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Abstract
Teaching language models to use tools is an001
important milestone towards building general002
assistants, but remains an open problem. While003
there has been significant progress on learn-004
ing to use specific tools via fine-tuning, lan-005
guage models still struggle with learning how006
to robustly use new tools from only a few007
demonstrations. In this work we introduce a008
self-verification method which distinguishes009
between close candidates by self-asking con-010
trastive questions during (1) tool selection; and011
(2) parameter generation. We construct syn-012
thetic, high-quality, self-generated data for this013
goal using Llama-2 70B, which we intend to014
release publicly. Extensive experiments on 4015
tasks from the ToolBench benchmark, consist-016
ing of 17 unseen tools, demonstrate an aver-017
age improvement of 22% over few-shot base-018
lines, even in scenarios where the distinctions019
between candidate tools are finely nuanced.020

1 Introduction021

Incorporating external tools into large language022

models (LLMs) enhances their real-world appli-023

cability (Schick et al., 2023; Shen et al., 2023;024

Song et al., 2023). Many tools exist in the form025

of APIs (Xu et al., 2023b; Tang et al., 2023; Hsieh026

et al., 2023; Schick et al., 2023; Qin et al., 2023),027

machine learning models (Shen et al., 2023; Patil028

et al., 2023), and other functions (Gou et al., 2023).029

Nevertheless, the evolving landscape of existing030

tools and APIs, marked by frequent parameter up-031

dates and the daily introduction of new tools, poses032

a challenge for generalization. LLMs must quickly033

adapt to these changes and generalize to previously034

unseen tools without additional fine-tuning or ex-035

tensive human input.036

Several recent studies enable tool usage by fine-037

tuning LLMs on real (Schick et al., 2023; Qin et al.,038

2023; Patil et al., 2023) or synthetic tools (Tang039

et al., 2023), equipping them to effectively uti-040

lize tools present in the training data with a high041

success rate. Currently, the integration of unseen 042

tools into LLMs relies on providing them with 043

few-shot demonstrations that contain examples of 044

user instructions and corresponding tool calls (Patil 045

et al., 2023; Tang et al., 2023). However, these 046

prompting-based approaches still struggle to accu- 047

rately generate a complete tool call from a set of 048

unseen tools. 049

To address these challenges, we propose 050

TOOLVERIFIER, a self-verification method tailored 051

for tool-use scenarios, capable of discerning be- 052

tween candidate tools and their respective parame- 053

ters through verification questions. To achieve this, 054

we decompose the tool call generation task into two 055

distinct sub-tasks: (1) tool selection, given a user 056

instruction, the most suitable tool is selected from 057

a library of options, and (2) parameter generation, 058

the appropriate parameters for the selected tool are 059

then generated. Crucially, we propose verification 060

for each sub-task, to both improve sensitivity and to 061

curb error propagation. Figure 1 shows an overview 062

of each sub-task. 063

In the tool selection stage, our model must 064

choose one tool among multiple options, given only 065

the description of the tool. To facilitate learning 066

how to choose the appropriate tool, we curate a 067

high-quality, model-generated, synthetic training 068

dataset containing tools, their descriptions, and user 069

instructions.1 This dataset comprises 173 synthetic 070

tools with corresponding descriptions, 555 samples, 071

each involving reasoning about the tool’s usage. 072

We then use this dataset to fine-tune a Llama-2 70B 073

model (Touvron et al., 2023b) to select the correct 074

tool for an instruction given only a set of tool names 075

and their descriptions, allowing the model at test 076

time to select from tools never seen during training. 077

After the tool is selected, parameters are gener- 078

ated for the selected tool call, which is achieved 079

1The dataset is available at https://anonymousrepo/
ToolVerifier
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latitude: 22.1

latitude: -128.7

Q: “latitude” refers to latitude of location.
I am confused about choosing one of 
these two for “latitude”

a. 22.1
b. -128.7

What is the answer?

A: The latitude is 22.1

Q: Are you looking for the level of air 
pollution in a specific location or the 
weather conditions in that same location?

A: The question was “How's the air quality 
this week at latitude 22.1 and longitude 
-128.7?”. They are looking for air quality 
data which suggests they want to know air 
pollution levels.

Forecast Air Pollution

latitude=22.1

How's the air quality this 
week at latitude 22.1 and 
longitude -128.7?

👱

How's the air quality this 
week at latitude 22.1 and 
longitude -128.7?

👱

��

Figure 1: Overview of TOOLVERIFIER. Starting with a candidate tool list and a user instruction, TOOLVERIFIER
initially identifies the top two tools. Subsequently, it generates a verification question by contrasting the selected
tools and answers it. Finally, this information is appended to the context, leading to the final tool choice. The
parameter generation follows a similar pipeline, wherein two candidate values are obtained for each parameter
(latitude in the above figure). Subsequently, the verification question is used to finalize the parameter value.

through few-shot prompting with demonstrations080

corresponding to the chosen tool.081

Self-verification is used at each step to reduce082

error propagation and enhance overall performance.083

As shown in Figure 1, for tool selection verifica-084

tion, we extract the top two predictions from the085

fine-tuned model. A verification question is then086

generated contrasting the two options via 0-shot087

prompting, enabling the model to focus on a fine-088

grained decision where the answer aids in selecting089

one tool from the top two predictions. The model090

answers the question, and the context is updated091

by appending this answer to the user instruction, to092

guide tool selection. A similar approach is adopted093

for verifying the parameter generation.094

We evaluate our approach on 4 tasks from the095

publicly available ToolBench benchmark which096

tests generalization to 17 unseen real-life APIs.097

TOOLVERIFIER demonstrates a noteworthy 22%098

improvement over few-shot prompting baselines.099

The proposed self-verification mechanism con-100

tributes an improvement of 8%, underscoring its101

pivotal role in boosting overall performance.102

2 TOOLVERIFIER103

TOOLVERIFIER chooses and calls a tool given a104

user instruction. It consists of the following steps:105

1. Tool selection & verification – selecting the106

tool from a library of tools.107

2. Parameter generation & verification – gener- 108

ating the parameters for the tool call. 109

For step (1) we generate synthetic data consist- 110

ing of a library of tools, (instruction, tool) pairs, 111

and reasoning notes explaining the correct choice 112

of tool, see Figure 2. Fine-tuning on this data pro- 113

vides improved tool selection performance, even 114

on new sets of tools. The selection process is then 115

refined by verifying the choice between the top 116

two competing choices by asking and answering 117

contrastive verification questions, see Figure 3. 118

For step (2) we use few-shot prompting given 119

demonstrations of the actual tool. We again verify 120

two competing likely generations. 121

2.1 Tool Selection Dataset Generation 122

Our first goal is to train a language model capable 123

of selecting an appropriate tool for a given user 124

instruction by reasoning about a candidate list of 125

tools solely based on their names and descriptions. 126

We intentionally exclude demonstrations for tool 127

selection in our approach to handle a larger set of 128

tools in one go, using only their names and descrip- 129

tions. In this section, we elaborate on the process 130

of creating the training dataset for training such a 131

tool selection language model. 132

Since the primary objective in this step is to se- 133

lect the correct tool (but not execute the tool call), 134

synthetically generated tools and their correspond- 135

ing descriptions can easily be used in this setting, 136
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User: While I was coming back home from the office,
I saw a kid in Audi Q7. Where can I buy this car
within 10 miles?

Tool Choices:
• CarLocator: Lists car dealers given price range.
• BankAccount: Creates a bank account in a bank.
• CarFinder: Finds dealers given car model and radius.
• CurrentWeatherCity: Current weather given city.
• . . . [more choices] . . .

Thought: Since I need to find the car within 10 miles,
“Car Finder” tool seems to be the right choice here. I
need to use this tool.

Act: CALLTOOL[CarFinder()]

Figure 2: Illustrative training example from our synthet-
ically constructed tool selection dataset ToolSelect.
Given a user instruction and a set of tools to choose
from, the output consists of reasoning notes (“Thought”)
and the final tool selection (“Act”).

as we do not require their actual inner workings (in137

order to execute them). In our generated dataset,138

each training sample is thus composed of a user in-139

struction, a candidate set of tools that includes the140

ground truth tool, and a reasoning note elucidating141

the correct choice of tool. An illustrative training142

sample is given in Figure 2.143

2.1.1 Synthetic Tool Library Generation144

Generation Procedure We generate a set of syn-145

thetic tools along with their corresponding descrip-146

tions, which are used to build the training exam-147

ples. We start by first manually annotating a “seed148

set” of eight tools and their descriptions. Subse-149

quently, we employ the Llama-65B (Touvron et al.,150

2023a) model to generate additional tools using151

few-shot prompting with the manually annotated152

tools (specified in Appendix A.6.1). This process153

then involves multiple iterations of prompting with154

different random seeds, where the tools generated155

in each iteration are integrated into the prompt for156

subsequent iterations to generate more diverse tools.157

Specifically, in each iteration, for every newly intro-158

duced tool, we identify the most similar tool in the159

prompt based on cosine similarity using RoBERTa160

sentence similarity (Reimers and Gurevych, 2019).161

We replace the most similar tool in the prompt with162

the new addition, ensuring a balanced diversity of163

tools in the prompt. Using this iterative approach,164

we generate a total of 60 tools.2 It is noteworthy165

2These tools were manually reviewed, and 7 duplicates
were removed.

I am confused to choose one of these two classes. Here
are their names and descriptions:

a CarLocator - Lists car dealers given price range.
b CarFinder: Finds dealers given car model and radius.

A contrastive question is a question that upon asking
would resolve such confusion. Generate a contrastive
question that I can ask myself whose answer would
help me make the right choice.

Verification Question: What is the primary purpose of
the class I need? Is it to find a car dealership based
on a specific car model and location (CarFinder), or
is it to list car dealerships within a given price range
(CarLocator)?

Figure 3: Verification method for tool selection: a con-
strastive question is generated that can then be answered
to help discern among the top two predicted tools.

to highlight that this process yields a diverse set of 166

tools from various domains including travel, bank- 167

ing, and calendar, with almost no manual effort. 168

Generating Challenging Tool Sets In generat- 169

ing these synthetic tools, we endeavor to have a tool 170

set that is diverse, but also sufficiently challenging. 171

An overly simplistic training set would contain only 172

easy choices (e.g., a weather tool versus an email 173

tool) and this would impede the model’s ability 174

to generalize to challenging instances during test 175

time. To address this, we generate two related tools 176

for each of our previously generated 60 tools. Re- 177

lated tools are defined as tools closely resembling 178

a given tool but differing in either functionality 179

or parameters. For instance, “Bank account for a 180

person name ” and “Bank account for an account 181

number” are related tools. We use only the tool 182

names, and not the descriptions, for generating 183

related tools. After manually annotating related 184

tools for our seed set of eight tools, we generate 185

two related tools for each of the remaining tools 186

with few-shot prompting with these examples, as 187

indicated in Appendix A.6.3. 188

Finally, after manual inspection and curation, 189

our dataset contains a total of 173 tools. 190

2.1.2 Generating Training Examples 191

Using the generated tool library, we can now gener- 192

ate training examples for our tool selection dataset. 193

This requires generating inputs (instructions), curat- 194

ing candidate lists of tools, and generating outputs 195

(reasoning notes that explain which tools should be 196

selected, and actions to call those tools). 197
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Generating Instructions We first manually an-198

notate three instructions per tool for the seed set199

of eight tools. Using these examples, we generate200

three instructions per tool for all remaining tools201

by few-shot prompting Llama-2 70B.202

Curating Candidate List of Tools For each gen-203

erated instruction, a candidate list of tools is created204

by randomly selecting 7 tools and adding the orig-205

inal ground truth tool for which we generated the206

instruction. To introduce complexity, for a sub-207

set of the training set, we deliberately create chal-208

lenging samples by restricting the candidate set to209

include only the ground truth tool and its related210

tools. This deliberate selection aims to increase211

the difficulty level, as distinguishing among these212

options is inherently more challenging than with213

randomly selected tools from the entire set.214

Generating Target Outputs After generating215

the set of instructions along with their respective216

ground truth tool and a candidate list of tools, we217

create a reasoning note for each sample elucidat-218

ing the rationale behind the selection of the ground219

truth tool, which becomes the target output for that220

training example (see Figure 2). Such reasoning221

notes have been observed to enhance reasoning222

abilities (Wei et al., 2022; Yao et al., 2022; Lan-223

chantin et al., 2023). Reasoning note generation224

is accomplished by prompting Llama-2-Chat-70B225

with the instruction, list of tools, and the ground226

truth tool, and asking the model why the tool was227

chosen. The exact prompt used is provided in Ap-228

pendix A.6.2.229

Our final dataset, called ToolSelect, thus con-230

tains 555 samples for our 173 tools, of which 75231

samples are hard examples, featuring candidate232

tool sets that contain only the ground truth tool and233

its related tools.3 The average number of candi-234

date tools per instruction is 7.34 with minimum235

and maximum number of candidate tools being 2236

and 8. The average length of a reasoning note is237

1054 characters.238

The goal of this dataset is to enable generaliza-239

tion capabilities to a wide range of possible tools240

and tool libraries, and thus to demonstrate effective-241

ness across diverse scenarios. During training, the242

user instruction and tool list in each sample have243

masked labels, and hence, they do not contribute to244

the loss and are not learned.245

3The data was manually reviewed, and 56 noisy and dupli-
cate samples were removed.

2.2 Tool Selection Verification 246

Despite our model being fine-tuned on the above 247

dataset, tool selection mistakes can still happen, 248

particularly for related tools that are hard to dif- 249

ferentiate. Crucially, we observe that those tool 250

selection predictions typically appear as the top 251

few predictions – but selection between them is 252

challenging. 253

At inference time, we thus perform the following 254

procedure. Given an instruction: 255

• First, we use the fine-tuned tool selection model 256

to zero-shot select a tool. 257

• We then remove the initially selected tool from 258

the candidate set of tools, and generate a second 259

prediction. 260

• We construct a verification question to make a 261

fine-grained decision between the model’s top 262

two selections. 263

We employ Llama-2-Chat-70B to generate a con- 264

trastive verification question, where the prompt 265

asks the model to ask a question that emphasizes 266

the distinctions between candidate tools given their 267

names and descriptions (see Appendix A.6.4 for the 268

exact prompt used and Figure 3 for an instantiation 269

of it). Self-asking the model regarding its predic- 270

tions has been noted to reduce hallucinations (Press 271

et al., 2022; Dhuliawala et al., 2023), suggesting 272

that posing such verification questions could assist 273

the model in validating its predictions. Since only 274

names and descriptions are used for generating con- 275

trastive questions, they can be generated offline and 276

utilized as needed to make the method more effi- 277

cient. The answers to these contrastive questions 278

are obtained by further prompting Llama-2-Chat- 279

70B, and these are appended to the context. Finally, 280

we select the tool by using our fine-tuned Llama-2 281

70B model, with the top-two tools as candidates. 282

As the verification answer to the question is in the 283

context this can help it select the right tool. 284

2.3 Parameter Generation & Verification 285

Parameter Generation Following tool selec- 286

tion, we generate parameters for the selected tool 287

through few-shot prompting with Llama-2 70B, uti- 288

lizing demonstrations specific to the selected tool, 289

which are assumed to be provided. Note that we 290

do not use our synthetic tool selection dataset for 291

parameter generation since the dataset does not 292

contain this subtask. This procedure is only done 293

with real tools at inference time, without prior fine- 294

tuning. 295
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Parameter Verification The generated parame-296

ters are then subjected to verification before finaliz-297

ing the set, resulting in the final tool call. To vali-298

date the generated parameters, we obtain a second299

set of parameter predictions. These can be acquired300

using sampling or an alternative model for diverse301

options; in our experiments, we employ ReAct-302

style prompting (Yao et al., 2022) with Llama-2303

70B to obtain them. Then, for each individual pa-304

rameter, we formulate a multiple-choice question305

to contrast the two predictions and further prime306

Llama-2-Chat-70B to make a definitive choice be-307

tween them, providing the parameter description308

and user instruction as indicated in Appendix A.6.5.309

The final parameter predictions are then aggregated310

to construct the tool call by few-shot prompting311

Llama-2 70B as in Appendix A.6.7.312

3 Experiments313

In our experiments, we assess the effectiveness of314

our method using publicly available real-life tools.315

3.1 Tasks316

We evaluate our proposed method on four tool-317

calling tasks: Weather, Cat, Home and Booking318

from ToolBench (Xu et al., 2023b) that involve319

using the REST APIs. The Weather, Home, and320

Cat tasks each comprise 100 evaluation samples,321

while the Booking task contains 120 samples. Each322

task includes API documentation, parameter de-323

scriptions, user instructions, and the corresponding324

ground truth API call pairs.325

For each task, there are multiple tools available,326

where the entire benchmark consists of a total of327

17 tools. However, instead of evaluating each task328

individually, we make it more challenging by pool-329

ing together all available tools. In other words, for330

each user instruction, the model is provided a can-331

didate list of 17 tools. The ToolBench benchmark332

with 17 tools presents an ideal balance between333

maximizing the number of tools that could be ac-334

commodated within the context window without335

requiring the use of a retriever. By eliminating the336

dependency on a retriever, we could independently337

evaluate the impact of self-verification on perfor-338

mance. We follow the evaluation protocol set by339

the benchmark and use success rate as the metric,340

where the success rate of a predicted tool call is 1341

if its API response exactly matches the response342

from the ground truth API call.343

3.2 Baselines 344

We conduct a comparison with various tool- 345

augmented LLMs and prompting baselines using 346

Llama-2 70B and Llama-2-Chat-70B. Specifically, 347

for tool-augmented LLMs, we compare with Tool- 348

LLM 7B (Qin et al., 2023), NexusRaven-V2 13B4, 349

and Qwen1.5-Chat-72B (Bai et al., 2023)5. Tool- 350

LLM, NexusRaven-V2, and Qwen1.5 utilize API 351

documentation to generate tool calls corresponding 352

to a given instruction. 353

For prompting baselines, we try two distinct 354

approaches: (1) Single-step, where the model is 355

prompted directly for an API call with a single 356

demonstration per tool; and (2) Two-step, where 357

we decompose the process into tool selection and 358

parameter generation, prompting the model indi- 359

vidually for each step, as in TOOLVERIFIER. 360

The Single-step method uses 1-shot single 361

demonstrations of each of the (17) tools to accom- 362

modate the prompt within the context size. 363

For the Two-step method, we consider two vari- 364

ants for the tool selection stage: 365

• 0-shot: We use a 0-shot prompt that asks to select 366

from the list of tools, without any demonstrations 367

for tool selection. See A.6.6 for the exact prompt. 368

• 1-shot: We show one demonstration per tool: a 369

user instruction and corresponding tool name. 370

For parameter generation in the Two-Step method, 371

we use three demonstrations for the selected tool. 372

3.3 TOOLVERIFIER Details and Ablations 373

Our model is denoted as TOOLVERIFIER. For tool 374

selection it uses 0-shot prompting with Llama- 375

2 70B fine-tuned on our synthetic ToolSelect 376

dataset to select two tools and finalize one through 377

our proposed contrastive-question-based tool ver- 378

ification. Subsequently, we generate two sets of 379

parameters by employing standard few-shot and 380

ReAct-style prompting Llama-2 70B with three 381

demonstrations, and finalize the parameter set us- 382

ing our proposed parameter verification. 383

We additionally compare against ablated ver- 384

sions of our method: with tool selection verification 385

only (but not parameter verification), with parame- 386

ter selection verification only (but not tool verifica- 387

tion), and without verification (in either stage). 388

4
https://nexusflow.ai/blogs/ravenv2

5We attempted comparing with ToolAlpaca (Tang et al.,
2023), however, it led to context overflow.

5

https://nexusflow.ai/blogs/ravenv2


Method Weather Booking Home Cat Average

Tool-Augmented LLMs
ToolLLM 7B 18 0 0 11 6.90
NexusRaven-V2 13B 55 27.50 43 82 50.71
Qwen1.5-Chat-72B 74 55 52 89 66.90

Prompting Baselines
Single-Step Llama-2 70B (1-shot) 70 7.50 85 83 58.81
Two-Step Llama-2 70B (1-shot tool selection) 80 34.17 85 78 67.62
Two-Step Llama-2-Chat-70B (0-shot tool selection) 77 64.17 84 83 76.43

TOOLVERIFIER (without verification) 76 82.50 85 82 81.43
TOOLVERIFIER (tool selection verification only) 84 82.50 85 83 83.57
TOOLVERIFIER (param selection verification only) 81 84.17 88 96 87.14
TOOLVERIFIER (tool verification+param verification) 90 84.17 88 97 89.52

Table 1: Tool call (tool selection + parameter generation) results. We report percentage (%) success rate for each
task. Our fine-tuned Llama-2 70B model TOOLVERIFIER, even without verification, results in higher performance
compared to the baselines. Our proposed verification mechanism further improves the success rate by 8 points –
with both types of verification, for tool and parameter selection, each giving a separate boost in performance.

3.4 Experimental Results389

Tool Call (Selection + Parameters) The com-390

plete tool call performance results are presented391

in Table 1. Our approach, TOOLVERIFIER, out-392

performs all baselines both on average and indi-393

vidually across all tasks. TOOLVERIFIER outper-394

forms all compared tool-augmented LLMs by a sig-395

nificant margin. Comparing TOOLVERIFIER with396

Single-Step 1-shot highlights the challenges in gen-397

erating complete tool calls at once, emphasizing398

the efficacy of the two-step decomposition. It also399

surpasses Single-Step 1-shot and Two-Step 1-shot400

tool baselines by a substantial margin of more than401

50 points on the challenging Booking task.402

A comparative analysis between403

TOOLVERIFIER with and without parameter404

verification illustrates that parameter verification405

significantly enhances performance, showing406

improvements of up to 14 points in the Cat task and407

6 points in the Weather task, leading to an average408

improvement of 6 points across all tasks. Similarly,409

the comparison between TOOLVERIFIER with410

and without tool verification demonstrates that411

tool verification contributes significantly to the412

performance, such as up to 8 points in the Weather413

task. Notably, both types of verification help, each414

giving a separate boost, as shown by comparing415

the without verification results to tool selection416

verification only and tool+parameter verification.417

These results underscore the significance of418

verification in both steps for the tool call success.419

Tool Selection Only We report the performance 420

of tool selection (choosing the tool correctly, 421

but without generating parameters) in Table 2. 422

TOOLVERIFIER outperforms all baselines on aver- 423

age and individually across the majority of tasks as 424

well. TOOLVERIFIER performs better than almost 425

all compared tool-augmented LLMs, demonstrat- 426

ing its superior performance. A comparative anal- 427

ysis between TOOLVERIFIER with tool selection 428

verification and without underscores the substantial 429

enhancement in performance achieved through the 430

verification process. Specifically, in tasks such as 431

Weather and Home, we observe that the verifica- 432

tion procedure not only improves performance in 433

specific examples of lower baseline performance, 434

but also does not adversely affect cases where veri- 435

fication may be unnecessary. 436

TOOLVERIFIER (both with and without verifica- 437

tion) shows that our zero-shot Llama-2 70B fine- 438

tuned on our synthetically generated dataset per- 439

forms better than other baselines, including a 0-shot 440

Llama-2-Chat-70B, with an improvement of up to 441

6 points. The average number of candidate tools 442

per instruction in the generated training data for 443

tool selection is 7.34 which is notably smaller than 444

the 17 tools encountered during test time. This dif- 445

ference underscores the generalization capability of 446

our method, demonstrating its effectiveness across 447

diverse scenarios. The performance of 1-shot base- 448

lines reveals the difficulty in selecting the appropri- 449

ate tool from an unseen set using prompting-based 450

approaches. In contrast, fine-tuning the model on 451

our synthetically generated dataset with examples 452
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Method Weather Booking Home Cat Average

Tool-Augmented LLMs
ToolLLM 7B 27 22 84 26 38.90
NexusRaven-V2 13B 84 93.33 100 98 93.81
Qwen1.5-Chat-72B 93 95 99 96 95.71

Prompting Baselines
Single-Step Llama-2 70B (1-shot) 79 43.30 100 98 78.32
Two-Step Llama-2 70B (1-shot tool selection) 86 45.00 100 92 79.05
Two-Step Llama-2-Chat-70B (0-shot tool selection) 83 75.80 99 97 88.09

TOOLVERIFIER (without verification) 82 98.33 100 96 94.28
TOOLVERIFIER (tool selection verification) 91 98.33 100 97 96.67

Table 2: Tool selection results. We report accuracy in percentage (%) for each task. Our fine-tuned Llama-2 70B
model TOOLVERIFIER, even without verification, demonstrates superior performance compared to prompting-based
baselines, with a higher average performance. Our proposed tool selection verification mechanism contributes
another 2.5% improvement in accuracy on average.

of using a diverse set of tools significantly improves453

tool selection accuracy. Moreover, the verification454

procedure further improves tool selection perfor-455

mance by an additional 2.4 points on average.456

4 Analysis457

4.1 Self-verification improves tool-augmented458

LLMs459

Our proposed self-verification method does not re-460

quire any specific training process. To demonstrate461

its effectiveness on tool-augmented LLMs, we ex-462

periment with ToolLLM 7B, NexusRaven-V2 13B,463

and Qwen1.5-Chat-72B. We obtain two sets of pre-464

dictions as in TOOLVERIFIER, where the first pre-465

dicted tool is removed from the set of tools to ob-466

tain the second prediction. After tool verification,467

we identify the final selected tool. We obtain two468

parameter predictions using two different sampling469

parameters while generation. We then perform470

parameter verification to finalize the parameters471

and construct the tool call. The complete tool call472

success rate comparison, with and without self-473

verification, is presented in Table 3. We observe a474

significant improvement in average performance: 6475

points for ToolLLM-7B, 9 points for NexusRaven-476

V2 13B, and 4 points for Qwen1.5-Chat-72B. In477

certain tasks, such as the Weather task, the suc-478

cess rate of NexusRaven-V2 improved by 23 points479

through self-verification. This demonstrates that480

self-verification can be effectively applied to tool-481

augmented LLMs, enhancing their performance.482

The tool selection results are in Appendix A.1,483

where we also note significant improvements in484

performance post tool verification.485

4.2 Verification Question Analysis 486

Qualitative Analysis Verification questions 487

should ideally reference the distinguishing charac- 488

teristics between two given tools in order to best 489

help the model consider the differences between 490

the two choices. This capability is particularly 491

crucial for closely related tools. For instance, the 492

tools "Forecast Air Pollution" and "Current Air 493

Pollution" both provide air pollution data, but for 494

future and current times, respectively. Verifica- 495

tion question generation by Llama-2-Chat-70B 496

identifies this nuanced difference and articulates 497

it in the verification question: Are you looking 498

for data on the current air pollution levels in a 499

specific location, or do you need to forecast the air 500

pollution levels for a future date in that location? 501

Responses to such questions precisely address 502

the identified distinction. An example response 503

is: "It appears that the user is looking for current 504

air pollution data for a specific location with 505

latitude -24.7 and longitude -57.3. Therefore, the 506

answer is: A. Retrieve current air pollution data 507

for a specific location." Inserting this response 508

into the context improves tool selection accuracy, 509

guiding the model towards the correct choice. For 510

more distinct tools, the model captures higher 511

level differences. For example, for "Forecast 512

Air Pollution" and "Get favorite cat images", the 513

generated question is: Which aspect are you more 514

interested in: predicting environmental air quality 515

or exploring feline visuals? 516

Significance of Contrastive Questions To 517

demonstrate the significance of contrastive- 518

question-based verification, we conduct an exper- 519

7



Method Weather Booking Home Cat Average

ToolLLM 7B 18 0 0 11 6.90
ToolLLM 7B + Tool, Param Verification 23 7.5 9 15 13.33

NexusRaven-V2 13B 55 27.50 43 82 50.70
NexusRaven-V2 13B + Tool, Param Verification 78 34.17 46 84 59.29

Qwen1.5-Chat-72B 74 55 52 89 66.90
Qwen1.5-Chat-72B + Tool, Param Verification 76 57.5 59 91 70.24

Table 3: Tool verification and parameter verification improve tool call success rate for tool-augmented LLMs.
We report percentage (%) success rate for each task. Our proposed verification mechanism significantly improves
the success rate of all tool-augmented LLMs.

iment by zero-shot prompting Llama-2-Chat-70B520

to choose one tool from the top-2 without employ-521

ing a verification question. Instead, we present the522

names and descriptions of the top-2 tools and frame523

it as a multiple-choice question, asking Llama-2-524

Chat-70B to make a selection. We experiment on525

the Weather task and the accuracy of Llama-2-Chat-526

70B is 70% whereas the accuracy of contrastive527

question-based verification is 91 %. This signifi-528

cant enhancement over straightforward prompting529

illustrates effectiveness of contrastive questions.530

More studies regarding parameter generation-531

only performance, error analysis, and examining532

multiple aspects of synthetic training data are de-533

tailed in Appendix A.2, A.3, A.4 respectively.534

5 Related Work535

Self-Verification Iterative improvement of536

LLMs typically involves prompting an LLM to pro-537

vide feedback on given generated facts or answers538

and subsequently refining their outputs (Madaan539

et al., 2023; Shridhar et al., 2023a; Lu et al., 2023)540

which has also been shown to reduce halluci-541

nation (Dhuliawala et al., 2023). Additionally,542

some studies involve the fine-tuning of custom543

LLMs to better accommodate feedback (Yu et al.,544

2023; Shridhar et al., 2023b; Zhang et al., 2023),545

aiming to enhance reasoning in chain-of-thought546

prompting for improved downstream performance.547

In this paper, we focus on tool usage, whereas548

previous works typically focus on generation. Our549

approach contrasts the choice between selecting550

options, whereas previous work typically verifies551

single facts or answers in responses.552

Enabling Tool Use in LLMs Many approaches553

have emerged for enabling tool usage in LLMs,554

involving techniques such as few-shot prompting555

with tool-use demonstrations across diverse tool556

categories, including APIs (Qin et al., 2023; Chen 557

et al., 2023), machine learning models (Shen et al., 558

2023; Patil et al., 2023), and code interpreters (Gao 559

et al., 2022; Chen et al., 2022). Additionally, sev- 560

eral approaches advocate for fine-tuning LLMs 561

on custom-generated datasets tailored for tool us- 562

age (Schick et al., 2023; Tang et al., 2023; Parisi 563

et al., 2022; Xu et al., 2023b; Patil et al., 2023; 564

Srinivasan et al., 2023; Yang et al., 2023). Recent 565

works introduce tool documentation (Hsieh et al., 566

2023) and tool tokens (Hao et al., 2023) to facilitate 567

tool usage. Despite the plethora of works focused 568

on enabling tool usage in LLMs, to the best of our 569

knowledge none has explored verification methods 570

for this purpose. This paper aims to fill this gap by 571

introducing multi-step contrastive verification. 572

LLMs for Data Generation LMs have been 573

used for generating training data for various tasks 574

including classification (Mekala et al., 2021, 2022), 575

semantic similarity (Schick and Schütze, 2021), 576

and instruction tuning (Wang et al., 2022; Hon- 577

ovich et al., 2022; Xu et al., 2023a; Taori et al., 578

2023). Several works (Tang et al., 2023; Qin et al., 579

2023; Tang et al., 2023; Schick et al., 2023; Patil 580

et al., 2023; Srinivasan et al., 2023) have employed 581

LLMs to generate synthetic tools or tool use data. 582

6 Conclusion 583

In this paper, we present a self-verification method 584

for enhancing the performance of tool calls for 585

LLMs. This involves decomposing the tool call 586

generation task into tool selection and parameter 587

generation, where we apply verification at each 588

step. Additionally, we open-source a synthetic 589

dataset for improved reasoning and generalization 590

to unseen tools. Experimental results on four tasks 591

from the ToolBench benchmark demonstrate sub- 592

stantial improvements using our approach. 593
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7 Limitations594

Our self-generated verification questions and an-595

swers are produced in a zero-shot manner, making596

them effective for general-purpose tools but may597

necessitate further training for niche tools. Addi-598

tionally, our framework is currently designed for599

single-tool-usage tasks and does not support in-600

structions requiring multiple or compositional tool601

usage.602

8 Ethics Statement603

This paper introduces a self-verification method604

for tool calling that generates verification questions605

to aid in making accurate choices with confidence.606

As such, we do not expect that the fine-tuning self-607

verification process should introduce biases not608

already observed in the model, and we do not an-609

ticipate any significant additional ethical concerns610

beyond those issues already seen in standard sys-611

tems (Weidinger et al., 2021).612
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A Appendix822

A.1 Self-verification improves tool selection of823

Tool-Augmented LLMs824

We apply our proposed self-verification on tool-825

augmented LLMs, and present their performance826

on tool selection alone in Table 4. We note sig-827

nificant improvements in tool selection accuracy,828

post tool verification. For instance, the average829

accuracy of ToolLLM 7B increases by 9 points,830

NexusRaven-V2 13B by 5 points, and Qwen1.5-831

Chat-72B by 4 points. This demonstrates that the832

tool verification enhances the performance of tool-833

augmented LLMs.834

A.2 Parameter Generation Only Comparison835

We additionally compare TOOLVERIFIER in the836

tool selection upperbound scenario, where the837

groundtruth tool selection is provided, and a model838

is only required to generate parameters through839

three-shot prompting. Results are given in Ta-840

ble 5. TOOLVERIFIER outperforms Llama-2-Chat-841

70B by 16 points as well as both Llama-2 70B842

and GPT-3.5-Turbo by an average of 6 points on843

a majority of the tasks, with an improvement of844

up to 14 points compared to Llama-2 70B in the845

Cat task and 8 points in the Home task compared846

to GPT-3.5-Turbo. TOOLVERIFIER also demon-847

strates superior performance compared to GPT-4848

on Weather and Cat tasks by 6 and 4 points, re-849

spectively. This shows that our proposed method850

outperforms few-shot prompting approaches, even851

compared to stronger base models.852

A.3 Parameter Verification Error Analysis853

In the parameter verification step, we identify a con-854

sistent pattern in errors while answering the verifi-855

cation questions, predominantly involving common856

sense errors where the model tends to hallucinate857

values instead of adhering to the user instruction,858

which is also observed in Mekala et al. (2023). A859

notable example of such errors occurs with the min-860

price parameter in Booking tool, which signifies861

the minimum price the user is willing to pay for a862

booking. In 5 instances out of 19 wrong predictions863

for the Booking task, when the user specifies only864

their maximum budget, the model generates the865

maximum value for the min-price parameter rather866

than 0. Similar errors are observed with the min-867

area parameter in the Home task. In 4 instances868

out of 12 mistakes, when the user expresses the869

desire for a home given only a maximum area, the870
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Figure 4: We analyze various aspects of our synthetic
ToolSelect training data including the ordering of the
candidate tool list (“No Shuffle”), difficulty level (”No
Hard Data”), and the length of reasoning notes (“Short
Reasoning”). We find samples with longer reasoning
notes, difficult samples, and randomly ordered candidate
tool lists contribute to high performance (“Full Data”).

model incorrectly predicts the mentioned value as 871

the minimum, instead of using 0. 872

A.4 Synthetic Training Data Analysis 873

We analyze our synthetic ToolSelect training data 874

through various ablations, with results on tool se- 875

lection for the Weather task given in Figure 4. 876

Challenging training samples (samples that have 877

a candidate tool list containing related tools to 878

the ground truth tool, see subsubsection 2.1.1) are 879

found to improve generalization. To assess the 880

impact of these challenging samples, we remove 881

them and train a model solely with easier samples 882

(“No Hard Data”). The results indicate a notable 883

6-point drop in performance after excluding the 884

hard samples, highlighting their significance. 885

Next, we experiment by reducing the maximum 886

reasoning note length from 480 tokens to 200 to- 887

kens (“Short Reasoning”) and observe a significant 888

drop in performance, up to 19 points. Shorter rea- 889

soning texts are significantly less helpful in guiding 890

appropriate tool selection. 891

Lastly, we compare performance with different 892

orderings of the candidate tool list. In the “No Shuf- 893

fle” scenario, the ground truth tool in the training 894

data is always positioned first. Implementing this 895

ordering strategy results in a 5-point drop in perfor- 896

mance, underscoring the significance of randomly 897

shuffling the candidate tool list in the training data. 898

A.5 Instruction-Conditioned Verification 899

In our proposed approach we generate verification 900

questions using solely the names and descriptions 901
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Method Weather Booking Home Cat Average

ToolLLM 7B 27 22 84 26 38.90
ToolLLM 7B + Tool Verification 34 30 95 33 47.14

NexusRaven-V2 13B 84 93.33 100 98 93.81
NexusRaven-V2 13B + Tool Verification 93 100 100 99 98.10

Qwen1.5-Chat-72B 93 95 99 96 95.71
Qwen1.5-Chat-72B + Tool Verification 97 100 100 99 99.05

Table 4: Tool verification improves tool-augmented LLMs on tool selection. We report accuracy in percentage
(%) for each task. The tool verification improves ToolLLM 7B by 8 points, NexusRaven-V2 13B by 5 points, and
Qwen1.5-Chat-72B by 4 points on average respectively.

Method Weather Booking Home Cat Average

GPT-4*
93 96.70 97 96 95.72

GPT-3.5-Turbo*
90 85.80 80 92 86.90

Llama-2 70B 93 84.17 85 86 86.91
Llama-2-Chat-70B 89 45 91 88 76.67

TOOLVERIFIER 99 85.80 88 100 92.85

Table 5: Parameter generation results. We report success rates (%) in the upperbound setting where the model is
provided the ground truth tool selection, and must only generate parameters. We observe our fine-tuned Llama-2
70B model TOOLVERIFIER outperforms Llama-2 70B and GPT-3.5-Turbo models in the majority of tasks and on
average in this setting. Results with ∗ are taken from the Toolbench Leaderboard (Xu et al., 2023c,b).

of the top-2 selected tools, see Figure 3. We com-902

pare this to conditioning on the user instruction as903

well, by adding it to the prompt. Conditioning on904

the instruction during verification still shows im-905

provement over the no-verification baseline (89 ver-906

sus 82), however, slightly decreases performance907

compared to the non-user-conditioned verification,908

dropping accuracy from 91 to 89, perhaps because909

the decision is biased to be more similar to the orig-910

inal top choice being verified, which was also based911

on the instruction. Note that, using only names and912

descriptions has the benefit that the questions can913

be precomputed and cached.914

A.6 Prompts & Configurations915

We use top-p sampling while generating with a916

temperature set to 0.7.917

A.6.1 Tool Generation918

The prompt for tool generation using few-shot919

prompting LLaMa-65B is:920

Name: Humidity
Description: Computes humidity at a location on a date

Name: Trip Booking
Description: Makes a travel booking

Name: Currency Conversion
Description: Converts an amount from one currency to
another.

Name: Age Calculator
Description: Calculates the age based on a given
birthdate and the current date.

Name: Search Engine
Description: Searches online about a query

Name: Restaurant Finder
Description: The Restaurant Finder tool finds the
restaurants based on its location, cuisine and the
number of people.

Name: Movie Review
Description: The Movie Review tool gets top-rated
movie reviews for a particular movie.

Name: Pizza Order
Description: The Pizza Order tool orders a pizza with
provided toppings and size.

Name:
921

A.6.2 Reasoning Note Generation 922

The prompt for reasoning note generation using 923

Llama-2-Chat-70B is: 924
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[INST] «SYS»
You are a helpful assistant.
«/SYS»

Here are the list of available tools:
{Candidate tool list}

A user said, "{instruction}".

To answer this, you found Tool "{name}" to be the
most suitable than other tools. Why?[/INST]

925

In the above prompt “{instruction}” denotes the926

user instruction and “{name}” denotes the ground927

truth tool. “{Candidate tool list}” contains names928

and descriptions of each tool.929

A.6.3 Related Tools Generation930

The prompt for related tool generation using few-931

shot prompted Llama-2 70B is:932

Name1: Humidity
Name2: Humidity at timezone
Name3: Humidity Altitude Location date

Name1: Book Review
Name2: Book Review By Date
Name3: Book Review By Day

Name1: Car Rental
Name2: Car Rental with insurance
Name3: Car Rental with driver

Name1: {name}
Name2:

933

In the above prompt {name} denotes the name of934

the tool whose related tools are being generated.935

While generating multiple related tools per original936

tool, we generate one related tool after another937

with different seeds, to improve the diversity of the938

related tools.939

A.6.4 Contrastive Question Generation940

[INST] «SYS»
You are a helpful assistant.
«/SYS»

I am confused to choose one of these two classes. Here
are their names and descriptions:
a. {name1} - {description1}
b. {name2} - {description2}

A contrastive question is a question that upon asking
would resolve such confusion. Generate a contrastive
question that I can ask myself whose answer would
help me make the right choice.[/INST]

941

In the above prompt “{name1}”, “{description1}”942

and “{name2}”, “{description2}” are names and 943

descriptions of two selected tools respectively. 944

A.6.5 Parameter Verification 945

[INST] «SYS»
You are a helpful assistant.
«/SYS»

A user said, "{instruction}"

parameter definition

For the above user instruction, I am confused about
choosing one of these two for "{parameter name}".
a. {prediction 1}
b. {prediction 2}

What is the answer? Answer the following question
strictly based on what the user said above. If there is
no mention, respond with "None". If there is, select
the answer from the given options and respond with
the chosen option only in square brackets []. [/INST]

946

In the above prompt “{instruction}” denotes the 947

user instruction. “{parameter name}” represents 948

the parameter name under verification. Addition- 949

ally, “{prediction 1}”, “{prediction 2}” signify two 950

parameter predictions obtained from Llama-2 70B 951

and Llama-2-Chat-70B, respectively. 952

A.6.6 0-shot Chat LLaMa-70B 953

[INST] «SYS»
You are a helpful assistant.
«/SYS»

Here are the list of available tools:

{Candidate tool list}

A user said, "{instruction}"

What tool to use for the above instruction? Respond
with just the name of the tool[/INST]

954

In the above prompt “{instruction}” denotes the 955

user instruction and “{Candidate tool list}” con- 956

tains names and descriptions of each tool. 957
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A.6.7 Tool Call Construction958

INS: A user says, "Please retrieve the temperature,
humidity, wind, and visibility data at place with
latitude = -37.3, longitute = 1.9."
lat: -37.3
lon: 1.9
units: none
mode: none
lang: none
API: curl -X GET
’https://api.openweathermap.org/data/2.5/weather?lat=-
37.3&lon=1.9&appid=API_KEY&units=none&
mode=none&lang=none’

INS: A user says, "How is the weather now in location
with longitute 125.9 and latitude 39.0? Respond in
simplified Chinese with json format and imperial
units."
lat: 39.0
lon: 125.9
units: imperial
mode: json
lang: zh_cn
API: curl -X GET
’https://api.openweathermap.org/data/2.5/weather?
lat=39.0&lon=125.9&appid=API_KEY&units=imperial
&mode=json&lang=zh_cn’

INS: A user says, "Give me a current weather report
for place where longitute is 174.4 and latitude is
-19.0."
lat: -19.0
lon: 174.4
units: none
mode: none
lang: none
API: curl -X GET
’https://api.openweathermap.org/data/2.5/weather?lat=-
19.0&lon=174.4&appid=API_KEY&units=none
&mode=none&lang=none’

INS: A user says, "{instruction}"
{param_str}
API:

959

In the above prompt “{instruction}” denotes the960

user instruction and “{param_str}” contains param-961

eters and their predicted values.962

A.6.8 Significance of Contrastive Questions963

An example prompt is provided below.964

[INST] «SYS»
You are a helpful assistant.
«/SYS»

A user says, "Please retrieve the temperature, humidity,
wind, and visibility data for next week with latitude =
-37.3, longitute = 1.9."

To address the above instruction which one of the
below tools is the most suitable? Select the answer
from the given options and respond with the chosen
option ONLY in square brackets [].

A. Forecast Air Pollution = Get the future air pollution
data in location with latitude={lat}, longitude={lon}
B. Forecast Weather Latitude Longitude = Get the
weather data for future in location with latitude={lat},
longitude={lon}[/INST]

965

A.7 Hyperparameters for Llama-2 70B 966

Fine-tuning 967

We fine-tune Llama-2 70B for 3 epochs with a 968

learning rate of 1e-5 with warm up. The effective 969

batch size is 8 and the weight decay is 0.1. We train 970

it on 16 A100 GPUs. 971

A.8 Frequently Asked Questions 972

Why did you use LLaMa-65B for tool generation 973

instead of Llama-2 70B? The 70B model was 974

not released by the time we generated tools. Hence, 975

we used the available 65B model. 976

Why only 4 tasks were chosen from ToolBench 977

benchmark? Our framework is currently de- 978

signed for single-tool-usage tasks. Therefore, we 979

experiment on all single-tool-usage tasks in the 980

ToolBench dataset. 981

Why is it not evaluated on a benchmark with 982

thousands of tools? To accurately assess the ef- 983

ficacy of our proposed self-verification and fine- 984

tuning approach, we evaluate our methods on a 985

benchmark that would not require any retrieval. By 986

eliminating the dependency on a retriever, we could 987

isolate the impact of our techniques and demon- 988

strate a clear performance improvement. The Tool- 989

Bench benchmark, comprising 17 diverse tools, 990

presented an ideal balance between maximizing 991

the number of tools that could be accommodated 992

within the context window without requiring the 993

use of a retriever. To make our method work for 994

thousands of tools a standard approach would be 995

to combine it with a retrieval system and then our 996

method to do the final selection step from the top re- 997

trieved tools, which is an experiment that is beyond 998

the scope of the paper. 999
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The proposed framework prompts the model1000

to select tools (or parameters) from two can-1001

didates. Why the candidate number is set to1002

2? We observed that the ground truth tool was1003

typically in the top two tool selections. Further,1004

asking contrastive verification questions is most1005

natural/makes most sense as a comparison between1006

two choices. Therefore, we choose two candidates.1007

This gives a significant performance improvement.1008

B API Details1009

The four APIs pertaining to ToolBench are the1010

Weather, Booking, Home, and Cat APIs. To ex-1011

ecute the API calls, we registered for access to the1012

Weather and Cat API, whereas for Home and Book-1013

ing we ensured correct syntax, as proposed in the1014

benchmark (Xu et al., 2023c).1015
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