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ABSTRACT

The success of autoregressive models largely depends on the effectiveness of vector
quantization, a technique that compresses and discretizes continuous features by
mapping them to the nearest code vectors within a learnable codebook. Two critical
issues in existing vector quantization methods are training instability and codebook
collapse. Training instability arises from the gradient gap during both forward and
backward gradient propagation, especially in the presence of significant quanti-
zation errors, while codebook collapse occurs when only a small subset of code
vectors are utilized during training. A closer examination of these issues reveals
that they are primarily driven by a mismatch between the distributions of the fea-
tures and code vectors, leading to unrepresentative code vectors and significant data
information loss during compression. To address this, we employ the Wasserstein
distance to align these two distributions, achieving near 100% codebook utilization
and significantly reducing the quantization error. Both empirical and theoretical
analyses validate the effectiveness of the proposed approach.

1 INTRODUCTION

Autoregressive models have experienced a resurgence in visual generative models (Razavi et al., 2019;
Esser et al., 2021; Chang et al., 2022; Lee et al., 2022; Tian et al., 2024). This revival is marked by
the superior quality of images generated through autoregressive methods, which have now surpassed
those produced by diffusion-based approaches (Ho et al., 2020; Rombach et al., 2022; Sun et al.,
2024; Tian et al., 2024; Ma et al., 2024). The success of autoregressive visual generative models
hinges on the effectiveness of vector quantization (VQ) (van den Oord et al., 2017), a technique that
compresses and discretizes continuous features by mapping them to the nearest code vectors within a
learnable codebook. However, VQ continues to face two major challenges: training instability and
codebook collapse.

Distributional Mismatch Distributional Match

Figure 1: The symbols · and × represent the
feature and code vectors, respectively. The left
figure illustrates the distributional mismatch
between the feature and code vectors, while
the right figure visualizes their distributional
match.

The first issue arises from the non-differentiability of
VQ, which prevents direct gradient backpropagation
from quantized features to their continuous counterparts
(see more in Section 2.1), thereby hindering model opti-
mization. VQ-VAE (van den Oord et al., 2017) addresses
this challenge using a straightforward approach by em-
ploying the straight-through estimator, which allows
gradients to be copied from quantized to continuous
features. However, this method introduces a significant
gradient gap in both forward and backward gradient
propagation, particularly in the presence of large quan-
tization errors, leading to unstable training (Lee et al.,
2022; Zhu et al., 2024a).

The latter issue occurs when only a small subset of code vectors are updated during optimization,
leaving the majority unused and unoptimized (Zheng & Vedaldi, 2023). Although various methods
have been proposed to tackle this issue, they often fail to fully leverage the expressive capacity
of the codebook due to low utilization of code vectors, particularly when the codebook size is
large (Dhariwal et al., 2020; Takida et al., 2022; Yu et al., 2022; Lee et al., 2022; Zheng & Vedaldi,
2023). Consequently, the effectiveness of VQ is markedly compromised.

1
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In this paper, we examine these issues by investigating the distributions of the features and code
vectors. To illustrate the idea, Figure 1 presents two extreme scenarios: the left panel depicts a
significant mismatch between the two distributions, while the right panel shows a match. In the left
panel, all features are mapped to a single codeword, resulting in large quantization errors and minimal
codebook utilization. In contrast, the right panel demonstrates that a distributional match leads to
negligible quantization error and near 100% codebook utilization. This suggests aligning these two
distributions in VQ could potentially address the issues of training instability and codebook collapse.

Contributions To investigate the idea above, we first introduce three principled criteria that a VQ
method should optimize. Guided by this criterion triple, we conduct qualitative and quantitative
analyses, demonstrating that aligning the distributions of the feature and code vectors results in near
100% codebook utilization and minimal quantization error. Additionally, our theoretical analysis
underscores the importance of distribution matching for vector quantization. To achieve this alignment,
we employ the quadratic Wasserstein distance which has a closed-form representation under a
Gaussian hypothesis. Our approach effectively mitigates both training instability and codebook
collapse, thereby enhancing image reconstruction performance in visual generative tasks.

2 UNDERSTANDING DISTRIBUTION MATCHING

This section introduces a novel distributional perspective for VQ and investigates the effects of
distribution matching. We begin with an overview of VQ and then identify three principled criteria.
Utilizing this criterion triple, we conduct qualitative and quantitative analyses. Our empirical
findings demonstrate that distribution matching yields the optimal criterion triple, a conclusion further
supported by our theoretical analysis.

2.1 AN OVERVIEW OF VECTOR QUANTIZATION

The seminar work PixelCNN (van den Oord et al., 2016) achieved autoregressive visual generation
by treating image pixels as sequential tokens. However, this approach involves long token sequences,
resulting in significant time and computational costs, particularly during the sequential generation
of pixels. To reduce these expenses, VQ (van den Oord et al., 2017) was introduced. VQ alleviates
these costs by learning image tokens in much shorter sequences within the latent space.

Vector  Quantizer DecoderEncoder

x x̂
3 8 9 1

4 0 5 6

1 3 7 8

4 7 0 2

Forward

Backward

Quantization

Figure 2: An illustration of VQ.

Figure 2 illustrates the classic VQ pro-
cess (van den Oord et al., 2017), which con-
sists of an encoder E(·), a decoder D(·),
and an updatable codebook {ek}Kk=1 ∈
RK×d containing a finite set of code vec-
tors. Here, K represents the size of the
codebook, and d denotes the dimension of
the code vectors. Given an image x ∈
RH×W×3, the goal is to derive a spatial
collection of codeword IDs r ∈ Nh×was
image tokens. This is achieved by passing
the image through the encoder to obtain ze = E(x) ∈ Rh×w×d, followed by a spatial-wise quantizer
Q(·) that maps each spatial feature zij

e to its nearest code vector ek:

rij = argmin
k

∥zij
e − ek∥22. (1)

These tokens are used to retrieve the codebook entries zij
q = Q(zij

e ) = erij , which then pass through
the decoder to reconstruct the image as x̂ = D(zq). VQ significantly reduces sequence length during
image tokenization, since h× w (the token length) is much smaller than H ×W . However, despite
its success in high-fidelity image synthesis (van den Oord et al., 2017; Razavi et al., 2019; Esser et al.,
2021), VQ faces two key challenges: training instability and codebook collapse.

Training Instability This issue occurs because during backpropagation, the gradient of zq cannot
flow directly to ze due to the non-differentiable function Q. To optimize the encoder’s network
parameters through backpropagation, VQ-VAE (van den Oord et al., 2017) employs the straight-
through estimator (STE) (Bengio et al., 2013), which copies gradients directly from zq to ze. However,
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this approach carries significant risks—especially when zq and ze are far apart. In these cases, the
gradient gap between the representations can grow substantially, destabilizing the training process.

To address this instability, RQ-VAE (Lee et al., 2022) introduces residual quantization to minimize
the distance between zq and ze, thereby reducing the gradient gap. VAR (Tian et al., 2024) builds on
this approach by implementing residual quantization from a multi-scale perspective. In this paper, we
tackle the training instability challenge from a distributional viewpoint.

Codebook Collapse Codebook collapse occurs when only a small subset of code vectors receives
optimization-useful gradients, while most remain unrepresentative and unupdated (Dhariwal et al.,
2020; Takida et al., 2022; Yu et al., 2022; Lee et al., 2022; Zheng & Vedaldi, 2023). Researchers
have proposed various solutions to this problem, such as improved codebook initialization (Zhu et al.,
2024a), reinitialization strategies (Dhariwal et al., 2020; Williams et al., 2020), and classical clustering
algorithms like k-means (Bradley & Fayyad, 1998) and k-means++(Arthur & Vassilvitskii, 2007) for
codebook optimization (Razavi et al., 2019; Zheng & Vedaldi, 2023). Beyond these deterministic
approaches that select the best-matching token, researchers have also explored stochastic quantization
strategies (Zhang et al., 2023; Ramesh et al., 2021; Takida et al., 2022).

However, these methods still fail to fully utilize the codebook’s expressive power due to low utilization
rates, particularly with large codebook sizes K (Zheng & Vedaldi, 2023; Mentzer et al., 2024). In
this paper, we address this limitation by implementing distribution matching between feature vectors
and code vectors.

2.2 EVALUATION CRITERIA

We assume that all continuous feature vectors1 zi follow a distribution PA, while all code vectors ek
follow a distribution PB

2. We aim to determine the optimal codebook distribution PB for a given
feature distribution PA. Our optimality criteria are based on three key aspects of VQ: quantization
error, codebook utilization, and codebook perplexity.

Given a set of feature vectors {zi}Ni=1 and code vectors {ek}Kk=1, vector quantization involves finding
the nearest, and thus most representative, code vector for each feature vector:

z′
i = argmin

e∈{ek}
∥zi − e∥.

The original feature vector zi is then quantized to z′
i. Below, we introduce three key criteria to

evaluate this process.
Criterion 1 (Quantization Error). The quantization error measures the average distortion introduced
by VQ and is defined as

E({ek}; {zi}) =
1

N

∑
i

∥zi − z′
i∥2.

A smaller E signifies a more accurate quantization of the original feature vectors, resulting in a
smaller gradient gap between zi and z′

i. Consequently, a small value of E suggests that the issue of
training instability can be effectively mitigated.
Criterion 2 (Codebook Utilization Rate). The codebook utilization rate measures the proportion of
code vectors used in VQ and is defined as

U({ek}; {zi}) =
1

N

N∑
i=1

1(ek = z′
i for some i).

A higher value of U reduces the risk of codebook collapse. Ideally, U should reach 100%, indicating
that all code vectors are actively utilized. As discussed in Appendix H.1, U can only measure the
completeness of codebook utilization; it does not suffice to evaluate the degree of codebook collapse.
This motivates us to introduce the codebook perplexity criterion.

1For simplicity. the spatial feature, denoted as zij
e in Section 2.1, is written as zi in Section 2.2.

2For clarity in notation, we use “codebook distribution” to refer to the code vector distribution and “feature
distribution” to refer to the feature vector distribution.
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(a) (1.19, 2%, 3.8) (b) (0.70, 20.8%, 16.5) (c) (0.26, 57.8%, 96.9) (d) (0.05, 100%, 344.9)

(e) (0.36, 93.3%, 63.2) (f) (0.10, 99.8%, 250.5) (g) (0.07, 61.3%, 199.7) (h) (0.08, 45.3%, 151.5)

Figure 3: Qualitative analyses of the criterion triple (E ,U , C): The red and green disks represent the uniform
distributions of feature vectors and code vectors, respectively.

Criterion 3 (Codebook Perplexity). The codebook perplexity measures the uniformity of codebook
utilization in VQ and is defined as

C({ek}; {zi}) = exp(−
K∑

k=1

pk log pk), pk := pk(ek; {zi}) =
1

N

N∑
i=1

1(z′
i = ek).

A higher value of C indicates that code vectors are more uniformly selected in the VQ process. Ideally,
C reaches its maximum at C0 = exp(−

∑K
k=1

1
K log 1

K ) when code vectors are completely uniformly
utilized. Therefore, as a complementary measure to Criterion 2, the combination of U and C can
effectively evaluate the degree of codebook collapse.

We refer to (E ,U , C) as the criterion triple. When comparing extreme cases of distributional match
and mismatch shown in Figure 1, we find that distributional matching significantly outperforms
mismatching across all three criteria. Using this criterion triple, we present detailed analyses that
demonstrate the advantages of distribution matching.

2.3 THE EFFECTS OF DISTRIBUTION MATCHING

A Prototypical Study We begin by conducting a simple synthetic experiment to provide intuitive
insights3. Specifically, we assume that the distributions PA and PB are uniform distributions confined
within two distinct disks, as depicted in Figure 3. We then sample a set of feature vectors {zi}Ni=1

uniformly from the red disk, and a set of code vectors {ek}Kk=1 uniformly from the green circle. The
criterion triple (E ,U , C) is then calculated based on the definitions in Criteria 1 to 3.

We examine two cases. The first involves two disks with identical radii but different centers. As
shown in Figures 3(a) to 3(d), when the centers of the disks move closer together, aligning the two
distributions, the criterion triple improves toward optimal values. Specifically, E decreases from 1.19
to 0.05, U rises from 2% to 100%, and C increases from 3.8 to 344.9.

The second case shows two distributions with identical centers but different radii. When the codebook
distribution’s support lies within the feature distribution’s support (as shown in Figures 3(e) and 3(f)),
it results in a notably larger E , slightly lower U , and significantly smaller C compared to the aligned
distributions shown in Figure 3(d). Conversely, when the codebook distribution’s support extends
beyond the feature distribution’s support, E shows a modest increase while both U and C decrease
significantly, as illustrated in Figures 3(g) and 3(h). We provide detailed explanations of these
experimental findings in Appendix H.2.

More Quantitative Analyses To further elucidate the benefits of the distributional matching, we
conduct more quantitative analyses centered around the criterion triple (E ,U , C). We begin by
assuming that the distributions PA and PB are Gaussian4. We generate a set of feature vectors

3The experimental details for all analyses in Section 2.3 are provided in Appendix E.1.
4Alternative distribution choices, such as the uniform distribution discussed in Appendix C, are also possible

for PA and PB .
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Figure 4: Quantitative analyses of the criterion triple when PA and PB are Gaussian distributions.

{zi}Ni=1 from N (0d, Id) and a set of code vectors {ek}Kk=1 from N (µ · 1d, Id)
5, with µ varying

within {0.0, 0.5, 1.0, 1.5, 2.0, 2.5}. The criterion triple results are presented in Figures 4(a) to 4(c),
Figures 4(g) to 4(i), and Figures 4(m) to 4(o). Across all tested configurations of K, d,N , we
consistently observe that when µ = 0 — indicating identical distributions between PA and PB —
the criterion triple achieves the lowest E , highest U , and largest C. This empirical evidence reinforces
the effectiveness of aligning feature and codebook distributions in VQ.

Additionally, we conduct experiments to investigate the criterion triple by varying the covariance
matrix. We sample a set of feature vectors {zi}Ni=1 from the distribution N (0, Id) and a corresponding
set of code vectors {ek}Kk=1 from N (0, σ2Id), where σ is selected from {1, 2, 3, 4, 5, 6}. The results
for the criterion triple are shown in Figures 4(d) to 4(f), Figures 4(j) to 4(l), and Figures 4(p) to 4(r).
When σ = 1, indicating identical distributions between PA and PB , all three evaluation criteria reach
their optimal values: the lowest E , highest U , and largest C across all tested values of K, d,N . This
result corroborates our earlier findings.

2.4 THEORETICAL ANALYSES

In this section, we provide theoretical evidence to support our empirical observations. Let the code
vectors {ek}Kk=1 and feature vectors {zi}Ni=1 be independently and identically drawn from PB and
PA, respectively. We say a codebook {ek}Kk=1 attains full utilization asymptotically with respect
to {zi}Ni=1 if the codebook utilization rate U({ek}Kk=1; {zi}Ni=1) tends to 1 in probability as N
approaches infinity:

U({ek}Kk=1; {zk}Ni=1)
p→ 1, as N → ∞.

For the codebook distribution PB , we say it attains full utilization asymptotically with respect
to PA if, with probability 1, the randomly generated codebook {ek}Kk=1 achieves full utilization
asymptotically.

Additionally, a codebook distribution PB is said to have vanishing quantization error asymptotically
with respect to a domain Ω ⊆ Rd if the quantization error over all data of size N tends to zero in
probability as K approaches infinity:

sup
{zi}⊆Ω

E({ek}Kk=1; {zi}Ni=1)
p→ 0, as K → ∞. (2)

Our first theorem shows that supp(PA) = supp(PB) is sufficient and necessary for the codebook
distribution PB to attain both full utilization and vanishing quantization error asymptotically. For
simplicity, PA is assumed to have a density function fA with bounded support Ω ⊆ Rd.

51d represents the vector of all ones.
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Theorem 1. Assume Ω = supp(PA) is a bounded open area. The codebook distribution PB attains
full utilization and vanishing quantization error asymptotically if and only if supp(PB) = supp(PA),
where S denotes the closure of the set S.

Theorem 1 establishes the optimal support of the codebook distribution. The boundedness of Ω is
required as we consider the worst case quantization error in equation 2. In real applications, when
PA follows an absolutely continuous distribution over an unbounded domain, then {zi}Ni=1 generated
from PA will be bounded with high probability. Thus, Theorem 1 also provides theoretical insights
for a target distribution PA with an unbounded domain.

Besides the optimal support, we also determine the optimal density of the codebook distribution
by invoking existing results characterizing asymptotic optimal quantizers (Graf & Luschgy, 2000).
Specifically, we consider the case where N approaches to infinity and define the expected quantization
error of a codebook {ek} with respect to PA as

E({ek}Kk=1;PA) = Ez∼PA
min

e∈{ek}
∥z − e∥2.

A codebook {e∗k}Kk=1 is called the set of optimal centers for PA if it achieves the minimal quantization
error:

E({e∗k}Kk=1;PA) = min
{ek}K

k=1

E({ek}Kk=1;PA).

Theorem 2 demonstrates that, under weak regularity conditions, the empirical measure of the optimal
centers for PA converges in distribution to a fixed distribution determined by PA. Notably, we do not
assume a bounded domain in the following theorem.

Theorem 2 (Theorem 7.5, Graf & Luschgy (2000)). Suppose Z ∼ PA is absolutely continuous with
respect to the Lesbegue measure in Rd and E∥Z∥2+δ < ∞ for some δ > 0. Then the empirical
measure of the optimal centers for PA,

1

K

K∑
k=1

δe∗
k
,

converges weakly to a fixed distribution P∗
A, whose density function f∗

A is proportional to f
d/(d+2)
A .

Theorem 2 implies that PB = P∗
A is the optimal codebook distribution in the asymptotic regime as

K approaches infinity. In high-dimensional spaces with large d, this optimal distribution PB = P∗
A

closely approximates PA. This further motivates us to align the codebook distribution PB with the
feature distribution PA.

3 DISTRIBUTION MATCHING VIA WASSERSTEIN DISTANCE

In this section, we propose using the quadratic Wasserstein distance to achieve a distributional match
between PA and PB .

3.1 WASSERSTEIN DISTANCE

We assume a Gaussian hypothesis for the distributions of both the feature and code vectors. For
computational efficiency, we employ the quadratic Wasserstein distance, as defined in Appendix B,
to align these two distributions. Although other statistical distances, such as the Kullback-Leibler
divergence (Kingma & Welling, 2014; Ho et al., 2020), are viable alternatives, they lack simple closed-
form representations, making them computationally expensive. The following lemma provides the
closed-form representation for the quadratic Wasserstein distance between two Gaussian distributions.

Lemma 3 ((Olkin & Pukelsheim, 1982)). The quadratic Wasserstein distance between N (µ1,Σ1)
and N (µ2,Σ2) is √

∥µ1 − µ2∥2 + tr(Σ1) + tr(Σ2)− 2 tr((Σ
1
2
1 Σ2Σ

1
2
1 )

1
2 ). (3)
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Figure 5: The performance metrics (E ,U , C) for various VQ approaches.

The lemma above indicates that the quadratic Wasserstein distance can be easily computed using
the population means and covariance matrices. In practice, we estimate these population quantities,
µ1, µ2, Σ1, andΣ2, with their sample counterparts: µ̂1, µ̂2, Σ̂1, andΣ̂2. The empirical quadratic
Wasserstein distance is then used as the optimization objective to align the distributions of the feature
and code vectors:

LW =

√
∥µ̂1 − µ̂2∥2 + tr(Σ̂1) + tr(Σ̂2)− 2 tr((Σ̂

1
2
1 Σ̂2Σ̂

1
2
1 )

1
2 ). (4)

A smaller value of LW indicates stronger alignment between the feature distribution PA and the
codeword distribution PB . We refer to the VQ algorithm that employs LW as Wasserstein VQ.

3.2 ADVANTAGES OVER OTHER VQ METHODS

In this section, we compare our proposed Wasserstein VQ with other VQ algorithms in a simple,
atomic experimental setting while examining existing VQ methods from a distributional matching
perspective. Specifically, we fix the feature distributions for all VQ methods to the same Gaussian
distributions by sampling feature vectors zi ∼ N (µ ·1d, Id). While feature distributions are typically
complex and dynamic in practical training scenarios, this simplified setting still yields valuable
insights. We also initialize the codebook distribution as the standard Gaussian distribution across all
VQ methods by generating a set of code vectors {ek}Kk=1 ∼ N (0d, Id).

Our baseline includes Vanilla VQ (van den Oord et al., 2017), VQ EMA (which uses exponen-
tial moving average updates and is also known as k-means in VQ-VAE-2) (Razavi et al., 2019),
Online Clustering (which employs k-means++ in CVQ-VAE) (Zheng & Vedaldi, 2023), and
VQ+Linear (which incorporates a linear layer projection for code vectors) (Zhu et al., 2024a;b). In
all VQ algorithms, we treat sampled code vectors as trainable parameters and optimize them using
these algorithms. For detailed experimental specifications, see Appendix E.3.

As illustrated in Figure 5, we evaluate five distinct VQ methods using the criterion triple (E ,U , C). In
Figures 5(a)-5(d), we set µ = 2 except VQ+Linear. Our results show that Vanilla VQ, VQ EMA,
and Online Clustering exhibit poor VQ performance and substantial Wasserstein distance.
This suggests that Vanilla VQ and methods based on k-means and k-means++ are ineffective VQ
strategies, since they fail to align the distributions of features and codebooks.

Conversely, VQ+Linear achieves both superior VQ performance and a significantly reduced Wasser-
stein distance, approaching zero at µ = 2. This demonstrates that VQ+Linear’s exceptional perfor-
mance stems from its successful distribution alignment. However, with a large initial distribution
gap between codebook and features (at µ = 5), VQ+Linear struggles to minimize the distributional
distance, resulting in poor VQ performance. This limitation becomes more apparent when varying
µ from 0 to 8, as depicted in Figures 5(e)-5(h), VQ+Linear becomes ineffective at µ = 4. These
results indicate that VQ+Linear remains heavily dependent on codebook initialization. In com-
parison, our Wasserstein VQ algorithm consistently performs best with relatively large values of µ
(e.g., µ ≥ 4), thanks to its explicit distributional matching regularization that eliminates reliance on
codebook initialization to prevent distributional mismatch.
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… …… …

Multi-Scale VQ

2 3

VQ

Encoder Multi-Scale VQ

…

Multi-Scale Image Token 

Decoder

VGG

Patch GAN
1

Figure 6: The architecture integrates an encoder-decoder network with a multi-scale VQ module. Block 1
features the standard VQGAN framework (Esser et al., 2021), which includes reconstruction loss LR, VGG-
based perceptual loss LP , and GAN loss LG. Block 2 implements the multi-scale VQ process with quantization
loss LQ. Block 3 visualizes the VQ process using multi-scale features, incorporating commitment loss LC and
our proposed Wasserstein loss LW .

In summary, even with a fixed feature distribution, methods like Vanilla VQ or those based on k-
means and k-means++ fail to achieve distributional matching, leading to poor VQ performance. While
VQ+Linear can achieve distributional matching with proper codebook initialization, its effectiveness
heavily relies on this initialization. This limitation becomes potentially problematic when the
feature distribution is unknown and changes dynamically during training. In contrast, our proposed
Wasserstein VQ works independently of codebook initialization. Through explicit distributional
matching regularization, it could maintain proper matching even as the feature distribution evolves
dynamically. Notably, although the codebook distribution would be arbitrary during training, our
quadratic Wasserstein distance—based on the Gaussian distribution assumption—effectively aligns
the distributions and achieves the best VQ performance.

4 WASSERSTEIN VQ FOR VISUAL GENERATION

4.1 A PRELIMINARY: VQGAN

In this section, we examine the application of Wasserstein VQ within the framework of VQGAN (Esser
et al., 2021). As illustrated in Block 1 of Figure 6, VQGAN combines several components: an
encoder E(·), a decoder D(·), a quantizer Q(·) with a learnable codebook {ek}Kk=1, a VGG network
P (·) (Simonyan & Zisserman, 2015), and a patch-based discriminator (Isola et al., 2017). As
described earlier in Section 2.1, for an input image x, the encoder processes the image to yield a
spatial feature ze = E(x) ∈ Rh×w×d, where (h,w) denotes the feature resolution. The quantizer
converts ze into a quantized feature zq , from which the decoder reconstructs the image as x̂ = D(zq).
To ensure high perceptual quality in the reconstructed images, the system employs both the VGG
network and the patch-based discriminator (Esser et al., 2021; Johnson et al., 2016). The overall loss
objective can be formulated as follows:

L = ∥x̂− x∥2︸ ︷︷ ︸
LR

+α1 ∥sg(zq)− ze∥︸ ︷︷ ︸
LQ

+α2 ∥sg(ze)− zq∥︸ ︷︷ ︸
LC

+ ∥P (x̂)− P (x)∥2︸ ︷︷ ︸
LP

+LG(x, x̂), (5)

where sg denotes the stop-gradient operation. LR, LQ, LC , LP , and LG represent the reconstruction
loss, quantization loss, commitment loss, VGG-based perceptual loss (Zhang et al., 2018), and GAN
loss (Isola et al., 2017; Lim & Ye, 2017), respectively. α1 and α2 are hyper-parameters.
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4.2 MULTI-SCALE VECTOR QUANTIZATION

Drawing inspiration from VAR’s coarse-to-fine token map design (Tian et al., 2024), we replace the
vanilla VQ described in Section 2.1 with a multi-scale VQ approach. This modification is shown in
Block 2 of Figure 6. The key difference is that multi-scale VQ employs a series of vanilla VQ steps,
with each step processing feature vectors at increasingly higher resolutions.

To better understand the multi-scale VQ process, suppose we have a set of spatial features {zi}Ti=1
with a resolution of (h,w) in Block 2, where z1 is initialized with ze. For creating coarse-to-fine
image tokens, we extract multi-scale spatial features {gi(zi)}Ti=1 using interpolation functions gi(·)
that reduces their resolutions to a set of smaller resolutions6{(hi, wi)}Ti=1. These spatial features are
processed by the vanilla VQ, yielding multi-scale image tokens {r1, ..., rT } and multi-scale quantized
features {Q(gi(zi))}Ti=1, as described in Block 3. The quantized features are then rescaled to their
original resolutions via another set of interpolation functions ĝi(·), denoted as ẑi = ĝi(Q(gi(zi))).
Next, we take zi+1 = zi − ẑi and perform residual quantization on zi+1 (Lee et al., 2022).

The multi-scale VQ process operates sequentially, not in parallel. Through a multi-step VQ procedure,
it derives the final quantized features zq =

∑T
i=1 ẑi, reducing the quantization error between zq and

ze. Notably, the commitment loss in multi-scale VQ differs from that in VQGAN (Esser et al., 2021)
and can be written as:

LC =

T∑
i=1

∥gi(zi)−Q(gi(zi))∥2. (6)

4.3 THE LEARNING OBJECTIVE

In this section, we focus on integrating our proposed Wasserstein VQ algorithm into the multi-scale
VQ framework. We estimate the population mean and covariance of the multi-scale spatial features
{gi(zi)}Ti=1 and code vectors {ek}Kk=1 by using their sample versions. To align the distributions
between feature vectors and code vectors, we employ the quadratic Wasserstein distance LW as
defined in Equation 4. The overall objective function is:

L = LR + α1LQ + α2LC + α3LW + LP + LG, (7)

where α1, α2 and α3 are hyperparameters.

5 EXPERIMENTS

In this section, we empirically demonstrate the effectiveness of our proposed Wasserstin VQ algorithm
in image reconstruction tasks. We conduct our experiments on the FFHQ (Karras et al., 2018) and
ImageNet-1k (Deng et al., 2009) datasets. The PyTorch code will be made publicly available.

Alternative Methods We evaluated our approach against several alternative methods: DQ-
VAE (Huang et al., 2023a), DF-VQGAN (Ni et al., 2022), DiVAE (Shi et al., 2022), RQVAE (Lee
et al., 2022), VQGAN (Esser et al., 2021), VQGAN-FC (Yu et al., 2022), VQGAN-EMA (Razavi
et al., 2019), VQWAE (Vuong et al., 2023), MQVAE (Huang et al., 2023b), and VQGAN-LC (Zhu
et al., 2024a). For detailed experimental settings, please refer to Appendix F.

Evaluation Metrics Following prior works (Esser et al., 2021; Zhu et al., 2024a), we evaluate image
reconstruction quality using multiple metrics: dataset-level Fréchet inception distance (rFID)(Heusel
et al., 2017), feature-level learned perceptual image patch similarity (LPIPS)(Zhang et al., 2018),
image-level peak signal-to-noise ratio (PSNR), and patch-level structural similarity index (SSIM).

Main Results As shown in Tables 1 and 2, our proposed Wasserstein VQ outperforms all alternative
methods on both datasets, demonstrating superior performance across all evaluation metrics at
identical resolutions. Notably, Wasserstein VQ consistently maintains 100% codebook utilization,
regardless of codebook size. This demonstrates that distributional matching effectively resolves the
issue of codebook collapse.

6See the multi-scale resolution details in Appendix F.
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Table 1: Reconstruction performance on the ImageNet-1K dataset. The term “Resolution” refers to the
resolution of the spatial feature ze, while “Utilization” represents codebook utilization U . †: The codebook
utilization is computed across the training dataset, ⋆: The codebook utilization is computed across evaluation
dataset. The symbol “-” indicates that no data point is provided.

Method Resolution Codebook Size Utilization (%) ↑ rFID ↓ LPIPS ↓ PSNR ↑ SSIM ↑
DQVAE† (16, 16) 1,024 - 4.08 - - -
DF-VQGAN† (16, 16) 12,288 - 5.16 - - -
DiVAE† (16, 16) 16,384 - 4.07 - - -
RQVAE† (16, 16) 16,384 - 3.20 - - -

VQGAN†
(16, 16) 16,384 3.4 5.96 0.17 23.3 52.4
(16, 16) 50,000 1.1 5.44 0.17 22.5 52.5
(16, 16) 100,000 0.5 5.44 0.17 22.3 52.5

VQGAN-FC†
(16, 16) 16,384 11.2 4.29 0.17 22.8 54.5
(16, 16) 50,000 3.6 4.96 0.15 23.1 54.7
(16, 16) 100,000 1.9 4.65 0.15 22.9 55.1

VQGAN-EMA†
(16, 16) 16,384 83.2 3.41 0.14 23.5 56.6
(16, 16) 50,000 40.2 3.88 0.14 23.2 55.9
(16, 16) 100,000 24.2 3.46 0.13 23.4 56.2

VQGAN-LC†
(16, 16) 16,384 99.9 3.01 0.13 23.2 56.4
(16, 16) 50,000 99.9 2.75 0.13 23.8 58.4
(16, 16) 100,000 99.9 2.62 0.12 23.8 58.9

Wasserstein VQ⋆
(16, 16) 16,384 100.0 2.28 0.12 24.43 63.5
(16, 16) 50,000 100.0 2.07 0.12 24.67 64.4
(16, 16) 100,000 100.0 1.94 0.11 24.76 64.8

Table 2: Reconstruction performance on the FFHQ dataset. The term “Resolution” refers to the resolution
of the spatial feature ze, while “Utilization” represents codebook utilization U . †:The codebook utilization is
computed across the training dataset, ⋆: The codebook utilization is computed across evaluation dataset.

Method Resolution Codebook Size Utilization (%) ↑ rFID ↓ LPIPS ↓ PSNR ↑ SSIM ↑
RQVAE† (16, 16) 2,048 - 7.04 0.13 22.9 67.0
VQWAE† (16, 16) 1,024 - 4.20 0.12 22.5 66.5
MQVAE† (16, 16) 1,024 78.2 4.55 - - -

VQGAN† (16, 16) 16,384 2.3 5.25 0.12 24.4 63.3
VQGAN-FC† (16, 16) 16,384 10.9 4.86 0.11 24.8 64.6
VQGAN-EMA† (16, 16) 16,384 68.2 4.79 0.10 25.4 66.1
VQGAN-LC† (16, 16) 100,000 99.5 3.81 0.08 26.1 69.4

Wasserstein VQ⋆
(16, 16) 16,384 100.0 3.52 0.08 27.07 74.4
(16, 16) 50,000 100.0 3.35 0.08 27.26 74.9
(16, 16) 100,000 100.0 3.18 0.07 27.32 74.9

Ablation Studies As shown in Table 3 in Appendix G, incorporating the Wasserstein distance LW

as an auxiliary loss function (α3 = 0.3) consistently outperforms the VQ algorithm without this term
(α3 = 0.0). The improvement is evident in the reconstructed images’ visual quality, particularly in
the preservation of fine details, as demonstrated in Figure 10 in Appendix G.

6 CONCLUSION

This paper examines vector quantization (VQ) from a distributional perspective. We introduce
three key evaluation criteria and demonstrate empirically that optimal VQ results emerge when the
distributions of continuous feature vectors and code vectors are identical. Our theoretical analysis
confirms this finding, emphasizing the crucial role of distributional alignment in effective VQ.
Based on these insights, we propose using the quadratic Wasserstein distance to achieve alignment,
leveraging its computational efficiency under a Gaussian hypothesis. This approach achieves near-
full codebook utilization while significantly reducing quantization error. Our method successfully
addresses both training instability and codebook collapse, leading to improved downstream image
reconstruction performance. However, due to limited GPU resources, we were unable to conduct
image generation experiments.
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Language-guided image inpainting with defect-free vqgan. In CVPR, 2022.

Ingram Olkin and Friedrich Pukelsheim. The distance between two random vectors with given
dispersion matrices. Linear Algebra and its Applications, 1982.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In ICML, 2021.
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A OPTIMAL SUPPORT OF THE CODEBOOK DISTRIBUTION

Proof of Theorem 1. First, we assume supp(PB) = supp(PA). Then for any z ∈ supp(PA),
there exist a sequence of points in supp(PB) that converge to z. Let {ek}Kk=1 be K code vectors
independently generated from PB . Then the empirical distribution of {ek}Kk=1 tends to PB as the
size K tends to infinity. Since Ω = supp(PA) is a bounded region, we have the following:

sup
z∈supp(PA)

min
k

∥z − ek∥2 = sup
z∈supp(PB)

min
k

∥z − ek∥2
p→ 0, as K → ∞.

This quantity is an upper bound on the quantization error E({zi}; {ek}). Thus,

sup
{zi}⊆Ω

E
(
{zi}Ni=1; {ek}Kk=1

)
≤ sup

z∈Ω

min
k

∥z − ek∥2
p→ 0, as K → ∞.

This demonstrates that PB has vanishing quantization error asymptotically. Furthermore, for any K
code vectors {ek}Kk=1 independently drawn from PB , we have {ek}Kk=1 ⊆ Ω. Since the empirical
distribution of {zi}Ni=1 tends to PA as the feature sample size N tends to infinity, we can easily show
that for any fixed {ek}Kk=1 ⊆ Ω, the codebook utility rate satisfies

U
(
{zi}Ni=1, {ek}Kk=1

) p→ 1, as N → ∞.

This shows that {ek}Kk=1 attains full utilization asymptotically, and thus PB attains full utilization
asymptotically.

On the other hand, we assume PB attains full utilization and vanishing quantization error asymp-
totically. Then we first claim that supp(PA) ⊆ supp(PB). Since PB has vanishing quantization
error asymptotically, then for any z ∈ supp(PA), there exist a sequence of points in supp(PB) that
converge to z. This implies that supp(PA) ⊆ supp(PB) and thus supp(PA) ⊆ supp(PB).

13
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To show supp(PB) = supp(PA), it remains to show supp(PB) ⊆ supp(PA). In fact, if
supp(PB) ⊆ supp(PA) does not hold, then there exists an open region R ⊆ supp(PB)−supp(PA)
such that PB(R) > 0 and

min
z∈supp(PA),z′∈R

∥z − z′∥ ≥ ϵ0

for some ϵ0 > 0. Since supp(PA) ⊆ supp(PB), then there exists a sufficiently large K0 such that
the event{

Generating{ek}K0

k=1 i.i.d. from PB s.t. {ek} ⊆ supp(PA), sup
z∈supp(PA)

min
k

∥z − ek∥ < ϵ0

}
(8)

has some positive probability C > 0. Then with a positive probability of at least C · PB(R), we can
pick the first K0 code vectors from Equation (8) and the (K0 + 1)th code vector from R. For any
such codebook of size K0 + 1, we know the (K0 + 1)th code vector will never be used regardless of
the choice of the feature set {zi}. Therefore, the codebook utilization

sup
{zi}

U
(
{ek}K0+1

k=1 ; {zi}
)
≤ K0

K0 + 1
< 1.

This contradicts the property that PB attains full utilization asymptotically. Thus, supp(PB) ⊆
supp(PA) must hold. This concludes the proof.

B STATISTICAL DISTANCES OVER GAUSSIAN DISTRIBUTIONS

We first introduce the definition of Wasserstein distance.

Definition 4. The Wasserstein distance or earth-mover distance with p norm is defined as below:

Wp(Pr,Pg) = ( inf
γ∈Π(Pr,Pg)

E(x,y)∼γ

[
∥x− y∥p

]
)1/p . (9)

where Π(Pr,Pg) denotes the set of all joint distributions γ(x, y) whose marginals are Pr and Pg

respectively. Intuitively, when viewing each distribution as a unit amount of earth/soil, the Wasserstein
distance (also known as earth-mover distance) represents the minimum cost of transporting “mass”
from x to y to transform distribution Pr into distribution Pg . When p = 2, this is called the quadratic
Wasserstein distance.

In this paper, we achieve distributional matching using the quadratic Wasserstein distance under Gaus-
sian distribution assumptions. We also examine other statistical distribution distances as potential
loss functions for distributional matching and compare them with the Wasserstein distance. Specif-
ically, we provide the Kullback-Leibler divergence and the Bhattacharyya distance over Gaussian
distributions in Lemma 5 and Lemma 6. Both distances require full-rank covariance matrices, which
makes them unsuitable for distributional matching in practical applications. In contrast, our quadratic
Wasserstein distance-based loss function does not have this limitation.

Lemma 5 (Kullback-Leibler divergence (Lindley & Kullback, 1959)). Suppose two random variables
Z1 ∼ N (µ1,Σ1) and Z2 ∼ N (µ2,Σ2) obey multivariate normal distributions, then Kullback-
Leibler divergence between Z1 and Z2 is:

DKL(Z1,Z2) =
1

2
((µ1 − µ2)

TΣ−1
2 (µ1 − µ2) + tr(Σ−1

2 Σ1 − I) + ln
detΣ2

detΣ1
).

Lemma 6 (Bhattacharyya Distance (Bhattacharyya, 1943)). Suppose two random variables Z1 ∼
N (µ1,Σ1) and Z2 ∼ N (µ2,Σ2) obey multivariate normal distributions, Σ = 1

2 (Σ1 +Σ2), then
bhattacharyya distance between Z1 and Z2 is:

DB(Z1,Z2) =
1

8
(µ1 − µ2)

TΣ−1(µ1 − µ2) +
1

2
ln

detΣ√
detΣ1 detΣ2

.

14
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Figure 7: Quantitative analyses of the criterion triple when PA and PB are uniform distributions.

C QUANTITATIVE ANALYSES WHEN CODEBOOK DISTRIBUTION AND
FEATURE DISTRIBUTION ARE UNIFROM DISTRIBUTIONS

As discussed in Section 2.3, we conclude that the optimal criterion triple is achieved when PA

and PB exhibit identical distributions. This conclusion holds when PA and PB are derived from
other distributions, such as the uniform distribution. As shown in Figure 7, we sample a set of
feature vectors {zi}Ni=1 from the distribution Unif(−1, 1) and a set of code vectors {ek}Kk=1 from
Unif(ν − 1, ν + 1), where ν is selected from the set {0.0, 0.5, 1.0, 1.5, 2.0, 2.5} or from Unif(−ζ, ζ),
with ζ drawn from the set {1, 2, 3, 4, 5, 6}. We observe that when µ = 0 or ζ = 1—indicating
that PA and PB have identical distributions—the performance in terms of the criterion triple is
optimal, achieving the lowerest E , the highest U , and the largest C across all tested values of K, d,N .
Therefore, we conclude that our quantitative analyses are distribution-agnostic and can be generalized
to other distributions.

D QUANTIZATION ERROR ANALYSES UNDER THE DISTRIBUTION MATCHING

As discussed in Section 2.3 and 2.4, the minimum E occurs when the distributions PA and PB

are identical. In this section, we explore other factors influencing E as part of the supplementary
analyses in Section 2.3. We first consider both PA and PB to be Gaussian distributions. As illustrated
in Figure 8, we sample a set of feature vectors {zi}Ni=1 along with a set of code vectors {ek}Kk=1
from the distribution N (µ ∗ 1d, Id), where µ is selected from the set {0.0, 0.5, 1.0, 1.5, 2.0, 2.5},
or from the distribution N (0d, σ

2Id), where σ is drawn from the set {1, 2, 3, 4, 5, 6}. From the
Figure 8(a) to 8(f), we observe that E remains constant as µ increases, while it increases as σ
increases. Additionally, we find that the feature size N does not significantly impact E . A larger
codebook size K results in a slight decrease in E , whereas an increase in the codebook dimension d
leads to a markedly larger E . Consequently, the minimum value of E is influenced by the Gaussian
covariance matrix σ2I , the codebook size K, and the feature dimension d. This analysis underscores
the nuanced interplay of these parameters in determining the optimal performance of our model under
Gaussian distributional assumptions.

We can arrive at a nearly identical conclusion when PA and PB are derived from other distributions,
such as the uniform distribution. As shown in Figure 9, we sample a set of feature vectors {zi}Ni=1

along with a set of code vectors {ek}Kk=1 from the distribution Unif(ν− 1, ν+1), where ν is selected
from the set {0.0, 0.5, 1.0, 1.5, 2.0, 2.5}, or from the distribution Unif(−ζ, ζ), with ζ drawn from the
set {1, 2, 3, 4, 5, 6}. Similarly, the minimum value of E is influenced by the ζ, the codebook size K,
and the feature dimension d.
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Figure 8: Visualization of quantization Error when PA and PB are Gaussian distributions.
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Figure 9: Visualization of quantization Error when PA and PB are Uniform distributions.

E THE DETAILS OF SYNTHETIC EXPERIMENTS

E.1 EXPERIMENTAL DETAILS IN SECTION 2.3 AND APPENDIX C

Qualitative Analyses As depicted in Figure 3 in Section 2.3, we conduct a qualitative analyses
of the criterion triple. Specifically, we sample a set of feature vectors {zi}Ni=1 from within the red
circle, and a collection of code vectors {ek}Kk=1 from within the green circle, with parameters set
to K = 400, N = 10000 and d = 2 for the calculation of the criterion triple (E ,U , C). For the
visualization, we select 10% of the feature vectors and 90% of the code vectors for plotting.

Quantitative Analyses As illustrate in Figure 4 in Section 2.3, we undertake comprehensive quanti-
tative analyses centered around the criterion triple (E ,U , C). In these analyses, we assume that PA and
PB are Gaussian distributions, from which we sample a set of feature vectors {zi}Ni=1 and a collection
of code vectors {ek}Kk=1. The default parameters are set to N = 200, 000, K = 1024, and d = 32
for all figures unless otherwise specified. For instance, in Figure 4(a), N and d are taken at their
default values, while the K is varied within the set {128, 256, 512, 1024, 2048, 4096, 8192, 16284}.
Additionally, each synthetic experiment is repeated five times, and the average results are reported,
along with the calculation of 95% confidence intervals. In all figures, mean results are represented by
points, while the confidence intervals are shown as shaded areas. Identical parameter settings are
employed when PA and PB are uniform distributions, as illustrated in Figure 7 in Appendix C.

E.2 EXPERIMENTAL DETAILS IN SECTION 3.2

We provide experimental details of Figure 5 in Section 3.2. In our experimental setup, we evaluate
five distinct VQ algorithms using the criterion triple (E ,U , C). All experiments run on a single
NVIDIA A100 GPU, with a codebook size K of 16,384 and dimensionality d of 16 across all
algorithms. Each algorithm trains for 2,000 steps, with 20,000 feature vectors sampled from the
specified Gaussian distribution at each step. For Wasserstein VQ, Vanilla VQ, and VQ + MLP, we
use the SGD optimizer for training. For VQ EMA and Online Clustering, we use classical clustering
algorithms—k-means (Bradley & Fayyad, 1998) and k-means++(Arthur & Vassilvitskii, 2007)—to
update code vectors.

E.3 EXPERIMENTAL DETAILS IN APPENDIX D

For the Figure 8 and 9 in Appendix D, all figures utilize the default parameters as specified in the
quantitative analyses presented in Appendix C when calculating the criterion triple (E ,U , C).
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F IMAGE RECONSTRUCTION EXPERIMENTAL DETAILS

In the image reconstruction task, our proposed Wasserstein VQ adopts the same encoder and decoder
as the original VQGAN (Esser et al., 2021). Input images are processed at a resolution of (256, 256).
The encoder, a U-Net (Ronneberger et al., 2015), downscales the input image by a factor of 16,
yielding a spatial feature ze with the resolution of (16, 16). This spatial feature is quantized while
maintaining the same resolution, then fed into the decoder (also a U-Net) for image reconstruction.
To generate coarse-to-fine image tokens, we extract multi-scale spatial features using an interpolation
function that reduces their resolutions to progressively smaller sizes. We follow the token map design
from VAR (Tian et al., 2024), setting T to 10, with multi-scale spatial feature resolutions of (1, 1),
(2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (8, 8), (10, 10), (13, 13), and (16, 16). For all experiments, we set
α1 = α2 = 0.2 and α3 = 0.3. We employ the Adam optimizer (Kingma & Ba, 2014) with an initial
learning rate of 5e−4, applying a half-cycle cosine decay after a 5-epoch linear warm-up phase. We
train for 20 epochs on ImageNet-1k using 8 Nvidia H20 GPUs, and for 200 epochs on the FFHQ
dataset using 4 Nvidia H20 GPUs.

G ABLATION RECONSTRUCTION RESULTS

To evaluate the effectiveness of our proposed Wasserstein distance LW , we conducted ablation studies.
As shown in Table 3, using the Wasserstein distance LW as an auxiliary loss function (α3 = 0.3)
consistently outperforms the VQ algorithm without it (α3 = 0.0). This improvement also can be
observed in the reconstructed images’ visual quality, especially in the preservation of fine details, as
shown in Figure 10.

Table 3: Ablation studies of the Wasserstein distance on the ImageNet-1K dataset. The term “Utilization” refers
to codebook utilization U , calculated across the evaluation dataset. α3 = 0.3 indicates the incorporation of the
Wasserstein distance in the VQ algorithm, while α3 = 0.0 signifies the exclusion of the Wasserstein distance. ↑
indicates improvements.

Method Codebook Size Utilization (%) ↑ rFID ↓ LPIPS ↓ PSNR ↑ SSIM ↑
α3 = 0.0 16,384 89.3 2.74 0.13 23.97 61.6
α3 = 0.3 16,384 100.0 ↑10.7 2.28 ↑0.46 0.12 ↑0.01 24.43 ↑0.46 63.5 ↑1.9
α3 = 0.0 50,000 73.5 2.48 0.13 24.23 62.6
α3 = 0.3 50,000 100.0 ↑26.5 2.07 ↑0.41 0.12 ↑0.01 24.67 ↑0.44 64.4 ↑1.8
α3 = 0.0 100,000 61.8 2.27 0.12 24.30 62.8
α3 = 0.3 100,000 100.0 ↑38.2 1.94 ↑0.33 0.11 ↑0.01 24.76 ↑0.46 64.8 ↑2.0

Figure 10: Visualization of Reconstructed Images. The first row exhibits the original input images at a resolution
of 256× 256 pixels, the second row shows the reconstruction results from the Wasserstein VQ method, while
the third row presents the outcomes without the incorporation of the Wasserstein distance.

H ADDITIONAL EXPLANATIONS

H.1 EXPLANATIONS ON THE CRITERION 2 AND 3

This section offers visual elucidations for Criterion 2 and 3 that are defined in Section 2.2. As
depicted in the Figure 11(a) and 11(b), the values of U are 50% and 100%, respectively. This
discrepancy arises because, in Figure 11(a) only half of code vectors’ utilization pk exceeds zero
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Figure 11: Visualization of the evaluation criteria (U , C).

(as stipulated by in Criterion 3), whereas in Figure 11(b), the utilization pk of of all code vectors
surpasses zero7. It is clear that U quantifies the completeness of codebook utilization. However, U
remains insufficient to evaluate the degree of codebook collapse, as it fails to address the scenario
depicted in Figure 11(c). Although all code vectors are utilized, the code vector e3 excessively
dominates the codebook utilization, resulting in an extreme imbalance. This imbalanced codebook
utilization can be considered a form of codebook collapse, thereby not aligning with our desired
outcome. This observation motivates the proposal of Criterion 3, which is capable of gauging the
imbalance or uniformity inherent in codebook utilization.

When compared in Figure 11(b) and 11(c), the value of C are 10.00 and 1.02, respectively, demon-
strating that Criterion 3 is capable of distinguishing the imbalance of code vector utilization pk
under conditions where cases share the same U . Additionally, Criterion 3 categorizes Figure 11(c)
as indicative of codebook collapse, as the value C nearly reaches its minimum of 1.0, a result that
resonates with our intuitive interpretation. However, it is essential to note that Criterion 3 alone does
not suffice to evaluate the degree of codebook collapse. When scrutinizing Figure 11(a) and 11(d),
despite the identical C, there exists a stark disparity in U . This observation underscores that the value
of C is inadequate for quantifying the proportion of actively utilized code vectors.

In this paper, we adopt the combination of Criterion 2 and 3 to quantitatively assess the extent of
codebook collapse. A robust mitigation of codebook collapse is indicated solely when both U and C
exhibit substantial values.

H.2 EXPLANATIONS ON THE PROTOTYPICAL STUDY IN SECTION 2.3

This section interprets the experimental findings presented in Figure 3. The VQ process relies on
nearest neighbor search for code vector selection. As evident from Figure 3(a) to 3(d), actively
selected code vectors are predominantly those located in close proximity to or within the feature
distribution, while distant ones remain unselected. This leads to highly uneven code vector utilization
pk, with those closer to the feature distribution being excessively used. This elucidates the significantly
low U and C observed in Figure 3(a). Furthermore, a notable quantization error, e.g., E = 1.19 in
Figure 3(a), arises when the codebook and feature distributions are mismatched, forcing feature
vectors outside the codebook to settle for distant code vectors. Conversely, as the disk centers align,
leading to a closer match between the two distributions, an increased number of code vectors become
actively engaged. Additionally, code vectors are utilized more uniformly, and feature vectors can
select nearer counterparts. This accounts for the improvement of criterion triple values towards
optimality as the distributions align.

Analogously, we can employ nearest neighbor search to interpret the second case. When code vectors
are distributed within the range of feature vectors, as illustrated in Figure 3(e) and Figure 3(f), the
majority of code vectors would be actively utilized, ensuring high U . However, the utilization of
these code vectors is not uniform; code vectors on the periphery of the codebook distribution are
more frequently used, leading to relatively low C. Feature vectors on the periphery will have larger
distances to their nearest code vectors, resulting in higher E . Conversely, when feature vectors fall
within the range of code vectors, as depicted in Figure 3(g) and Figure 3(h), outer code vectors remain
largely unused, leading to a lower U and C. Since only inner code vectors are active, each feature
vector can find a nearby counterpart, maintaining low E .

H.3 WHY K-MEANS-BASED VQ METHODS FAIL TO ACHIEVE DISTRIBUTIONAL MATCHING

7the concept of pk is analogous to that of sub-word frequency over the text corpus in the natural language
processing field.
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Figure 12: Visualization of k-
mean assignment step. A green
circle and a blue square represent
the feature and code vectors, respec-
tively.

In this section, we offer visual illustrations to elucidate why
k-means-based VQ methods fall short in achieving distribu-
tional matching. k-means-based VQ algorithm was originally
proposed (van den Oord et al., 2017) and subsequently em-
ployed (Razavi et al., 2019). However, a widely acknowledged
limitation of this approach is the significant issue of codebook col-
lapse, particularly when the codebook size, K, is large (Dhariwal
et al., 2020; Takida et al., 2022; Yu et al., 2022; Lee et al., 2022).

To provide a deeper understanding of this intrinsic issue, we vi-
sually depict the k-means assignment step for VQ in Figure 12.
The k-means algorithm initially partitions the feature space into
Voronoi cells by assigning each feature vector to the nearest code
vector based on Euclidean distance. In this step, nine feature
vectors are assigned to e1, whereas no feature vector is assigned
to e4. Subsequently, these code vectors, acting as the clustering
centers, are updated using an exponential moving average of the assigned feature vectors. This update
mechanism presents a critical challenge: since e4 is never selected, it remains unupdated. In practical
applications, especially when the codebook size K is substantial, a majority of code vectors remain
unutilized and unupdated. This phenomenon highlights the inherent difficulty of k-means-based VQ
methods in learning an effective and representative codebook for distributional matching.

In addition to the explanations provided, we also present empirical evidence demonstrating that
k-means-based VQ methods fail to achieve distributional matching. For detailed insights, please refer
to Section 3.2.
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