Under review as a conference paper at ICLR 2025

AUTOCATE: END-TO-END, AUTOMATED TREATMENT
EFFECT ESTIMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Accurate estimation of heterogeneous treatment effects is critical in domains such
as healthcare, economics, and education. While machine learning (ML) has led to
significant advances in estimating conditional average treatment effects (CATE),
real-world adoption of these methods remains limited due to the complexity of
implementing, tuning, and validating them. To this end, we advocate for a more
holistic view on the development of ML pipelines for CATE estimation through
automated, end-to-end protocols. We formalize the search for an optimal pipeline
as a counterfactual Combined Algorithm Selection and Hyperparameter optimiza-
tion (CASH) problem. We introduce Aut oCATE, the first automated solution tai-
lored for CATE estimation that addresses this problem based on protocols for eval-
uation, estimation, and ensembling. Our experiments show how Aut oCATE al-
lows for comparing different protocols, with the final configuration outperforming
common strategies. We provide Aut oCATE as an open-source software package
to help practitioners and researchers develop ML pipelines for CATE estimation.

1 INTRODUCTION

Accurately estimating causal effects is crucial for high-stakes decisions in domains such as health-
care, education, and economics. Despite advances in machine learning (ML) for estimating the con-
ditional average treatment effect (CATE), real-world adoption remains limited due to the complexity
of developing ML pipelines for CATE estimation. Methods often involve numerous hyperparame-
ters, and their performance varies significantly across data sets and applications. Moreover, vali-
dating counterfactual predictions and tuning pipelines is highly challenging, and the performance
of different evaluation criteria varies with the data generating process (Curth & van der Schaar,
2023)). For practitioners unfamiliar with ML, such as clinicians or marketers, these challenges of-
ten outweigh potential benefits, hindering the practical use of these techniques. To overcome this,
we advocate for automated, end-to-end solutions for learning ML pipelines for CATE estimation.

The challenge of automated CATE estimation. Despite automated ML (AutoML) making signifi-
cant progress (see He et al.,[2021), existing solutions do not address the unique challenges of CATE
estimation. A key problem is the lack of ground truth CATE: the treatment effect is the difference be-
tween the outcomes with and without treatment, but only one of these outcomes is observed for each
instance. Additionally, which outcome is observed depends on confounding variables (e.g., older
patients may be more likely to receive treatment), leading to covariate shift (Shalit et al.l 2017). Fi-
nally, CATE estimation pipelines are more complex than those in supervised learning. Metalearners
combine multiple baselearners, possibly including both classification and regression models. Risk
measures themselves also require predictions and, therefore, tuning of ML pipelines. These unique
challenges complicate both the training and validation of ML pipelines and highlight the need for
automated, end-to-end approaches tailored to CATE estimation, which is the focus of this work.

Contributions. To tackle these challenges, we propose a practical and comprehensive solution
as the automated, end-to-end construction and validation of ML pipelines for CATE estimation:

* COUNTERFACTUAL CASH—We formalize the optimization of CATE estimation pipelines as
a counterfactual Combined Algorithm Selection and Hyperparameter optimization (CASH) prob-
lem. Our solution, Aut oCATE, automates the search for optimal configurations across preproces-
sors, metalearners, evaluators, baselearners, and their hyperparameters. The process is organized
into three stages—evaluation, estimation, and ensembling—each including several design choices.

Under review as a conference paper at ICLR 2025

100%

75%—

©

50% —

=

40%—
30% —
20% —
10%—
Il —_

T 1T 1T
1 2 3 4 5
Unique metalearners in top five

ERORCOEEE
THRHENK TS

=

0%

ACIC THDP Twins News
(a) How often is a particular metalearner optimal? (b) How diverse are the best five metalearners? (IHDP)

100% 1 ‘ ‘

B SVM CIDT
B GP 75% — X RF
LR EEET
C1GB 50% — LGB
[kNN [kNN

5% —

50% —

50, — ERF 59 — I SVM
25% = 25% 1NN
mET — LR

0% 0% \ \ I

Propensity Outcome Effect

ACIC THDP Twins News
(c) How often is a particular baselearner chosen? (d) What baselearner is best per model type? (IHDP)
Figure 1: AutoCATE enables insights into CATE estimation. We analyze hundreds of pipelines
optimized by Aut oCATE (see[Section). Metalearners—(a) Different metalearners can be optimal
for a data set, highlighting the need for searching across them. (b) The top five pipelines often feature
a mix of different metalearners (e.g. {T,7, RA, RA, DR}: 3 unique types), showing that different
metalearners can perform well and suggesting potential for combining them. Baselearners—(c)
The chosen baselearners are also diverse, and (d) different model types favor different ones. Using a
single baselearner is thus likely suboptimal, supporting our choice to tune submodels independently.

* END-TO-END PROTOCOLS—We develop end-to-end protocols that ensure robust performance
across diverse data sets and applications. Our approach addresses key aspects often overlooked in
CATE estimation, such as preprocessing, feature selection, or ensembling. This perspective uncov-
ers novel insights (see[Figure 1)), questions (e.g., the intricate trade-off between using data for train-
ing or validation) and solutions (e.g., multi-objective optimization with different evaluation criteria).

* SOFTWARE PACKAGE—We provide Aut oCATE as an open-source software package, enabling
automated CATE estimation in a few lines of code. This way, we democratize access to advanced
ML techniques for CATE estimation and make them accessible for practitioners unfamiliar with
ML. Additionally, Aut oCATE provides a platform for future research, encouraging research on all
aspects of the ML pipeline for CATE estimation that supports practical, real-world applications.

2 RELATED WORK

Our work is most related to two areas in ML: (1) AutoML, and (2) CATE estimation and validation.

2.1 AUTOMATED MACHINE LEARNING (AUTOML)

AutoML focuses on the automatic and efficient construction of high-performing ML pipelines. This
entails making a series of design choices regarding preprocessing, feature transformation and selec-
tion, ML algorithms, and hyperparameter tuning (Karmaker et al., 2021). As the optimal choices
depend on the data and task, AutoML is essentially a search problem. While combinations could
be tried randomly, more efficient search methods have been developed, e.g., based on Bayesian
optimization (Bergstra et al.| [2011; |Snoek et all 2012} |Alaa & van der Schaar, [2018). Similarly,
meta-learning has been applied to integrate information across other data sets in the search (Feurer,
et al.l2015)). AutoML has made significant progress across data modalities, such as structured data
(Erickson et al.,2020)), text (Shi et al., |2021)) or images (Bisong & Bisong],2019)). A critical aspect of
AutoML is its accessibility, often provided through low-code solutions for practitioners unfamiliar
with ML (LeDell & Poirier, [2020; |[Erickson et al., [2020; Jarrett et al., 2021; Wang et al., [2021).

Automated solutions exist for a wide range of tasks, including semantic segmentation (Chen et al.,
2018)), machine translation (So et al., 2019), reinforcement learning (Runge et al., [2019)), or time

Under review as a conference paper at ICLR 2025

series forecasting (Jarrett et al.,2021)). For more comprehensive overviews, see [Elsken et al.|(2019)
and |He et al.| (2021). However, to the best of our knowledge, AutoML has not yet been applied to
CATE estimation. As discussed, estimating treatment effects presents unique challenges, such as the
absence of a ground truth, covariate shift due to confounding, and the need for intermediary models
in metalearners and risk measures. These complexities render standard AutoML approaches ill-
suited for CATE estimation and illustrate the need for approaches specialized to CATE estimation.

I Research gap—No existing AutoML solutions tackle the unique challenges of CATE estimation.

2.2 TREATMENT EFFECT ESTIMATION AND MODEL VALIDATION

Estimation. Various ML methodologies have been proposed for estimating treatment effects. Met-
alearners are general strategies for using standard supervised learning algorithms for CATE estima-
tion (Kiinzel et al.,|2019). Additionally, various ML algorithms have been adapted for CATE esti-
mation, such as Gaussian processes (Alaa & van der Schaar, [2017), neural networks (Shalit et al.,
2017; [Yoon et al., 2018), decision trees (Rzepakowski & Jaroszewicz, |2012), or random forests
(Wager & Athey, 2018} |Oprescu et al., 2019). Notably, other parts of the ML pipeline are also
more complicated when estimating treatment effects, such as missing value imputation (Berrevoets
et al.} 2023), feature selection (Zhao et al., 2022), and ensemble selection (Mahajan et al.| [2023)).

Building an ML pipeline for CATE estimation presents significant challenges, related to the ab-
sence of ground truth CATE and the number of design choices involved. Due to the no free lunch
theorem, no ML algorithm be optimal in all possible settings. Additionally, there is no globally op-
timal metalearner, as performance similarly depends on the (unknown) data generating process and
sample size (Curth & van der Schaar, 2021)). Finally, tuning is more involved: for example, a DR-
Learner combines four models (to estimate the propensity, the outcome per treatment group, and the
final treatment effect)—each of which can be a different baselearner with separate hyperparameters.

Model validation. As the CATE is unobserved, various evaluation criteria have been proposed for
validating CATE estimators. A common approach is the error in predicting the observed potential
outcome (, i.e., the y-risk. However, this criterion has several limitations (Curth & van der Schaar,
2023}, [Doutreligne & Varoquaux) 2023)): it does not account for confounding, may not accurately
predict CATE errmﬂ and is not applicable to estimators that directly predict the CATE. To mitigate
the first issue, an inverse propensity weighted variant ppw-risk, can be considered. Other evaluation
criteria address all issues by constructing labels based on plug-in estimates (e.g., S- or T-risk) or
metalearner pseudo-outcomes (e.g., R- and DR-risk), see for a detailed overview.

There is no consensus on the optimal validation criterion. While |Schuler et al.| (2018) and [Doutre-
ligne & Varoquaux|(2023)) advocate for the R-risk, Mahajan et al.|(2023) favor the T'- and D R-risk.
Conversely, (Curth & van der Schaar| (2023) show that the effectiveness of different risk measures
varies with various factors, such as the metalearner and data generating process, with no single crite-
rion being universally optimal. Additionally, Doutreligne & Varoquaux|(2023) stress the flexibility
of the estimators used to construct the pseudo-labels, with|Mahajan et al.|(2023) recommending the
use of AutoML. These complexities and design choices highlight the need for automated procedures.

Research gap—Despite significant recent advances in ML for both CATE estimation and model
validation, critical gaps remain in understanding when to use specific methods, how to effectively
tune them, and how to address essential but overlooked aspects like preprocessing or ensembling.

3 PROBLEM FORMULATION

Notation and assumptions. We represent an instance by a tuple (x, ¢,y), with covariates X € X C
R4, a treatment T € T={0, 1}, and an outcome Y €) C R. The potential outcome Y associated
with a treatment ¢ is denoted as Y (¢). We aim to estimate the conditional average treatment effect
(CATE): 7 = E[Y (1) — Y (0)|X]. Estimating the CATE from observational data requires standard

assumptions (see[Appendix A.2). More background on CATE estimation is provided in[Appendix Al

"For example, consider the case where both potential outcomes are overestimated by the same amount.
Even though p-risk would indicate a poor model quality, the resulting CATE estimates would still be accurate.

Under review as a conference paper at ICLR 2025

Treatment Effect Estimation — Core Functionalities

e)
00000
00000
Machine Learning Pipelines — Building Blocks

Preprocessing Baselearners

k-Nearest

Support Vector

Linear Regression Machine

Feature > Feature >
Selection Transformation Neural Network Extra Trees
Gradient Boosting Random Forest

Figure 2: AutoCATE overview. We estimate treatment effects in three stages: (1) Evaluation—
learning the appropriate risk measure(s), (2) Estimation—tuning a CATE estimation pipeline, and
(3) Ensembling—selecting a final model or constructing an ensemble. We build ML pipelines for
evaluation and estimation based on a collection of preprocessing algorithms and ML baselearners.

Neighbours

Decision Tree

Gaussian Process

Goals and challenges. We aim to develop a general procedure for learning a pipeline for CATE
estimation from an observational data set. Formally, this is a counterfactual Combined Algorithm Se-
lection and Hyperparameter optimization (CASH) problem. It involves searching over ML pipelines
ay, with algorithms a € A and hyperparameters h € H, to minimize the error on test data Die:

arg r}?in L(ap|Drest)- (1)
An algorithm a can be an ML method tailored for CATE estimation or a metalearner combining one
or more baselearners. Solving the counterfactual CASH problem involves several unique challenges.
An algorithm’s quality of fit on the train data £(ap|Dyrin) is unobserved, as there is no ground truth
CATE. Additionally, there is covariate shift between the observational training data and test data due
to confounding. Both points present challenges for both building and validating an ML pipeline.

4 AuTOoCATE: END-TO-END, AUTOMATED CATE ESTIMATION

AutoCATE finds an optimal ML pipeline in three stages: evaluation, estimation, and ensembling.
(1) EVALUATION: In the first stage, we construct a proxy risk for £ based on a risk measure (e.g.,
R-risk) and evaluation metric (e.g., MSE). To accurately estimate this risk on the validation data,
we perform an automated search over preprocessors, ML algorithms, and their hyperparameters.

(2) ESTIMATION: The second stage automatically searches over combinations of preprocessors,
metalearners, baselearners, and their hyperparameters to obtain ML pipelines for CATE estimation.

(3) ENSEMBLING: The final stage uses the proxy risk from the first stage to select and combine
estimation pipelines from the second stage. The result can be a single ML pipeline or an ensemble.

A high-level overview of Aut oCATE’s functionalities and building blocks is shown in

4.1 STAGE 1: EVALUATION—DESIGNING A PROXY RISK AND EVALUATION PROTOCOL

The counterfactual CASH problem requires minimizing £(ap,|Dies), which involves two challenges:
the lack of ground truth 7 and the presence of covariate shift due to confounding. To tackle these, the
evaluation stage measures risk by learning pseudo-labels—i.e., proxies for 7—from validation data.

Risk measures. Aut oCATE includes different possible risk measures, described in [Appendix B.2}
We include pseudo-labels used in metalearners (DR-, R-, Z-, U-, and F'), plug-in risks (1" and
1NN), and a risk approximation using influence functions (/F'). We exclude the p- and ppw-risks
as they do not apply to all metalearners, and the S-risk due to poor results in prior work (e.g.,
Mahajan et al, [2023). As constructing these risk measures requires accurately estimating nuisance
parameters, we search over preprocessing and ML algorithms to find good-performing ML pipelines.

Under review as a conference paper at ICLR 2025

There is no ground truth, and different measures may be preferable depending on the (unknown) data
generating process. To make our evaluation more robust, we allow for combining different measures.
Similarly, since pseudo-outcomes are learned from data, there is no “true” version, enabling us to
construct multiple version of a single risk (e.g., two R-risks). Using multiple risk measures results
in a multi-objective search problem. To account for the varying scales of different risks, we nor-
malize them by comparing each model’s performance to an average treatment effect (ATE) baseline.

Metrics and implementation. Given a risk measure, different metrics can compare the pseudo-
outcomes and CATE predictions to evaluate the quality of the ML pipeline. We include general
metrics of predictive accuracy, like the mean squared error (MSE) or mean absolute percentage
error (MAPE), and metrics related to a downstream application, such as the Area Under the Qini
Curve (AUQC) when ranking effects (Vanderschueren et al.,[2024). The R-risk requires a metric that
accommodates weights. Finally, we allow for a stratified training-validation split or a stratified k-
fold cross-validation procedure. shows more information on these evaluation frameworks.

4.2 STAGE 2: ESTIMATION—BUILDING A CATE ESTIMATION PIPELINE

Different metalearners can be used to estimate the CATE. Metalearners are general frameworks
for using ML algorithms to estimate treatment effects. As such, they are versatile, accommodate
various ML algorithms, and can be efficiently trained using existing ML packages. Common ex-
amples include the S-Learner (single model with the treatment as a feature), Lo-Learner (single
model with treatment interaction terms), and 7'-Learner (separate models for each treatment group).
Other metalearners use pseudo-outcomes that converge to the treatment effect, such as the DR-,
X-, R-, RA-, Z-, U-, and F-Learners. provides more detailed information on each
metalearner. Our package uses the CausalML implementations where available (Chen et al.,[2020).

4.3 STAGE 3: ENSEMBLING—SELECTING AND ENSEMBLING ESTIMATION PIPELINES

The pipelines from the estimation stage are evaluated with risk measures from the evaluation stage.
The final ensembling stage selects the best pipeline(s) for prediction. We describe different possi-
ble approaches here, with detailed descriptions provided in Almost no established
methods exist for ensembling CATE estimators and, due to the lack of ground truth, most standard
ensembling methods are not applicable. Aut oCATE can select the best-performing pipeline or the
top five for improved robustness and accuracy. We also include a novel stacking procedure that as-
signs weights (between zero and one) to each pipeline and optimizes these to minimize the squared
error with respect to the pseudo-outcomes. The weights are regularized, with tuning on a holdout set.
Finally, we also include the stacking procedure with softmax weights of [Mahajan et al.| (2023)-to
the best of our knowledge, this is the only existing ensemble method tailored for CATE estimation.

With multiple risk measures in a multi-objective search, there may not be a single optimal pipeline,
but rather a Pareto frontier. One strategy is to select all Pareto optimal points, though pipelines
that perform very well on only a single measure may not work well generally. To select pipelines
with good general performance, we can select the pipeline (or the top five) with the lowest average
risk across objectives. Similarly, we can select based on each pipeline’s Euclidean distance to the
origin, or its average rank across objectives. Finally, we can apply the abovementioned stacking
procedure for each risk measure separately and averaging the weights in a final stacked pipeline.

4.4 ML PIPELINE BUILDING BLOCKS: PREPROCESSING AND ML BASELEARNERS

We construct ML pipelines in both the evaluation and estimation stage. The building blocks for these
include preprocessors and ML algorithms, all built on top of scikit-1learn (Pedregosa et al.,
2011). For preprocessing, we provide different feature selection and scaling algorithms. As base-
learners, we include different ML algorithms with both classification and regression counterparts,
ranging from linear regression to random forests. We provide more information in

The final search space includes a variety of preprocessors, metalearners, baselearners, and their
hyperparameters. Efficient optimization schemes such as Bayesian optimization could be used,
but we use random search throughout this work to focus on other design choices in Aut oCATE.
Nevertheless, we implement our search using optuna (Akiba et al,, |2019), allowing easy inte-
gration of sophisticated optimizers like a Tree-structured Parzen Estimator (Bergstra et al.l [2011).

Under review as a conference paper at ICLR 2025

4.5 Low-CoODE CATE ESTIMATION THROUGH AuTOoCATE’S API

AutoCATE is implemented in Pytho following scikit—learn’s design principles (Pedregosa
et al., [2011). The low-code API enables automated CATE estimation with just four lines of code:

1 from src.AutoCATE import AutoCATE # Import the AutoCATE class
2 autocate = AutoCATE () # Initialize the AutoCATE object
3 autocate. (X_train, t_train, yf_train) # Find the best pipeline (s)
4 cate_pred = autocate. (X_test) # Predict the CATE for new data

Initialization arguments can be specified (e.g., the number of estimation trials; see [Appendix B.6).

5 EMPIRICAL EVALUATION: COMPARING AUTOMATED STRATEGIES

This section empirically compares design choices for solving the counterfactual CASH problem for
all three stages: evaluation (5.2)), estimation (5.3)), and ensembling (5.4)). We identify best practices
and benchmark the resulting configuration against common approaches for CATE estimation (5.3)).

5.1 EXPERIMENTAL SETUP: DATA AND EVALUATION METRICS

Our experiments compare various automated, end-to-end strategies for learning a CATE estimation
pipeline. Using Aut oCATE, we evaluate design choices in each stage: evaluation, estimation, and
ensembling. To obtain general insights, we leverage a collection of standard benchmarks for CATE
estimation: IHDP (Hill, 2011}, ACIC [Dorie et al.|(2019), News (Johansson et al.,|2016)), and Twins
(Couizos et all, 2017); see for details. These semi-synthetic benchmarks include 247
distinct data sets that vary in outcome (regression and classification), dimensionality, size, and appli-
cation area, allowing for a comprehensive analysis Aut oCATE. Unless noted otherwise, results are
reported in precision in estimating heterogeneous treatment effects (PEHE): v/PEHE = \/ (r—7)2.

For each experimental result, the caption clarifies the Aut oCATE configuration used. For the eval-
uation and estimation stages, we describe the search strategy for automatically optimizing the ML
pipelines, including base- and metalearners involved and the number of optimization trials per stage.
Unless stated otherwise, Aut oCATE select the best ML pipeline based on best average performance.

5.2 ANALYZING AUTOCATE—STAGE 1: EVALUATION PROTOCOL

We analyze the evaluation protocol by comparing risk measures, metrics, and evaluation procedures.

5.2.1 HOW TO MEASURE RISK REGARDING CATE PREDICTIONS?

What risk measure works best? We compare predictive error resulting from model selection with
different risk measures in Three options consistently show low error: the DR-, kINN-,
and T'-risk. These results largely correspond with existing work. |Curth & van der Schaar| (2023);
Mabhajan et al.| (2023)) similarly found the DR-risk to work well, though the kNN -risk works com-
paratively better in our experiments. Although|Curth & van der Schaar| (2023) reported worse results
for the T'-risk, both our findings and those in|Mahajan et al.|(2023)) show that it can give good results
with proper tuning of the underlying models. We further analyze the impact of tuning in
increased tuning for the evaluation models generally results in better downstream performance. To
test whether congeniality bias affects our results (Curth & van der Schaar, 2023)), we repeat this
experiment for different metalearners in Again, the T-, DR-, and kNN -risk perform best.

Is it beneficial to use multiple risk measures? We explore the impact of combining different risk
measures in a multi-objective search, hypothesizing that this could lead to more robust pipeline se-
lection as each measure is a different proxy to the same ground truth. shows both results
for risk measure combinations, and for multiple versions of a single measure based on different
estimates. We observe that combining different types or different versions of risk measures can in-
deed improve performance, though no strategy substantially improves upon the best single measure.

2Our package and experimental code are available at https://anonymous.4open.science/r/AutoCATE-E103,

https://anonymous.4open.science/r/AutoCATE-E103

Under review as a conference paper at ICLR 2025

DR F IF kNN R T U V/

IHDP 212+ss 333155 313145 222436 337+71 2.15+.35 3.58+72 5.40+.s6
ACIC 1.56+.00 1.74x10 2.52:16 1.74+10 1.63+10 152100 1.72:.00 2.40+.15
Twins .333+.00 340+ .00 340+ .01 @i,oo 335+ .00 323 00 359+ .01 350+ .01
News 2.42+ 07 &i.m 2.73+.09 &1.07 2.51+.08 &1.07 2.60+.09 3.02+11

(a) Comparing downstream performance for different risk measures

Combining risks T-risk—Multiple versions Best
All DR,T DR, TkNN Topl Top 2 Top 3 Top 5 single

IHDP 2.48+3s 2.19+35 2.13+3 2.15+35 2.15+35 2.17+35 211+ 2.12+.34
ACIC 194+13 1.58+00 1.60+00 1.52:+00 1.54:08 1.55+00 1.52:108 1.52+.09
Twins .331+.01 323 00 324+ 00 323+:00 0.323+.00 323+ .00 324+ 00 323 00
News &i.m &i.o& 2.41+ .07 &i.m Ei.m &1.07 &1.07 &i.m

(b) Comparing downstream performance for different combinations of risk measures

Table 1: Performance for validation based on different risk measures. Results in v PEHE+sg
(lower is better). Bold highlights the best results, with underlined values falling within 1 standard
error. Results for 50 evaluation trials and 50 estimation trials with a T'-Learner and gradient boosting.

IHDP ACIC Twins News
2.25—
Lﬂ 2.50— 0.328 — 2.50—
T g5 m 200=
=~ Ld 0.326— m 245 —
& 500— D“ L7
. 0.324— 2.40—
_ 1.50—
1.75—, T T 0.322 (I T
1 10 0o 500 W00 500 %o oo 1 100 500
Evaluation trials Ex aluatlon trials Ev Llu LthIl trials Evaluatlon trials

Figure 3: How many iterations should we tune evaluation models? We compare downstream
results, based on different number of trials used to tune the models underlying the evaluation metrics.
Results for a T-risk and 50 estimation trials with a T-Learner and gradient boosting.

5.2.2 WHAT EVALUATION PROCEDURE TO USE?

How to set the holdout ratio? Risk measures require estimates learned from validation data, creat-
ing a trade-off between using data for evaluation or estimation. presents results for different
holdout ratios, illustrating this trade-off and showing that a holdout ratio of 30-50% generally works
well. We use 30% for holdout in the rest of this work. Although more folds in cross-validation often
improve model performance in supervised settings, we do not observe this effect for Aut oCATE
(see[Table 6), likely due to the complex interplay between the number of folds and the holdout ratio.

What evaluation metric to use? All previous experiments used the mean squared error (MSE) to
compare the predicted CATE and pseudo-outcome(s), corresponding with the goal of minimizing
PEHE. However, depending on the downstream application, alternative metrics might be more im-
portant. Using these in Aut oCATE is straightforward. shows results for two such metrics:
the mean absolute percentage error (MAPE) and area under the Qini curve (AUQC). As hypothe-
sized, selecting models based on a particular metric generally improves performance for that metric.

5.3 ANALYZING AuTO0CATE—STAGE 2: ESTIMATION PROTOCOL

Given an evaluation protocol, we can compare strategies for the estimation stage. This section
examines how including different metalearners and baselearners affects Aut oCATE’s performance.

Metalearners. compares different versions of Aut oCATE with either all meta- and base-
learners (see for an overview), or only the best per category. The complete “AllMeta-
AllBase” sometimes performs poorly. While performance generally improves with more trials, poor
results persists even after 100 trials on the News data. Further inspection reveals that bad iterations
are due to instability of the R- and U-Learners: these are chosen due to good initial performance
on the validation set, but can perform exceptionally poor on the test data after retraining on all
data. Other metalearners (F' and Z) are almost never chosen. Therefore, “BestMeta” excludes these

Under review as a conference paper at ICLR 2025

IHDP ACIC 06— Twins News
E C\: 187 } E‘S]
Lﬂ 0.34—
e,
] HH * BV]]
I 03—
()vl (] 3 0 5 (] 7 0.9 ().1 () 3 (] 5 0.7 0.9 0.1 0.3 0.5 0.7 ([).1 () 3 (] 5 0 7 (]v9
Holdout ratio Holdout ratio Holdout ratio Holdout ratio

Figure 4: How much data to use for evaluation? We show results for different holdout ratios
and fit a polynomial function for each data set to gain insight into the optimal ratio. Results for 50
evaluation trials with a T-risk and 50 estimation trials with a T-Learner and gradient boosting.

MSE MAPE AUQC MSE MAPE AUQC

vVPEHE 2151035 2.28+ 36 2.26+.41 vVPEHE 1.52+.00 1.67+.00 1.50=+ .08

MAPE 1.76+1.30 1.40+.04 0.50-+.15 MAPE 1.10+.21 1.03+ 14 1.11+ .24

AUQC 0921001 0.88+:.02 0.96-+ .01 AUQC 091+.0: 0.90+.01 0.91+ .01
(a) IHDP (b) ACIC

MSE MAPE AUQC MSE MAPE AUQC

vPEHE .323-+.00 323+ .00 344+ o0 vPEHE 2.42- 07 2.52+ 07 2.46+ 07

MAPE — — — MAPE 5.75+.7 5.83+.60 5.86+ .85

AUQC 0.00x.00 0.00+.01 0.03-+ .01 AUQC 0.66 .01 0.64+.01 0.65+.01
(c) Twins (d) News

Table 2: Comparing different evaluation metrics. We compare model selection with different
evaluation metrics. For the Twins data set, MAPE cannot be calculated, as the true CATE can
be zero. Bold highlights the best results, with underlined values falling within 1 standard error.
Colored cells show the hypothesis that matching metrics will yield the best performance. Results
for 50 evaluation trials with a T-risk and 50 estimation trials with a 7T-Learner and gradient boosting.

metalearners (R, F', Z, and U), resulting in improved stability and performance. [Appendix D.2
compares metalearners’ precision and time efficiency, and shows how often metalearners are chosen.

Baselearners. The “BestBase” versions in only use base learners that typically perform
well with tabular data: random forests, extremely randomized trees, gradient boosting, and mul-
tilayer perceptrons. This constraint is applied to both evaluation and estimation pipelines. While
selecting these baselearners improves performance, it is less significant than filtering metalearners.

5.4 ANALYZING AuTO0CATE—STAGE 3: ENSEMBLING PROTOCOL

The ensemble stage compares pipelines built in the estimation stage using the objective(s) learned
in the evaluation stage. Selected pipelines are re-trained on the entire data and saved for inference.

Single objective. With a single objective, we can select the best pipeline (Top 1), the best five (Top
5), or use stacking to build a final estimator that combines all pipelines. compares these
strategies, showing that combining pipelines improves performance for all data sets except Twins.
illustrates how an ensemble’s predictions can help assess an estimate’s uncertainty.

Multiple objectives. Model selection is more complex with multiple objectives. We can select the
best pipelines based on the average normalized score, Euclidean distance to the origin, or average
rank, to then select the top one or top five pipelines. Alternatively, we can create stacking esti-
mators for each objective and average the weights (“Stacking”), or select all Pareto optimal models
(“Pareto”). [Table 3bjcompares these strategies. Single pipelines typically underperform compared to
ensembles built from the top five pipelines, all Pareto optimal pipelines, or stacking. Selecting based
on average performance yields the best performance. No single strategy is consistently optimal.

Under review as a conference paper at ICLR 2025

IHDP ACIC
Ko m
= jun .
= (= 10
T &
trtrtrh B TR ok o O, 10*
e s @ m e
| I l I l I I I I [|
1 2 5 10 20 50 100 200 50 100 200
Estimation trials Estimation trials
Twins News
M 10.0 —o— AllMeta—AllBase =e=- BestMeta—AllBase = 104)
E AllMeta-BestBase --¢-- BestMetaBestBase E
AP o 10° \
R R A A AN S B T'"'T"""T""’T""T""T"'T":T
1 2 5 10 20 50 100 200 1 2 5 10 20 50 100 200
Estimation trials Estimation trials

Figure 5: What meta- and baselearners to include? We compare different search spaces for
AutoCATE, either including all metalearners (AllMeta) or only the best (BestMeta), as well as all
baselearners (AllBase) or only the best (BestBase). Results for 50 evaluation trials with a T-risk.

Best model(s) Stacking
Top 1 Top 5 COP Softmax
IHDP 2.15:«:.35 1.90:{:.34 1.96:(:,34 2.83:(:,51
ACIC 1.52+ .00 1.34+ 08 1.42+ 00 1.33+ .00
Twins 323+ .00 .325+.00 344+ 00 331 +.00
News 242+ 07 2.33+ .06 2.33+ .06 2.32+ .06

(a) Comparing ensemble strategies for a single 7T'-risk

Average Distance Ranking Stacking
Top 1 Top5 Topl Top5 Topl Top 5 COP Softmax Pareto

IHDP 219135 1.84+31 227+37 2.99+54 3.58:66 299151 1.94: 32 283151 2.19+.36
ACIC 1.58+.00 1.35+.08 1.55+.08 1.41+0s 1.69+£.0s 1.41+.08 1.431.00 1.33+.00 1.50+.0s
Twins .323+.00 .325+.00 .323+.00 .341+.00 .367+.01 .341+.00 .349+.00 .331x.00 .326=x.00
News 2.41x.06 &i.oe 2.42+ o7 &i.m 2.58+ 08 &1,07 Mi,os 232+ .06 2.39+.07

(b) Comparing ensemble strategies when combining DR- and 7T -risks

Table 3: Ensemble strategies. We compare ensembling strategies for a single or multiple objectives
in terms of v/ PEHE. Bold highlights the best results, underlined values lie within 1 standard error.
Results for 50 evaluation trials and 50 estimation trials with a T-Learner and gradient boosting.

5.5 BENCHMARKING AUT0OCATE AGAINST COMMON ALTERNATIVES

This section compares the optimized configuration of AutoCATE with some common alternative
approaches for tuning CATE estimation pipelines. These benchmarks select the best model using
the error in predicting observed outcomes (u-risk). We include both S- and T-Learners. For T'-
Learners, we tune models separately for the control and treatment groups. First, we compare a
T-Learner with gradient boosting tuned based on the p-risk against Aut oCATE using only a 7'-
Learner and gradient boosting optimized for 7T-risk. While these strategies are similar, Aut oCATE
evaluates the entire pipeline jointly and (potentially) adds preprocessing. Conversely, the traditional
T-Learner’s search is more efficient as it tunes models separately per group. compares the
two approaches: the p-risk strategy performs worse for Twins, but better for ACIC. Finally,
compares Aut oCATE with S- and 7T-Learners using random forests and gradient boosting. These
approaches are conceptually simple, but represent common and strong baselines. We observe that,
for each data set, AutoCATE can obtain at least competitive performance to the best approach.
These strong results are due to two factors. First, Aut oCATE offers greater flexibility through a
larger search space, including more meta- and baselearners and preprocessing analyzes
the added value of preprocessing). Second, model selection is better aligned with the goal of CATE

Under review as a conference paper at ICLR 2025

News
—— AutoCATE
ceer prerisk

IHDP ACIC

I [
120 50 100 200 120 50 100 200 ‘120 5‘0 1(‘)0 200 12‘0 5‘U 1(‘JU 2(‘JU
Estimation trials Estimation trials Estimation trials Estimation trials
Figure 6: Comparing Aut oCATE with tuning based on p-risk. We compare tuning a 7-Learner
with gradient boosting using either Aut oCATE (based on a T"-risk) or tuning based on the MSE on

the observed outcome. Aut oCATE uses a T-risk with 50 evaluation trials and top 1 model selection.

IHDP ACIC
6 —o— S-RF == S-GB —e— AutoCATE-1
= 0 25 o o
jan 4 = o T_RF wee T-GB AutoCATE-5
E = 20 =
15 emeeun: R TR e —
0 T T T] — IR T B
12 5 10 20 50 100 200 500 1000 1 2 5 10 20 50 100 200 500 1000
Estimation trials Estimation trials

1 2 5 10 20 50 100 200 5(‘)0 10‘00 1 2 5 10 2‘[] 50 100 200 500 1000
Estimation trials Estimation trials
Figure 7: Benchmarking AutoCATE. We compare Aut oCATE with common benchmarks using
S- and T-Learners with random forests and gradient boosting. AutoCATE uses a 1-risk with 50
evaluation trials and BestMeta-BestBase search spaces, with either Top 1 or Top 5 model selection.

estimation, using the 7-risk, and can include an ensemble of pipelines for improved performance.
shows similar results for ranking treatment effects with data from uplift modeling.

6 CONCLUSION

Despite the availability of ML methods for CATE estimation, their adoption remains limited, due to
the complexity of implementing, tuning, and validating them. We framed the problem of finding an
ML pipeline for CATE estimation as a counterfactual CASH problem and proposed Aut oCATE: the
first end-to-end, automated solution tailored for treatment effect estimation. Based on this solution,
we analyzed design choices for evaluation, estimation, and ensembling, and identified best practices.
The resulting approach was validated, outperforming widely used strategies for CATE estimation.

To maximize AutoCATE’s practical impact, several limitations need to be addressed. Although
AutoCATE relies on standard assumptions for causal inference, it is crucial to assess its robustness
against violations of these assumptions and potentially protocols for such scenarios. Additionally,
most of the data used in this work is semi-synthetic IHDP, ACIC, and News), which may not fully
capture the complexities of real-world data. Although validating CATE estimates remains inherently
challenging, approaches from related fields could offer inspiration (see e.g. Devriendt et al., [2020).

AutoCATE enables a comprehensive analysis of existing methods (see[Figure 1|and[Appendix D.J),
facilitating a better understanding of CATE estimation and guiding the development of new ap-
proaches. We envision opportunities for future research in all stages. For evaluation, advanced
multi-objective strategies could improve performance and robustness. Novel methods for estima-
tion could be automatically discovered using Neural Architecture Search. Generally, efficiency can
be improved with better search algorithms or strategies (e.g., by re-using nuisance models across
metalearners). Related to this, the optimal time allocation between the stages remains an open ques-
tion, where meta-learning could help by incorporating data set characteristics (Feurer et al.,[2015).
Finally, more advanced ensembling could be developed (e.g., combining different metalearners).

10

Under review as a conference paper at ICLR 2025

REFERENCES

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM
SIGKDD international conference on knowledge discovery & data mining, pp. 2623-2631, 2019.

Ahmed Alaa and Mihaela van der Schaar. Autoprognosis: Automated clinical prognostic modeling
via bayesian optimization with structured kernel learning. In International conference on machine
learning, pp. 139-148. PMLR, 2018.

Ahmed Alaa and Mihaela van der Schaar. Validating causal inference models via influence func-
tions. In International Conference on Machine Learning, pp. 191-201. PMLR, 2019.

Ahmed M Alaa and Mihaela van der Schaar. Bayesian inference of individualized treatment effects
using multi-task gaussian processes. Advances in neural information processing systems, 30,
2017.

Susan Athey and Guido W Imbens. Machine learning methods for estimating heterogeneous causal
effects. stat, 1050(5):1-26, 2015.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Baldzs Kégl. Algorithms for hyper-parameter
optimization. Advances in neural information processing systems, 24, 2011.

Jeroen Berrevoets, Fergus Imrie, Trent Kyono, James Jordon, and Mihaela van der Schaar. To
impute or not to impute? missing data in treatment effect estimation. In International Conference
on Artificial Intelligence and Statistics, pp. 3568-3590. PMLR, 2023.

Ekaba Bisong and Ekaba Bisong. Google automl: cloud vision. Building Machine Learning and
Deep Learning Models on Google Cloud Platform: A Comprehensive Guide for Beginners, pp.
581-598, 2019.

Huigang Chen, Totte Harinen, Jeong-Yoon Lee, Mike Yung, and Zhenyu Zhao. Causalml: Python
package for causal machine learning. arXiv preprint arXiv:2002.11631, 2020.

Liang-Chieh Chen, Maxwell Collins, Yukun Zhu, George Papandreou, Barret Zoph, Florian Schroff,
Hartwig Adam, and Jon Shlens. Searching for efficient multi-scale architectures for dense image
prediction. Advances in neural information processing systems, 31, 2018.

Alicia Curth and Mihaela van der Schaar. Nonparametric estimation of heterogeneous treatment
effects: From theory to learning algorithms. In International Conference on Artificial Intelligence
and Statistics, pp. 1810-1818. PMLR, 2021.

Alicia Curth and Mihaela van der Schaar. In search of insights, not magic bullets: Towards de-
mystification of the model selection dilemma in heterogeneous treatment effect estimation. In
International Conference on Machine Learning, pp. 6623—-6642. PMLR, 2023.

Floris Devriendt, Darie Moldovan, and Wouter Verbeke. A literature survey and experimental eval-
uation of the state-of-the-art in uplift modeling: A stepping stone toward the development of
prescriptive analytics. Big data, 6(1):13-41, 2018.

Floris Devriendt, Jente Van Belle, Tias Guns, and Wouter Verbeke. Learning to rank for uplift
modeling. IEEE Transactions on Knowledge and Data Engineering, 34(10):4888—-4904, 2020.

Vincent Dorie, Jennifer Hill, Uri Shalit, Marc Scott, and Daniel Cervone. Automated versus do-it-
yourself methods for causal inference: Lessons learned from a data analysis competition. Statis-
tical science, 34(1):43-68, 2019.

Matthieu Doutreligne and Ga&l Varoquaux. How to select predictive models for causal inference?
arXiv preprint arXiv:2302.00370, 2023.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey.
Journal of Machine Learning Research, 20(55):1-21, 2019.

11

Under review as a conference paper at ICLR 2025

Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy, Mu Li, and Alexan-
der Smola. Autogluon-tabular: Robust and accurate automl for structured data. arXiv preprint
arXiv:2003.06505, 2020.

Stefan Feuerriegel, Dennis Frauen, Valentyn Melnychuk, Jonas Schweisthal, Konstantin Hess, Ali-
cia Curth, Stefan Bauer, Niki Kilbertus, Isaac S Kohane, and Mihaela van der Schaar. Causal
machine learning for predicting treatment outcomes. Nature Medicine, 30(4):958-968, 2024.

Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum, and Frank
Hutter. Efficient and robust automated machine learning. Advances in neural information pro-
cessing systems, 28, 2015.

Alexander Franks, Alexander D’ Amour, and Avi Feller. Flexible sensitivity analysis for observa-
tional studies without observable implications. Journal of the American Statistical Association,
2020.

Tomas Geftner, Javier Antoran, Adam Foster, Wenbo Gong, Chao Ma, Emre Kiciman, Amit Sharma,
Angus Lamb, Martin Kukla, Nick Pawlowski, et al. Deep end-to-end causal inference. arXiv
preprint arXiv:2202.02195, 2022.

Xin He, Kaiyong Zhao, and Xiaowen Chu. Automl: A survey of the state-of-the-art. Knowledge-
based systems, 212:106622, 2021.

Jennifer L Hill. Bayesian nonparametric modeling for causal inference. Journal of Computational
and Graphical Statistics, 20(1):217-240, 2011.

Kevin Hillstrom. Minethatdata: E-mail analytics and data-driven market-
ing, 2008. URL https://blog.minethatdata.com/2008/03/
minethatdata—-e-mail—-analytics—and—-data.html. Accessed: 2024-09-26.

Paul W Holland. Causal inference, path analysis and recursive structural equations models. ETS
Research Report Series, 1988(1):1-50, 1988.

Daniel G Horvitz and Donovan J Thompson. A generalization of sampling without replacement
from a finite universe. Journal of the American statistical Association, 47(260):663—-685, 1952.

Daniel Jarrett, Jinsung Yoon, Ioana Bica, Zhaozhi Qian, Ari Ercole, and Mihaela van der Schaar.
Clairvoyance: A pipeline toolkit for medical time series. In International Conference on Learning
Representations, 2021.

Maciej Jaskowski and Szymon Jaroszewicz. Uplift modeling for clinical trial data. In /ICML work-
shop on clinical data analysis, volume 46, pp. 79-95, 2012.

Andrew Jesson, S6ren Mindermann, Uri Shalit, and Yarin Gal. Identifying causal-effect inference

failure with uncertainty-aware models. Advances in Neural Information Processing Systems, 33:
11637-11649, 2020.

Andrew Jesson, Soren Mindermann, Yarin Gal, and Uri Shalit. Quantifying ignorance in individual-
level causal-effect estimates under hidden confounding. In International Conference on Machine
Learning, pp. 4829-4838. PMLR, 2021.

Fredrik Johansson, Uri Shalit, and David Sontag. Learning representations for counterfactual infer-
ence. In International conference on machine learning, pp. 3020-3029. PMLR, 2016.

Shubhra Kanti Karmaker, Md Mahadi Hassan, Micah J Smith, Lei Xu, Chengxiang Zhai, and Kalyan
Veeramachaneni. Automl to date and beyond: Challenges and opportunities. ACM Computing
Surveys (CSUR), 54(8):1-36, 2021.

Edward H Kennedy. Towards optimal doubly robust estimation of heterogeneous causal effects.
Electronic Journal of Statistics, 17(2):3008-3049, 2023.

Soren R Kiinzel, Jasjeet S Sekhon, Peter J Bickel, and Bin Yu. Metalearners for estimating heteroge-
neous treatment effects using machine learning. Proceedings of the national academy of sciences,
116(10):4156-4165, 2019.

12

https://blog.minethatdata.com/2008/03/minethatdata-e-mail-analytics-and-data.html
https://blog.minethatdata.com/2008/03/minethatdata-e-mail-analytics-and-data.html

Under review as a conference paper at ICLR 2025

Kim Larsen. Information: Data exploration with information theory methods, 2023. URL https:
//cran.r-project.org/package=Information. R package version 0.2.1, Accessed:
2024-09-26.

Erin LeDell and Sebastien Poirier. H20 automl: Scalable automatic machine learning. In Proceed-
ings of the AutoML Workshop at ICML, volume 2020. ICML San Diego, CA, USA, 2020.

Victor SY Lo. The true lift model: a novel data mining approach to response modeling in database
marketing. ACM SIGKDD Explorations Newsletter, 4(2):78-86, 2002.

Christos Louizos, Uri Shalit, Joris M Mooij, David Sontag, Richard Zemel, and Max Welling.
Causal effect inference with deep latent-variable models. Advances in neural information pro-
cessing systems, 30, 2017.

Divyat Mahajan, Ioannis Mitliagkas, Brady Neal, and Vasilis Syrgkanis. Empirical analysis of model
selection for heterogeneous causal effect estimation. In The Twelfth International Conference on
Learning Representations, 2023.

Xinkun Nie and Stefan Wager. Quasi-oracle estimation of heterogeneous treatment effects.
Biometrika, 108(2):299-319, 2021.

Michael Oberst, Fredrik Johansson, Dennis Wei, Tian Gao, Gabriel Brat, David Sontag, and Kush
Varshney. Characterization of overlap in observational studies. In International Conference on
Artificial Intelligence and Statistics, pp. 788-798. PMLR, 2020.

Diego Olaya, Jonathan Vasquez, Sebastian Maldonado, Jaime Miranda, and Wouter Verbeke. Uplift
modeling for preventing student dropout in higher education. Decision support systems, 134:
113320, 2020.

Miruna Oprescu, Vasilis Syrgkanis, and Zhiwei Steven Wu. Orthogonal random forest for causal
inference. In International Conference on Machine Learning, pp. 4932—4941. PMLR, 2019.

Miruna Oprescu, Jacob Dorn, Marah Ghoummaid, Andrew Jesson, Nathan Kallus, and Uri Shalit.
B-learner: Quasi-oracle bounds on heterogeneous causal effects under hidden confounding. In
International Conference on Machine Learning, pp. 26599-26618. PMLR, 2023.

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn:
Machine learning in python. the Journal of machine Learning research, 12:2825-2830, 2011.

Scott Powers, Junyang Qian, Kenneth Jung, Alejandro Schuler, Nigam H Shah, Trevor Hastie, and
Robert Tibshirani. Some methods for heterogeneous treatment effect estimation in high dimen-
sions. Statistics in medicine, 37(11):1767-1787, 2018.

Peter M Robinson. Root-n-consistent semiparametric regression. Econometrica: Journal of the
Econometric Society, pp. 931-954, 1988.

Craig A Rolling and Yuhong Yang. Model selection for estimating treatment effects. Journal of the
Royal Statistical Society Series B: Statistical Methodology, 76(4):749-769, 2014.

Donald B Rubin. Estimating causal effects of treatments in randomized and nonrandomized studies.
Journal of educational Psychology, 66(5):688, 1974.

Donald B Rubin. Causal inference using potential outcomes: Design, modeling, decisions. Journal
of the American Statistical Association, 100(469):322-331, 2005.

Frederic Runge, Danny Stoll, Stefan Falkner, and Frank Hutter. Learning to design rna. In Interna-
tional Conference on Learning Representations, 2019.

Piotr Rzepakowski and Szymon Jaroszewicz. Decision trees for uplift modeling with single and
multiple treatments. Knowledge and Information Systems, 32:303-327, 2012.

Alejandro Schuler, Michael Baiocchi, Robert Tibshirani, and Nigam Shah. A comparison of
methods for model selection when estimating individual treatment effects. arXiv preprint
arXiv:1804.05146, 2018.

13

https://cran.r-project.org/package=Information
https://cran.r-project.org/package=Information

Under review as a conference paper at ICLR 2025

Uri Shalit, Fredrik D Johansson, and David Sontag. Estimating individual treatment effect: general-
ization bounds and algorithms. In International conference on machine learning, pp. 3076-3085.
PMLR, 2017.

Amit Sharma and Emre Kiciman. Dowhy: An end-to-end library for causal inference. arXiv preprint
arXiv:2011.04216, 2020.

Xingjian Shi, Jonas Mueller, Nick Erickson, Mu Li, and Alexander J Smola. Benchmarking multi-
modal automl for tabular data with text fields. arXiv preprint arXiv:2111.02705, 2021.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. Advances in neural information processing systems, 25, 2012.

David So, Quoc Le, and Chen Liang. The evolved transformer. In International conference on
machine learning, pp. 5877-5886. PMLR, 2019.

Irene Teinemaa, Javier Albert, and Nam Pham. UpliftML: A Python Package for Scalable Uplift
Modeling. https://github.com/bookingcom/upliftml, 2021. Version 0.0.1.

Toon Vanderschueren, Robert Boute, Tim Verdonck, Bart Baesens, and Wouter Verbeke. Optimizing
the preventive maintenance frequency with causal machine learning. International Journal of
Production Economics, 258:108798, 2023.

Toon Vanderschueren, Wouter Verbeke, Felipe Moraes, and Hugo Manuel Proenga. Metalearners
for ranking treatment effects. arXiv preprint arXiv:2405.02183, 2024.

Stefan Wager and Susan Athey. Estimation and inference of heterogeneous treatment effects using
random forests. Journal of the American Statistical Association, 113(523):1228-1242, 2018.

Chi Wang, Qingyun Wu, Markus Weimer, and Erkang Zhu. Flaml: A fast and lightweight automl
library. Proceedings of Machine Learning and Systems, 3:434-447,2021.

Jinsung Yoon, James Jordon, and Mihaela van der Schaar. Ganite: Estimation of individualized
treatment effects using generative adversarial nets. In International conference on learning rep-
resentations, 2018.

Weijia Zhang, Jiuyong Li, and Lin Liu. A unified survey of treatment effect heterogeneity modelling
and uplift modelling. ACM Computing Surveys (CSUR), 54(8):1-36, 2021.

Zhenyu Zhao, Yumin Zhang, Totte Harinen, and Mike Yung. Feature selection methods for uplift
modeling and heterogeneous treatment effect. In IFIP International Conference on Artificial
Intelligence Applications and Innovations, pp. 217-230. Springer, 2022.

14

Under review as a conference paper at ICLR 2025

The appendix starts with a more detailed introduction and background to CATE estimation in [Ap-|

The next sections provide more details on Aut oCATE (Appendix B]), describe the data

sets used in this work (Appendix C)), and present additional empirical results (Appendix D). Finally,
we compare Aut oCATE with other packages for CATE estimation in|Appendix E|

A BACKGROUND ON CATE ESTIMATION

This section provides a more detailed introduction and background on treatment effect estimation.
In accordance to the main body, we denote an instance by a tuple (z, t,y), with covariates X € X’ C
R%, atreatment T € T = {0,1}, and an outcome Y €) C R. Following the potential outcomes
framework (Rubin,|{1974;2005), we describe an instance’s potential outcome Y for a given treatment
T = t as Y (t). The Conditional Average Treatment Effect (CATE) is then defined as the expected
difference in outcomes between treating and not treating:

E[Y(l) - Y(0)|X] 2)

Knowing this effect is crucial in a variety of domains, such as education (Olaya et al.,2020)), health-
care (Feuerriegel et al.,|2024), and maintenance (Vanderschueren et al.,[2023)). Estimating the CATE
from observational data involves significant challenges (Appendix A.T)), requires standard assump-

tions (Appendix A.2)), and tailored ML methods (Appendix A.3). We explain these in the following.

A.1 CHALLENGES: THE FUNDAMENTAL PROBLEM AND CONFOUNDING

The fundamental problem of causal inference (Holland, [1988) is that, for each instance, we only
observe either Y (0) or Y (1), depending on what treatment was administered. We refer to the ob-
served outcome as the factual outcome and the unobserved outcome as the counterfactual outcome.
Because one outcome is always unobserved, we never know the true CATE 7, which means that
there is no ground truth CATE available for training or validation.

In observational data, the outcome that was observed is typically not random: some instances were
more likely to be treated, while other instances were more likely not to receive treatment. For
example, in healthcare, patients may be more likely to receive a new treatment if they have access
to better healthcare, have no pre-existing conditions, and are younger. The covariates that influence
both the outcome and treatment assignment are called confounders, with the resulting non-random
treatment assignment sometimes referred to as confounding.

Confounding presents an additional challenge for CATE estimation and validation as it results in co-
variate shift. Some instance-treatment pairs (the counterfactuals) will be absent in the observational
training data compared to the hypothetical test data that contains all instance-treatment pairs (both
factuals and counterfactuals). Because of this, an ML model may focus too much on the observed
data points at the cost of worse predictions for the counterfactuals and, as such, the test data overall.

A.2 ASSUMPTIONS FOR IDENTIFIABILITY

Identifying the causal effect from observational data requires making standard assumptions: consis-
tency, overlap, and unconfoundedness. This section explains these assumptions in more detail.

Assumption 1 (Consistency) The observed outcome given a treatment is the potential outcome
under that treatment: Y| X, t = Y ()| X.

Assumption 2 (Overlap) For each instance, there is a non-zero probability of receiving each treat-
ment given their covariates: ¥ v € X andt € T : P(T = t|X = xz) > 0. This condition ensures
that there is sufficient variability in the treatment assignment.

Assumption 3 (Unconfoundedness) Given an instance’s covariates, its potential outcomes are in-
dependent of the treatment assignment: Y (0),Y (1) L T'| X. This condition implies that all factors
influencing both the treatment assignment and outcome are included in X. In other words, there are
no unobserved confounders.

15

Under review as a conference paper at ICLR 2025

There has recently been much interest in CATE estimation under violation of these assumptions. For
example, by quantifying the uncertainty or sensitivity of an estimate to a possible violation (Franks
et al., [2020; Jesson et al., 2020; 2021)), characterizing overlap violations (Oberst et al., [2020), or
developing metalearners that can deal with unobserved confounders (Oprescu et al., 2023)). We
believe that extending Aut oCATE to deal with these settings and to incorporate these methods will
improve its potential for real-world applicability even further. As such, we consider it an important
direction for future versions.

A.3 CATE ESTIMATION: META- AND BASELEARNERS

We briefly describe the approach of estimating the CATE with a metalearner here. A straightforward
way of estimating the CATE is using a single ML model, where the treatment variable is considered
an ordinary input variable. This metalearner is called the S-Learner and can be implemented with
a wide variety of baselearners (i.e., ML algorithms that predict an outcome based on data, such as
a decision tree or neural network). An alternative metalearner, the 7'-learner, fits two models—one
model for each treatment group. Both models can use the same baselearner or a different one. More
information on the metalearners in Aut oCATE is provided in For more extensive
overviews, we refer to|Devriendt et al.| (2018)), |[Zhang et al.|(2021)), and |[Feuerriegel et al.| (2024).

B AUTOCATE: ADDITIONAL INFORMATION

This section presents information on metalearners (Appendix B.IJ), risk measures for evaluation (Ap-|
[pendix B.2), and Aut oCATE’s search spaces for preprocessors and baselearners (Appendix B.3).

B.1 METALEARNERS

We describe the metalearners implemented in Aut oCATE in more detail below. We first define the
estimates that make up the building blocks of these models: the estimated propensity score é(z) =
E(t|x), the treatment-group specific outcome o (z) = E(y|z,¢ = 0) and g (z) = E(y|z,t = 1),
and the treatment-unaware outcome [i(z) = E(y|z). In the following, the function f describes a
model that is learned with a base learner such as a neural network or gradient boosting.

S-Learner. The S-Learner, or single learner, simply uses the treatment as a variable: fg(x,t) =
E(y|z,t). The CATE 7 is then estimated as 7 = §1 — ¢o = fs(z,t =1) — fs(z,t = 0).

Lo-Learner (Lo, 2002). The Lo-Learner is similar to an S-Learner, in the sense that it uses
the treatment as a variable, but it adds interaction terms between the covariates x and treatment
t: fro(z,t) = E(y|lz,t,x - t). The CATE 7 is then estimated as 7 = 41 — Jo = fro(z,t =
1) — fLO(Z‘,t = O)

T-Learner. The T-Learner constructs two models—one per treatment group: fo(x) = E(y|z,t =
0) and f1(z) = E(y|x,t = 1), and predicts the CATE as 7 = §1 — o = fr(x) — fo(x).

X-Learner (Kiinzel et al., 2019). The X-Learner first learns two treatment-specific outcome
models: §o(z) and g;(x). It then uses these to impute the counterfactual outcome for each in-
stance and, as such, obtain a pseudo-outcome 7x for the treatment effect: %9(= (z) —y
if ¢t = 0, and %)1(= y — go(z) else. For each treatment group, a model is then learned on
these pseudo-outcome: f9(z) = 7% and fi(z) = 7%. The final effect model then estimates
fx(x) = g(x)f% + (1 — g(x)) fL and predicts the treatment effect as 7 = fx (). g(x) € [0,1] is a
weighting function, typically the estimated propensity score g(z) = é(z).

RA-Learner (Curth & van der Schaar,[2021). The RA-Learner or regression-adjusted learner
is similar to an X -Learner, but directly learns the final model on the pseudo-outcomes: fra(z) =
E(7x |x), predicting the treatment effect as 7 = fra(x).

Z-Learner. The transformed outcome approach (Jaskowski & Jaroszewicz, 2012; [Powers et al.,
2018) or inverse propensity weighted estimator (Curth & van der Schaar, 2021)) uses a pseudo-

16

Under review as a conference paper at ICLR 2025

Single Split Cross-Validation
Data Data
1 - holdout ratio 1/ number of folds 1/ number of folds 1/ number of folds

1 - holdout ratio

Training
1 - holdout ratio

Train Train Validate
estimation validation validation
models models models

Train Train Validate
estimation validation validation
models models models

Iteration 1

Figure 8: Evaluation framework. We show two possible frameworks for validating pipelines based
on a single split or a cross-validation procedure. For each, the data is split in three groups to (1) train
the estimation pipelines, (2) train the validation pipelines, and (3) validate the validation pipelines.

outcome based on the Horvitz-Thompson transformation (Horvitz & Thompson, [1952): 7, =

(ﬁ - #’&)) y. The Z-Learner then estimates fz(z) = E(7z|z) and predicts the treatment
effectas 7 = fz(z).

U-Learner. The U-Learner is based on a pseudo-outcome 7y = %((Z)) The final model fits

fu(z) = E(7y|x) and predicts the treatment effect as 7 = fy ().

F-Learner (Athey & TImbens, 2015). The F-Learner uses the pseudo-outcome 7p =

ﬁ%y The final model fits fr(x) = E(7¢|x) and predicts the treatment effect as 7 = fr(x).

DR-Learner (Kennedy, The DR Learner is a robust version of the Z-Learner, based on
the pseudo-outcome 77 = @)

— iz e(z) y+ (1 - @) 1(w) — (1 - W) 9o (). The final
model is fpr(TDR|:U) and predicts the treatment effect as 7 = fpg(x).

R-Learner (Nie & Wager, 2021). The R-Learner, based on Robinson’s decomposition

. 1988) fits a model fr(x) using a weighted loss function with pseudo-outcomes 7 = g:g((f))

and weights w = (¢t — é(z))?. The treatment effect can then directly be predicted as 7+ = fr(x).

B.2 EVALUATION AND RISK MEASURES

The evaluation framework and data splitting underlying AutoCATE is shown in Below,
we describe the different types of risk measures included in our framework.

Metalearner pseudo-outcomes. An instance’s true CATE 7 is unknown, but we can use the
pseudo-outcomes 7 used by the T-, Z-, U-, F'-, DR-, and R-Learners (see above) as ground truth.

Influence Function (IF) (Alaa & van der Schaar,2019). The influence function criterion gives
an estimate of an ML pipeline’s estimation error. It is based on a pseudo-outcome of the treatment
effect 7, estimated with a T-Learner. This pseudo-outcome is then debiased using the influence
function. The final criterion is:

(1-B)# + By(7 — %) — D(7 — 7)? + 72
with D =t — é(z), C = é(z)(1 — é(x)), and B = 2tDC~1.

17

Under review as a conference paper at ICLR 2025

Hyperparameter Range Hyperparameter Range

VarianceThreshold
threshold [0,0.04] Standar_dScaler
SelectPercentile
k [5, n_dim] Robusi?caler
score_func mutual_info_{regression, classif}
(b) Feature Scaling

(a) Feature Selection

Table 4: Preprocessor search spaces. We describe the search spaces for the different preprocessors.
If a hyperparameter is not mentioned, we use its default. All preprocessors are implemented with
scikit—-learn (Pedregosa et al.,.|2011); we refer to their documentation for more information.

k-Nearest Neighbor (kNN) (Rolling & Yang, [2014). The nearest neighbor matching measure
finds the nearest neighbor in the opposite group, defined using the Euclidean distance, and uses
its outcome as the counterfactual outcome. As such, it is essentially a 7T-Learner pseudo-outcome
where the baselearner is restricted to a nearest neighbor model. We extend upon this by allowing
alternative versions to be constructed by increasing k.

B.3 PREPROCESSOR AND BASELEARNER SEARCH SPACES

Preprocessors. ML pipelines include three (optional) steps to preprocess the data before being
fed to a model: feature selection, transformation, and scaling. For feature selection, include Vari-
anceThreshold, SelectPercentile, or no selection. For feature scaling, we include StandardScaler,
RobustScaler, or no scaling. Finally, we include feature transformation algorithms in our software
package (SplineTransformer, PolynomialFeatures, KBinsDiscretizer), but do not include them in the
experiments as they significantly slowed down training times. Other steps for feature selection and
scaling from scikit-learn are similarly supported, but not included in the experiments, which is why
we do not discuss them here. provides detailed information on the search spaces.

Baselearners. We present the search spaces for all baselearners’ hyperparameters in
These are based largely upon existing AutoML packages (e.g., FLAML (Wang et al., 2021)) and
some (limited) experimentation, so these may be improved in future versions.

AutoCATE’s resulting search space of ML pipelines for CATE estimation is vast, with 2,187 pos-
sible pipelines even without considering hyperparameters:

3 feature selection x 3 scaling x 27 metalearner-baselearner configurations x 9 baselearners (3)

with27=1(S)+2 (T)+4 (DR)+5 (X)+4 (R)+3 (RA)+1 (Lo)+2 (Z)+3 (U)+2 (F),
i.e., the sum of all baselearners required per metalearner.

B.4 EXAMPLE ML PIPELINE

We give an example of a pipeline built by Aut oCATE, excluding baselearner hyperparameters.
Evaluation using a T-Risk evaluation, with control outcomes estimated with gradient boosting and
treatment outcomes estimated using a neural network. Estimation by first selecting a top percentile
of features based on the F-value between the label and feature, followed by a DR-Learner where
propensity scores are estimated with a support vector machine, control outcomes with gradient
boosting, treatment outcomes with a linear regression, and the final effect with a random forest.
This example illustrates the complexity of an ML pipeline for CATE estimation—in this case, there
are six different ML models with several hyperparameters each. If an ensemble is used for estima-
tion, this complexity increases even more.

B.5 ENSEMBLING AND MULTI-OBJECTIVE MODEL SELECTION
This section describes the different approaches for ensembling and multi-objective model selection

included in our framework. With multiple objectives, no globally optimal ML pipeline may exist.
We explore various strategies for ranking and selecting models in this context. We denote a pipeline

18

Under review as a conference paper at ICLR 2025

Hyperparameter

Range

Linear/Logistic Regression

alpha

[le—6, 1e6)

Gaussian Process

n-restarts_optimizer
normalize_y

alpha
max_-iter_predict

0,5]

True, False]
le—5, 1e2)
100, 1000]

Support Vector Machine

C
kernel
degree

le—6, 1e6]
linear, poly, rbf, sigmoid]
1,10]

k-Nearest Neighbors

Hyperparameter Range
Gradient Boosting
n_estimators [50, 2000]
subsample [0.4,10]
min_samples_split [2,500]
learning.rate [0.05,0.5]
n_iter_no_change [5,100]
max_leaf nodes None
max_depth None
Random Forest
n_estimators [50, 500]
max_depth None
min_samples_split [2,100]
max_features [0.4,1.0]
Extra Trees
n_estimators [50, 500]
max_depth None
min_samples_split [2,100]
max_features 0.4,1.0]
Decision Tree
max_depth 1, 2000}
min_samples_split [2,500]
min_samples_leaf 1, 500]
max_features 0.4,1.0]

n_neighbors 1,30]
weights uniform, distance]
Neural Network
hidden_layers 1,3
hidden_neurons 8, 64]
alpha le—6, lel]
learning.rate_init S5e—4, le—2]
batch_size 16, 64]
activation tanh, relu]
max_iter 200
solver adam
early_stopping True

Table 5: Baselearner search spaces. We describe the search spaces for each baselearner. If
a hyperparameter is not mentioned, we use its default. All baselearners are implemented with
scikit-learn (Pedregosa et al.,|2011); we refer to their documentation for more information.

19

Under review as a conference paper at ICLR 2025

’s normalized score on objective j as s;;. As different risk measures and metrics have different
scales, we normalize each of these scores by dividing the raw score 5;; with the raw score of a

constant ATE baseline 537F: s;; = .
J

Average (normalized) score. For each pipeline ¢, we compute the normalized average score across

objectives:
m

Si = %Zsija

j=1
with m the number of objectives. We then select the pipeline(s) with the best 5.

Euclidean distance to the origin. We compute each pipeline ¢’s Euclidean distance to the origin:

with m the number of objectives. We then select the pipeline(s) with the lowest D;.

Average rank. Rank all pipelines ¢ for each objective j, denoted as 7;;, and compute the average
rank:
1 m
R,‘ = E Z Tij-

Select the pipeline(s) with the lowest R;.

Stacking—Constrained Optimization Problem. To combine multiple pipelines into a stacked
estimator, we introduce a procedure that assigns weights w;; (where 0 < w; < 1) to each pipeline
1, optimizing these weights to minimize the squared error of the weighted prediction with respect
to those pseudo-outcomes of objective j. We additionally add an [5 regularization term, which can
be tuned on a validation set. With multiple objectives, we repeat this for each objective and then
average the weights W; = >0 | w;.

Stacking—Softmax (Mahajan et al., 2023). An alternative stacking procedure is to determine
the weight of each estimator with a softmax function:

exp(ks;j)
>y exp(rsik)’
with x a temperature parameter that can be tuned. With multiple objectives, we repeat this for each

m

objective and then average the weights W; = > =1 Wij-

wij =

Pareto. We select all pipelines that are Pareto optimal, meaning no other pipeline k satisfies:
Spj > si; Vj and sg; > s;; for at least one j.
B.6 AUTOCATE’S API: ADDITIONAL INFORMATION

We give more information on Aut oCATE’s initialization arguments in Listing|[T]
class AutoCATE:

1
2 def _ init_ (

3 self,

4 # evaluation_metrics: Risk measures to evaluate the performance
5 evaluation_metrics= ,

6 # preprocessors: Preprocessors to try (defaults added later)

7 preprocessors= 7

8 # base_learners: Baselearners to try (defaults added later)

9 base_learners= 0

20

Under review as a conference paper at ICLR 2025

10 # metalearners: Metalearners to try (defaults added later)
11 metalearners= 0

12 # task: Type of task (’regression’ or ’classification’)

13 task="regression",

14 # metric: Metric used to evaluate the model (e.g., "MSE’)

15 metric="MSE",

16 # ensemble_strategy: Strategy for selecting a final model

17 ensemble_strategy="toplaverage",

18 # single_base_learner: Use only one base learner

19 single_base_learner= ,

20 # joint_optimization: Same hyperparameters for baselearners
21 joint_optimization= ;

22 # n_folds: Number of folds for cross-validation

23 n_folds=1,

24 # n_trials: How many trials to optimize the estimation pipeline
25 n_trials=50,

26 # n_eval _versions: Number of versions of each risk measure
27 n_eval_versions=1,

28 # n_eval_trials: Number of trials for evaluating the model
29 n_eval_trials=50,

30 # seed: Random seed for reproducibility

31 seed=42,

32 # visualize: Whether to visualize results

33 visualize= o

34 # max_time: Maximum time allowed for fitting the model

35 max_time= 0

36 # n_jobs: Number of parallel jobs to run

37 n_jobs=-1,

38 # cross_val_predict_folds: Folds for cross-validated estimates
39 cross_val_predict_folds=1,

40 # holdout_ratio: Ratio of data for validation (if single fold)
41 holdout_ratio=0.3

42)z

43

44 # Initialization code (not included here)

45

Listing 1: Arguments for the Aut oCATE class initialization. We describe each argument and its
default initialization.

C DATA: ADDITIONAL INFORMATION
This section describes the data used in this work in more detail.

IHDP (Hill, 2011). The data come from the Infant Health and Development Program, describing
the impact of child care and home visits on children’s cognitive development. Treatments and out-
comes were simulated for a total of 100 data sets. Each version contains n = 747 instances and
d = 25 covariates.

ACIC (Dorie et al),[2019). The data from the ACIC 2016 competition was based on data from
the Collaborative Perinatal Project, studying drivers of developmental disorders in pregnant women
and their children. 77 distinct data sets were created, each with n = 4,802 instances and d = 58
covariates. 100 iterations were originally created for each data set, but we use only the first one for
each.

Twins (Louizos et al.,2017). The Twins data studies the effect of being the heavier twin on mor-
taility. n = 11,984 pairs of twins are included, with d = 46 features each. Only one version of this
data set exists, so we run 10 iterations of each experiment.

News (Johansson et al.,[2016). This data simulates a reader’s reading experience (y) based on the
device they use for reading (t) and the news article (z). There are 50 distinct data sets, each with
n = 5,000 instances with and d = 3,477 covariates.

21

Under review as a conference paper at ICLR 2025

Below, we include results for two data sets on uplift modeling:

Hillstrom 2008). This data contains records of customers (n = 64,000) that were
contacted by a marketing campaign over e-mail. Originally, customers received either no mail, a
mail with men’s merchandise, or one with women’s merchandise, but we convert it to not contacted
(t = 0) or contacted (¢ = 0). For each customer, d = 10 covariates are available. As the outcome vy,
we consider whether the customer visited the website or not.

Information 2023). The information data set comes from the R Information package. It
describes customers (n = 10,000, d = 68) in the insurance industry, as well as whether they were
contacted with a marketing campaign and whether they made a purchase.

D ADDITIONAL RESULTS

D.1 STAGE 1: EVALUATION

shows results for evaluating with k-fold cross validation for different values of k.

1 2 3 4 5 10

IHDP 2.154+ .35 2.16+.35 2.10+ .35 2.07+.33 2.294 42 2.25+ 41
ACIC 1.52+ .00 1.58+.08 1.48+ 08 1.51+.00 1.50+.08 1.53+.00
Twins .323+.00 324+ .00 .322+.00 324+ .00 344+ .00 .346+.00
News 2.42+ o7 2.40+ .07 2.41+ .06 2.41+ 07 2.454+ o7 2.45+ .07

Table 6: The effect of % in k-fold cross validation. For each data set, we show result for a varying
number of cross-validation folds. Results for 50 evaluation trials with a T-risk and 50 estimation
trials with a T-Learner and gradient boosting.

Risk measures may suffer from congeniality bias, by being predisposed to favor their related met-
alearners (Curth & van der Schaar, [2023)). For example, a T-risk may pick a T-Learner more often,
even when it is suboptimal. The results in our main body found that the T'-risk works very well
with a T-Learner, but these results may not hold in general due to congeniality bias. Therefore, we
again compare the different risk measures when estimating with either S-Learners only or selected
metalearners in

D.2 STAGE 2: ESTIMATION

shows how often each metalearner gets picked in Aut oCATE’s BestMeta configuration.
The difference in metalearner selection rates illustrates the importance of data-driven metalearner
selection, as facilitated by Aut oCATE. Interestingly, other metalearners are preferred for a binary
outcome (Twins) than for continuous outcomes (all others). This finding suggests that different
BestMeta configurations may be optimal for different outcomes.

THDP ACIC Twins News

gLoX R
2
2

Lo
DR S
S
43‘ X . 6° 20
RA RA
56 o P Lo !
T 30
v 22
DR
S X T

Figure 9: Metalearner selection. We show how many times a metalearner gets picked (in % of all
data set iterations) for a given data set. Results for Aut oCATE’s BestMeta configuration, including
the S-, T-, Lo-, X-, RA-, DR-, and U-Learners, with 50 evaluation and 500 estimation trials.

D
10
1

22

Under review as a conference paper at ICLR 2025

DR F IF kNN R T U V/

IHDP 321+s 3.64+60 4.60+7s 3.11+s3 348158 3010+51 3.62+58 4.12+.70
ACIC 1.61+00 1.79+10 2.07+10 1.88+.00 1.73:+10 1.58+.00 1.85+10 2.16+.12
Twins .328+.00 .328+.00 347 £ 02 @i,oo 325+ .00 32000 321+.00 .330+.00
News &i.o{a 2.751i.08 297+ &1.09 2.76+ .12 2.46+ .08 2.78+.13 2.994 14

(a) Estimation with an S-Learner

DR F IF kNN R T U Z

IHDP 2.07+32 343160 5.75+70 2.11+34 345+56 2.17+37 318156 4.38+m
ACIC 1.40+.00 1.87+11 2241104 197113 1.57+10 135100 179411 2.16+.11
Twins .328+.00 327+ .00 384+ 03 324+ 00 328+ .00 326+ .00 3444 01 348+ .01
News 2.42+07 2.60+0s 2.95+12 242+0r 2.75+15 243107 278113 2.77+mn

(b) Estimation with selected metalearners (BestMeta configuration: S, T, DR, X, RA, Lo)

Table 7: Performance for validation based on different risk measures. Results in v PEHE+sg
(lower is better). Bold highlights the best results, with underlined values falling within 1 standard
error. Results for 50 evaluation trials and 50 estimation trials with a gradient boosting baselearner.

We compare different metalearners in terms of +PEHE in These results show that search-
ing across metalearners typically significantly improves precision compared to using only one met-
alearner. Moreover, some metalearners can result in very poor performance even after 200 opti-
mization trials. Typically, these results are due to exceptionally poor performance in some iterations
(e.g., the R-Learner). Additionally, we compare the performance trade-off in terms of time and
precision for best metalearners in These results show that the S-, T-, and Lo-Learner
are often the fastest to train and the most precise in terms of v/ PEHE. These results illustrate the
potential of improving Aut oCATE’s time efficiency by considering these trade-offs. To give a sense
of AutoCATE’s runtime, we include the required computation times to run Aut oCATE on different
data sets in[Table 9] Although some time is required, running our framework locally is feasible for
small to moderate data sets.

N T DR X R RA Lo Z U F AllMeta
IHDP 4.52+.71 252437 59140s 546157 2752364161391 5.80+.80 247134 50.09+6.21 7454112 9.58+05 1.54s 25 (—37.5%)
ACIC 4.00+24 4.26+14 3.61+22 3.09+.16 477325.02+87057.53 3.27+.10 3.07+.13 150829.14+56700.50 5.75+.43 4.65+35 1.62+.00 (—47.3%)
Twins .318+.00 .345+.01 .320+.00 .333+.00 77.408+35.07 323100 .360:+.00 5464+ .01 418+.01 .376+.00 .321+.00

News 2.89+.14 2.53+.07 3.38+.15 2.93:15 36448.74+13152.50 3.14+.03 2.57+.08 16.06+1.50 274415 341+01 240405 (— 5.0%)

Table 8: Comparing metalearner precision. For each data set, we compare the different met-
alearner’s performance in terms of v PEHE, with the best result highlighted in bold. We also include
a comparison with searching over all metalearners (AllMeta) and, in brackets, show how much this
outperforms the best single metalearner. For each result, Aut oCATE uses a T -risk with 50 evalua-
tion trials, 200 estimation trials, and top 1 average model selection.

ACIC News
U dDR
& 7.5 =5 &) KA
T = ¢ & 3.0
& 5o & 1k At e &
5. 4 U
?R
25 3 Loﬁ‘ &« 25 r Lo
25 50 75 10 20 5 10 10 20
Time [hours] Time [hours] Time [hours] Time [hours]

Figure 10: Comparing metalearner precision and time efficiency. We show each metalearner’s

performance in precision (v PEHE) and time (excluding outliers, see[Table 8). For each, Aut oCATE
uses a T'-risk with 50 evaluation trials, 200 estimation trials, and top 1 average model selection.

A key innovation for Aut oCATE is that it optimizes the entire ML pipeline, including preprocessing
steps. In[Table 10, we present an ablation study for our framework with and without preprocess-

23

Under review as a conference paper at ICLR 2025

IHDP ACIC Twins News
n = "747;d = 25 n = 4,802;d = 58 n=11984;d =46 n =5,000;d = 3,477
1’21” 6°00” 29°38” 6°49”

Table 9: AutoCATE time complexity. We show the average runtime required to run AutoCATE’s
complete, end-to-end optimization on a single iteration of different data sets. For each data set, we
include the size (n) and dimensionality (d). Aut oCATE uses 50 evaluation trials and 50 estimation
trials with the BestMeta—BestBase configuration. These experiments were conducted locally, on a
machine with an AMD Ryzen 7 PRO 4750U processor (1.70 GHz), 32 GB of RAM, and a 64-bit
operating system.

Preprocessing
v
IHDP 1.25+ 15 1.69+ 27
ACIC 1.52+ 00 1.58+ 00
Twins 315+ .00 .320+.00
News 2.33+ .06 2.38+.07

Table 10: Analayzing the added value of preprocessing. We compare Aut oCATE’s performance
with and without preprocessing included in the search space, in terms of v/ PEHE, with the best result
highlighted in bold. Preprocessing includes feature scaling and selection. Aut oCATE results for a
T-risk with 50 evaluation trials and 50 estimation trials with the BestMeta—BestBase configuration.

ing. For all data sets, Aut oCATE achieves the best performance with preprocessing, though the
improvement is only significant for the IHDP and Twins data.

We can also apply explainability techniques to understand what drives a pipeline’s predictions.
ure | I]illustrates this and shows how permutation feature importance can be used with Aut oCATE.

D.3 STAGE 3: ENSEMBLING

The ensemble built by Aut oCATE can be used to gauge the uncertainty regarding a prediction, by
highlighting the spread of predictions. We illustrate such an analysis in

D.4 BENCHMARKING AUTOCATE

Table 11| presents results for additional benchmarks: S- and T-Learners based on linear or logistic
models (without regularization).

shows additional results for two data sets for uplift modeling (see for more
information on the data). The effectiveness of Aut oCATE is related to at least three factors. First,

by using the AUQC metric, the search is aligned with the downstream task: prioritizing instances

o 2
| |

Squared distance
(=] o
— [
| |

0.0 B s s e e e e e R s s By ey R B e
5 2 9 0 18 19 16 13 4 11 10 3 7 12 15 14 1 24 22 20 21 6 17 8 23
Feature

Figure 11: Analyzing AutoCATE’s feature importance. We can analyze how much each feature
contributes to treatment effect heterogeneity. We illustrate this analysis for the first iteration of IHDP
using permutation feature importance, showing the squared distance to the original prediction when
permuting a feature column.

24

Under review as a conference paper at ICLR 2025

N 'IIIIElI% !f}ix{.II‘If

u
| | | | | | | | | | | | | | | | | | | |
1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 17 18 19 20

Figure 12: Assessing uncertainty with Aut oCATE. The ensemble returned by Aut oCATE can be
used to analyze uncertainty regarding the prediction. We illustrate this for the first 20 instances of
the first iteration of the IHDP data. For each instance, the (usually unknown) ground truth is shown
in green, while the predictions from the top five pipelines are shown in blue and with a violinplot.

AutoCATE Benchmarks
Top 1 Top 5 S—-RF T-RF S-GB T-GB S-LR T-LR

IHDP 1.25:+:s 1.38+21 3.30+s57 2.61+4s 3.02+52 1.86+.20 5.73+.80 241439
ACIC 152109 1.45:10 1.67+08 1.65+00 1.48+10 138100 4.13125 3.08+.15
Twins 315+.00 314+ 00 318+.00 331+.00 .319+.00 334+ .00 .320+.00 .335+.00
News 2.33+ .06 2.29+ 06 2.46+ .00 2.39+ 07 2.68+.11 2.40+.06 3.68+ .17 293+ 12

Table 11: Comparing Aut oCATE with common benchmarks on CATE estimation. We compare

performance in terms of v PEHE, with the best result highlighted in bold. Aut oCATE results for a
T-risk with 50 evaluation trials and 50 estimation trials with the BestMeta—BestBase configuration.

for treatment (Vanderschueren et al.|[2024). Second, the search space for AutoCATE includes more
meta- and baselearners than the benchmarks. Third, the top five ensemble seems to improve the
stability and accuracy of the predicted ranking.

Hillstrom Information

0.06 S-LR

T-LR
——SRF
——5-GB
e T_GB

I \ \ \ :
; 5 ; ; T T T T 7 —=— AutoCATE-1
1 2 5 10 20 50 100 200 500 1000 1 9 5 10 20 50 100 200 500 1000

’ R B AutoCATE-5

Estimation trials Estimation trials

O 0.04
c
= 0.02
<

0.00

Figure 13: Benchmarking Aut oCATE for treatment prioritization. We present additional results
in terms of AUQC for two uplift data sets, Hillstrom and Information. These show that Aut oCATE
is a useful tool for prioritizing instances for treatment, and highlight that its optimization is more
effective at optimizing AUQC compared to the benchmarks based on p-risk. AutoCATE uses a
T-risk with 50 evaluation trials and the AUQC metric, the BestMeta-BestBase search space, and
Top 1 or Top 5 ensembling.

D.5 ANALYZING AUTOCATE’S RESULTS

We analyze the results of Aut oCATE’s optimized pipelines in[Figure T4] These results illustrate how
AutoCATE can facilitate a higher-level, comprehensive analysis of methods for CATE estimation
and model validation.

E COMPARING SOFTWARE PACKAGES FOR CATE ESTIMATION

lists software packages for CATE estimation, comparing their functionalities with
AutoCATE. Notably, no other package is focused on automated, end-to-end CATE estimation.

25

Under review as a conference paper at ICLR 2025

1.0—. - SVM|

0.5— OF GP[
0.0— None [z LR=
0.5 centile RA RF [
U N EE 1 | HRobw B
NN HNEEEEEE o | variance Lo P
7 FDRT IF R UINN Selection Scaling Meta Base

(a) Risk correlation (IHDP) (b) Pipeline composition (Twins)

Figure 14: Analyzing AutoCATE’s results. We present results analyzing pipelines optimized by
AutoCATE. Figure (a) shows the correlation between risk measures for a single IHDP iteration.
Surprisingly, risk measures can be strongly negatively correlated, suggesting potential for more
advanced multi-objective approaches that adaptively learn which objectives are reliable for a given
data set. Figure (b) visualizes the optimal pipelines learned across ten iterations for the Twins data.

PACKAGE FUNCTIONALITIES GENERAL INFORMATION
Name 1 2 @) @ Language Reference Link

CausalML 4 Python Chen et al.| (2020) GitHub
EcooML v% v /8 Python — GitHub
DoWhy v Python |Sharma & Kiciman| (]2020[) GitHub
Causica v Python Geffner et al.[(2022 GitHub
UpliftML v Python Teinemaa et al. 1 GitHub
scikit-uplift Python — GitHub
grf v /i R Wager & Athey| (2018) CRAN
AutoCATE v vV V / Python This work GitHub

*CausalML offers provides some tools for internal validity, such as comparing results across segments.
YEconML includes an R-risk and can provide an ensemble based on this risk measure.

"DoWhy includes robustness checks for assumption violations.

“The grf package allows for evaluation based on the Targeting Operating Characteristics curve.

Table 12: Software package comparison. We provide an overview of commonly used packages
for CATE estimation and compare their functionalities with Aut oCATE, showing whether they
support (1) evaluation, (2) estimation, (3) ensembling, and (4) automated, end-to-end optimization—
as provided by Aut oCATE or similar.

26

https://github.com/uber/causalml
https://github.com/py-why/EconML
https://github.com/py-why/dowhy
https://github.com/microsoft/causica
https://github.com/bookingcom/upliftml
https://github.com/maks-sh/scikit-uplift
https://cran.r-project.org/web/packages/grf/index.html
https://anonymous.4open.science/r/AutoCATE-E103

	Introduction
	Related Work
	Automated Machine Learning (AutoML)
	Treatment Effect Estimation and Model Validation

	Problem Formulation
	AutoCATE: End-To-End, Automated CATE Estimation
	Stage 1: Evaluation—Designing a Proxy Risk and Evaluation Protocol
	Stage 2: Estimation—Building a CATE Estimation Pipeline
	Stage 3: Ensembling—Selecting and Ensembling Estimation Pipelines
	ML Pipeline Building Blocks: Preprocessing and ML Baselearners
	Low-Code CATE Estimation Through AutoCATE's API

	Empirical Evaluation: Comparing Automated Strategies
	Experimental Setup: Data and Evaluation Metrics
	Analyzing AutoCATE—Stage 1: Evaluation Protocol
	How to measure risk regarding CATE predictions?
	What evaluation procedure to use?

	Analyzing AutoCATE—Stage 2: Estimation Protocol
	Analyzing AutoCATE—Stage 3: Ensembling Protocol
	Benchmarking AutoCATE Against Common Alternatives

	Conclusion
	Background on CATE Estimation
	Challenges: The Fundamental Problem and Confounding
	Assumptions For Identifiability
	CATE Estimation: Meta- and Baselearners

	AutoCATE: Additional Information
	Metalearners
	Evaluation and Risk Measures
	Preprocessor and Baselearner Search Spaces
	Example ML Pipeline
	Ensembling and Multi-Objective Model Selection
	AutoCATE's API: Additional Information

	Data: Additional Information
	Additional Results
	Stage 1: Evaluation
	Stage 2: Estimation
	Stage 3: Ensembling
	Benchmarking AutoCATE
	Analyzing AutoCATE's Results

	Comparing Software Packages for CATE Estimation

