
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TEMPORAL DIFFERENCE LEARNING:
WHY IT CAN BE FAST AND HOW IT WILL BE FASTER

Anonymous authors
Paper under double-blind review

ABSTRACT

Temporal difference (TD) learning represents a fascinating paradox: It is the prime
example of a divergent algorithm that has not vanished after its instability was
proven. On the contrary, TD continues to thrive in reinforcement learning (RL),
suggesting that it provides significant compensatory benefits. Empirical evidence
supports this, as many RL tasks require substantial computational resources, and
TD delivers a crucial speed advantage that makes these tasks solvable. However,
it is limited to cases where the divergence issues are absent or negligible for un-
known reasons. So far, the theoretical foundations behind the speed-up are also
unclear. In our work, we address these shortcomings of TD by employing tech-
niques for analyzing iterative schemes developed over the past century. Our anal-
ysis reveals that TD possesses a mechanism enabling efficient mapping into the
smallest eigenspace—an operation previously thought to necessitate costly matrix
inversion. Notably, this effect is independent of the conditioning of the problem,
making it particularly well-suited for RL tasks characterized by rapidly increasing
condition numbers through delayed rewards. Our novel theoretical understand-
ing allows us to develop a scalable algorithm that integrates TD’s speed with the
reliable convergence of gradient descent (GD). We additionally validate these im-
provements through a rigorous mathematical proof in two dimensions, as well as
experiments on problems where TD and GD falter, providing valuable insights
into the future of optimization techniques in artificial intelligence.

1 INTRODUCTION

Temporal difference (TD) learning is a training technique for prediction models in multi-step tasks,
mostly known for its application to value prediction in reinforcement learning (RL, Sutton, 1988;
Kaelbling et al., 1996; Arulkumaran et al., 2017). By estimating expected future rewards, TD learn-
ing helps agents make informed decisions based on their interactions with the environment. This ap-
proach has proven successful in various domains such as robotics (Littman et al., 1995; Rajeswaran
et al., 2017), game playing (Mnih et al., 2015; Lample & Chaplot, 2017), and autonomous driving
(Shalev-Shwartz et al., 2016; Sallab et al., 2017), by addressing challenges like delayed rewards
where the impact of actions is not immediately clear.

Behind these successes hides a profound contrast in how information is processed over time com-
pared to traditional time prediction methods. Such models are autoregressive 1-step predictors, and
are often trained via unrolling (Goodfellow et al., 2016), which is an n-step update rule. This is
suboptimal since predicting n steps with 1-step models leads to exponentially accumulating errors,
and an n-step update rule requires storing n-step trajectories. By contrast, value functions combined
with TD offer an n-step predictor via a 1-step update rule, scoring in terms of both mathematical
and computational scalability.

However, challenges arise during optimization: TD is a non-gradient method, harboring the poten-
tial for divergence (Baird, 1995). Nonetheless, it often succeeds in finding good solutions quickly. In
contrast, provably convergent algorithms such as gradient descent (GD) and its variants are imprac-
tically slow in RL, despite being the leading optimization methods in deep learning. This difference
in speed is well-documented empirically (Sutton & Barto, 2018), but the theoretical reasons behind
it are unclear. As a consequence, attempts of unifying GD and TD to arrive at a convergent, fast

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

optimization method are often based on intuition. The lack of theoretical understanding means there
are no design principles to guide their development.

Our paper addresses this issue with the following contributions:

• We provide a theoretical foundation to explain why TD can be fast starting from the long-
established link between condition numbers and the speed of gradient methods. We gener-
alize these ideas to non-gradient methods, such as TD.

• The insights into what makes TD fast uniquely position us to identify the necessary modifi-
cations. We demonstrate with a simple method how a unification of GD and TD preserving
their positive attributes can look like.

2 BACKGROUND

Optimization Theory The natural starting point of all optimization methods based on derivatives
is quadratic objectives. They arise in linear systems as well as in nonlinear systems near the op-
tima, where higher-order terms become negligible. Therefore, any method with issues on quadratic
objectives will eventually fail. Typically, a quadratic loss L of n variables is expressed as:

L =
1

2
∥Qx∥2 Q ∈ Rm×n, x ∈ Rn, ∥ · ∥ (l2-norm) (1)

A non-zero target y ∈ Rm would not affect convergence properties of iterative solution methods, so
we neglect this possibility to maintain compact notation. Such methods take the following generic
form in their t-th iteration.

xt+1 = (1− ηPQ)xt η ∈ R (learning rate), P ∈ Rn×m (2)

The most prominent examples are GD (P = QT) and Newton’s Method (P = Q−1). Convergence
occurs if the induced norm of the iteration operator ∥1− ηPQ∥ is strictly smaller than 1. This value
is also called the convergence rate because the induced norm, by definition, exactly describes the
worst-case decrease of ∥xt+1∥ relative to ∥xt∥, and therefore, the optimization progress. For GD
and optimal learning rate, the convergence rate equals κ−1

κ+1 , where κ is the condition number of the
Hessian QTQ. Ill-conditioned problems (κ ≫ 1) result in a convergence rate only slightly below 1,
rendering GD ineffective for solving them (Garrigos & Gower, 2023).

Ill-Conditioning in Reinforcement Learning While one-step tasks can also suffer from ill-
conditioning, RL tasks have their own unique mechanisms that elevate condition numbers, thereby
complicating optimization, e.g. delayed rewards in multi-step problems require information to flow
through several time steps. Suppose we have an n-state Markov Reward Process (MRP) with a lin-
ear transition structure (n → n − 1 → ... → 1 → terminal), where all rewards are 0 except for the
final transition into the terminal state with a reward of 1. This scenario exemplifies a quintessen-
tial delayed reward problem, isolated from other complexities in RL such as stochasticity, changing
environments, and continuous spaces. The correct values v must fulfill the Bellman equation, a
consistency equation stating the value difference between consecutive states equals the intermediate
reward. Any violation of this equation is called the temporal difference error δn:

δn = v(n)− v(n− 1) = 0 for n > 1 and δ1 = v(1)− 1 = 0 (3)

This particular linear system is one of the most studied in linear algebra, often called Poisson prob-
lem. Its condition number scales as n2 (Strang, 2006). Hence, even though the solution seems
trivial—all values should be 1—GD becomes increasingly impractical for solving this simple task
as n increases. Consider in contrast a MRP where all n-states immediately transition to the terminal
state (n → terminal, n − 1 → terminal, ..., 1 → terminal). This system has no delayed rewards
and the sytem matrix in the Bellman equation would be an identity matrix, i.e. the system is per-
fectly well-conditioned. It is important to keep in mind that condition numbers can be affected by
many other mechanism as well, such as the presence of self-loops in a MRP (Sharifnassab & Sutton,
2023), and that delayed rewards are only one way of how condition numbers can increase.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Why Gradient Descent Modifications Fail in Reinforcement Learning The situation worsens
when function approximation is involved, parametrizing values v(·, θ) by θ. Constructing a loss by
mapping temporal difference errors to a scalar via l2-norm and then differentiating for θ yields the
corresponding GD update uGD:

uGD = −∂θ
(
δ2n/2

)
= −δn ·

(
∂θv(n, θ)− ∂θv(n− 1, θ)

)
(4)

The effectiveness of gradient-based updates again depends on the condition number. The overall
condition number is now determined not only through the Bellman equation 3 but also through the
function approximation part in equation 4. This overall conditioning can be expected to be ill, as the
first part, the Bellman equation, is already ill-conditioned. Counterexamples where the overall con-
dition number of a matrix product is lower than the individual matrix factors are extremely rare (an
example would be a product of a matrix with its inverse). In Deep Learning, various methods have
been proposed to reduce the condition number and so alleviate the slow convergence of GD (Good-
fellow et al., 2016). However, they only have limited effectiveness in Deep RL, where typically
value functions are approximated normalizing data is impractical since the outputs are values and
a priori unknown. Also, the input distribution changes continually during the ongoing exploration
of the state-action space. As a consequence, initialization schemes, designed to transport normal-
ization properties from one layer to the next, fail since input and output were never normalized.
And while momentum can accelerate gradient optimization, it is insufficient to reach an acceptable
convergence rate by itself. This justifies the interest in alternative methods, such as TD.

Temporal Difference Learning TD was first introduced as a sampling-based solution technique
for the Bellman equation; its function approximation pendant is given by:

uTD = −δn · ∂θv(n, θ) (5)

Compared to uGD in eq. 4, the TD update uTD lacks the derivative term of the subsequent value.
Removing this term is motivated by the idea that observations of new rewards should only adjust
values of past states. However, the missing term renders the TD update a non-gradient update,
therefore lacking any convergence guarantees. That TD updates can indeed lead to divergence has
been shown (Baird, 1995). Yet, empirical evidence suggests that this instability sometimes does not
occur and that then TD finds solutions in reasonable time Sutton & Barto (2018). From a practical
point of view, this ability to deliver solutions in at least some cases makes it the preferred method
over consistently slow GD. The logical conclusion is that completely resolving the divergence issue
of TD without compromising its speed advantage would be even more beneficial. Achieving this
requires a clear understanding of the reasons behind TD’s speed advantage.

3 THE INCREASED SPEED OF TEMPORAL DIFFERENCE LEARNING

To answer why TD can provide faster convergence than GD, we analyze the iteration scheme intro-
duced in Equation (2), replacing PQ by H:

xt+1 = (1− ηH)xt (6)

We begin exactly where previous works stop: The update equation of TD (5) lacks a term present in
GD (4), making it a non-gradient method. Basic calculus reveals that a gradient field is associated
with a corresponding scalar potential, the loss function, whose first derivative is the gradient field
and whose second derivative, the Hessian HGD, is symmetric. Hence, a non-gradient field like the
one from TD need not, and generally will not, have a symmetric Jacobian, allowing for a skew-
symmetric part in HTD. Gaining insight into how this part affects the eigenvalues is crucial for
answering the question of TD’s superior convergence speed.

3.1 CLOSED-FORM SOLUTION IN TWO DIMENSIONS

To explore the impacts of a non-symmetric HTD on optimization, we first focus on the special
case of two-dimensions. This scenario can be solved exactly and will serve as the guiding example
for the mathematically precise but abstract argumentation for the generic case. Let us consider the
following matrix, which we require to be positive-definite and not the identity for r = 0:

H =

(
a b+ r

b− r c

)
(7)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

1 0 1
x

1

0

1

y

Gradient Field

1 0 1
x

1

0

1

y

Small Rotation

0 100 200 300 400
Iterations

10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1

101

Lo
ss

Loss Curves

Gradient Field
Small Rotation
Critical Rotation
Large Rotation

1 0 1
x

1

0

1

y

Critical Rotation

Target
Start

Trajectory
Eigenvectors

1 0 1
x

1

0

1

y

Large Rotation

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Learning Rate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Co
nv

er
ge

nc
e

Ra
te

Convergence Rate

a)

b)

c)

d)

e)

f)

Figure 1: a) - d): Illustration of the four types of a HTD matrix with an example of an optimization
trajectory for a random starting point. The background shows the underlying quadratic loss. e)
Corresponding loss curves. f) Convergence rate as a function of the learning rate. The amount of
rotation increases from blue (no rotation) to red (large rotation). The dot on each curves marks the
best convergence rate under optimal learning rate.

This provides a simple model for a possible HGD (r = 0) matrix and HTD (r ̸= 0) matrices
with varying strength of the skew-symmetric part. The symmetric part of HTD equals HGD, a
simplifying assumption for this model that we will remove later. The two eigenvalues λ1/2 of
1− ηH are key to understanding the dynamics of the corresponding iterative process.

λ1/2 = 1− η

2
(a+ c)± η

2

√
D with D = (a− c)2 + 4b2 − 4r2 (8)

For r = 0, the discriminant D is positive, resulting in two distinct eigenvalues. As r increases in
magnitude, D decreases, causing the eigenvalues to converge. With more balanced eigenvalues, the
iteration scheme progresses more uniformly in both eigendirections, thereby increasing the conver-
gence rate. We identify four qualitatively distinct cases, illustrated in Figure 1:

a) r = 0, D > 0: gradient case, distinct eigenvalues, orthogonal eigenvectors
b) |r| > 0, D > 0: small rotation, converging eigenvalues,non-orthogonal eigenvectors
c) |r| > 0, D = 0: critical rotation, identical eigenvalues, only one eigenvector
d) |r| > 0, D < 0: large rotation, complex eigenvalues with identical real part, complex

eigenvectors

Figure 1e depicts the loss curves for the shown optimization trajectories across the four regimes.
The r ̸= 0 curves differ from GD by their short burn-in phase that is followed by convergence at
improved speed. In Figure 1f, the convergence rate c is plotted against the learning rate for different
values of r. Overall, the results indicate that the observed speed-up for r ̸= 0 is consistent across
a wide range of r values, suggesting that this improvement is not a result of specific learning rate
choices, but rather stems from the influence of the skew-symmetric part in HTD.

3.2 GENERALIZING CONVERGENCE RATES

Next, we formalize the ideas above using more rigorous mathematical language. We first link the
convergence rate to the minimal eigenvalue, and then show how rotation increases the minimal

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

eigenvalue in arbitrary dimension. We observed that the loss curve may exhibit a burn-in phase or
oscillate during its descent, which motivates us to investigate TD’s speed through an asymptotic
convergence rate c, defined as follows:

c = lim
t→∞

max
x0∈Rn

t

√
∥xt∥
∥x0∥

(9)

For GD, the connection between c and the condition number arises from the symmetry of HGD.
For the non-symmetric TD case, establishing a similar link from c to the spectrum of HTD requires
further work:

Theorem 1: Let η ∈ R, n ∈ N, x0 ∈ Rn, H ∈ Rn×n and t ∈ N. Denote eigenvalues of H and
their real and imaginary part as λk = Rk + iIk , k ∈ {1, ..., n} and define:

ηmax = 2min
k

Rk

R2
k + I2k

Rmin = min
k

Rk (10)

Then, the iteration scheme xt = (1 − ηH)xt−1 is convergent if Rk > 0 ∀k ∈ {1, ..., n} and
0 < η < ηmax. Furthermore, the convergence rate c is upper bounded by:

c ≤
√

1− ηRmin

(
1− η

ηmax

)
(11)

Corollary 1: Let Rmin ≪ 1, ρ = 2maxk(Rk, Ik) and copt be the convergence rate under optimal

learning rate. Then: copt ≤
√
1− 1

2ηmaxRmin ≤ 1−R2
min/ρ

2 +O(R4
min)

Corollary 2: Let η ≪ 1. Then: c ≤ 1− ηRmin +O(η2)

Theorem 1 provides a formula for how the convergence rate can be estimated from the spectrum in
the case of a non-symmetric HTD. Corollary 1 and 2 offer more interpretable expressions for two
relevant situations in deep learning: ill-conditioned matrices (Rmin ≪ 1) and small learning rates
(η ≪ 1). Both expressions share the dependence on the eigenvalue with the smallest real part Rmin,
highlighting how increasing this value benefits optimization.

3.3 EIGENSPECTRA OF SYMMETRIC, POSITIVE-DEFINITE MATRICES UNDER
SKEW-SYMMETRIC PERTURBATIONS

We now generalize the ideas from Section 3.1 to arbitrary n > 2. Our analysis begins again with a
matrix H = A + rB, where A is symmetric, positive-definite and B skew-symmetric. As before,
r = 0 corresponds to GD and r ̸= 0 to TD cases. We find the following statements about the
spectrum of H:

Theorem 2: Let A ∈ Rn×n be symmetric, positive-definite matrix and B ∈ Rn×n skew-
symmetric. Additionally, let A and B have non-degenerate eigenvalues. Denote the i-th eigenvector
of A by vi and of B by wi. Then:

i.) λmin(A) ≤ λreal
min(A+ rB) ≤ λreal

max(A+ rB) ≤ λmax(A) ∀r ∈ R
ii.) limr→∞ λreal

i (A+ rB) = ⟨wi, Awi⟩

iii.) d
drλ

real
min(A+ rB)|r=0 = 0 and d2

dr2λ
real
min(A+ rB)|r=0 ≥ ⟨v2,Bv1⟩2

λ2(A)

In Figure 2a, we illustrate these statements for n = 5 using random matrices A and B. The eigen-
values (blue dotted lines) converge towards each other, as earlier in the n = 2 case. Especially
the smallest eigenvalue, previously identified as crucial for the convergence rate, improves signif-
icantly. The statements of Theorem 2, depicted in red, prove that this picture is representative of
any A and B matrices: Part i) secure that smallest and largest real part eigenvalue cannot separate
any further by bounding the spectrum’s real part from above and below. Part ii) fixes the right side
through a formula for the large r asymptotic limit. Part iii) brings us to the heart of why TD im-
proves convergence speed. The formula quantifies the initial increase of the smallest eigenvector.
With the second-smallest eigenvalue serving as the denominator, this term can become extremely

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0 1.5 2.0
Rotation Parameter r

10 2

10 1

100

Ei
ge

nv
al

ue
s (

Re
al

 P
ar

t)

n=5

Eigenvalues of A
Bounds i) and ii)
Asymptotic Limit iii)
2nd-Order Expansion iv)
Eigenvalues of A + r B

0 2 4 6 8 10
Rotation Parameter r

10 5

10 4

10 3

10 2

10 1

n=100a) b)

Figure 2: Real-part eigenspectra of a symmetric matrix A with different strengths r of a skew-
symmetric perturbation B in a) n = 5 and b) n = 100 dimensions.

large depending on just how ill-conditioned A is. This counters ill-conditioning perfectly, making
TD ideally suited for RL. To further illustrate this point, Figure 2b presents a more ill-conditioned
example with n = 100, showcasing a remarkable rise in the small eigenvalues.

Enhancing Theorem 2 by Probabilistic Arguments: Non-degeneracy of eigenvalues is one of
the requirements in Theorem 2; however, it is not essential for the statements to hold. Including it
simplifies the mathematical proof and, more importantly, allows us to highlight a different type of
argument that we will revisit later: In function approximation, the entries of the involved matrices
originate from a random process, typically initiated by the random initialization of layers in a neu-
ral network or feature matrices in linear function approximation. Among all possible eigenvalues
of such a matrix, the occurrence of two identical eigenvalues is a rare edge case and practically
irrelevant.

This can be mathematically formalized and proven using measure theory. One of its central theorems
states the zero set of a non-constant polynomial is a Lebesgue null set. Building on that, the set of
matrices with degenerated eigenvalues is Lebesgue null since these matrices’ characteristic polyno-
mials have degenerated zeros if and only if their discriminant, itself a polynomial, is zero. Similarly,
part ii) describes the eigenvalues’ asymptotic limit which, in theory, could equal A’s eigenvalues.
But since eigenvectors are defined through polynomial equations, improvement of the spectrum is
practically guaranteed. Moreover, by the law of large numbers, as n increases, the eigenvalues of H
scatter around the mean of A’s eigenvalues, a normal-sized number. In summary, the eigenspectra
depicted in Figure 2 are representative of all practically relevant scenarios and this conclusion stands
firm under rigorous mathematical evaluation.

3.4 THE COMPLETE PICTURE

Finally, we are in a position to present a coherent argument for why TD leads to faster convergence
than GD, provided that divergence does not occur.

1. The convergence behavior of iterative methods xt+1 = (1 − ηH)xt is determined by
the matrix H , known as the Hessian HGD for GD. For TD, HTD is distinguished by the
presence of a skew-symmetric part B. We decompose this as HTD = A+B.

2. As established in Theorem 1, convergence requires that the real parts of the eigenvalues of
HTD are positive. This directly translates to A being positive-definite.

3. With that, we are in the scope of Theorem 2. The real parts of eigenvalues of HTD con-
verge towards each other. Especially the smallest eigenvalue increases quickly, driven by
the ill-conditioning of A. While we previously thought of A as HGD, this assumption is

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

not necessary anymore since Theorem 2 yields a better HTD for any symmetric positive-
definite A.

4. According to Corollary 1, increasing the smallest eigenvalue improves the convergence
rate. However, the speed-up is capped by the maximal learning rate. This limitation be-
comes critical in the large-rotation regime, where the growing imaginary parts of the spec-
trum limit the achievable benefits.

5. More importantly, Corollary 2 provides a similar link for small learning rates. This is
particularly relevant in nonlinear function approximation, where learning rates must be
kept small to ensure the accuracy of linear approximations. In this regime, this explanation
for the speed-up from TD is valid without restriction.

This inherent speed advantage of TD has motivated research aimed at addressing its divergence is-
sue. Shortly after Baird introduced GD to RL, he presented interpolation between GD and divergent
TD, marking the first attempt to fuse these two methods. Our analysis sheds new light on why this
idea does not work: In Theorem 2, we interpolated with a skew-symmetric B, whereas in Baird’s
framework, this matrix would possess an indefinite symmetric part. Perturbation analysis reveals
that in this case eigenvalues shift in both directions. Thus, for an ill-conditioned A characterized by
small positive eigenvalues, even a minimal negative shift creates negative eigenvalues, making this
interpolation method instantaneously divergent. Nevertheless, unifying GD and TD is desirable and
we demonstrate now with a simple construction how this can be achieved.

4 A PRINCIPLE-GUIDED METHOD TO UNIFY GRADIENT DESCENT AND
TEMPORAL DIFFERENCE LEARNING

Inspired by our new understanding, we combine the two update vectors of GD uGD and TD uTD by
using GD’s sign and TD’s magnitude. Therefore, we denote this new method by GDS-TDM:

uGDS−TDM = sign(uGD) · |uTD| (12)

The particular form of this update rule is motivated as follows: Through the sign term, the angle be-
tween GD and GDS-TDM can be at most π/2, enforcing movement in similar directions as conver-
gent GD and thereby preventing divergence. Where the signs of GD and TD are constant, the update
rule is described by a linear map. Its matrix will have a skew-symmetric part as it is build from the
TD update. As we learnt, this is the key property that causes a drastic speed up in ill-conditioned
problems. We now present a mathematical proof to show that this theoretical argumentation also
holds under mathematical scrutiny:

Theorem 3 (Enhanced Version): Let D ∈ R2×2 be symmetric and positive-definite, R ∈ R2×2

with eigenvalues unequal 0, H : R2 → R2, x 7→ − sign(Dx) · |Rx|, S =
{
s ∈ R2|si ∈

{−1, 0, 1} ∀i ∈ {1, 2}
}

, and for s ∈ S, let As =
{
x ∈ R2| sign(Dx)i · sign(Rx)i =

si ∀i ∈ {1, 2}
}

. Then:

i.) For all s ∈ S, in As, H is described by a linear map Rs ∈ R2×2 such that ∀x ∈ As :
H(x) = Rsx.

ii.) There exists a maximal learning rate ηmax > 0 such that for η < ηmax, the iteration scheme
xt = (1 + ηH)(xt−1) converges to 0.

iii.) If convergence occurs within one As, the convergence rate c is given by c = 1−ηλs, where
λs is the smallest eigenvalue of −Rs.

iv.) If convergence occurs across two As, the convergence rate is given by c ≤ 1−ηG(f,K, ϵ),
where f is the direction of the smallest eigenvector of D, K the condition number of D,
and ϵ the angle between d and Rd, where d is the boundary vector between the two As. G
is a monotonically increasing function in K.

As before, we separated the technical requirements that are automatically fulfilled if the involved
matrices stem from a continuous sampling process. The full list of these Lebesgue null assumptions
can be found in the appendix. Figure 3 gives an illustration of the theorem. Part a) and b) show
examples of D and R vector fields, corresponding to GD and TD. Part c) shows the boundaries

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

1 0 1
x

1

0

1

y

GD

1 0 1
x

1

0

1
TD

1 0 1
x

1

0

1
GDS-TDM

GD Sign Swap
TD Sign Swap

Inner Conv.
Zigzag Conv.

a) b) c)

Figure 3: Illustration of our proposed GDS-TDM update: The GD and TD vector fields (left and
middle) result in the GDS-TDM field on the right. Convergence either occurs within a single region
(orange), or zigzagging (cyan).

of the different regions, the dashed lines, along which the sign flips happen. They decompose the
domain into the regions As, each with its own linear map. The orange trajectory shows an example
of convergence within one As, and the cyan trajectory of zigzag convergence between two As.

To understand why this method can have better convergence speed, consider first the zigzag case
(part iv) and the function G. For GD, the term after the learning rate decreases with the smallest
eigenvalue, explaining its slowness for ill-conditioned D. In contrast, here G shows the opposite
behavior, increasing convergence speed with the condition number of D. As one can also guess from
Figure 3c, the dependence depends more on geometric quantities of R, not D, such as the angle at
which the flow lines of R intersect the boundary line. For the inner convergence case (part iii), the
convergence rate depends on the smallest eigenvalue. The linear maps Rs are non-symmetric, and as
we have shown before, this substantially increases the smallest eigenvalue, improving convergence.

Besides this mathematical characterization, practical advantages of the update rule are that it is easy
to implement and causes minimal computational overhead. Since GD and TD are two backprop-
agation techniques based on the same forward pass, they can be computed in parallel with little
additional memory. The runtime increase due to a component-wise sign comparison is likewise
minimal.

5 EXPERIMENTS

While our central contribution is a theoretical foundation for understanding TD and for deriving
algorithms with well-understood properties, we provide a first set of empirical results for how GDS-
TDM compares against GD and TD. In our experiments, we target value estimation, which is a
fundamental part of most practical reinforcement learning algorithms. The choice and setup of these
experiments are described below and motivated by our intention to provide a clear consistency check
of our theoretical derivation.

Two-State Example for TD’s Divergence We consider a variant of Tsitsiklis & Van Roy
(1996b)’s canonical value prediction task with a second parameter, as shown in Figure 4a. There are
two transitions (state 0 → 0 and 1 → 0). The self-transition is convergent while the other one leads
to divergence. Training off-policy using a state distribution with too much weight on the divergent
transition will therefore make TD divergent on this task. This alternating between convergent and
divergent updates can be nicely seen in TD trajectory in Figure 4b. GD and GDS-TDM both con-
verge. However, as can be seen in Figure 4c, the convergence rate of GDS-TDM is substantially
better, agreeing with our theoretical treatment.

10x10 Grid World This is a classic RL environment, for which value functions are easy to visu-
alize, allowing for easier assessment of iterative solution methods. We consider a two-dimensional
non-periodic grid with terminal states located in the top-left and bottom-right corners. The agent
can move up, down, left and right (unless on the boundary), and is penalized with a reward of −1 for
every move that does not lead to the terminal state. Given the optimal policy, we estimate its values
using a 100-parameter linear function approximator based on polynomial features, which we train
on full batches to avoid stochastic effects of mini-batch training. The state pairs for the updates are

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

2 0 2
Weight 1

2

0

2

W
ei

gh
t 2

Start
Goal

0 50 100
Iterations

10 4

10 2

100
Lo

ss

GD
TD
GDS-TDM

w1 + w2

w1 + 2w2

a) b)

c)

Figure 4: a) Schematic representation of Tsitsik-
lis and Van Roy’s counterexample. b) Learning
trajectories of the different algorithms in the pa-
rameter space. c) Training loss as a function of
the learning iterations.

0 1 2 3 4 5 6 7 8 9

0123456789

GD

0 1 2 3 4 5 6 7 8 9

0123456789

TD

0 1 2 3 4 5 6 7 8 9

0123456789

GDS-TDM

0 5000 10000 15000 20000
Iterations

10 1

100

101

Lo
ss

GD
TD
GDS-TDM

8 6 4 2 0

Figure 5: (Top) Visualization of the learnt value
function in a 10× 10 grid world for the different
methods: gradient descent (GD, left), temporal
difference (TD, center) and GDS-TDM (right).
(Bottom) Comparison of the learning curves of
the three methods.

sampled with equal probability, i.e. this is an off-policy case. In the optimal policy distribution, state
pairs closer to the terminal states would occur more frequently than those further away. The exact
solution has a value of 0 in the terminal corners and is minimal along the diagonal. An illustration
is given in Figure 5, where GD and GDS-TDM correctly approach this solution. In contrast, TD
suffers from divergence and is unable to find a good answer. Comparing the loss curves, we observe
that GD and GDS-TDM behave similarly, both steadily decreasing the loss and eventually reaching
a similar accuracy. This 100-parameter example gives us an outlook beyond the strict mathematical
argumentation of our 2D proof. The absence of a substantial speed-up of GDS-TDM over GD could
point to a limitation of our method in higher dimensions, suggesting that additional modifications
might be necessary. It is also possible that Grid World, with its immediate rewards, does not generate
the high condition numbers where TD methods thrive and GD fails. The fact that the value function
estimated by GD already closely resembles the exact solution supports this. Regarding divergence,
the picture is clearer: GDS-TDM does not encounter the divergence issues exhibited by TD.

Baird’s counterexample In addition to the two experiments here, we study a version of Baird’s
counterexample which represents a Markov zero reward process. Despite involving a larger dimen-
sionality than our theory (we evaluated a variant with 8 dimensions), this example shows divergent
behavior for TD, and a clear advantage for GDS-TDM. It converges to a loss level that is several
orders of magnitude lower than the one of GD. Full details are provided in Appendix B.

6 RELATED WORK

A number of successful applications of TD exists in literature (Tesauro, 1995; Mnih et al., 2015).
TD learning was originally introduced in contrast to Monte-Carlo methods, which rely on complete
episodes, along with further TD variants that vary the number of steps over which errors are evalu-
ated (Sutton, 1988). Notably, our analysis applies to all variants of TD, as we did not use any specific
form of updates but only their non-gradient nature. The fact that TD is not a gradient method and
divergent was discovered by Baird (1995), and another example of divergence of TD was given
by Tsitsiklis & Van Roy (1996b). While the precise circumstances under which TD diverges re-
main mostly unclear, it has been shown that TD converges for linear function approximation with
on-policy training Tsitsiklis & Van Roy (1996a). In that case, the convergent transitions outweigh
the divergent ones. Generalizations of linear TD’s on-policy convergence were found by Asadi et al.
(2023). Even in this setting, a method convergent on every transition could speed-up optimization.
Emphatic-TD methods (Sutton et al., 2016) reweight the state distribution to update less frequently

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

on divergent state transitions. While this can suppress divergence, it inherently impairs the ability
to learn the divergent part of the state space. The factors contributing to divergence in RL were
later summarized under the term ’deadly triad’, including TD training, function approximation and
off-policy training. Given the importance of these elements in modern RL, a number of different
research works have tried to address the shortcomings of TD divergence. For instance, van Hasselt
et al. (2018) try to build intuition for the TD algorithm behaviour and design a number of mitigation
strategies that they test empirically. Furthermore, least-squares TD (LSTD), in its recursive (Bradtke
& Barto, 1996) or incremental (Geramifard et al., 2006) implementation, provide convergence guar-
antees at the cost of a higher computational complexity. More recently, diverse attempts are made to
address TD’s divergence through normalization techniques (Gallici et al., 2024), or by introducing
and updating a second set of parameters that then leads to updates on the actual network parameters
(Wang & Ueda, 2022). Beyond the divergence issue, Kumar et al. (2021) studies how regularization
can improve the quality of TD solutions.

The introduction of GD to RL, under the name residual gradient (Baird, 1999), has been proposed as
a solution to the divergence of TD. This was quickly followed by interpolation techniques between
TD and GD to address the apparent slowness of GD (Baird, 1999), marking the first attempt to
combine the positive elements of both methods into a new method. Ill-conditioning, the property
that slows down GD, was also investigated in an RL context, confirming that condition numbers
can indeed be high in RL tasks (Sharifnassab & Sutton, 2023). Further attempts to unify TD and
GD have been made under the name gradient TD (GTD) methods (Sutton et al., 2008; 2009). They
address another phenomenon in how TD and GD can differ: On stochastic tasks, GD can converge to
a different solution than TD. While GTD methods converge and approach the original TD solution,
they do not address the slowness of GD. This is apparent when considering that the slowness issue
already exists in deterministic tasks, where GTD simplifies to GD. Further improvements to the
GTD algorithms were proposed by Yao (2023) and Qian & Zhang (2023), reducing the number of
hyper-parameters to tune in the algorithm.

It is noteworthy that positive observations of learning with non-gradient methods reach beyond
RL. Examples include time series prediction with unrolled computation graphs (Stachenfeld et al.,
2022) often in combination with differentiable simulators (Um et al., 2020), as well as in the con-
text of bilevel optimization (Bolte et al., 2024; Domke, 2012), such as hyperparameter optimiza-
tion (Lorraine et al., 2020), deep equilibrium models (Geng et al., 2021; Fung et al., 2022) and
meta-learning (Andrychowicz et al., 2016). Typically, the backpropagation pass is either short-
ened or otherwise modified, which consequently destroys the gradient property of the outcome, thus
falling within the scope of our argument. Similar to TD, the evidence is primarily empirical and
these research fields could benefit also from the discovery of the underlying reasons behind the
observed improvements.

7 CONCLUSION

Our work presented a theoretical framework that explains the widespread and puzzling observa-
tions that TD can deliver a crucial speed-up for making RL tasks solvable. We identified the
skew-symmetric part of the iteration operator, which distinguishes non-gradient from gradient-based
methods, as the key quantity driving this acceleration. An interesting future direction will be to de-
sign model architectures that effectively control this quantity to enable a consistent performance
boost. This shares similarities with initialization schemes that are tailored to influence the condition
number to enhance gradient descent.

Furthermore, we proposed a method that combines the convergence properties of GD with the speed-
up mechanisms of TD. We supported this with a mathematical proof for the two-dimensional case,
providing a detailed understanding of how these properties integrate. With our focus primarily on
the theoretical aspects, a natural next step is further empirical investigations. These could include
exploring nonlinear function approximation, testing compatibility with momentum and other opti-
mization techniques, and extending to advanced control algorithms in RL.

In an empirically-driven field, it is crucial to remember the significance of theoretical results. Unify-
ing GD and TD has been a longstanding goal in RL, and despite extensive empirical research, it has
not been satisfactorily resolved, even in two dimensions. In that spirit, we believe our theoretical
framework can serve as a stepping stone for developing more reliable and faster RL algorithms.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul,
Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient descent by gradient
descent. In Advances in neural information processing systems, volume 29, 2016.

Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath. Deep rein-
forcement learning: A brief survey. IEEE Signal Processing Magazine, 34(6):26–38, 2017.

Kavosh Asadi, Shoham Sabach, Yao Liu, Omer Gottesman, and Rasool Fakoor. TD convergence:
An optimization perspective. In Advances in Neural Information Processing Systems, volume 36,
pp. 49169–49186, 2023.

Leemon C. Baird. Residual algorithms: Reinforcement learning with function approximation. In
Machine Learning Proceedings 1995, pp. 30–37, 1995.

Leemon C. Baird. Reinforcement learning through gradient descent. PhD Thesis, 1999.

Jérôme Bolte, Edouard Pauwels, and Samuel Vaiter. One-step differentiation of iterative algorithms.
In Advances in Neural Information Processing Systems, volume 36, 2024.

Steven J. Bradtke and Andrew G. Barto. Linear least-squares algorithms for temporal difference
learning. Machine Learning, 22(1):33–57, 1996.

Justin Domke. Generic methods for optimization-based modeling. In Artificial Intelligence and
Statistics, pp. 318–326. PMLR, 2012.

Samy Wu Fung, Howard Heaton, Qiuwei Li, Daniel McKenzie, Stanley Osher, and Wotao Yin. Jfb:
Jacobian-free backpropagation for implicit networks. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pp. 6648–6656, 2022.

Matteo Gallici, Mattie Fellows, Benjamin Ellis, Bartomeu Pou, Ivan Masmitja, Jakob Nicolaus
Foerster, and Mario Martin. Simplifying deep temporal difference learning. arXiv preprint
arXiv:2407.04811, 2024.

Guillaume Garrigos and Robert M Gower. Handbook of convergence theorems for (stochastic)
gradient methods. arXiv preprint arXiv:2301.11235, 2023.

Zhengyang Geng, Xin-Yu Zhang, Shaojie Bai, Yisen Wang, and Zhouchen Lin. On training implicit
models. Advances in Neural Information Processing Systems, 34:24247–24260, 2021.

Alborz Geramifard, Michael Bowling, Martin Zinkevich, and Richard S Sutton. iLSTD: Eligibility
traces and convergence analysis. In Advances in Neural Information Processing Systems, vol-
ume 19. MIT Press, 2006.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning: A
survey. Journal of artificial intelligence research, 4:237–285, 1996.

Aviral Kumar, Rishabh Agarwal, Tengyu Ma, Aaron Courville, George Tucker, and Sergey Levine.
DR3: Value-based deep reinforcement learning requires explicit regularization. In Deep RL Work-
shop NeurIPS 2021, 2021.

Guillaume Lample and Devendra Singh Chaplot. Playing fps games with deep reinforcement learn-
ing. In Proceedings of the AAAI conference on artificial intelligence, volume 31, 2017.

Peter D. Lax. Functional Analysis. Pure and Applied Mathematics: A Wiley Series of Texts, Mono-
graphs and Tracts. Wiley, 2002. ISBN 9780471556046. URL https://books.google.
de/books?id=18VqDwAAQBAJ.

Peter D. Lax. Linear Algebra and Its Applications. Pure and Applied Mathematics: A Wiley
Series of Texts, Monographs and Tracts. Wiley, 2013. ISBN 9781118626924. URL https:
//books.google.de/books?id=GNDigtFSMTgC.

11

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://books.google.de/books?id=18VqDwAAQBAJ
https://books.google.de/books?id=18VqDwAAQBAJ
https://books.google.de/books?id=GNDigtFSMTgC
https://books.google.de/books?id=GNDigtFSMTgC

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Michael L Littman, Anthony R Cassandra, and Leslie Pack Kaelbling. Learning policies for partially
observable environments: Scaling up. In Machine Learning Proceedings 1995, pp. 362–370.
Elsevier, 1995.

Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing millions of hyperparameters by
implicit differentiation. In International conference on artificial intelligence and statistics, pp.
1540–1552. PMLR, 2020.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Xiaochi Qian and Shangtong Zhang. Direct gradient temporal difference learning. arXiv preprint
arXiv:2308.01170, 2023.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. Proceedings of Robotics: Science and System, 2017.

Ahmad EL Sallab, Mohammed Abdou, Etienne Perot, and Senthil Yogamani. Deep reinforcement
learning framework for autonomous driving. Electronic Imaging, 29(19):70–70, 2017.

Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. Safe, multi-agent, reinforcement
learning for autonomous driving. arXiv preprint arXiv:1610.03295, 2016.

Arsalan Sharifnassab and Richard S Sutton. Toward efficient gradient-based value estimation. In
International Conference on Machine Learning, pp. 30827–30849. PMLR, 2023.

Kimberly Stachenfeld, Drummond B Fielding, Dmitrii Kochkov, Miles Cranmer, Tobias Pfaff,
Jonathan Godwin, Can Cui, Shirley Ho, Peter Battaglia, and Alvaro Sanchez-Gonzalez. Learned
coarse models for efficient turbulence simulation. In International Conference on Learning Rep-
resentations, 2022.

Gilbert Strang. Linear Algebra and Its Applications. Thomson, Brooks/Cole, 2006. ISBN
9780534422004. URL https://books.google.de/books?id=q9CaAAAACAAJ.

Richard S. Sutton. Learning to predict by the methods of temporal differences. Machine Learning,
3(1):9–44, 1988.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
second edition, 2018. URL http://incompleteideas.net/book/the-book-2nd.
html.

Richard S Sutton, Csaba Szepesvári, and Hamid Reza Maei. A convergent O(n) algorithm for
off-policy temporal-difference learning with linear function approximation. Advances in neural
information processing systems, 21(21):1609–1616, 2008.

Richard S. Sutton, Hamid Reza Maei, Doina Precup, Shalabh Bhatnagar, David Silver, Csaba
Szepesvári, and Eric Wiewiora. Fast gradient-descent methods for temporal-difference learning
with linear function approximation. In Proceedings of the 26th Annual International Conference
on Machine Learning, pp. 993–1000, 2009.

Richard S. Sutton, A. Rupam Mahmood, and Martha White. An emphatic approach to the problem
of off-policy temporal-difference learning. Journal of Machine Learning Research, 17(73):1–29,
2016.

Gerald Tesauro. Temporal difference learning and TD-Gammon. Communications of the ACM, 38
(3):58–68, 1995.

John Tsitsiklis and Benjamin Van Roy. Analysis of temporal-diffference learning with function
approximation. Advances in neural information processing systems, 9, 1996a.

John N Tsitsiklis and Benjamin Van Roy. Feature-based methods for large scale dynamic program-
ming. Machine Learning, 22(1):59–94, 1996b.

12

https://books.google.de/books?id=q9CaAAAACAAJ
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Kiwon Um, Robert Brand, Yun Fei, Philipp Holl, and Nils Thuerey. Solver-in-the-loop: Learning
from differentiable physics to interact with iterative pde-solvers. In Advances in Neural Informa-
tion Processing Systems 33, 2020.

Hado van Hasselt, Yotam Doron, Florian Strub, Matteo Hessel, Nicolas Sonnerat, and Joseph Mo-
dayil. Deep reinforcement learning and the deadly triad. arXiv preprint arXiv:1812.02648, 2018.

Zhikang T. Wang and Masahito Ueda. Convergent and efficient deep q learning algorithm. In
International Conference on Learning Representations, 2022.

Hengshuai Yao. A new gradient TD algorithm with only one step-size: Convergence rate analysis
using l-λ smoothness. arXiv preprint arXiv:2307.15892, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A MATHEMATICAL PROOFS

A.1 THEOREM 1 AND ITS COROLLARIES

Theorem 1: Let η ∈ R, n ∈ N, x0 ∈ Rn, H ∈ Rn×n and t ∈ N. Denote eigenvalues of H and
their real and imaginary part as λk = Rk + iIk , k ∈ {1, ..., n} and define:

ηmax = 2min
k

Rk

R2
k + I2k

Rmin = min
k

Rk (13)

Then, the iteration scheme xt = (1 − ηH)xt−1 is convergent if Rk > 0 ∀k ∈ {1, ..., n} and
0 < η < ηmax. Furthermore, the convergence rate c is upper bounded by:

c ≤
√

1− ηRmin

(
1− η

ηmax

)
(14)

Proof:

We start with:

c = lim
k→∞

max
x0∈Rn

k

√
∥xk∥
∥x0∥

≤ lim
k→∞

k

√
∥(1− ηH)k∥

= max
k∈{1,...,n}

|1− ηλk|

(15)

The first equality is the definition of the convergence rate; the following inequality rewrites the
expression using operator norms; the last equality applies Gelfand’s formula (Lax, 2002). For the
inputs to max-operator, we have:

|1− ηλk| =
√
1− 2ηRk + η2

(
R2

k + I2k
)

(16)

Hence, in order to have c < 1, we require Rk > 0 for all k ∈ {1, ..., n}. The radicand is a parabola
with a value of 1 for η = 0. Hence, it is also 1 for η = 2ηck, where ηck is the minimum.

d

dη

(
1− 2ηckRk + ηck

(
R2

k + I2k
))

= 0 (17)

We find:

nc
k =

Rk

R2
k + I2k

(18)

Hence, c < 1 for 0 < c < ηmax = 2mink n
c
k.

For the inequality on the convergence rate, we use again properties of parabolas: parabolas are
determined by three conditions. A parabola P (η) lying above the k other parabolas between 0 and
ηmax is fixed by:

• P (0) = 1

• P (ηmax) = 1

• d
dηP (0) = −2Rmin

This leads to:
P (η) =

2Rmin

ηmax
η2 − 2Rminη + 1 (19)

Corollaries 1 and 2:

Both follow from Taylor expansion and determining the extrema of Equation 19.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.2 THEOREM 2

Theorem 2: Let A ∈ Rn×n be symmetric, positive-definite matrix and B ∈ Rn×n skew-
symmetric.. Additionally, let A and B have non-degenerate eigenvalues. Denote the i-th eigenvector
of A by vi and of B by wi. Then:

i.) λmin(A) ≤ λreal
min(A+ rB) ≤ λreal

max(A+ rB) ≤ λmax(A) ∀r ∈ R
ii.) limr→∞ λreal

i (A+ rB) = ⟨wi, Awi⟩

iii.) d
drλ

real
min(A+ rB)|r=0 = 0 and d2

dr2λ
real
min(A+ rB)|r=0 ≥ ⟨v2,Bv1⟩2

λ2(A)

Proof:

Part i)

We compute the numerical range of A+rB, which is defined as the range of the Rayleigh coefficient:
Let x ∈ Cn and normalized. Denote the vectors of the eigenbasis of A by vj and the corresponding
eigenvalues by λj .

⟨x, (A+ rB)x⟩ =
∑
j

λj |xj |2 + r ·
∑
j,k

Bjkx̄jxk

=
∑
j

λj |xj |2 + r ·
∑
j,k

Bjk(x
R
j x

R
k + xI

jx
I
k) + ir ·

∑
j,k

Bjk(x
R
j x

I
k − xI

jx
R
k)

(20)

Since B is skew-symmetric, the second term adds to zero. Therefore, an expression for the real
part of the Rayleigh quotient contains only the first term. Using ∥x∥2 = 1, we find a bound for the
numerical range:

λmin(A) ≤ Re(⟨x, (A+ rB)x⟩) ≤ λmax(A) (21)

As the numerical range of a matrix contains its spectrum, the claim follows.

Part ii) and iii):

We follow the procedure outlined by Lax (2013) to compute the derivatives: Consider a differen-
tiable square-matrix-valued function F (t) of a real variable t. Let µ be a non-degenerate eigenvalue
of F (0). Then for sufficiently small t, A(t) has an eigenvalue µ(t) and corresponding eigenvector
h(t) that both depend differentiably on t. The derivatives with respect to t at 0 are denoted by dots
and given as follows with h = h(0) and l the left eigenvector of F (0) corresponding to µ:

µ̇ =
⟨l, Ḟ h⟩
⟨l, h⟩

(22)

(F (0)− µ)ḣ = −(Ḟ − µ̇)h (23)

µ̈ =
⟨l, F̈ h⟩+ 2⟨l, Ḟ ḣ⟩+ 2µ̇⟨l, ḣ⟩

⟨l, h⟩
(24)

Application to iii):

A+rB is a differentiable square-matrix-valued of r equalling A for r = 0. A is symmetric, implying
left and right eigenvectors are identical. Using Avj = λjvj to denote eigenvalues and normalized
eigenvectors, we find:

λ̇j = ⟨vj , Bvj⟩ = 0 (25)

The last equality follows from the antisymmetry of B.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

(A− λj)v̇j = −(B − λ̇j)vj (26)

This singular system is solved by the following expression for any α ∈ R. Note that the inverse here
is the pseudoinverse.

v̇j = −(A− λj)
−1(B − λ̇j)vj + αvj (27)

The second derivatives are given as follows:

λ̈j = 2⟨vj , Bv̇j⟩
= 2⟨Bvj , (A− λj)

−1Bvj + αvj⟩
= 2⟨Bvj , (A− λj)

−1Bvj⟩

= 2
∑
k ̸=j

⟨vk, Bvj⟩2

λk − λj

(28)

For the largest eigenvalue, all denominators are negative and therefore the largest eigenvalue does
not grow for sufficiently small r. For the smallest eigenvalue, the situation is reversed.

λ̈max ≤ 0

λ̈min ≥ 0
(29)

Application to ii):

In the same spirit, we apply the formulas for the derivatives again. B is skew-symmetric, therefore
diagonalizable. We have:

d

dϵ
λi(ϵA+B) = ϵ⟨wi, Awi⟩ (30)

Since eigenvalues of skew-symmetric matrices lie on the imaginary axis, we find:

λi(ϵA+B) = ϵ⟨wi, Awi⟩+O(ϵ2) (31)

Hence, we can verify the claim:

lim
r→∞

λi(A+ rB) = lim
ϵ→0

1

ϵ
λi(ϵA+B) = ⟨wi, Awi⟩ (32)

A.3 THEOREM 3

Theorem 3: Let D ∈ R2×2 be symmetric and positive-definite, R ∈ R2×2, H : R2 → R2, x 7→
− sign(Dx) · |Rx|, S =

{
s ∈ R2|si ∈ {−1, 0, 1}

}
, and for s ∈ S, let As =

{
x ∈ R2| sign(Dx)i ·

sign(Rx)i = si ∀i ∈ {1, 2}
}

. Then:

i.) For all s ∈ S, in As, H is described by a linear map Rs ∈ R2×2 such that ∀x ∈ As :
H(x) = Rsx.

Assume further that D has different eigenvalues, R has eigenvalues unequal 0, and that all the Rs

are diagonalizable. Let v1,s be the maximal eigenvector to Rs (eigenvector to the eigenvalue with
largest real part). We assume v1,s and Dv1,s have no zero components for all s. Denote by di a
vector for which the i-th component of Ddi is 0. Then we assume Rdi has no zero component.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

ii.) There exists a maximal learning rate ηmax > 0 such that for η < ηmax, the iteration scheme
xt = (1 + ηH)(xt−1) converges to 0.

iii.) If convergence occurs within one As, the convergence rate c is given by c = 1−ηλs, where
λs is the smallest eigenvalue of −Rs.

iv.) If convergence occurs across two As, the convergence rate is given by c ≤ 1−ηG(f,K, ϵ),
where f is the direction of the smallest eigenvector of D, K the condition number of D,
and ϵ the angle between d and Rd, where d is the boundary vector between the two As. G
is a monotonically increasing function in K.

Proof:

Description by a Linear Map For all s ∈ S, the matrix elements of Rs are given by (Rs)ij =
−si ·Rij . Then, for all k ∈ {1, 2}:

(Rsx)k =

2∑
j=1

−skRkjxj = −sk · (Rx)k (33)

Furthermore, for all x ∈ As:

H(x)k = − sign(Dx)k · |Rx|k = −sk
|Rx|k

sign(Rx)k
= −sk · (Rx)k (34)

Therefore, for all x ∈ As, H(x) = Rsx.

Further Subdividing R2 For each x ∈ R2, there exists an s such that x ∈ As. We will classify
the dynamics within each region As by using the eigendecomposition of its linear map Rs:

Rsvk = λkvk (35)

We choose the numbering according to the size of the real part of eigenvalues:

ℜ(λ1) ≥ ℜ(λ2) (36)

The division As of R2 consists of straight lines (when a component of s is zero) and double cones
(for the remaining s). A cone C generated by vectors gi is defined as:

C = {x ∈ Rn|x =
∑
i

αigi where all αi > 0} (37)

A double cone is the unification of the two cones generated by gi and −gi. The problem with this
division is that the behavior within one specific cone can vary. For instance, an As with only negative
eigenvalues and the eigenvectors inside of As, there will have some x for which it converges to 0
and other x for which it leaves As. This is why we further subdivide the As into subregions B that
behave consistently for all points inside. This works as follows:

1. First we split all double cones into the two cones they are made of.
2. For each cone C, we check if an eigenvector v of the corresponding Rs is in the interior

of C. If not, we leave C as it is. If so, we divide C, generated by {g1, g2} into new cones
always replacing one of the generators by v: {v, g2} and {v, g2}. In between these new
smaller cones, we will also have 1-dimensional cones, generated by fewer than n vectors.

3. If there still are eigenvectors in the two smaller cones, we repeat this procedure until there
are none inside anymore.

This will leave us with a subdivision of Rn into subregions B with no eigenvectors in their interiors.

Restriction to Neighbor Transitions For our convergence proof to work, we restrict our iteration
scheme to avoid jumping between subregions but only transition to adjacent subregions. Adjacent
subregions B1 and B2 means ∂B1 ∩ ∂B2 ̸= {0}. For a subregion B, we achieve this by allowing
only learning rates smaller than a maximal learning rate ηB . Let B be generated by gi and C be B
unified with all its adjacent subregions. Then we define Dδ as the cone spanned by the generators
g1 − δ · g2 and g2 − δ · g1. These are obviously cones containing B ⊂ Dδ for all δ ≥ 0.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Now, there exists a γ > 0 s.t. Dγ ⊂ C. For each of the gi, determine ηi such that f(η) =
(1 − ηRB)gi ∈ Dγ . This ηi is greater than 0 since f is continuous, f(0) = gi and gi is an interior
point of Dγ . Set ηB = mini ηi. Then for any x ∈ B, x = α1g1 + α2g2, the result of an iteration
step y is:

(1− ηBRB)x =

n∑
i=1

αi(1− ηBRB)gi (38)

Since αi > 0 due to x ∈ B, y is in the open cone spanned by (1−ηBRB)ai. These generators are in
Dγ by construction. Hence, y ∈ Dγ and y ∈ C, This means hat for all learning rates below ηB , the
iteration scheme maps only to B or its adjacent subregions. If the subregion was a lower-dimensional
cone, we can apply this argument to an adjacent full-dimensional cone. Choosing the minimum ηB
over all subregions, we receive a maximal learning rate ηmax, AT that guarantees adjacent transitions
globally.

Classification of the Dynamics within Subregions We classify a subregion B according to the
position of the largest eigenvector v1 of their corresponding linear map RB .

Case 1: v1 ∈ ∂B , convergence

(v1 lies on the boundary of B)

An immediate consequence is that the eigenvalue λ1 to v1 has to be negative (λ1 = 0 is not possible
by our theorem assumptions). To prove this, let {xt} be sequence of vectors converging to v1 =
limt→∞ xt with x0 ∈ B ∀k ∈ N. Then by how our method is constructed:

sign(Dxt) = − sign(RBxt) ∀t ∈ N (39)

By continuity, we have limt→∞ RBxt = RBv1 = λ1v1 and limt→∞ Dxt = Dv1. Since
by assumption of the theorem v1 and Dv1 have no zero components, and the sign function is
continuous outside of 0, we also have limt→∞ sign(RBxt) = sign(RBv1) = sign(λ1v1) and
limt→∞ sign(Dxt) = sign(Dv1). Putting that together, we find:

sign(Dv1) = − sign(RBv1) = − sign(λ1) sign(v1) (40)

By assumption of our theorem, D is positive definite, implying the angle between v1 and Dv1 has to
be smaller than π/2 and eliminating the possibility of a positive λ1 in the last equation. Therefore,
λ1 is negative.

Next, we show that our method converges to 0 from within this region: For all x ∈ B, we can
write x =

∑n
i=2 αigi. This is again the standard parametrization of cones with αi positive and gi

the generators of the cone. Note that v1 is such a generator; we set g1 = v1. Furthermore, this
parametrization also includes lower-dimensional cones, where the gi could be linear dependent. Let
now be x0 ∈ B. We obtain the next iteration vector x1 by applying the iteration scheme with the
linear operator of B:

x1 = (1 + ηH)(x0)

= (1 + ηRB)x0

= (1 + ηRB)

2∑
i=1

αigi

= (1 + ηRB)(α1v1 + α2β1v1 + α2β2v2)

= (1 + ηRB)((α1 + α2β1)v1 + α2β2v2)

= (1 + ηλ1)(α1 + α2β1)v1 + (1 + ηλ2)α2β2v2

= (1 + ηλ1)(α1 + α2β1)g1 + (1 + ηλ2)α2(g2 − β1g1)

=

(
(1 + ηλ1)(α1 + α2β1)− (1 + ηλ2)α2β1

)
a1 + (1 + ηλ2)α2g2

= (1 + ηλ1)

(
α1 −

(
1− (1 + ηλ2)

(1 + ηλ1)

)
α2β1

)
g1 + (1 + ηλ2)α2g2

(41)

In the fourth step, we switched from conic coordinates αi to the eigencoordinates βi, the description
in the eigenbasis of RB . The last line shows the conic coordinates of the new iterate x1. We choose

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

a learning rate η < −1/λ2. Then the second coordinate is positive. The first coordinate is also
positive since (1+ηλ2) < (1+ηλ1) and β1 > 0 because βi, the coordinates of g2 in the eigenbasis,
are themselves conic coordinates of a cone spanned by the eigenvectors that g2 is part of. Altogether,
we conclude that the sequence xt stays within B. Therefore, the dynamics of the iteration scheme
is entirely described by the linear map RB . We estimate for a starting point x0 within B:

c = lim
t→∞

t

√
∥xt∥
∥x0∥

≤ lim
t→∞

t
√

∥(1 + ηRB)t∥ = max
i=1,2

|1 + ηλi| = 1 + ηλ1 (42)

Hence, for η < −1/λ2 as chosen above, we have c < 1 and the sequence converges to 0 inside of
B. Repeating this for any B yields a maximal learning rate ηmax,IC for inner convergence within
all subregions where this is possible.

Case 2: v1 /∈ ∂B , transition to an adjacent subregion or convergence

While we could repeat a similar calculation in conic coordinates as before, we present an alternative
briefer argument here: In case the eigenvalues and v1 are real, consider f(t) = (1 − ηRB)

tx0 for
t ∈ R This is a continuous map with f(0) = x0 and, by power iteration, limt→∞ f(t) approaches
the direction of the largest eigenvector, which is v1. Therefore, by the intermediate value theorem,
there exists a minimal t1 such that g(t1) lies on the boundary of the cone and g(t) inside of B for
all t < t1. Choose t = ⌈t1⌉ (smallest integer larger than or equal to t1). Then xt is outside of B but,
by our choice of learning rate, inside an adjacent subregion.

In case the eigenvalues and v1 have an imaginary part, we can switch the basis defined by the real
and imaginary part of v1. There RB takes the form:(

ℜ(λ1) ℑ(λ1)
−ℑ(λ1) ℜ(λ1)

)
= |λ1|

(
ℜ(λ1)/|λ1| ℑ(λ1)/|λ1|
−ℑ(λ1)/|λ1| ℜ(λ1)/|λ1|

)
(43)

The last matrix is a rotation matrix. So applying this linear map n-times to a vector means rescaling
it by a factor |λ1|n and then rotating it by the angle n arccos(ℜ(λ1)/|λ1|). Therefore, it is clear that
any for any x0 in the cone B, the cone will be left in a finite number of steps.

For completeness, there is also the possibility that x0 is proportional to the second eigenvector v2. By
the same argument as above in Case 1, the second eigenvalue would then be negative and we would
observe convergence within the learning rate bound and rate as determined in Case 1. Nevertheless,
this is an edge case and does not compromise the conclusion that for any subregion we observe
either convergence or transition to an adjacent subregion.

Dynamics between Subregions With the dynamics of single subregions classified, we can begin
to glue them back together. Let d1 be a vector for the first component of Dd1 is zero, and d2 be a
vector for the second component of Dd2 is zero. Then the cones spanned by {d1, d2}, {−d1, d2},
{d1,−d2}, {−d1,−d2} along with the lower-dimensional cones in between decompose R2. We
will denote these cones as C-cones. All of the cones of subregions B are exactly part of one C
and several B-cones may form one C-cone. The statement is now within one C cone the iteration
scheme will either converge to 0 or leave C in a finite number of steps. This is basically the same sort
of statement we received for the B regions. This implies that the iteration scheme cannot diverge
within C by jumping back and forth between subregions B.

To prove this, assume we have a sequence {xt} from our iteration scheme inside a C-cone that does
neither leave C nor converges to 0. Since {xt} does not converge within a subregion, it will leave
any subregions it ever visits. Since the number of subregions B is finite, {xt} must therefore revisit
at least one subregion it has already been in. In two dimensions, this implies there are two adjacent
subregions B1 and B2, and a, b ∈ N with a < b such that xt ∈ B1 for t = a and t = b and xt ∈ B2

for a < t < b + 1. By construction and by assumption of no convergence, neither B1 nor B2 have
an eigenvector inside or on their boundary.

The important observation is that inside a D region there are no sign flips of Dx. That means
even though H may be described by different linear functions in the different subregions, they are
glued together in a way that H is continuous on D. The updates moving out of B1 into B2 is Hxa

and the one moving from B2 back into B1 is Hxb. Working in polar coordinates and recalling
that the subregions are adjacent cones, this means that the angular coordinates of these two updates

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

must have different signs. By continuity of H and the intermediate value theorem, this implies that
there is an x in between xa and xb, in one of the subregions or their boundary, where the angular
coordinate of Hx is 0. Therefore, Hx has only a radial component, implying x is an eigenvector of
the corresponding linear map and the sequence {xt} will converge in contradiction to the assumption
that {xt} does not converge. As a consequence, the iteration scheme does either converge inside D
regions or leaves them in a finite number of steps.

A further consequence of this argument here the transition from one subregion to the next happens
in one direction only, clockwise or counter-clockwise. This can be seen by repeating the above
argument, where we had two different linear maps when we assumed the existence of two points
with different update direction. The two linear map were continuously connected. In contrast,
here we would have only one linear map for the two points, and this map is trivially continuous
everywhere between, allowing us to repeat argument.

Dynamics between D-Cones To understand the dynamics between the D-cones, we first char-
acterize them geometrically. Let f1 be the largest eigenvector of D. Then we choose the vectors
d1 and d2, which were defined by the i-th component of Ddi being 0 in the last subsection, to
have ⟨f1, di⟩ > 0. This can be achieved by simply replacing di by −di. Then all d1 and d2 lie
within the same quadrant and f1 lies inside the cone generated by the di. This is a direct conse-
quence from the fact that positive definite matrices define ellipses. As our D by assumption has an
off-diagonal part unequal 0, the di will not be the coordinate axes. A further consequence is that
sign(d1) = sign(d2) = sign(f).

Next, we conclude that H(x) for all x in D-cone spanned by d1 and d2 points to 0 in terms of their
sign:

sign(H(x)) = − sign(Dx) = − sign(Df1) = − sign(f1) = − sign(x) (44)
Similarly, we have for x in the D-cone spanned by −d1 and −d2:

sign(H(x)) = − sign(Dx) = sign(Df1) = sign(f1) = − sign(x) (45)

For the remaining cones, the last equality does not hold. Let f2 be the other eigenvector of D and
be oriented such that it is part of the D cone spanned by d1,−d2. Then for all x in that cone:

sign(H(x)) = − sign(Dx) = − sign(Df2) = − sign(f2) (46)

For all x in the remaining cone spanned by −d1, d2:

sign(H(x)) = − sign(Dx) = sign(Df2) = sign(f2) (47)

We already showed that the transitions from one subregion to the next go only in one direction. With
these geometric thoughts, we can eliminate the possibility of our iteration scheme circling around
forever between the D-cones. What is possible is going back and forth between two subregions
that meet at the d1 or the d2 line. This can be shown by the existence of two subregion where the
transitions happen only clockwise in one and counterclockwise in the other.

To show this assume without loss of generality that d1 lies before d2 when moving clockwise and
that both lie in the first quadrant, i.e. sign(d1) = (+1,+1) Then the first subregion is given by the
subregion B1 whose boundary is d1 and not in the cone spanned by d1 and d2. For x ∈ B1 and in
the first quadrant, we are in the cone spanned by d1,−d2, therefore the sign of the update direction
is (−1,+1) . Hence the iteration scheme will cross d1 clockwise. Repeating the argument for the
subregion B2 whose boundary is d2 and not in the cone spanned by d1 and d2, we find that there
the iteration scheme will cross d2 in counter-clockwise direction. This proofs the existence of two
subregions adjacent to one the d-lines between which the iteration scheme moves back and forth.

To describe this dynamics near the d-line, where the iteration scheme moves back and forth between
two subregions B1 and B2, we work in the basis d, e with e being orthogonal to d. We denote the
corresponding coordinates by γd, γe, and without loss of generality assume that for γe > 0 we move
into B1 First we analyze this zigzag behavior for a simplified map H∗ defined by H∗(x) = B1x
if ⟨γe, x⟩ > 0 and H∗(x) = B2x if ⟨γe, x⟩ < 0. A drawing of this situation can be found in A.3,
for the case where one of the sides moves actually away from 0. It is part of the argumentation
that in this case the movement toward 0 on the other side outweighs the divergent part. Denoting
r1 = ||B1d|| and r2 = ||B2d||, one iteration step in B1 changes the coordinates as follows:

∆γd = −ηr1γd cos(α)

∆γe = −ηr1γd sin(α)
(48)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

θ
ϕ

ε
ε

α

β

Figure 6: Geometric model for zigzag convergence. Blue lines show where the sign of the gradient
field switches. The green crosses with the red-colored quadrant indicate the allowed signs of the
update vector in the three regions defined by the blue lines. The red line corresponds to the flow line
of the non-gradient field.

Similarly, one iteration step in B2 changes the coordinates as follows:

∆γd = −ηr2γd cos(β)

∆γe = ηr2γd sin(β)
(49)

For the iteration scheme to move between B1 and B2 endlessly, we require ∆e, the number of B1

steps has to be κ the number of B2 steps, where κ can be computed from:

κηr sin(β)γd = ηr sin(α)γd or κ =
sin(β)

sin(α)
(50)

Here, we set r = r1 = r2 since along the boundary, the vector only flips a sign in one component
and therefore, the lengths are the same. Consequently, the average ∆γd progress per step is:

∆γd = −η
(κr

κ+ 1
cos(α) +

r

κ+ 1
cos(β)

)
γd = −ηF (α, β)γd (51)

As long as α + β < π, the expression in the brackets F gives a positive number, leading to
convergence. ϵ is the angle between the H∗(x) updates and the coordinate axis along which the sign
flips. ϵ fulfills:

α+ β + 2ϵ = π (52)

By assumption of the theorem, they are not parallel, giving ϵ > 0 and α+β < π. We also introduce
the angle ϕ between d and the first coordinate axis.

θ + α+ ϵ = π/2 (53)

To apply these ideas now to the actual vector field H , we note that the maximal step away from the
boundary can be no more than w1 = (1 + ηR1)d and w2 = (1 + ηR2)d. To receive a worst-case

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

estimate for the convergence rate, we assume the updates always happen with the worst possible
angle αm and βm, which would lead to more movement along e and less along d. As by continuity
for η = 0, they approach α and β, we choose a learning rate smaller than a ηmax,ZZ that is chosen
such that the angle between the worst case value of α′ and β′ on both sides of d with the coordinate
axis of the sign flip is still ϵ/2. Then Equations 52 and 53 change to:

α′ + β′ + ϵ = π

θ + α′ + ϵ/2 = π/2
(54)

As still α′ + β′ < π, our iteration scheme is still convergent through 51. The α′ and β′ can be
written as a function of ϕ and θ:

α′ = π/2− ϵ/2− θ

β′ = π/2− ϵ/2 + θ
(55)

With that we can give an upper bound on the convergence rate, using that x is bounded by γd.

c = lim
t→∞

t

√
∥xt∥
∥x0∥

≤ 1− ηF (α′, β′) = 1− ηF (α′(θ, ϵ), β′(θ, ϵ)) (56)

By again using the geometry of ellipses, we can further estimate θ: As mentioned d lies between the
eigenvector f1 of D and the coordinate axis. As the ellipse defined by D becomes more elongated
by increasing the condition number K of D, θ increases with K. Using this information together
with the functional form of F , we can then give the following formula for c, where G > 0 through
K > 1 and ϵ > 0, and G fulfills G(f1,K1, ϵ) > G(f1,K2, ϵ) if K1 > K2 as this leads to a better θ.

c ≤ 1− ηG(f1,K, ϵ) (57)

Final Estimates Putting it all together, we choose ηmax as the minimum of ηmax, AT, ηmax, IC,
ηmax,ZZ . Then for 0 < η < ηmax, the construction in our proof is valid and after a finite num-
ber of steps, we either reach one of the two asymptotic situations of convergence. The convergence
rate is bounded by the maximum of c ≤ 1− ηG(f1,K, ϵ) for zigzag convergence and c ≤ 1 + ηλ1

for convergence within one subregion.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

a)

2w1
+w8

2w2
+w8

2w3
+w8

2w4
+w8

2w5
+w8

2w6
+w8

w7+
2w8

0 50 100 150 200 250
Iteration

10 8

10 6

10 4

10 2

100

102

Lo
ss

GD
TD
GDS-TDM

b)

Figure 7: a) Schematic representation of Baird’s counterexample with 7 states. b) Training loss as a
function of the learning iterations.

B BAIRD’S COUNTEREXAMPLE

As another test case, we present the version of Baird’s counterexample provided by Sutton & Barto
(2018), which is likely the most famous example associated with TD’s divergence. Figure 7a shows
a schematic drawing of this Markov zero reward process along with the structure of the used function
approximation. The transition probabilities of the policy to be estimated are 1 on the solid arrows
and 0 elsewhere. The transition probabilities of the behavior policy used for off-policy training are
1/7 on the solid arrows, 6/7 on the dashed arrows, and 0 elsewhere. We use a discount factor of
0.99 and train on full batches to avoid stochastic effects of mini-batch training.

Figure 7b shows the loss (Bellmann error) over training iterations for GD, TD and GDS-TDM. At the
beginning, GD performs decently before then stagnating around 10−6. This is due to ill-conditioning
as an explicit calculation of the condition number of the Hessian reveals; its value is 1.3 · 104. TD
diverges, which is due to the off-policy training procedure. GDS-TDM behaves similarly to GD in
the beginning, decreasing the loss. When GD reaches is plateau, GDS-TDM continuous to decrease
the loss. Later GDS-TDM stagnates as well but at a much better value of roughly 10−10. It is worth
mentioning that at some point we expect the loss not to decrease any further due to floating point
precision and the presence of non-zero solutions. The latter exists in any underdetermined linear
system; here, we use 8 variables to learn 7 values.

23

	Introduction
	Background
	The Increased Speed of Temporal Difference Learning
	Closed-Form Solution in Two Dimensions
	Generalizing Convergence Rates
	Eigenspectra of Symmetric, Positive-Definite Matrices under Skew-Symmetric Perturbations
	The Complete Picture

	A Principle-Guided Method to Unify Gradient Descent and Temporal Difference Learning
	Experiments
	Related Work
	Conclusion
	Mathematical Proofs
	Theorem 1 and its Corollaries
	Theorem 2
	Theorem 3

	Baird's counterexample

