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ABSTRACT

Temporal difference (TD) learning represents a fascinating paradox: It is the prime
example of a divergent algorithm that has not vanished after its instability was
proven. On the contrary, TD continues to thrive in reinforcement learning (RL),
suggesting that it provides significant compensatory benefits. Empirical evidence
supports this, as many RL tasks require substantial computational resources, and
TD delivers a crucial speed advantage that makes these tasks solvable. However,
it is limited to cases where the divergence issues are absent or negligible for un-
known reasons. So far, the theoretical foundations behind the speed-up are also
unclear. In our work, we address these shortcomings of TD by employing tech-
niques for analyzing iterative schemes developed over the past century. Our anal-
ysis reveals that TD possesses a mechanism enabling efficient mapping into the
smallest eigenspace—an operation previously thought to necessitate costly matrix
inversion. Notably, this effect is independent of the conditioning of the problem,
making it particularly well-suited for RL tasks characterized by rapidly increasing
condition numbers through delayed rewards. Our novel theoretical understand-
ing allows us to develop a scalable algorithm that integrates TD’s speed with the
reliable convergence of gradient descent (GD). We additionally validate these im-
provements through a rigorous mathematical proof in two dimensions, as well as
experiments on problems where TD and GD falter, providing valuable insights
into the future of optimization techniques in artificial intelligence.

1 INTRODUCTION

Temporal difference (TD) learning is a training technique for prediction models in multi-step tasks,
mostly known for its application to value prediction in reinforcement learning (RL, Sutton, 1988;
Kaelbling et al., 1996; Arulkumaran et al., 2017). By estimating expected future rewards, TD learn-
ing helps agents make informed decisions based on their interactions with the environment. This ap-
proach has proven successful in various domains such as robotics (Littman et al., 1995; Rajeswaran
et al., 2017), game playing (Mnih et al., 2015; Lample & Chaplot, 2017), and autonomous driving
(Shalev-Shwartz et al., 2016; Sallab et al., 2017), by addressing challenges like delayed rewards
where the impact of actions is not immediately clear.

Behind these successes hides a profound contrast in how information is processed over time com-
pared to traditional time prediction methods. Such models are autoregressive 1-step predictors, and
are often trained via unrolling (Goodfellow et al., 2016), which is an n-step update rule. This is
suboptimal since predicting n steps with 1-step models leads to exponentially accumulating errors,
and an n-step update rule requires storing n-step trajectories. By contrast, value functions combined
with TD offer an n-step predictor via a 1-step update rule, scoring in terms of both mathematical
and computational scalability.

However, challenges arise during optimization: TD is a non-gradient method, harboring the poten-
tial for divergence (Baird, 1995). Nonetheless, it often succeeds in finding good solutions quickly. In
contrast, provably convergent algorithms such as gradient descent (GD) and its variants are imprac-
tically slow in RL, despite being the leading optimization methods in deep learning. This difference
in speed is well-documented empirically (Sutton & Barto, 2018), but the theoretical reasons behind
it are unclear. As a consequence, attempts of unifying GD and TD to arrive at a convergent, fast
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optimization method are often based on intuition. The lack of theoretical understanding means there
are no design principles to guide their development.

Our paper addresses this issue with the following contributions:

• We provide a theoretical foundation to explain why TD can be fast starting from the long-
established link between condition numbers and the speed of gradient methods. We gener-
alize these ideas to non-gradient methods, such as TD.

• The insights into what makes TD fast uniquely position us to identify the necessary modifi-
cations. We demonstrate with a simple method how a unification of GD and TD preserving
their positive attributes can look like.

2 BACKGROUND

Optimization Theory The natural starting point of all optimization methods based on derivatives
is quadratic objectives. They arise in linear systems as well as in nonlinear systems near the op-
tima, where higher-order terms become negligible. Therefore, any method with issues on quadratic
objectives will eventually fail. Typically, a quadratic loss L of n variables is expressed as:

L =
1

2
∥Qx∥2 Q ∈ Rm×n, x ∈ Rn, ∥ · ∥ (l2-norm) (1)

A non-zero target y ∈ Rm would not affect convergence properties of iterative solution methods, so
we neglect this possibility to maintain compact notation. Such methods take the following generic
form in their t-th iteration.

xt+1 = (1− ηPQ)xt η ∈ R (learning rate), P ∈ Rn×m (2)

The most prominent examples are GD (P = QT ) and Newton’s Method (P = Q−1). Convergence
occurs if the induced norm of the iteration operator ∥1− ηPQ∥ is strictly smaller than 1. This value
is also called the convergence rate because the induced norm, by definition, exactly describes the
worst-case decrease of ∥xt+1∥ relative to ∥xt∥, and therefore, the optimization progress. For GD
and optimal learning rate, the convergence rate equals κ−1

κ+1 , where κ is the condition number of the
Hessian QTQ. Ill-conditioned problems (κ ≫ 1) result in a convergence rate only slightly below 1,
rendering GD ineffective for solving them (Garrigos & Gower, 2023).

Ill-Conditioning in Reinforcement Learning While one-step tasks can also suffer from ill-
conditioning, RL tasks have their own unique mechanisms that elevate condition numbers, thereby
complicating optimization, e.g. delayed rewards in multi-step problems require information to flow
through several time steps. Suppose we have an n-state Markov Reward Process (MRP) with a lin-
ear transition structure (n → n − 1 → ... → 1 → terminal), where all rewards are 0 except for the
final transition into the terminal state with a reward of 1. This scenario exemplifies a quintessen-
tial delayed reward problem, isolated from other complexities in RL such as stochasticity, changing
environments, and continuous spaces. The correct values v must fulfill the Bellman equation, a
consistency equation stating the value difference between consecutive states equals the intermediate
reward. Any violation of this equation is called the temporal difference error δn:

δn = v(n)− v(n− 1) = 0 for n > 1 and δ1 = v(1)− 1 = 0 (3)

This particular linear system is one of the most studied in linear algebra, often called Poisson prob-
lem. Its condition number scales as n2 (Strang, 2006). Hence, even though the solution seems
trivial—all values should be 1—GD becomes increasingly impractical for solving this simple task
as n increases. Consider in contrast a MRP where all n-states immediately transition to the terminal
state (n → terminal, n − 1 → terminal, ..., 1 → terminal). This system has no delayed rewards
and the sytem matrix in the Bellman equation would be an identity matrix, i.e. the system is per-
fectly well-conditioned. It is important to keep in mind that condition numbers can be affected by
many other mechanism as well, such as the presence of self-loops in a MRP (Sharifnassab & Sutton,
2023), and that delayed rewards are only one way of how condition numbers can increase.
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Why Gradient Descent Modifications Fail in Reinforcement Learning The situation worsens
when function approximation is involved, parametrizing values v(·, θ) by θ. Constructing a loss by
mapping temporal difference errors to a scalar via l2-norm and then differentiating for θ yields the
corresponding GD update uGD:

uGD = −∂θ
(
δ2n/2

)
= −δn ·

(
∂θv(n, θ)− ∂θv(n− 1, θ)

)
(4)

The effectiveness of gradient-based updates again depends on the condition number. The overall
condition number is now determined not only through the Bellman equation 3 but also through the
function approximation part in equation 4. This overall conditioning can be expected to be ill, as the
first part, the Bellman equation, is already ill-conditioned. Counterexamples where the overall con-
dition number of a matrix product is lower than the individual matrix factors are extremely rare (an
example would be a product of a matrix with its inverse). In Deep Learning, various methods have
been proposed to reduce the condition number and so alleviate the slow convergence of GD (Good-
fellow et al., 2016). However, they only have limited effectiveness in Deep RL, where typically
value functions are approximated normalizing data is impractical since the outputs are values and
a priori unknown. Also, the input distribution changes continually during the ongoing exploration
of the state-action space. As a consequence, initialization schemes, designed to transport normal-
ization properties from one layer to the next, fail since input and output were never normalized.
And while momentum can accelerate gradient optimization, it is insufficient to reach an acceptable
convergence rate by itself. This justifies the interest in alternative methods, such as TD.

Temporal Difference Learning TD was first introduced as a sampling-based solution technique
for the Bellman equation; its function approximation pendant is given by:

uTD = −δn · ∂θv(n, θ) (5)

Compared to uGD in eq. 4, the TD update uTD lacks the derivative term of the subsequent value.
Removing this term is motivated by the idea that observations of new rewards should only adjust
values of past states. However, the missing term renders the TD update a non-gradient update,
therefore lacking any convergence guarantees. That TD updates can indeed lead to divergence has
been shown (Baird, 1995). Yet, empirical evidence suggests that this instability sometimes does not
occur and that then TD finds solutions in reasonable time Sutton & Barto (2018). From a practical
point of view, this ability to deliver solutions in at least some cases makes it the preferred method
over consistently slow GD. The logical conclusion is that completely resolving the divergence issue
of TD without compromising its speed advantage would be even more beneficial. Achieving this
requires a clear understanding of the reasons behind TD’s speed advantage.

3 THE INCREASED SPEED OF TEMPORAL DIFFERENCE LEARNING

To answer why TD can provide faster convergence than GD, we analyze the iteration scheme intro-
duced in Equation (2), replacing PQ by H:

xt+1 = (1− ηH)xt (6)

We begin exactly where previous works stop: The update equation of TD (5) lacks a term present in
GD (4), making it a non-gradient method. Basic calculus reveals that a gradient field is associated
with a corresponding scalar potential, the loss function, whose first derivative is the gradient field
and whose second derivative, the Hessian HGD, is symmetric. Hence, a non-gradient field like the
one from TD need not, and generally will not, have a symmetric Jacobian, allowing for a skew-
symmetric part in HTD. Gaining insight into how this part affects the eigenvalues is crucial for
answering the question of TD’s superior convergence speed.

3.1 CLOSED-FORM SOLUTION IN TWO DIMENSIONS

To explore the impacts of a non-symmetric HTD on optimization, we first focus on the special
case of two-dimensions. This scenario can be solved exactly and will serve as the guiding example
for the mathematically precise but abstract argumentation for the generic case. Let us consider the
following matrix, which we require to be positive-definite and not the identity for r = 0:

H =

(
a b+ r

b− r c

)
(7)
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Figure 1: a) - d): Illustration of the four types of a HTD matrix with an example of an optimization
trajectory for a random starting point. The background shows the underlying quadratic loss. e)
Corresponding loss curves. f) Convergence rate as a function of the learning rate. The amount of
rotation increases from blue (no rotation) to red (large rotation). The dot on each curves marks the
best convergence rate under optimal learning rate.

This provides a simple model for a possible HGD (r = 0) matrix and HTD (r ̸= 0) matrices
with varying strength of the skew-symmetric part. The symmetric part of HTD equals HGD, a
simplifying assumption for this model that we will remove later. The two eigenvalues λ1/2 of
1− ηH are key to understanding the dynamics of the corresponding iterative process.

λ1/2 = 1− η

2
(a+ c)± η

2

√
D with D = (a− c)2 + 4b2 − 4r2 (8)

For r = 0, the discriminant D is positive, resulting in two distinct eigenvalues. As r increases in
magnitude, D decreases, causing the eigenvalues to converge. With more balanced eigenvalues, the
iteration scheme progresses more uniformly in both eigendirections, thereby increasing the conver-
gence rate. We identify four qualitatively distinct cases, illustrated in Figure 1:

a) r = 0, D > 0: gradient case, distinct eigenvalues, orthogonal eigenvectors
b) |r| > 0, D > 0: small rotation, converging eigenvalues,non-orthogonal eigenvectors
c) |r| > 0, D = 0: critical rotation, identical eigenvalues, only one eigenvector
d) |r| > 0, D < 0: large rotation, complex eigenvalues with identical real part, complex

eigenvectors

Figure 1e depicts the loss curves for the shown optimization trajectories across the four regimes.
The r ̸= 0 curves differ from GD by their short burn-in phase that is followed by convergence at
improved speed. In Figure 1f, the convergence rate c is plotted against the learning rate for different
values of r. Overall, the results indicate that the observed speed-up for r ̸= 0 is consistent across
a wide range of r values, suggesting that this improvement is not a result of specific learning rate
choices, but rather stems from the influence of the skew-symmetric part in HTD.

3.2 GENERALIZING CONVERGENCE RATES

Next, we formalize the ideas above using more rigorous mathematical language. We first link the
convergence rate to the minimal eigenvalue, and then show how rotation increases the minimal
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eigenvalue in arbitrary dimension. We observed that the loss curve may exhibit a burn-in phase or
oscillate during its descent, which motivates us to investigate TD’s speed through an asymptotic
convergence rate c, defined as follows:

c = lim
t→∞

max
x0∈Rn

t

√
∥xt∥
∥x0∥

(9)

For GD, the connection between c and the condition number arises from the symmetry of HGD.
For the non-symmetric TD case, establishing a similar link from c to the spectrum of HTD requires
further work:

Theorem 1: Let η ∈ R, n ∈ N, x0 ∈ Rn, H ∈ Rn×n and t ∈ N. Denote eigenvalues of H and
their real and imaginary part as λk = Rk + iIk , k ∈ {1, ..., n} and define:

ηmax = 2min
k

Rk

R2
k + I2k

Rmin = min
k

Rk (10)

Then, the iteration scheme xt = (1 − ηH)xt−1 is convergent if Rk > 0 ∀k ∈ {1, ..., n} and
0 < η < ηmax. Furthermore, the convergence rate c is upper bounded by:

c ≤
√

1− ηRmin

(
1− η

ηmax

)
(11)

Corollary 1: Let Rmin ≪ 1, ρ = 2maxk(Rk, Ik) and copt be the convergence rate under optimal

learning rate. Then: copt ≤
√
1− 1

2ηmaxRmin ≤ 1−R2
min/ρ

2 +O(R4
min)

Corollary 2: Let η ≪ 1. Then: c ≤ 1− ηRmin +O(η2)

Theorem 1 provides a formula for how the convergence rate can be estimated from the spectrum in
the case of a non-symmetric HTD. Corollary 1 and 2 offer more interpretable expressions for two
relevant situations in deep learning: ill-conditioned matrices (Rmin ≪ 1) and small learning rates
(η ≪ 1). Both expressions share the dependence on the eigenvalue with the smallest real part Rmin,
highlighting how increasing this value benefits optimization.

3.3 EIGENSPECTRA OF SYMMETRIC, POSITIVE-DEFINITE MATRICES UNDER
SKEW-SYMMETRIC PERTURBATIONS

We now generalize the ideas from Section 3.1 to arbitrary n > 2. Our analysis begins again with a
matrix H = A + rB, where A is symmetric, positive-definite and B skew-symmetric. As before,
r = 0 corresponds to GD and r ̸= 0 to TD cases. We find the following statements about the
spectrum of H:

Theorem 2: Let A ∈ Rn×n be symmetric, positive-definite matrix and B ∈ Rn×n skew-
symmetric. Additionally, let A and B have non-degenerate eigenvalues. Denote the i-th eigenvector
of A by vi and of B by wi. Then:

i.) λmin(A) ≤ λreal
min(A+ rB) ≤ λreal

max(A+ rB) ≤ λmax(A) ∀r ∈ R
ii.) limr→∞ λreal

i (A+ rB) = ⟨wi, Awi⟩

iii.) d
drλ

real
min(A+ rB)|r=0 = 0 and d2

dr2λ
real
min(A+ rB)|r=0 ≥ ⟨v2,Bv1⟩2

λ2(A)

In Figure 2a, we illustrate these statements for n = 5 using random matrices A and B. The eigen-
values (blue dotted lines) converge towards each other, as earlier in the n = 2 case. Especially
the smallest eigenvalue, previously identified as crucial for the convergence rate, improves signif-
icantly. The statements of Theorem 2, depicted in red, prove that this picture is representative of
any A and B matrices: Part i) secure that smallest and largest real part eigenvalue cannot separate
any further by bounding the spectrum’s real part from above and below. Part ii) fixes the right side
through a formula for the large r asymptotic limit. Part iii) brings us to the heart of why TD im-
proves convergence speed. The formula quantifies the initial increase of the smallest eigenvector.
With the second-smallest eigenvalue serving as the denominator, this term can become extremely

5
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Figure 2: Real-part eigenspectra of a symmetric matrix A with different strengths r of a skew-
symmetric perturbation B in a) n = 5 and b) n = 100 dimensions.

large depending on just how ill-conditioned A is. This counters ill-conditioning perfectly, making
TD ideally suited for RL. To further illustrate this point, Figure 2b presents a more ill-conditioned
example with n = 100, showcasing a remarkable rise in the small eigenvalues.

Enhancing Theorem 2 by Probabilistic Arguments: Non-degeneracy of eigenvalues is one of
the requirements in Theorem 2; however, it is not essential for the statements to hold. Including it
simplifies the mathematical proof and, more importantly, allows us to highlight a different type of
argument that we will revisit later: In function approximation, the entries of the involved matrices
originate from a random process, typically initiated by the random initialization of layers in a neu-
ral network or feature matrices in linear function approximation. Among all possible eigenvalues
of such a matrix, the occurrence of two identical eigenvalues is a rare edge case and practically
irrelevant.

This can be mathematically formalized and proven using measure theory. One of its central theorems
states the zero set of a non-constant polynomial is a Lebesgue null set. Building on that, the set of
matrices with degenerated eigenvalues is Lebesgue null since these matrices’ characteristic polyno-
mials have degenerated zeros if and only if their discriminant, itself a polynomial, is zero. Similarly,
part ii) describes the eigenvalues’ asymptotic limit which, in theory, could equal A’s eigenvalues.
But since eigenvectors are defined through polynomial equations, improvement of the spectrum is
practically guaranteed. Moreover, by the law of large numbers, as n increases, the eigenvalues of H
scatter around the mean of A’s eigenvalues, a normal-sized number. In summary, the eigenspectra
depicted in Figure 2 are representative of all practically relevant scenarios and this conclusion stands
firm under rigorous mathematical evaluation.

3.4 THE COMPLETE PICTURE

Finally, we are in a position to present a coherent argument for why TD leads to faster convergence
than GD, provided that divergence does not occur.

1. The convergence behavior of iterative methods xt+1 = (1 − ηH)xt is determined by
the matrix H , known as the Hessian HGD for GD. For TD, HTD is distinguished by the
presence of a skew-symmetric part B. We decompose this as HTD = A+B.

2. As established in Theorem 1, convergence requires that the real parts of the eigenvalues of
HTD are positive. This directly translates to A being positive-definite.

3. With that, we are in the scope of Theorem 2. The real parts of eigenvalues of HTD con-
verge towards each other. Especially the smallest eigenvalue increases quickly, driven by
the ill-conditioning of A. While we previously thought of A as HGD, this assumption is

6
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not necessary anymore since Theorem 2 yields a better HTD for any symmetric positive-
definite A.

4. According to Corollary 1, increasing the smallest eigenvalue improves the convergence
rate. However, the speed-up is capped by the maximal learning rate. This limitation be-
comes critical in the large-rotation regime, where the growing imaginary parts of the spec-
trum limit the achievable benefits.

5. More importantly, Corollary 2 provides a similar link for small learning rates. This is
particularly relevant in nonlinear function approximation, where learning rates must be
kept small to ensure the accuracy of linear approximations. In this regime, this explanation
for the speed-up from TD is valid without restriction.

This inherent speed advantage of TD has motivated research aimed at addressing its divergence is-
sue. Shortly after Baird introduced GD to RL, he presented interpolation between GD and divergent
TD, marking the first attempt to fuse these two methods. Our analysis sheds new light on why this
idea does not work: In Theorem 2, we interpolated with a skew-symmetric B, whereas in Baird’s
framework, this matrix would possess an indefinite symmetric part. Perturbation analysis reveals
that in this case eigenvalues shift in both directions. Thus, for an ill-conditioned A characterized by
small positive eigenvalues, even a minimal negative shift creates negative eigenvalues, making this
interpolation method instantaneously divergent. Nevertheless, unifying GD and TD is desirable and
we demonstrate now with a simple construction how this can be achieved.

4 A PRINCIPLE-GUIDED METHOD TO UNIFY GRADIENT DESCENT AND
TEMPORAL DIFFERENCE LEARNING

Inspired by our new understanding, we combine the two update vectors of GD uGD and TD uTD by
using GD’s sign and TD’s magnitude. Therefore, we denote this new method by GDS-TDM:

uGDS−TDM = sign(uGD) · |uTD| (12)

The particular form of this update rule is motivated as follows: Through the sign term, the angle be-
tween GD and GDS-TDM can be at most π/2, enforcing movement in similar directions as conver-
gent GD and thereby preventing divergence. Where the signs of GD and TD are constant, the update
rule is described by a linear map. Its matrix will have a skew-symmetric part as it is build from the
TD update. As we learnt, this is the key property that causes a drastic speed up in ill-conditioned
problems. We now present a mathematical proof to show that this theoretical argumentation also
holds under mathematical scrutiny:

Theorem 3 (Enhanced Version): Let D ∈ R2×2 be symmetric and positive-definite, R ∈ R2×2

with eigenvalues unequal 0, H : R2 → R2, x 7→ − sign(Dx) · |Rx|, S =
{
s ∈ R2|si ∈

{−1, 0, 1} ∀i ∈ {1, 2}
}

, and for s ∈ S, let As =
{
x ∈ R2| sign(Dx)i · sign(Rx)i =

si ∀i ∈ {1, 2}
}

. Then:

i.) For all s ∈ S, in As, H is described by a linear map Rs ∈ R2×2 such that ∀x ∈ As :
H(x) = Rsx.

ii.) There exists a maximal learning rate ηmax > 0 such that for η < ηmax, the iteration scheme
xt = (1 + ηH)(xt−1) converges to 0.

iii.) If convergence occurs within one As, the convergence rate c is given by c = 1−ηλs, where
λs is the smallest eigenvalue of −Rs.

iv.) If convergence occurs across two As, the convergence rate is given by c ≤ 1−ηG(f,K, ϵ),
where f is the direction of the smallest eigenvector of D, K the condition number of D,
and ϵ the angle between d and Rd, where d is the boundary vector between the two As. G
is a monotonically increasing function in K.

As before, we separated the technical requirements that are automatically fulfilled if the involved
matrices stem from a continuous sampling process. The full list of these Lebesgue null assumptions
can be found in the appendix. Figure 3 gives an illustration of the theorem. Part a) and b) show
examples of D and R vector fields, corresponding to GD and TD. Part c) shows the boundaries

7
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Figure 3: Illustration of our proposed GDS-TDM update: The GD and TD vector fields (left and
middle) result in the GDS-TDM field on the right. Convergence either occurs within a single region
(orange), or zigzagging (cyan).

of the different regions, the dashed lines, along which the sign flips happen. They decompose the
domain into the regions As, each with its own linear map. The orange trajectory shows an example
of convergence within one As, and the cyan trajectory of zigzag convergence between two As.

To understand why this method can have better convergence speed, consider first the zigzag case
(part iv) and the function G. For GD, the term after the learning rate decreases with the smallest
eigenvalue, explaining its slowness for ill-conditioned D. In contrast, here G shows the opposite
behavior, increasing convergence speed with the condition number of D. As one can also guess from
Figure 3c, the dependence depends more on geometric quantities of R, not D, such as the angle at
which the flow lines of R intersect the boundary line. For the inner convergence case (part iii), the
convergence rate depends on the smallest eigenvalue. The linear maps Rs are non-symmetric, and as
we have shown before, this substantially increases the smallest eigenvalue, improving convergence.

Besides this mathematical characterization, practical advantages of the update rule are that it is easy
to implement and causes minimal computational overhead. Since GD and TD are two backprop-
agation techniques based on the same forward pass, they can be computed in parallel with little
additional memory. The runtime increase due to a component-wise sign comparison is likewise
minimal.

5 EXPERIMENTS

While our central contribution is a theoretical foundation for understanding TD and for deriving
algorithms with well-understood properties, we provide a first set of empirical results for how GDS-
TDM compares against GD and TD. In our experiments, we target value estimation, which is a
fundamental part of most practical reinforcement learning algorithms. The choice and setup of these
experiments are described below and motivated by our intention to provide a clear consistency check
of our theoretical derivation.

Two-State Example for TD’s Divergence We consider a variant of Tsitsiklis & Van Roy
(1996b)’s canonical value prediction task with a second parameter, as shown in Figure 4a. There are
two transitions (state 0 → 0 and 1 → 0). The self-transition is convergent while the other one leads
to divergence. Training off-policy using a state distribution with too much weight on the divergent
transition will therefore make TD divergent on this task. This alternating between convergent and
divergent updates can be nicely seen in TD trajectory in Figure 4b. GD and GDS-TDM both con-
verge. However, as can be seen in Figure 4c, the convergence rate of GDS-TDM is substantially
better, agreeing with our theoretical treatment.

10x10 Grid World This is a classic RL environment, for which value functions are easy to visu-
alize, allowing for easier assessment of iterative solution methods. We consider a two-dimensional
non-periodic grid with terminal states located in the top-left and bottom-right corners. The agent
can move up, down, left and right (unless on the boundary), and is penalized with a reward of −1 for
every move that does not lead to the terminal state. Given the optimal policy, we estimate its values
using a 100-parameter linear function approximator based on polynomial features, which we train
on full batches to avoid stochastic effects of mini-batch training. The state pairs for the updates are

8
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Figure 4: a) Schematic representation of Tsitsik-
lis and Van Roy’s counterexample. b) Learning
trajectories of the different algorithms in the pa-
rameter space. c) Training loss as a function of
the learning iterations.

0 1 2 3 4 5 6 7 8 9

0123456789

GD

0 1 2 3 4 5 6 7 8 9

0123456789

TD

0 1 2 3 4 5 6 7 8 9

0123456789

GDS-TDM

0 5000 10000 15000 20000
Iterations

10 1

100

101

Lo
ss

GD
TD
GDS-TDM

8 6 4 2 0
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methods: gradient descent (GD, left), temporal
difference (TD, center) and GDS-TDM (right).
(Bottom) Comparison of the learning curves of
the three methods.

sampled with equal probability, i.e. this is an off-policy case. In the optimal policy distribution, state
pairs closer to the terminal states would occur more frequently than those further away. The exact
solution has a value of 0 in the terminal corners and is minimal along the diagonal. An illustration
is given in Figure 5, where GD and GDS-TDM correctly approach this solution. In contrast, TD
suffers from divergence and is unable to find a good answer. Comparing the loss curves, we observe
that GD and GDS-TDM behave similarly, both steadily decreasing the loss and eventually reaching
a similar accuracy. This 100-parameter example gives us an outlook beyond the strict mathematical
argumentation of our 2D proof. The absence of a substantial speed-up of GDS-TDM over GD could
point to a limitation of our method in higher dimensions, suggesting that additional modifications
might be necessary. It is also possible that Grid World, with its immediate rewards, does not generate
the high condition numbers where TD methods thrive and GD fails. The fact that the value function
estimated by GD already closely resembles the exact solution supports this. Regarding divergence,
the picture is clearer: GDS-TDM does not encounter the divergence issues exhibited by TD.

Baird’s counterexample In addition to the two experiments here, we study a version of Baird’s
counterexample which represents a Markov zero reward process. Despite involving a larger dimen-
sionality than our theory (we evaluated a variant with 8 dimensions), this example shows divergent
behavior for TD, and a clear advantage for GDS-TDM. It converges to a loss level that is several
orders of magnitude lower than the one of GD. Full details are provided in Appendix B.

6 RELATED WORK

A number of successful applications of TD exists in literature (Tesauro, 1995; Mnih et al., 2015).
TD learning was originally introduced in contrast to Monte-Carlo methods, which rely on complete
episodes, along with further TD variants that vary the number of steps over which errors are evalu-
ated (Sutton, 1988). Notably, our analysis applies to all variants of TD, as we did not use any specific
form of updates but only their non-gradient nature. The fact that TD is not a gradient method and
divergent was discovered by Baird (1995), and another example of divergence of TD was given
by Tsitsiklis & Van Roy (1996b). While the precise circumstances under which TD diverges re-
main mostly unclear, it has been shown that TD converges for linear function approximation with
on-policy training Tsitsiklis & Van Roy (1996a). In that case, the convergent transitions outweigh
the divergent ones. Generalizations of linear TD’s on-policy convergence were found by Asadi et al.
(2023). Even in this setting, a method convergent on every transition could speed-up optimization.
Emphatic-TD methods (Sutton et al., 2016) reweight the state distribution to update less frequently

9
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on divergent state transitions. While this can suppress divergence, it inherently impairs the ability
to learn the divergent part of the state space. The factors contributing to divergence in RL were
later summarized under the term ’deadly triad’, including TD training, function approximation and
off-policy training. Given the importance of these elements in modern RL, a number of different
research works have tried to address the shortcomings of TD divergence. For instance, van Hasselt
et al. (2018) try to build intuition for the TD algorithm behaviour and design a number of mitigation
strategies that they test empirically. Furthermore, least-squares TD (LSTD), in its recursive (Bradtke
& Barto, 1996) or incremental (Geramifard et al., 2006) implementation, provide convergence guar-
antees at the cost of a higher computational complexity. More recently, diverse attempts are made to
address TD’s divergence through normalization techniques (Gallici et al., 2024), or by introducing
and updating a second set of parameters that then leads to updates on the actual network parameters
(Wang & Ueda, 2022). Beyond the divergence issue, Kumar et al. (2021) studies how regularization
can improve the quality of TD solutions.

The introduction of GD to RL, under the name residual gradient (Baird, 1999), has been proposed as
a solution to the divergence of TD. This was quickly followed by interpolation techniques between
TD and GD to address the apparent slowness of GD (Baird, 1999), marking the first attempt to
combine the positive elements of both methods into a new method. Ill-conditioning, the property
that slows down GD, was also investigated in an RL context, confirming that condition numbers
can indeed be high in RL tasks (Sharifnassab & Sutton, 2023). Further attempts to unify TD and
GD have been made under the name gradient TD (GTD) methods (Sutton et al., 2008; 2009). They
address another phenomenon in how TD and GD can differ: On stochastic tasks, GD can converge to
a different solution than TD. While GTD methods converge and approach the original TD solution,
they do not address the slowness of GD. This is apparent when considering that the slowness issue
already exists in deterministic tasks, where GTD simplifies to GD. Further improvements to the
GTD algorithms were proposed by Yao (2023) and Qian & Zhang (2023), reducing the number of
hyper-parameters to tune in the algorithm.

It is noteworthy that positive observations of learning with non-gradient methods reach beyond
RL. Examples include time series prediction with unrolled computation graphs (Stachenfeld et al.,
2022) often in combination with differentiable simulators (Um et al., 2020), as well as in the con-
text of bilevel optimization (Bolte et al., 2024; Domke, 2012), such as hyperparameter optimiza-
tion (Lorraine et al., 2020), deep equilibrium models (Geng et al., 2021; Fung et al., 2022) and
meta-learning (Andrychowicz et al., 2016). Typically, the backpropagation pass is either short-
ened or otherwise modified, which consequently destroys the gradient property of the outcome, thus
falling within the scope of our argument. Similar to TD, the evidence is primarily empirical and
these research fields could benefit also from the discovery of the underlying reasons behind the
observed improvements.

7 CONCLUSION

Our work presented a theoretical framework that explains the widespread and puzzling observa-
tions that TD can deliver a crucial speed-up for making RL tasks solvable. We identified the
skew-symmetric part of the iteration operator, which distinguishes non-gradient from gradient-based
methods, as the key quantity driving this acceleration. An interesting future direction will be to de-
sign model architectures that effectively control this quantity to enable a consistent performance
boost. This shares similarities with initialization schemes that are tailored to influence the condition
number to enhance gradient descent.

Furthermore, we proposed a method that combines the convergence properties of GD with the speed-
up mechanisms of TD. We supported this with a mathematical proof for the two-dimensional case,
providing a detailed understanding of how these properties integrate. With our focus primarily on
the theoretical aspects, a natural next step is further empirical investigations. These could include
exploring nonlinear function approximation, testing compatibility with momentum and other opti-
mization techniques, and extending to advanced control algorithms in RL.

In an empirically-driven field, it is crucial to remember the significance of theoretical results. Unify-
ing GD and TD has been a longstanding goal in RL, and despite extensive empirical research, it has
not been satisfactorily resolved, even in two dimensions. In that spirit, we believe our theoretical
framework can serve as a stepping stone for developing more reliable and faster RL algorithms.

10
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A MATHEMATICAL PROOFS

A.1 THEOREM 1 AND ITS COROLLARIES

Theorem 1: Let η ∈ R, n ∈ N, x0 ∈ Rn, H ∈ Rn×n and t ∈ N. Denote eigenvalues of H and
their real and imaginary part as λk = Rk + iIk , k ∈ {1, ..., n} and define:

ηmax = 2min
k

Rk

R2
k + I2k

Rmin = min
k

Rk (13)

Then, the iteration scheme xt = (1 − ηH)xt−1 is convergent if Rk > 0 ∀k ∈ {1, ..., n} and
0 < η < ηmax. Furthermore, the convergence rate c is upper bounded by:

c ≤
√

1− ηRmin

(
1− η

ηmax

)
(14)

Proof:

We start with:

c = lim
k→∞

max
x0∈Rn

k

√
∥xk∥
∥x0∥

≤ lim
k→∞

k

√
∥(1− ηH)k∥

= max
k∈{1,...,n}

|1− ηλk|

(15)

The first equality is the definition of the convergence rate; the following inequality rewrites the
expression using operator norms; the last equality applies Gelfand’s formula (Lax, 2002). For the
inputs to max-operator, we have:

|1− ηλk| =
√
1− 2ηRk + η2

(
R2

k + I2k
)

(16)

Hence, in order to have c < 1, we require Rk > 0 for all k ∈ {1, ..., n}. The radicand is a parabola
with a value of 1 for η = 0. Hence, it is also 1 for η = 2ηck, where ηck is the minimum.

d

dη

(
1− 2ηckRk + ηck

(
R2

k + I2k
))

= 0 (17)

We find:

nc
k =

Rk

R2
k + I2k

(18)

Hence, c < 1 for 0 < c < ηmax = 2mink n
c
k.

For the inequality on the convergence rate, we use again properties of parabolas: parabolas are
determined by three conditions. A parabola P (η) lying above the k other parabolas between 0 and
ηmax is fixed by:

• P (0) = 1

• P (ηmax) = 1

• d
dηP (0) = −2Rmin

This leads to:
P (η) =

2Rmin

ηmax
η2 − 2Rminη + 1 (19)

Corollaries 1 and 2:

Both follow from Taylor expansion and determining the extrema of Equation 19.
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A.2 THEOREM 2

Theorem 2: Let A ∈ Rn×n be symmetric, positive-definite matrix and B ∈ Rn×n skew-
symmetric.. Additionally, let A and B have non-degenerate eigenvalues. Denote the i-th eigenvector
of A by vi and of B by wi. Then:

i.) λmin(A) ≤ λreal
min(A+ rB) ≤ λreal

max(A+ rB) ≤ λmax(A) ∀r ∈ R
ii.) limr→∞ λreal

i (A+ rB) = ⟨wi, Awi⟩

iii.) d
drλ

real
min(A+ rB)|r=0 = 0 and d2

dr2λ
real
min(A+ rB)|r=0 ≥ ⟨v2,Bv1⟩2

λ2(A)

Proof:

Part i)

We compute the numerical range of A+rB, which is defined as the range of the Rayleigh coefficient:
Let x ∈ Cn and normalized. Denote the vectors of the eigenbasis of A by vj and the corresponding
eigenvalues by λj .

⟨x, (A+ rB)x⟩ =
∑
j

λj |xj |2 + r ·
∑
j,k

Bjkx̄jxk

=
∑
j

λj |xj |2 + r ·
∑
j,k

Bjk(x
R
j x

R
k + xI

jx
I
k) + ir ·

∑
j,k

Bjk(x
R
j x

I
k − xI

jx
R
k )

(20)

Since B is skew-symmetric, the second term adds to zero. Therefore, an expression for the real
part of the Rayleigh quotient contains only the first term. Using ∥x∥2 = 1, we find a bound for the
numerical range:

λmin(A) ≤ Re(⟨x, (A+ rB)x⟩) ≤ λmax(A) (21)

As the numerical range of a matrix contains its spectrum, the claim follows.

Part ii) and iii):

We follow the procedure outlined by Lax (2013) to compute the derivatives: Consider a differen-
tiable square-matrix-valued function F (t) of a real variable t. Let µ be a non-degenerate eigenvalue
of F (0). Then for sufficiently small t, A(t) has an eigenvalue µ(t) and corresponding eigenvector
h(t) that both depend differentiably on t. The derivatives with respect to t at 0 are denoted by dots
and given as follows with h = h(0) and l the left eigenvector of F (0) corresponding to µ:

µ̇ =
⟨l, Ḟ h⟩
⟨l, h⟩

(22)

(F (0)− µ)ḣ = −(Ḟ − µ̇)h (23)

µ̈ =
⟨l, F̈ h⟩+ 2⟨l, Ḟ ḣ⟩+ 2µ̇⟨l, ḣ⟩

⟨l, h⟩
(24)

Application to iii):

A+rB is a differentiable square-matrix-valued of r equalling A for r = 0. A is symmetric, implying
left and right eigenvectors are identical. Using Avj = λjvj to denote eigenvalues and normalized
eigenvectors, we find:

λ̇j = ⟨vj , Bvj⟩ = 0 (25)

The last equality follows from the antisymmetry of B.
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(A− λj)v̇j = −(B − λ̇j)vj (26)

This singular system is solved by the following expression for any α ∈ R. Note that the inverse here
is the pseudoinverse.

v̇j = −(A− λj)
−1(B − λ̇j)vj + αvj (27)

The second derivatives are given as follows:

λ̈j = 2⟨vj , Bv̇j⟩
= 2⟨Bvj , (A− λj)

−1Bvj + αvj⟩
= 2⟨Bvj , (A− λj)

−1Bvj⟩

= 2
∑
k ̸=j

⟨vk, Bvj⟩2

λk − λj

(28)

For the largest eigenvalue, all denominators are negative and therefore the largest eigenvalue does
not grow for sufficiently small r. For the smallest eigenvalue, the situation is reversed.

λ̈max ≤ 0

λ̈min ≥ 0
(29)

Application to ii):

In the same spirit, we apply the formulas for the derivatives again. B is skew-symmetric, therefore
diagonalizable. We have:

d

dϵ
λi(ϵA+B) = ϵ⟨wi, Awi⟩ (30)

Since eigenvalues of skew-symmetric matrices lie on the imaginary axis, we find:

λi(ϵA+B) = ϵ⟨wi, Awi⟩+O(ϵ2) (31)

Hence, we can verify the claim:

lim
r→∞

λi(A+ rB) = lim
ϵ→0

1

ϵ
λi(ϵA+B) = ⟨wi, Awi⟩ (32)

A.3 THEOREM 3

Theorem 3: Let D ∈ R2×2 be symmetric and positive-definite, R ∈ R2×2, H : R2 → R2, x 7→
− sign(Dx) · |Rx|, S =

{
s ∈ R2|si ∈ {−1, 0, 1}

}
, and for s ∈ S, let As =

{
x ∈ R2| sign(Dx)i ·

sign(Rx)i = si ∀i ∈ {1, 2}
}

. Then:

i.) For all s ∈ S, in As, H is described by a linear map Rs ∈ R2×2 such that ∀x ∈ As :
H(x) = Rsx.

Assume further that D has different eigenvalues, R has eigenvalues unequal 0, and that all the Rs

are diagonalizable. Let v1,s be the maximal eigenvector to Rs (eigenvector to the eigenvalue with
largest real part). We assume v1,s and Dv1,s have no zero components for all s. Denote by di a
vector for which the i-th component of Ddi is 0. Then we assume Rdi has no zero component.
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ii.) There exists a maximal learning rate ηmax > 0 such that for η < ηmax, the iteration scheme
xt = (1 + ηH)(xt−1) converges to 0.

iii.) If convergence occurs within one As, the convergence rate c is given by c = 1−ηλs, where
λs is the smallest eigenvalue of −Rs.

iv.) If convergence occurs across two As, the convergence rate is given by c ≤ 1−ηG(f,K, ϵ),
where f is the direction of the smallest eigenvector of D, K the condition number of D,
and ϵ the angle between d and Rd, where d is the boundary vector between the two As. G
is a monotonically increasing function in K.

Proof:

Description by a Linear Map For all s ∈ S, the matrix elements of Rs are given by (Rs)ij =
−si ·Rij . Then, for all k ∈ {1, 2}:

(Rsx)k =

2∑
j=1

−skRkjxj = −sk · (Rx)k (33)

Furthermore, for all x ∈ As:

H(x)k = − sign(Dx)k · |Rx|k = −sk
|Rx|k

sign(Rx)k
= −sk · (Rx)k (34)

Therefore, for all x ∈ As, H(x) = Rsx.

Further Subdividing R2 For each x ∈ R2, there exists an s such that x ∈ As. We will classify
the dynamics within each region As by using the eigendecomposition of its linear map Rs:

Rsvk = λkvk (35)

We choose the numbering according to the size of the real part of eigenvalues:

ℜ(λ1) ≥ ℜ(λ2) (36)

The division As of R2 consists of straight lines (when a component of s is zero) and double cones
(for the remaining s). A cone C generated by vectors gi is defined as:

C = {x ∈ Rn|x =
∑
i

αigi where all αi > 0} (37)

A double cone is the unification of the two cones generated by gi and −gi. The problem with this
division is that the behavior within one specific cone can vary. For instance, an As with only negative
eigenvalues and the eigenvectors inside of As, there will have some x for which it converges to 0
and other x for which it leaves As. This is why we further subdivide the As into subregions B that
behave consistently for all points inside. This works as follows:

1. First we split all double cones into the two cones they are made of.
2. For each cone C, we check if an eigenvector v of the corresponding Rs is in the interior

of C. If not, we leave C as it is. If so, we divide C, generated by {g1, g2} into new cones
always replacing one of the generators by v: {v, g2} and {v, g2}. In between these new
smaller cones, we will also have 1-dimensional cones, generated by fewer than n vectors.

3. If there still are eigenvectors in the two smaller cones, we repeat this procedure until there
are none inside anymore.

This will leave us with a subdivision of Rn into subregions B with no eigenvectors in their interiors.

Restriction to Neighbor Transitions For our convergence proof to work, we restrict our iteration
scheme to avoid jumping between subregions but only transition to adjacent subregions. Adjacent
subregions B1 and B2 means ∂B1 ∩ ∂B2 ̸= {0}. For a subregion B, we achieve this by allowing
only learning rates smaller than a maximal learning rate ηB . Let B be generated by gi and C be B
unified with all its adjacent subregions. Then we define Dδ as the cone spanned by the generators
g1 − δ · g2 and g2 − δ · g1. These are obviously cones containing B ⊂ Dδ for all δ ≥ 0.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Now, there exists a γ > 0 s.t. Dγ ⊂ C. For each of the gi, determine ηi such that f(η) =
(1 − ηRB)gi ∈ Dγ . This ηi is greater than 0 since f is continuous, f(0) = gi and gi is an interior
point of Dγ . Set ηB = mini ηi. Then for any x ∈ B, x = α1g1 + α2g2, the result of an iteration
step y is:

(1− ηBRB)x =

n∑
i=1

αi(1− ηBRB)gi (38)

Since αi > 0 due to x ∈ B, y is in the open cone spanned by (1−ηBRB)ai. These generators are in
Dγ by construction. Hence, y ∈ Dγ and y ∈ C, This means hat for all learning rates below ηB , the
iteration scheme maps only to B or its adjacent subregions. If the subregion was a lower-dimensional
cone, we can apply this argument to an adjacent full-dimensional cone. Choosing the minimum ηB
over all subregions, we receive a maximal learning rate ηmax, AT that guarantees adjacent transitions
globally.

Classification of the Dynamics within Subregions We classify a subregion B according to the
position of the largest eigenvector v1 of their corresponding linear map RB .

Case 1: v1 ∈ ∂B , convergence

(v1 lies on the boundary of B)

An immediate consequence is that the eigenvalue λ1 to v1 has to be negative (λ1 = 0 is not possible
by our theorem assumptions). To prove this, let {xt} be sequence of vectors converging to v1 =
limt→∞ xt with x0 ∈ B ∀k ∈ N. Then by how our method is constructed:

sign(Dxt) = − sign(RBxt) ∀t ∈ N (39)

By continuity, we have limt→∞ RBxt = RBv1 = λ1v1 and limt→∞ Dxt = Dv1. Since
by assumption of the theorem v1 and Dv1 have no zero components, and the sign function is
continuous outside of 0, we also have limt→∞ sign(RBxt) = sign(RBv1) = sign(λ1v1) and
limt→∞ sign(Dxt) = sign(Dv1). Putting that together, we find:

sign(Dv1) = − sign(RBv1) = − sign(λ1) sign(v1) (40)

By assumption of our theorem, D is positive definite, implying the angle between v1 and Dv1 has to
be smaller than π/2 and eliminating the possibility of a positive λ1 in the last equation. Therefore,
λ1 is negative.

Next, we show that our method converges to 0 from within this region: For all x ∈ B, we can
write x =

∑n
i=2 αigi. This is again the standard parametrization of cones with αi positive and gi

the generators of the cone. Note that v1 is such a generator; we set g1 = v1. Furthermore, this
parametrization also includes lower-dimensional cones, where the gi could be linear dependent. Let
now be x0 ∈ B. We obtain the next iteration vector x1 by applying the iteration scheme with the
linear operator of B:

x1 = (1 + ηH)(x0)

= (1 + ηRB)x0

= (1 + ηRB)

2∑
i=1

αigi

= (1 + ηRB)(α1v1 + α2β1v1 + α2β2v2)

= (1 + ηRB)((α1 + α2β1)v1 + α2β2v2)

= (1 + ηλ1)(α1 + α2β1)v1 + (1 + ηλ2)α2β2v2

= (1 + ηλ1)(α1 + α2β1)g1 + (1 + ηλ2)α2(g2 − β1g1)

=

(
(1 + ηλ1)(α1 + α2β1)− (1 + ηλ2)α2β1

)
a1 + (1 + ηλ2)α2g2

= (1 + ηλ1)

(
α1 −

(
1− (1 + ηλ2)

(1 + ηλ1)

)
α2β1

)
g1 + (1 + ηλ2)α2g2

(41)

In the fourth step, we switched from conic coordinates αi to the eigencoordinates βi, the description
in the eigenbasis of RB . The last line shows the conic coordinates of the new iterate x1. We choose
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a learning rate η < −1/λ2. Then the second coordinate is positive. The first coordinate is also
positive since (1+ηλ2) < (1+ηλ1) and β1 > 0 because βi, the coordinates of g2 in the eigenbasis,
are themselves conic coordinates of a cone spanned by the eigenvectors that g2 is part of. Altogether,
we conclude that the sequence xt stays within B. Therefore, the dynamics of the iteration scheme
is entirely described by the linear map RB . We estimate for a starting point x0 within B:

c = lim
t→∞

t

√
∥xt∥
∥x0∥

≤ lim
t→∞

t
√

∥(1 + ηRB)t∥ = max
i=1,2

|1 + ηλi| = 1 + ηλ1 (42)

Hence, for η < −1/λ2 as chosen above, we have c < 1 and the sequence converges to 0 inside of
B. Repeating this for any B yields a maximal learning rate ηmax,IC for inner convergence within
all subregions where this is possible.

Case 2: v1 /∈ ∂B , transition to an adjacent subregion or convergence

While we could repeat a similar calculation in conic coordinates as before, we present an alternative
briefer argument here: In case the eigenvalues and v1 are real, consider f(t) = (1 − ηRB)

tx0 for
t ∈ R This is a continuous map with f(0) = x0 and, by power iteration, limt→∞ f(t) approaches
the direction of the largest eigenvector, which is v1. Therefore, by the intermediate value theorem,
there exists a minimal t1 such that g(t1) lies on the boundary of the cone and g(t) inside of B for
all t < t1. Choose t = ⌈t1⌉ (smallest integer larger than or equal to t1). Then xt is outside of B but,
by our choice of learning rate, inside an adjacent subregion.

In case the eigenvalues and v1 have an imaginary part, we can switch the basis defined by the real
and imaginary part of v1. There RB takes the form:(

ℜ(λ1) ℑ(λ1)
−ℑ(λ1) ℜ(λ1)

)
= |λ1|

(
ℜ(λ1)/|λ1| ℑ(λ1)/|λ1|
−ℑ(λ1)/|λ1| ℜ(λ1)/|λ1|

)
(43)

The last matrix is a rotation matrix. So applying this linear map n-times to a vector means rescaling
it by a factor |λ1|n and then rotating it by the angle n arccos(ℜ(λ1)/|λ1|). Therefore, it is clear that
any for any x0 in the cone B, the cone will be left in a finite number of steps.

For completeness, there is also the possibility that x0 is proportional to the second eigenvector v2. By
the same argument as above in Case 1, the second eigenvalue would then be negative and we would
observe convergence within the learning rate bound and rate as determined in Case 1. Nevertheless,
this is an edge case and does not compromise the conclusion that for any subregion we observe
either convergence or transition to an adjacent subregion.

Dynamics between Subregions With the dynamics of single subregions classified, we can begin
to glue them back together. Let d1 be a vector for the first component of Dd1 is zero, and d2 be a
vector for the second component of Dd2 is zero. Then the cones spanned by {d1, d2}, {−d1, d2},
{d1,−d2}, {−d1,−d2} along with the lower-dimensional cones in between decompose R2. We
will denote these cones as C-cones. All of the cones of subregions B are exactly part of one C
and several B-cones may form one C-cone. The statement is now within one C cone the iteration
scheme will either converge to 0 or leave C in a finite number of steps. This is basically the same sort
of statement we received for the B regions. This implies that the iteration scheme cannot diverge
within C by jumping back and forth between subregions B.

To prove this, assume we have a sequence {xt} from our iteration scheme inside a C-cone that does
neither leave C nor converges to 0. Since {xt} does not converge within a subregion, it will leave
any subregions it ever visits. Since the number of subregions B is finite, {xt} must therefore revisit
at least one subregion it has already been in. In two dimensions, this implies there are two adjacent
subregions B1 and B2, and a, b ∈ N with a < b such that xt ∈ B1 for t = a and t = b and xt ∈ B2

for a < t < b + 1. By construction and by assumption of no convergence, neither B1 nor B2 have
an eigenvector inside or on their boundary.

The important observation is that inside a D region there are no sign flips of Dx. That means
even though H may be described by different linear functions in the different subregions, they are
glued together in a way that H is continuous on D. The updates moving out of B1 into B2 is Hxa

and the one moving from B2 back into B1 is Hxb. Working in polar coordinates and recalling
that the subregions are adjacent cones, this means that the angular coordinates of these two updates

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

must have different signs. By continuity of H and the intermediate value theorem, this implies that
there is an x in between xa and xb, in one of the subregions or their boundary, where the angular
coordinate of Hx is 0. Therefore, Hx has only a radial component, implying x is an eigenvector of
the corresponding linear map and the sequence {xt} will converge in contradiction to the assumption
that {xt} does not converge. As a consequence, the iteration scheme does either converge inside D
regions or leaves them in a finite number of steps.

A further consequence of this argument here the transition from one subregion to the next happens
in one direction only, clockwise or counter-clockwise. This can be seen by repeating the above
argument, where we had two different linear maps when we assumed the existence of two points
with different update direction. The two linear map were continuously connected. In contrast,
here we would have only one linear map for the two points, and this map is trivially continuous
everywhere between, allowing us to repeat argument.

Dynamics between D-Cones To understand the dynamics between the D-cones, we first char-
acterize them geometrically. Let f1 be the largest eigenvector of D. Then we choose the vectors
d1 and d2, which were defined by the i-th component of Ddi being 0 in the last subsection, to
have ⟨f1, di⟩ > 0. This can be achieved by simply replacing di by −di. Then all d1 and d2 lie
within the same quadrant and f1 lies inside the cone generated by the di. This is a direct conse-
quence from the fact that positive definite matrices define ellipses. As our D by assumption has an
off-diagonal part unequal 0, the di will not be the coordinate axes. A further consequence is that
sign(d1) = sign(d2) = sign(f).

Next, we conclude that H(x) for all x in D-cone spanned by d1 and d2 points to 0 in terms of their
sign:

sign(H(x)) = − sign(Dx) = − sign(Df1) = − sign(f1) = − sign(x) (44)
Similarly, we have for x in the D-cone spanned by −d1 and −d2:

sign(H(x)) = − sign(Dx) = sign(Df1) = sign(f1) = − sign(x) (45)

For the remaining cones, the last equality does not hold. Let f2 be the other eigenvector of D and
be oriented such that it is part of the D cone spanned by d1,−d2. Then for all x in that cone:

sign(H(x)) = − sign(Dx) = − sign(Df2) = − sign(f2) (46)

For all x in the remaining cone spanned by −d1, d2:

sign(H(x)) = − sign(Dx) = sign(Df2) = sign(f2) (47)

We already showed that the transitions from one subregion to the next go only in one direction. With
these geometric thoughts, we can eliminate the possibility of our iteration scheme circling around
forever between the D-cones. What is possible is going back and forth between two subregions
that meet at the d1 or the d2 line. This can be shown by the existence of two subregion where the
transitions happen only clockwise in one and counterclockwise in the other.

To show this assume without loss of generality that d1 lies before d2 when moving clockwise and
that both lie in the first quadrant, i.e. sign(d1) = (+1,+1) Then the first subregion is given by the
subregion B1 whose boundary is d1 and not in the cone spanned by d1 and d2. For x ∈ B1 and in
the first quadrant, we are in the cone spanned by d1,−d2, therefore the sign of the update direction
is (−1,+1) . Hence the iteration scheme will cross d1 clockwise. Repeating the argument for the
subregion B2 whose boundary is d2 and not in the cone spanned by d1 and d2, we find that there
the iteration scheme will cross d2 in counter-clockwise direction. This proofs the existence of two
subregions adjacent to one the d-lines between which the iteration scheme moves back and forth.

To describe this dynamics near the d-line, where the iteration scheme moves back and forth between
two subregions B1 and B2, we work in the basis d, e with e being orthogonal to d. We denote the
corresponding coordinates by γd, γe, and without loss of generality assume that for γe > 0 we move
into B1 First we analyze this zigzag behavior for a simplified map H∗ defined by H∗(x) = B1x
if ⟨γe, x⟩ > 0 and H∗(x) = B2x if ⟨γe, x⟩ < 0. A drawing of this situation can be found in A.3,
for the case where one of the sides moves actually away from 0. It is part of the argumentation
that in this case the movement toward 0 on the other side outweighs the divergent part. Denoting
r1 = ||B1d|| and r2 = ||B2d||, one iteration step in B1 changes the coordinates as follows:

∆γd = −ηr1γd cos(α)

∆γe = −ηr1γd sin(α)
(48)
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Figure 6: Geometric model for zigzag convergence. Blue lines show where the sign of the gradient
field switches. The green crosses with the red-colored quadrant indicate the allowed signs of the
update vector in the three regions defined by the blue lines. The red line corresponds to the flow line
of the non-gradient field.

Similarly, one iteration step in B2 changes the coordinates as follows:

∆γd = −ηr2γd cos(β)

∆γe = ηr2γd sin(β)
(49)

For the iteration scheme to move between B1 and B2 endlessly, we require ∆e, the number of B1

steps has to be κ the number of B2 steps, where κ can be computed from:

κηr sin(β)γd = ηr sin(α)γd or κ =
sin(β)

sin(α)
(50)

Here, we set r = r1 = r2 since along the boundary, the vector only flips a sign in one component
and therefore, the lengths are the same. Consequently, the average ∆γd progress per step is:

∆γd = −η
( κr

κ+ 1
cos(α) +

r

κ+ 1
cos(β)

)
γd = −ηF (α, β)γd (51)

As long as α + β < π, the expression in the brackets F gives a positive number, leading to
convergence. ϵ is the angle between the H∗(x) updates and the coordinate axis along which the sign
flips. ϵ fulfills:

α+ β + 2ϵ = π (52)

By assumption of the theorem, they are not parallel, giving ϵ > 0 and α+β < π. We also introduce
the angle ϕ between d and the first coordinate axis.

θ + α+ ϵ = π/2 (53)

To apply these ideas now to the actual vector field H , we note that the maximal step away from the
boundary can be no more than w1 = (1 + ηR1)d and w2 = (1 + ηR2)d. To receive a worst-case
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estimate for the convergence rate, we assume the updates always happen with the worst possible
angle αm and βm, which would lead to more movement along e and less along d. As by continuity
for η = 0, they approach α and β, we choose a learning rate smaller than a ηmax,ZZ that is chosen
such that the angle between the worst case value of α′ and β′ on both sides of d with the coordinate
axis of the sign flip is still ϵ/2. Then Equations 52 and 53 change to:

α′ + β′ + ϵ = π

θ + α′ + ϵ/2 = π/2
(54)

As still α′ + β′ < π, our iteration scheme is still convergent through 51. The α′ and β′ can be
written as a function of ϕ and θ:

α′ = π/2− ϵ/2− θ

β′ = π/2− ϵ/2 + θ
(55)

With that we can give an upper bound on the convergence rate, using that x is bounded by γd.

c = lim
t→∞

t

√
∥xt∥
∥x0∥

≤ 1− ηF (α′, β′) = 1− ηF (α′(θ, ϵ), β′(θ, ϵ)) (56)

By again using the geometry of ellipses, we can further estimate θ: As mentioned d lies between the
eigenvector f1 of D and the coordinate axis. As the ellipse defined by D becomes more elongated
by increasing the condition number K of D, θ increases with K. Using this information together
with the functional form of F , we can then give the following formula for c, where G > 0 through
K > 1 and ϵ > 0, and G fulfills G(f1,K1, ϵ) > G(f1,K2, ϵ) if K1 > K2 as this leads to a better θ.

c ≤ 1− ηG(f1,K, ϵ) (57)

Final Estimates Putting it all together, we choose ηmax as the minimum of ηmax, AT, ηmax, IC,
ηmax,ZZ . Then for 0 < η < ηmax, the construction in our proof is valid and after a finite num-
ber of steps, we either reach one of the two asymptotic situations of convergence. The convergence
rate is bounded by the maximum of c ≤ 1− ηG(f1,K, ϵ) for zigzag convergence and c ≤ 1 + ηλ1

for convergence within one subregion.
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Figure 7: a) Schematic representation of Baird’s counterexample with 7 states. b) Training loss as a
function of the learning iterations.

B BAIRD’S COUNTEREXAMPLE

As another test case, we present the version of Baird’s counterexample provided by Sutton & Barto
(2018), which is likely the most famous example associated with TD’s divergence. Figure 7a shows
a schematic drawing of this Markov zero reward process along with the structure of the used function
approximation. The transition probabilities of the policy to be estimated are 1 on the solid arrows
and 0 elsewhere. The transition probabilities of the behavior policy used for off-policy training are
1/7 on the solid arrows, 6/7 on the dashed arrows, and 0 elsewhere. We use a discount factor of
0.99 and train on full batches to avoid stochastic effects of mini-batch training.

Figure 7b shows the loss (Bellmann error) over training iterations for GD, TD and GDS-TDM. At the
beginning, GD performs decently before then stagnating around 10−6. This is due to ill-conditioning
as an explicit calculation of the condition number of the Hessian reveals; its value is 1.3 · 104. TD
diverges, which is due to the off-policy training procedure. GDS-TDM behaves similarly to GD in
the beginning, decreasing the loss. When GD reaches is plateau, GDS-TDM continuous to decrease
the loss. Later GDS-TDM stagnates as well but at a much better value of roughly 10−10. It is worth
mentioning that at some point we expect the loss not to decrease any further due to floating point
precision and the presence of non-zero solutions. The latter exists in any underdetermined linear
system; here, we use 8 variables to learn 7 values.
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