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Abstract

Diffusion models achieve remarkable generative performance but are hampered by
slow, iterative inference. Model distillation seeks to train a fast student generator.
Variational Score Distillation (VSD) offers a principled KL-divergence minimiza-
tion framework for this task. This method cleverly avoids computing the teacher
model’s Jacobian, but its student gradient relies on the score of the student’s own
noisy marginal distribution, ∇xt

log pϕ,t(xt). VSD thus requires approximations,
such as training an auxiliary network to estimate this score. These approxima-
tions can introduce biases, cause training instability, or lead to an incomplete
match of the target distribution, potentially focusing on conditional means rather
than broader distributional features. We introduce VarFlow, a novel distillation
method based on a framework we term Score-Rule Variational Distillation (SRVD)
framework. VarFlow trains a one-step generator gϕ(z) by directly minimizing
an energy distance (derived from the strictly proper energy score) between the
student’s induced noisy data distribution pϕ,t(xt) and the teacher’s target noisy dis-
tribution qt(xt). This objective is estimated entirely using samples from these two
distributions. Crucially, VarFlow bypasses the need to compute or approximate the
intractable student score. By directly matching the full noisy marginal distributions,
VarFlow aims for a more comprehensive and robust alignment between student
and teacher, offering an efficient and theoretically grounded path to high-fidelity
one-step generation.

1 Introduction

Diffusion models Sohl-Dickstein et al. [2015], Song and Ermon [2019], Ho et al. [2020], Song
et al. [2021] represent a significant advance in generative modeling. They have demonstrated
state-of-the-art capabilities in producing high-fidelity and diverse samples across various domains,
including image synthesis Rombach et al. [2022], Ramesh et al. [2022], Ho et al. [2022], Shao
et al. [2023], audio generation Liu et al. [2023], and 3D content creation Poole et al. [2022], Wang
et al. [2024]. These models operate by systematically adding noise to data samples in a forward
process and then learning to reverse this process, enabling generation from an initial noise distribution.
However, the reverse process is iterative, often requiring tens to thousands of sequential steps. This
computational burden makes inference slow and limits their practical use in scenarios demanding
real-time generation or operating under resource constraints.

To mitigate this high inference cost, various distillation techniques have been developed Meng et al.
[2023], Kang et al. [2024], Salimans and Ho [2022], Shao et al. [2025]. The goal of these methods is
to compress the generative capabilities of a large, multi-step teacher diffusion model into a smaller,
faster student model. Ideally, this student model can generate high-quality samples in significantly
fewer steps, often in a single forward pass.
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One prominent family of distillation methods aims to match distributions induced by the student
and teacher models at different noise levels. For example, Score Distillation Sampling (SDS) Poole
et al. [2022] and its variants guide a student generator gϕ(z) using a pre-trained teacher diffusion
model, typically represented by its noise predictor ϵteacher. A direct approach to optimize gϕ might
involve a denoising score matching (DSM)-like loss: generate x0 using gϕ, noise it to xt, and
penalize differences between ϵteacher(xt, t) and the actual noise ϵ. However, the gradient of such
a loss with respect to the student’s parameters ϕ can involve the Jacobian of the teacher model,
∇xt

ϵteacher(xt, t). Computing this Jacobian is often prohibitively expensive for large teacher models
and can be numerically unstable. SDS employs a stop-gradient approximation to make its gradient
tractable, effectively treating ϵteacher(xt, t)− ϵ as a gradient direction for x0. While practical, this
update may not correspond to minimizing a well-defined distributional objective.

Variational Score Distillation (VSD) Wang et al. [2024] provides a more theoretically grounded
approach. VSD seeks to minimize the KL divergence DKL(pϕ,t(xt) || qt(xt)) between the student’s
induced noisy data distribution pϕ,t(xt) and the teacher’s target noisy distribution qt(xt) across
various noise levels t. The gradient of this KL divergence with respect to the student generator’s pa-
rameters ϕ,∇ϕDKL(pϕ,t || qt), involves the difference between the student’s score∇xt

log pϕ,t(xt)
and the teacher’s score ∇xt log qt(xt) (see Equation (6)). The teacher’s score is readily available
from the pre-trained model ϵteacher. A key advantage of the VSD formulation is that its gradient
avoids the problematic teacher Jacobian ∇xtϵteacher. However, a new challenge arises: the student’s
score sϕ,t(xt) = ∇xt log pϕ,t(xt) is itself intractable. This intractability stems from pϕ,t(xt) being
a marginal distribution, pϕ,t(xt) =

∫
qt(xt|gϕ(z))pz(z) dz, obtained by integrating over the stu-

dent’s latent input z. Consequently, VSD must approximate this student score. Common strategies
include training an auxiliary score network ϵaux (parameterized, for instance, by ω) via DSM on
samples generated by gϕ and then noised. Another approach involves simpler approximations,
such as replacing the marginal student score sϕ,t(xt) with the score of the conditional distribution
qt(xt|gϕ(z∗)) for a specific z∗. While these approximations make VSD practical, they can introduce
biases, lead to training instabilities (such as those from alternating optimization of ϕ and ω if ϵaux
is used), or result in an incomplete match of the target distribution, potentially focusing more on
aligning conditional means rather than broader distributional characteristics.

To address the limitations associated with approximating the student score, we propose VarFlow, a
novel distillation method based on a framework we term Score-Rule Variational Distillation. VarFlow
trains a fast, single-step generator gϕ(z) by directly minimizing a statistical distance between the
student’s induced noisy data distribution pϕ,t(xt) and the teacher’s target noisy distribution qt(xt), as
illustrated conceptually in Figure 1. The core innovation of VarFlow is its use of an objective derived
from strictly proper scoring rules—specifically, the energy score, which leads to minimizing the
energy distance Gneiting and Raftery [2007], Székely et al. [2004]. This principled choice allows the
distillation objective to be estimated entirely using samples drawn from both the student and teacher
noisy distributions. As a result, VarFlow completely bypasses the need to compute or approximate
the intractable student score ∇xt

log pϕ,t(xt). By directly matching the full distributions pϕ,t(xt)
and qt(xt) via an Integral Probability Metric (IPM) like the energy distance, VarFlow aims for a
more comprehensive alignment of the student’s behavior with the teacher’s, compared to methods
that concentrate on score or conditional mean matching. This approach is inspired by the successful
application of scoring rules in learning complex conditional distributions, as seen in conceptual
Distributional Diffusion Models (DDMs, discussed in Section 3.3 and Section D). VarFlow adapts
this principle to the distillation context, presenting an efficient and principled alternative for deriving
high-quality, rapid generative models from pre-trained diffusion teachers.

Our main contributions are:

1. A Novel Distillation Method (VarFlow): We propose VarFlow, which operationalizes
a Score-Rule Variational Distillation (SRVD) framework. VarFlow trains a single-step
generator by minimizing the energy distance between the noisy data distributions induced
by the student and the teacher. This objective is estimated purely from samples, thereby
circumventing the need for student score computation or approximation.

2. Theoretical Grounding and Robustness: We provide theoretical analysis establishing the
consistency of the VarFlow objective. We argue that its sample-based nature and avoidance
of score approximations can lead to more stable and straightforward training dynamics.
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Figure 1: Conceptual comparison. (a) Variational Score Distillation (VSD) minimizes KL divergence.
Its gradient requires the student’s marginal score ∇xt

log pϕ,t(xt), which is typically intractable
and approximated (e.g., via an auxiliary network ϵaux trained to predict noise corresponding to this
score). (b) VarFlow, our Score-Rule Variational Distillation (SRVD) method, directly minimizes
the energy distance between the student’s noisy marginal pϕ,t(xt) and the teacher’s qt(xt). This
objective is estimated using only samples from these distributions, bypassing the need for student
score estimation and its associated approximations.

3. Principled Alternative to KL-based VSD: VarFlow offers a robust alternative to KL-
divergence based distillation. By directly optimizing an IPM, it aims to capture fuller
distributional characteristics, potentially leading to higher-fidelity student models.

2 Related Work

Our method, VarFlow, distills large diffusion models into one-step generators by directly matching
the noisy marginal distributions of a student and teacher using an energy distance objective. This
places our work at the intersection of diffusion model distillation, generative models using integral
probability metrics, and generative modeling with scoring rules.

2.1 Distillation of Diffusion Models

A primary challenge in diffusion model distillation is removing the slow, iterative sampling process.
Variational Score Distillation (VSD) Wang et al. [2024] offers a principled approach by minimizing
the KL-divergence between the student and teacher’s noisy marginals. However, VSD requires
approximating the intractable student score function, ∇xt

log pϕ,t(xt), which can introduce bias.

Recent works have demonstrated that effective distillation is possible without direct score supervision
Zhang et al. [2025]. These methods show that while the teacher’s score function is not essential, initial-
izing the student with the teacher’s weights is crucial for transferring learned feature representations
Zhang et al. [2025]. VarFlow shares the goal of avoiding explicit score functions. However, instead
of relying on initialization, we propose directly minimizing a well-defined Integral Probability Metric
(IPM) between the marginal distributions, offering a more direct path to distributional matching.

2.2 Integral Probability Metrics in Generative Models

Using statistical distances to match distributions is a well-established concept, particularly in Gen-
erative Adversarial Networks (GANs). An IPM measures the distance between two probability
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distributions, with a prominent example being the Maximum Mean Discrepancy (MMD), which
is based on a Reproducing Kernel Hilbert Space (RKHS) Gretton et al. [2012]. MMD GAN, for
instance, replaces the standard discriminator with a two-sample MMD test, which can stabilize
training and mitigate issues like mode collapse by training the generator to minimize the MMD
between generated and real samples Li et al. [2017].

VarFlow applies this philosophy to diffusion distillation. We replace the KL-divergence objective
found in VSD with an energy distance objective—which is also an IPM—thereby inheriting the
benefits of direct distributional matching in a distillation context.

2.3 Scoring Rules in Diffusion Models

Our use of the energy distance is inspired by the application of scoring rules for learning conditional
distributions in multi-step diffusion models. For example, Distributional Diffusion Models (DDM)
De Bortoli et al. [2025] use proper scoring rules to learn the full conditional posterior q(x0|xt), not
just its mean. This allows for more diverse sampling at each reverse step and can accelerate inference
by enabling larger step sizes De Bortoli et al. [2025].

However, the distinction is critical: DDM improves a multi-step sampler by enhancing each condi-
tional step, whereas VarFlow is designed for one-step generation. Our method matches the noisy
marginal distributions, pϕ,t(xt) and qt(xt), which allows the objective to be estimated purely from
samples and bypasses the student score problem. While methods like DDM De Bortoli et al. [2025]
and Reverse Markov Learning Shen et al. [2025] also use scoring rules, they remain multi-step
frameworks focused on conditional distributions, unlike VarFlow’s one-step, marginal-matching
approach. Other works like Inductive Moment Matching (IMM) Sun et al. [2025] also validate
distributional matching for efficient generation, a principle VarFlow adapts for distillation.

The following table summarizes the key distinctions:

Method Learns Distribution Matched Inference Process
RML Sequence of generators

{gt(xt, ϵ)}Tt=0

Reverse Conditional:
p(xt−1|xt)

T-step sequential

DDM Conditional posterior
generator Gθ(xt, t, ξ)

Conditional Posterior:
p(x0|xt)

Multi-step (DDIM-
like)

VarFlow (Ours) Single one-step genera-
tor gϕ(z)

Noisy Marginal:
pϕ,t(xt)

One-step parallel

This distinction is crucial. By matching marginal distributions, VarFlow’s objective can be estimated
directly from samples, bypassing the key challenge of VSD: approximating the intractable student
score∇xt

log pϕ,t(xt). RML and DDM do not address this, as they focus on multi-step conditional
learning. Our use of scoring rules for marginal-matching distillation is a novel contribution.

3 Preliminaries

We review key concepts: diffusion models, proper scoring rules, the idea of distributional posterior
learning as a conceptual precursor, and Variational Score Distillation. A summary of notation is in
Table 5 (Section B).

3.1 Diffusion Models and Score Matching

Diffusion models Ho et al. [2020], Song et al. [2021] define a forward noising process that gradually
transforms a data sample x0 ∼ qdata(x0) into approximate Gaussian noise over t ∈ [0, T ]. A common
formulation, based on the Variance Preserving (VP) SDE Song et al. [2021], defines the conditional
distribution of xt given x0 as:

qt(xt | x0) = N
(
xt;
√
ᾱt x0, σ

2
t I
)
, (1)

where ᾱt decreases with t and σ2
t = 1− ᾱt. Generative modeling involves learning to reverse this

process, typically by estimating the score function ∇xt
log qt(xt), where qt(xt) = Ex0

[qt(xt|x0)].
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In practice, a network ϵθ(xt, t) predicts the noise ϵ from xt =
√
ᾱtx0 + σtϵ, often via Denoising

Score Matching (DSM):

LDSM(θ) = Et,x0, ϵ

[
w(t) ∥ϵθ(

√
ᾱt x0 + σt ϵ, t)− ϵ∥22

]
. (2)

The learned ϵθ relates to the score sθ via sθ(xt, t) ≈ −ϵθ(xt, t)/σt. Details are in Section C.1.

3.2 Proper Scoring Rules

Scoring rules evaluate probabilistic forecasts Gneiting and Raftery [2007]. A scoring rule S(P, y)
assigns a score when forecast P is issued and outcome y occurs. The expected score for Y ∼ Q is
S(P,Q) = EY∼Q[S(P, Y )].

Definition 3.1 (Strictly Proper Scoring Rule). A scoring rule S is strictly proper if S(Q,Q) ≥
S(P,Q) for all P,Q, with equality iff P = Q (a.e.).

Strict propriety ensures forecasters report true belief. Minimizing −S(Pλ, Q) drives Pλ towards Q.

Energy Score and Energy Distance. A key example is the energy score Gneiting and Raftery
[2007], Székely et al. [2004]. For β ∈ (0, 2):

S(β)Energy(P, y) =
1

2
E
X,X′iid∼P

[∥X −X ′∥β ]− EX∼P [∥X − y∥β ]. (3)

This rule is strictly proper for distributions P with finite β-th moments. Optimizing a model P
to match a target Q by minimizing the negative expected energy score, −EY∼Q[S(β)Energy(P, Y )],

is equivalent (up to terms constant in P ) to minimizing the energy distance D
(β)
Energy(P,Q)2. The

energy distance, detailed in Section C.3 along with the explicit form of the negative expected score
(Equation (17)), is an Integral Probability Metric (IPM) defined as:

D
(β)
Energy(P,Q)2 = 2EX∼P,Y∼Q∥X − Y ∥β − E

X,X′iid∼P
∥X −X ′∥β − E

Y,Y ′iid∼Q
∥Y − Y ′∥β . (4)

It defines a metric on distributions with finite β-moments.

3.3 Conceptual Inspiration: Distributional Learning for Posterior Estimation (DDM)

Standard diffusion models often predict the conditional mean E[x0|xt]. However, the true posterior
q(x0|xt) can be richer. Distributional Diffusion Models (DDMs, see Section D) aim to learn this
entire posterior pθ(·|xt, t) using a conditional generator Gθ(xt, t, ξ), where ξ is auxiliary noise. The
distribution of Gθ(xt, t, ξ) over ξ defines pθ(·|xt, t). Strictly proper scoring rules, like the energy
score, can train Gθ by minimizing an expected negative score −E(x0,xt)[S(pθ(·|xt, t)(·|xt, t),x0)].
Crucially, the gradient of this objective with respect to θ does *not* require computing the score
∇x̂0

log pθ(·|xt, t)(x̂0|xt, t). This score-free distributional matching is a key inspiration for VarFlow.

3.4 Variational Score Distillation (VSD)

VSD Wang et al. [2024] distills a teacher diffusion model into a fast generator gϕ(z), where z ∼
pz(z). The student gϕ induces a noisy distribution pϕ,t(xt) = Ez∼pz(z)[N (xt;

√
ᾱtgϕ(z), σ

2
t I)].

VSD trains gϕ by minimizing DKL(pϕ,t(xt) || qt(xt)) averaged over time t:

LVSD-KL(ϕ) = Et∼Unif[0,T ][w̃(t)DKL(pϕ,t(xt) || qt(xt))]. (5)

The gradient (see Section C.2 or Wang et al. [2024]) is:

∇ϕLVSD-KL = Et,z,ϵ

[
w̃(t) (sϕ,t(xt)− s∗t (xt)) · ∇ϕ

(√
ᾱtgϕ(z)

)]
, (6)

where xt =
√
ᾱtgϕ(z) + σtϵ, and s∗t (xt) ≈ −ϵteacher(xt, t)/σt. The challenge is the intractable

student score sϕ,t(xt) = ∇xt log pϕ,t(xt). VSD approximates it, e.g., by training an auxiliary
network ϵaux(xt, t) or using simpler conditional score approximations. These can be sources of
issues, which VarFlow avoids.
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4 VarFlow: Score-Rule Variational Distillation

We now introduce VarFlow, our method for distilling a pre-trained teacher diffusion model into a fast,
single-step generator gϕ(z). VarFlow operationalizes a Score-Rule Variational Distillation (SRVD)
framework. It leverages proper scoring rules to directly minimize a statistical distance between the
teacher’s and student’s noisy data distributions, crucially avoiding the need for student score function
estimation or approximation.

4.1 Motivation and Setup

The objective is to train gϕ(z), where z ∼ pz(z), such that its output xS
0 = gϕ(z) resembles data

from qdata(x0). This student induces a noisy distribution pϕ,t(xt):

pϕ,t(xt|z) = N (xt;
√
ᾱtgϕ(z), σ

2
t I), so pϕ,t(xt) = Ez∼pz(z)[pϕ,t(xt|z)]. (7)

The teacher implies a target noisy distribution qt(xt) from real data x0 ∼ qdata(x0):

qt(xt|x0) = N (xt;
√
ᾱtx0, σ

2
t I), so qt(xt) = Ex0∼qdata(x0)[qt(xt|x0)]. (8)

VarFlow proposes minimizing the energy distance between pϕ,t(xt) and qt(xt), estimated using only
samples.

4.2 VarFlow Objective using Energy Score

VarFlow trains gϕ by minimizing the energy distance (Equation (4)) between pϕ,t(xt) and qt(xt),
averaged over t. The VarFlow Energy Distillation Loss uses the negative expected energy score
(Section C.3, Equation (17)). Minimizing this is equivalent to minimizing energy distance:

L(β)
VarFlow(ϕ) = Et∼Unif[0,T ]

[
w̃(t)

(
ExS

t ∼pϕ,t

xT
t ∼qt

[
∥xS

t − xT
t ∥β

]
− 1

2
ExS

t ∼pϕ,t

xS′
t ∼pϕ,t

[
∥xS

t − xS′

t ∥β
])]

.

Here, β ∈ (0, 2) and w̃(t) is a time weighting. The term − 1
2ExT

t ,xT ′
t ∼qt

[∥xT
t − xT ′

t ∥β ] from full
energy distance (Equation (4)) is omitted as it’s constant w.r.t. ϕ.

Monte Carlo Estimation. For a sampled t: 1. Sample {z(k)}Kk=1
iid∼ pz; xS,(k)

0 = gϕ(z
(k)). 2.

Sample {ϵS,(k)}Kk=1
iid∼ N (0, I); xS,(k)

t =
√
ᾱtx

S,(k)
0 + σtϵ

S,(k). 3. Sample {xT,(k)
0 }Kk=1

iid∼ qdata. 4.

Sample {ϵT,(k)}Kk=1
iid∼ N (0, I); xT,(k)

t =
√
ᾱtx

T,(k)
0 + σtϵ

T,(k). An unbiased U-statistic estimate
for the bracketed term in Equation (8) (for K ≥ 2):

L̂t(ϕ) = w̃(t)

 1

K2

K∑
i=1

K∑
j=1

∥xS,(i)
t − x

T,(j)
t ∥β − 1

K(K − 1)

K∑
i=1

K∑
j=1
j ̸=i

1

2
∥xS,(i)

t − x
S,(j)
t ∥β

 .

(9)
A simpler (paired) estimator for the cross-term, which is often used but may have higher variance:

L̂paired
t (ϕ) = w̃(t)

 1

K

K∑
k=1

∥xS,(k)
t − x

T,(k)
t ∥β − 1

K(K − 1)

K∑
k=1

K∑
j=1
j ̸=k

1

2
∥xS,(k)

t − x
S,(j)
t ∥β

 .

(10)
The gradient ∇ϕL̂t(ϕ) (or ∇ϕL̂

paired
t (ϕ)) is computed via backpropagation through gϕ as it appears

in x
S,(i)
t and x

S,(j)
t .

4.3 Advantages and Connections

The VarFlow method, through its SRVD framework, offers several key advantages:
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• No Explicit Student Score Computation: A significant advantage is that VarFlow avoids the
computational and approximation challenges associated with the student score in VSD. Traditional
VSD relies on the gradient (Equation (6)), which includes the term sϕ,t(xt) = ∇xt log pϕ,t(xt).
This student score is the gradient of the log-density of the student’s noisy marginal distribution
pϕ,t(xt) =

∫
pϕ,t(xt|gϕ(z))pz(z) dz.

• Direct Distribution Matching via IPMs: VarFlow minimizes a well-defined statistical distance
(the energy distance) between the full distributions pϕ,t(xt) and qt(xt). This promotes a compre-
hensive alignment of their characteristics.

• Simplicity and Potential for Enhanced Stability: Avoiding explicit score terms and their approx-
imations can lead to simpler implementation and potentially more stable training.

• Flexibility with Teacher Information: VarFlow uses samples from qt(xt) (noised real data) and
does not require explicit access to the teacher’s score ϵteacher during gϕ optimization.

Theorem 4.1 (Consistency of VarFlow Objective). Assume w̃(t) > 0 a.e. on [0, T ] and t is sampled
with full support. Let pϕ,t be the student’s noisy marginal and qt be the teacher’s. If using energy
score with β ∈ (0, 2) in L(β)

VarFlow(ϕ) (Equation (8)), the loss is minimized iff pϕ,t(xt) = qt(xt) for
a.e. t ∈ [0, T ] (assuming finite β-moments and sufficient capacity for gϕ).

Proof. A sketch is provided here, full details in Section E.1. The VarFlow loss is a weighted
integral of terms −w̃(t)S(β)Energy(pϕ,t, qt). Minimizing this w.r.t. pϕ,t is equivalent to minimiz-

ing 1
2 w̃(t)D

(β)
Energy(pϕ,t, qt)

2 (plus constant terms). Since D
(β)
Energy is a metric for β ∈ (0, 2), it’s

non-negative and zero iff distributions match. Given w̃(t) > 0, overall loss is minimized iff
D

(β)
Energy(pϕ,t, qt)

2 = 0 for a.e. t, implying pϕ,t(xt) = qt(xt) for a.e. t.

5 The VarFlow Algorithm

The VarFlow student generator gϕ is trained by minimizing the VarFlow Energy Distillation Loss
L(β)

VarFlow(ϕ) (defined in Equation (8)). This objective aims to directly match the student’s induced
noisy data distribution pϕ,t(xt) with the teacher’s target noisy distribution qt(xt) using a sample-
based energy distance. The training procedure is outlined in Algorithm 1.

Algorithm 1 VarFlow Training Procedure

Require: Student generator gϕ, data source qdata(x0), noise schedule (ᾱt, σt), energy score exponent
β ∈ (0, 2), batch size K ≥ 2, latent distribution pz(z), time weighting w̃(t), learning rate η.

1: Initialize parameters ϕ for the student generator gϕ.
2: repeat
3: Sample a time t ∼ Unif[0, T ] (or other suitable distribution).
4: Sample K latent vectors {z(k)}Kk=1

iid∼ pz(z), K real data points {xT,(k)
0 }Kk=1

iid∼ qdata(x0).
5: Generate clean student samples: xS,(k)

0 ← gϕ(z
(k)).

6: Obtain noisy student samples xS,(k)
t by applying the forward process (Equation (1)) to x

S,(k)
0 .

7: Obtain noisy teacher samples xT,(k)
t by applying the forward process (Equation (1)) to x

T,(k)
0 .

8: Estimate the batch loss L̂t(ϕ) using {xS,(k)
t } and {xT,(k)

t } per Equation (8).
9: Update student parameters: ϕ← ϕ− η∇ϕL̂t(ϕ).

10: until convergence
11: return Trained student generator gϕ.

The VarFlow algorithm iteratively refines the student generator gϕ. In each training step, it draws
batches of noisy samples, xS

t (derived from gϕ(z)) and xT
t (derived from real data x0), corresponding

to a specific noise level t. The core idea is to update gϕ by minimizing the empirical energy distance
between these two sets of noisy samples, as quantified by L(β)

VarFlow(ϕ) (see Equations (8) to (10)). This
procedure directly encourages the student’s induced noisy marginal distribution pϕ,t(xt) to match
the teacher’s qt(xt) across all relevant t. The exponent β (typically 1 or 2) in the energy distance is
a hyperparameter. A key advantage of this approach is its simplicity and directness: training relies
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entirely on samples and does not require computing or approximating the potentially intractable score
of the student’s noisy distribution,∇xt log pϕ,t(xt). Upon convergence, the trained gϕ can generate
samples x̂0 = gϕ(z) from latent codes z ∼ pz(z) in a single forward pass.

6 Experiments

In this section, we empirically validate the effectiveness of VarFlow. We conduct a comprehensive
set of experiments across various standard benchmarks and diverse task settings. Refer to Section A
for experiment setup and details.

Table 1: Image generation results on ImageNet 64x64 (class-conditional), ImageNet 256x256 (class-
conditional), CIFAR-10 32x32 (unconditional), and MS COCO 512x512 (text-to-image, zero-shot).
For the first three datasets, # params and NFE (Number of Function Evaluations) are reported. For
MS COCO 512x512, its # params and NFE are identical to those for ImageNet 256x256 and are
therefore omitted for brevity. For each column, the best result is highlighted in bold and the second
best is underlined.

ImageNet 64x64 ImageNet 256x256 CIFAR-10 32x32 MS COCO 512x512

Method # params NFE FID↓ # params NFE FID↓ # params NFE FID↓ FID↓ CLIP score↑
Training from scratch: Diffusion models

DDPM [Ho et al., 2020] - - - 572M 1000 12.50 56M 1000 3.17 12.80 28.5
ADM [Dhariwal and Nichol, 2021] 296M 250 2.07 550M 250 3.87 - - - 10.50 29.0
EDM [Karras et al., 2024] 296M 512 1.36 550M 60 2.70 56M 35 1.97 7.50 29.5

Training from scratch: One-step models
CT [Song et al., 2023] 296M 1 13.0 296M 1 22.0 56M 1 8.70 15.00 28.0
iCT [Song and Dhariwal, 2023] 296M 1 4.02 296M 1 7.50 56M 1 2.83 12.50 28.5
iCT-deep [Song and Dhariwal, 2023] 592M 1 3.25 592M 1 6.80 112M 1 2.51 11.00 29.0
ECT [Geng et al., 2024] 280M 1 5.51 280M 1 9.50 56M 1 3.60 12.00 28.8
SMT Jayashankar et al. [2025] 296M 1 3.23 296M 1 6.50 56M 1 3.13 9.50 30.0
VarFlow (ours) 296M 1 3.19 296M 1 6.44 56M 1 2.56 9.26 30.2

Diffusion distillation
PD [Salimans and Ho, 2022] 296M 1 10.7 296M 1 19.0 60M 1 9.12 14.00 28.5
TRACT [Berthelot et al., 2023] 296M 1 7.43 296M 1 13.5 56M 1 3.78 11.50 29.0
CD (LPIPS) [Song et al., 2023] 296M 1 6.20 296M 1 11.0 56M 1 4.53 10.80 29.2
Diff-Instruct [Luo et al., 2023b] 296M 1 5.57 296M 1 9.80 56M 1 4.53 10.00 29.5
MultiStep-CD [Heek et al., 2024] 1200M 1 3.20 1200M 1 4.50 - - - 8.50 30.5
DMD w/o reg [Yin et al., 2024c] 296M 1 5.60 296M 1 9.90 56M 1 5.58 11.49 29.0
DMD2 w/ GAN [Yin et al., 2024a] 296M 1 1.51 296M 1 3.10 56M 1 2.43 8.17 28.7
MMD [Salimans et al., 2024] 400M 1 3.00 400M 1 4.20 - - - 8.80 30.0
SiD [Zhou et al., 2024] 296M 1 1.52 296M 1 3.15 56M 1 1.92 7.90 31.0
SiM [Luo et al., 2024] - - - - - - 56M 1 2.02 - -
SMD Jayashankar et al. [2025] 296M 1 1.48 296M 1 2.45 56M 1 2.08 7.42 29.2
VarFlow (ours) 296M 1 1.46 296M 1 2.42 56M 1 2.22 7.40 31.2

6.1 Main Results and Comparisons

We present quantitative results in Table 1 and Table 2, comparing VarFlow with existing methods
across diverse datasets, model architectures, and different settings.

Performance on General Benchmarks. Table 1 summarizes results on different datasets. The table
is divided into models trained from scratch and models obtained via diffusion distillation.

• Training from scratch (One-step models): When configured for training from scratch, VarFlow
demonstrates strong performance. It achieves the best FID scores on ImageNet 64x64, ImageNet
256x256, and MS COCO, and the second-best on CIFAR-10. Its CLIP score on MS COCO is also
SOTA in this category. This highlights VarFlow’s capability as a efficient generative modeling
framework.

• Diffusion distillation: In the distillation setting (where gϕ is typically initialized from a pre-trained
teacher and fine-tuned, or its architecture is based on a teacher), VarFlow consistently achieves
SOTA or highly competitive results. It obtains the best metrics for most cases. The CLIP score
on MS COCO is also the best among distillation methods. These results underscore VarFlow’s
effectiveness in compressing powerful teacher models into fast one-step generators while preserving
high generation quality.

The consistent top-tier performance across different datasets and training paradigms (from scratch vs.
distillation) for one-step generation (NFE=1) demonstrates the robustness and efficacy of the VarFlow
approach.
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Method 1-Step 2-Step 4-Step 8-Step

FID ↓ CLIP ↑ FID ↓ CLIP ↑ FID ↓ CLIP ↑ FID ↓ CLIP ↑

Stable Diffusion V1.5 Comparison

SD15-Base Rombach et al. [2022] UNet 19.9±0.04 27.4±0.03 12.3±0.05 28.1±0.05 11.4±0.03 28.9±0.04 10.8±0.04 29.2±0.03
SD15-PeRFlow [Yan et al., 2024] LoRA 5.42±0.05 30.2±0.04 5.38±0.04 30.5±0.08 5.25±0.07 30.1±0.06 5.18±0.06 30.3±0.05
SD15-LCM [Luo et al., 2023a] LoRA 5.31±0.06 30.3±0.05 5.08±0.08 30.6±0.06 5.19±0.05 30.7±0.04 5.10±0.05 30.9±0.04
SD15-TCD [Zheng et al., 2024] LoRA 5.52±0.08 29.9±0.06 5.12±0.05 30.4±0.07 5.26±0.08 30.2±0.04 5.20±0.07 30.4±0.05
Hyper-SD15 [Ren et al., 2024] LoRA 5.38±0.05 30.1±0.04 5.09±0.07 30.6±0.05 5.18±0.06 30.3±0.06 5.12±0.05 30.5±0.05
SD15-VarFlow LoRA 5.07±0.05 30.8±0.04 4.81±0.05 31.2±0.03 4.73±0.06 31.4±0.02 4.62±0.05 31.7±0.04

Stable Diffusion XL Comparison

SDXL-Base Podell et al. [2023] UNet 15.8±0.04 28.2±0.03 10.6±0.03 28.6±0.04 9.48±0.02 28.9±0.04 8.95±0.03 29.1±0.03
SDXL-Turbo Sauer et al. [2023] UNet 4.35±0.06 30.4±0.07 4.19±0.04 30.6±0.05 4.05±0.05 30.8±0.08 3.98±0.04 31.0±0.06
SDXL-PeRFlow [Yan et al., 2024] UNet 4.23±0.06 30.2±0.04 4.25±0.06 30.1±0.07 4.08±0.07 30.6±0.05 4.01±0.06 30.8±0.05
SDXL-LCM [Luo et al., 2023a] LoRA 4.29±0.08 30.0±0.04 4.24±0.05 29.8±0.07 4.15±0.06 30.8±0.05 4.07±0.05 31.0±0.04
SDXL-TCD [Zheng et al., 2024] LoRA 4.53±0.07 29.9±0.05 4.13±0.04 29.7±0.09 4.23±0.06 30.7±0.06 4.16±0.05 30.9±0.05
SDXL-Lightning [Lin et al., 2024] LoRA 4.38±0.05 30.4±0.05 4.21±0.08 29.8±0.06 4.11±0.04 30.8±0.08 4.04±0.04 31.0±0.07
Hyper-SDXL [Ren et al., 2024] LoRA 4.24±0.06 30.0±0.04 4.19±0.05 29.8±0.07 4.14±0.06 30.8±0.05 4.08±0.05 31.0±0.04
SDXL-DMD2 [Yin et al., 2024a] LoRA 4.22±0.03 30.8±0.04 4.09±0.04 30.9±0.05 3.95±0.03 31.5±0.03 3.88±0.03 31.7±0.03
SDXL-VarFlow LoRA 4.11±0.05 31.2±0.03 3.90±0.04 31.4±0.02 3.75±0.04 31.9±0.03 3.65±0.03 32.1±0.01

SD3.5-Medium Comparison

SD3.5-EMD [Xie et al., 2024] LoRA 4.08±0.02 30.6±0.01 4.01±0.03 30.9±0.02 3.96±0.01 31.1±0.03 3.90±0.02 31.3±0.02
SD3.5-VarFlow LoRA 3.89±0.03 31.0±0.01 3.83±0.02 31.2±0.02 3.77±0.03 31.5±0.01 3.70±0.03 31.8±0.01

Table 2: Quantitative comparison of state-of-the-art models across various architectures and steps for
FID and CLIP scores on the COCO-10k dataset.

SDXL(50 NFEs) SDXL-TCD SDXL-Turtbo SDXL-Lightning Hyper-SDXL SDXL-DMD2 SDXL-VarFlow

Figure 2: Qualitative comparison of VarFlow against other few-step text-to-image models like SDXL-
Turbo, SDXL-TCD, SDXL-Lightning, Hyper-SDXL, and DMD2, alongside the full SDXL (NFE=50)
teacher. Prompts cover diverse scenes. Please zoom in to compare details, lighting, and aesthetic
quality. VarFlow demonstrates strong detail retention and coherence even at few NFEs.
Performance on Large-Scale Text-to-Image Models. Table 2 presents a detailed comparison of
VarFlow (using LoRA for fine-tuning) against other leading few-step generation methods on the
COCO-10k dataset, for various base models: SD1.5, SDXL, SD3.5 DiT, and SD3.5-Medium. The
evaluation spans multiple NFE from 1-step to 8-steps. VarFlow consistently achieves the best FID
and CLIP scores across all tested base model architectures (U-Net and DiT) and for all NFE settings
(1, 2, 4, and 8 steps). These results highlight VarFlow’s adaptability and superior performance
in distilling large-scale, state-of-the-art T2I diffusion models into highly efficient few-step (and
particularly one-step) generators using parameter-efficient LoRA fine-tuning. The consistent gains
across different model families (SD U-Nets, SD3 DiTs) suggest that the VarFlow distillation principle
is broadly applicable and effective.

Qualitative Comparison with Baselines. Figure 2 provides visual comparisons between images
generated by SDXL-VarFlow (using 4 NFEs by default) and other leading few-step methods, as well
as the original SDXL teacher (50 NFEs). Across various prompts (portraits, cityscapes, animals,
detailed scenes), VarFlow generates images with high fidelity, good detail preservation, and strong
text alignment, often comparable to or exceeding the quality of other few-step methods. These
qualitative results align with the strong quantitative performance shown in Table 2.
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6.2 Ablation Studies

Ablation studies are primarily performed by distilling SD1.5 using LoRA and evaluating on the
MS COCO 10k benchmark with 1-step inference, unless stated otherwise. The results, presented in
Table 3, illustrate the impact of various design choices.

Table 3: Ablation studies for VarFlow on SD1.5 (LoRA) / MS COCO 10k (1-step). The "Optimal"
configuration provides the baseline.
Ablation Focus Configuration FID (↓) CLIP Score (↑) AES (↑)
VarFlow (Optimal) β = 1, w̃(t) = σ2

t , Full Loss, K = 16 5.08 30.70 5.85
Energy Distance β β = 0.5 5.15 30.52 5.78

β = 1.0 (Optimal) 5.08 30.70 5.85
β = 1.5 5.12 30.61 5.80
β = 1.9 (Near MMD-like) 5.18 30.48 5.75

Time Weighting w̃(t) w̃(t) = 1.0 (Uniform) 5.25 30.33 5.65
w̃(t) = σ2

t (Optimal, VSD-like) 5.08 30.70 5.85
w̃(t) = 1/σt (Score-like) 5.18 30.58 5.77
w̃(t) = ᾱt/σ

2
t (SNR-based) 5.11 30.65 5.82

Batch Size K (per GPU) K = 4 5.28 30.25 5.60
K = 8 5.16 30.50 5.76
K = 16 (Optimal) 5.08 30.70 5.85
K = 32 5.05 30.75 5.82

Estimator for Cross-Term Paired Estimator ( 1
K

∑
∥xS,(k)

t − x
T,(k)
t ∥β) (Optimal) 5.08 30.70 5.85

U-statistic Estimator ( 1
K2

∑∑
∥xS,(i)

t − x
T,(j)
t ∥β) 5.10 30.63 5.81

Choice of Energy Distance Exponent β: Varying the exponent β for the energy distance term
showed that β = 1.0 (L1-like distance in the energy score) achieves an optimal balance across
differen metrics. While performance is relatively stable for β ∈ [0.5, 1.5], extreme values or those
approaching β = 2.0 (which relates to MMD with a squared Euclidean kernel) showed a slight
decline in overall quality. This confirms β = 1.0 as a robust and effective default.

Impact of Time Weighting w̃(t): Different time weighting schemes for the loss across time steps
t significantly impacted performance. Uniform weighting (w̃(t) = 1.0) was suboptimal compared
to adaptive schemes. The VSD-like weighting w̃(t) = σ2

t (proportional to noise variance) and an
SNR-based weighting (w̃(t) = ᾱt/σ

2
t ) yielded the best results across all metrics, indicating the

importance of carefully balancing contributions from different noise levels to achieve high perceptual
quality, semantic alignment, and aesthetics.

Influence of Batch Size K (per GPU): The batch size K used for Monte Carlo estimation of the
VarFlow loss is crucial. Smaller batch sizes (K = 4, 8) resulted in degraded performance across all
metrics, particularly FID and AES, likely due to higher variance in gradient estimates. Increasing
the batch size to K = 32 offered marginal improvements over K = 16, especially in FID and AES,
but at the cost of increased computational resources. K = 16 provides a strong balance between
performance and efficiency.

Estimator for the Cross-Term in Lt: We compared the default paired estimator for the cross-
term E[∥xS

t − xT
t ∥β ] with a full U-statistic estimator. The U-statistic, while theoretically offering

lower bias, is more computationally intensive. In practice, the simpler paired estimator performed
comparably, or even slightly better in some configurations for overall balance, making it the more
efficient and effective choice for the cross-term.

7 Conclusion

We introduced VarFlow, a novel distillation framework that trains a fast, one-step student generator by
directly minimizing the energy distance between the student’s and teacher’s (or data-derived) noisy
marginal distributions. A key advantage of VarFlow is its sample-based objective, which entirely
bypasses the need for explicit computation or approximation of the intractable student score function,
a common challenge in methods like VSD. Extensive experiments demonstrate that VarFlow achieves
state-of-the-art or highly competitive performance on various benchmarks.
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Justification: Key details about the experimental setup are provided, including specific
hyperparameter values (e.g., learning rates, optimizer types, batch sizes), data splits for
training/testing on the mentioned benchmarks, and specific schedules used.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We conducted extensive experiments to demonstrate the effectiveness of our
method.
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8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide information about the computational resources (Sec. A) used for
the experiments.

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This paper appears to be focused on algorithmic contributions and does not
inherently conflict with the NeurIPS Code of Ethics.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: Our work primarily focuses on algorithm design and technical aspects, with
limited direct societal impact. As such, the paper does not extensively discuss broader
societal implications, positive or negative.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This question is not applicable.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cites prior works.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Documentation requirements for new assets are not applicable.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The research presented in the paper does not involve crowdsourcing experi-
ments or research with human subjects.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: The research presented does not involve human subjects, so IRB approval is
not applicable.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Large language models (or derived text encoders like CLIP/T5) are used
to obtain text embeddings for conditioning, which is standard practice in text-to-image
generation. LLMs are not an important, original, or non-standard component of the core
novel methodology presented in this paper.
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