) 32.74(0.40) 19.99(0.35) 46.40(0.56)
800 17.72(0.45) 17.99(0.35) 49.04(0.51) 16.56(0.36) 30.47(0.39) 17.25(0.35) 47.25(0.56)

Cauchy 100 23.50(0.37) 23.73(0.30) 49.92(0.25) 20.25(0.31) 21.87(0.36) 23.35(0.35) 26.30(0.36)
200 23.90(0.38) 26.12(0.38) 48.62(0.35) 23.95(0.35) 29.70(0.41) 25.07(0.37) 26.21(0.40)
300 22.85(0.32) 23.20(0.37) 50.35(0.25) 23.70(0.39) 32.66(0.46) 22.73(0.35) 46.85(0.54)
500 26.40(0.44) 25.92(0.41) 48.35(0.25) 28.53(0.39) 39.36(0.39) 25.30(0.39) 46.95(0.56)
800 25.84(0.42) 23.87(0.35) 49.35(0.17) 31.47(0.39) 44.43(0.40) 23.21(0.34) 47.16(0.46)
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Table 5: The average classification error and the standard error (in brackets) for the test samples in
percentage for Model 2 over 100 Monte Carlo replications, excluding AdaLDA. (%)

Distribution p RF XGBoost SVM NN KNN LGBM LG

Normal 100 23.65(0.33) 23.04(0.32) 23.43(0.33) 25.56(0.41) 33.71(0.37) 22.25(0.33) 31.44(0.39)
200 20.93(0.31) 21.11(0.34) 23.15(0.33) 26.80(0.38) 33.65(0.37) 20.83(0.30) 35.40(0.44)
300 26.38(0.34) 26.34(0.34) 29.45(0.39) 30.84(0.39) 41.99(0.35) 25.90(0.36) 48.91(0.46)
500 26.23(0.30) 25.67(0.35) 30.78(0.37) 36.17(0.45) 39.84(0.38) 25.35(0.35) 47.85(0.48)
800 27.81(0.31) 30.37(0.35) 34.91(0.41) 39.47(0.37) 44.57(0.42) 30.10(0.32) 49.39(0.46)

t2 100 29.78(0.42) 31.57(0.35) 31.09(0.35) 35.08(0.41) 39.54(0.43) 30.78(0.36) 31.10(0.39)
200 27.50(0.40) 29.79(0.41) 28.99(0.41) 32.14(0.40) 36.75(0.36) 29.68(0.41) 37.66(0.45)
300 29.78(0.42) 31.57(0.35) 31.09(0.35) 35.08(0.41) 39.54(0.43) 30.78(0.36) 48.48(0.45)
500 33.25(0.39) 33.03(0.40) 38.45(0.44) 39.38(0.43) 43.96(0.48) 31.93(0.37) 48.49(0.46)
800 27.28(0.35) 26.53(0.32) 35.86(0.46) 39.29(0.41) 43.32(0.38) 25.30(0.33) 48.10(0.54)

MNN,κ,10 100 29.21(0.40) 29.21(0.35) 30.68(0.35) 29.18(0.37) 38.06(0.42) 27.84(0.38) 37.85 (0.41)
200 28.20(0.40) 27.30(0.33) 29.00(0.42) 27.35(0.39) 35.74(0.37) 27.05(0.33) 43.04(0.42)
300 30.17(0.36) 32.75(0.38) 40.86(0.65) 33.90(0.39) 41.19(0.40) 32.19(0.36) 49.36(0.47)
500 30.67(0.33) 31.16(0.35) 44.31(0.58) 34.86(0.40) 41.09(0.42) 30.71(0.37) 48.73(0.49)
800 28.69(0.33) 27.55(0.37) 50.18(0.65) 36.92(0.39) 40.50(0.40) 26.49(0.32) 49.10(0.41)

Cauchy 100 33.60(0.39) 32.16(0.37) 48.56(0.47) 32.87(0.39) 33.30(0.39) 32.45(0.42) 40.86(0.41)
200 34.97(0.42) 35.37(0.40) 48.68(0.22) 37.35(0.36) 37.93(0.41) 33.80(0.38) 42.11(0.41)
300 30.44(0.38) 32.52(0.39) 49.40(0.37) 35.93(0.40) 40.01(0.45) 32.02(0.34) 49.92(0.52)
500 31.15(0.40) 31.17(0.35) 50.24(0.21) 36.95(0.43) 39.83(0.38) 30.80(0.35) 49.28(0.41)
800 29.23(0.37) 30.04(0.33) 46.49(0.28) 38.75(0.45) 41.72(0.40) 29.64(0.37) 47.65(0.46)

Table 6: Average running time (seconds) of SSLDA and competing methods under the varying model
based on 100 replicates. Results are reported for Model 1, with Model 2 values in parentheses.

Distribution Method p = 100 p = 200 p = 300 p = 500 p = 800

Normal SSLDA 0.96 (0.06) 2.45 (0.12) 6.21 (0.41) 15.77 (4.27) 30.49 (36.76)
LDA-CLIME 0.03 (0.84) 0.06 (2.13) 0.43 (5.77) 16.78 (15.33) 29.18 (59.34)
CODA 10.46 (2.89) 38.31(10.40) 85.24(23.91) 39.37 (40.34) 91.30(140.64)
LS-LDA 0.85(0.98) 2.74(2.80) 6.71(7.10) 10.49 (13.33) 18.71 (23.73)
AdaLDA 0.16(0.14) 2.81(0.94) 15.76 (5.94) 245.64(64.16) 1.06×103(392.55)

t2 SSLDA 1.65 (0.12) 2.68 (0.08) 6.83 (0.30) 17.44 (2.41) 26.29 (32.22)
LDA-CLIME 0.38 (0.80) 0.21 (2.03) 0.66 (6.04) 3.37 (15.28) 35.50(59.31)
CODA 10.23(2.98) 38.28(10.48) 86.07 (24.16) 39.51 (39.58) 95.31 (139.22)
LS-LDA 0.95(1.11) 3.16(5.21) 7.46(10.14) 11.15 (13.12) 19.35 (23.53)
AdaLDA 0.15(0.14) 1.25(0.89) 17.07(5.59) 98.75(87.26) 589.49(447.61)

MNN,κ,10 SSLDA 0.07 (0.03) 0.08 (0.26) 0.41 (0.65) 3.07 (4.28) 20.32 (27.07)
LDA-CLIME 1.52 (1.27) 4.21 (3.75) 12.34 (11.33) 31.10(27.30) 75.18(80.49)
CODA 2.50(3.47) 8.14(12.01) 21.79 (21.14) 52.87 (49.96) 110.63 (111.49)
LS-LDA 1.13(1.80) 3.45 (5.75) 9.59 (4.97) 19.77 (6.64) 45.94(45.58)
AdaLDA 0.14(0.15) 1.70(0.99) 9.76(7.33) 55.43(49.69) 305.29(117.55)

Cauchy SSLDA 0.03 (0.06) 0.08(0.11) 0.69(0.33) 4.31 (1.89) 22.64 (20.35)
LDA-CLIME 0.98 (0.83) 2.43(2.21) 6.71(6.12) 26.44(21.72) 123.49(239.66)
CODA 10.33(3.09) 38.34(10.39) 23.88(24.87) 39.87 (58.36) 92.09(138.12)
LS-LDA 3.68(4.90) 11.05(16.38) 15.75(25.42) 11.36 (6.72) 9.20 (9.23)
AdaLDA 0.15(0.14) 0.95(1.04) 8.88(5.14) 33.65(31.72) 461.86(464.73)
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