
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

AUTOCATE: END-TO-END, AUTOMATED TREATMENT
EFFECT ESTIMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Accurate estimation of heterogeneous treatment effects is critical in domains such
as healthcare, economics, and education. While machine learning (ML) has led to
significant advances in estimating conditional average treatment effects (CATE),
real-world adoption of these methods remains limited due to the complexity of
implementing, tuning, and validating them. To this end, we advocate for a more
holistic view on the development of ML pipelines for CATE estimation through
automated, end-to-end protocols. We formalize the search for an optimal pipeline
as a counterfactual Combined Algorithm Selection and Hyperparameter optimiza-
tion (CASH) problem. We introduce AutoCATE, the first automated solution tai-
lored for CATE estimation that addresses this problem based on protocols for eval-
uation, estimation, and ensembling. Our experiments show how AutoCATE al-
lows for comparing different protocols, with the final configuration outperforming
common strategies. We provide AutoCATE as an open-source software package
to help practitioners and researchers develop ML pipelines for CATE estimation.

1 INTRODUCTION

Accurately estimating causal effects is crucial for high-stakes decisions in domains such as health-
care, education, and economics. Despite advances in machine learning (ML) for estimating the con-
ditional average treatment effect (CATE), real-world adoption remains limited due to the complexity
of developing ML pipelines for CATE estimation. Methods often involve numerous hyperparame-
ters, and their performance varies significantly across data sets and applications. Moreover, vali-
dating counterfactual predictions and tuning pipelines is highly challenging, and the performance
of different evaluation criteria varies with the data generating process (Curth & van der Schaar,
2023). For practitioners unfamiliar with ML, such as clinicians or marketers, these challenges of-
ten outweigh potential benefits, hindering the practical use of these techniques. To overcome this,
we advocate for automated, end-to-end solutions for learning ML pipelines for CATE estimation.

The challenge of automated CATE estimation. Despite automated ML (AutoML) making signifi-
cant progress (see He et al., 2021), existing solutions do not address the unique challenges of CATE
estimation. A key problem is the lack of ground truth CATE: the treatment effect is the difference be-
tween the outcomes with and without treatment, but only one of these outcomes is observed for each
instance. Additionally, which outcome is observed depends on confounding variables (e.g., older
patients may be more likely to receive treatment), leading to covariate shift (Shalit et al., 2017). Fi-
nally, CATE estimation pipelines are more complex than those in supervised learning. Metalearners
combine multiple baselearners, possibly including both classification and regression models. Risk
measures themselves also require predictions and, therefore, tuning of ML pipelines. These unique
challenges complicate both the training and validation of ML pipelines and highlight the need for
automated, end-to-end approaches tailored to CATE estimation, which is the focus of this work.

Contributions. To tackle these challenges, we propose a practical and comprehensive solution
as the automated, end-to-end construction and validation of ML pipelines for CATE estimation:
• COUNTERFACTUAL CASH—We formalize the optimization of CATE estimation pipelines as
a counterfactual Combined Algorithm Selection and Hyperparameter optimization (CASH) prob-
lem. Our solution, AutoCATE, automates the search for optimal configurations across preproces-
sors, metalearners, evaluators, baselearners, and their hyperparameters. The process is organized
into three stages–evaluation, estimation, and ensembling–each including several design choices.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

ACIC IHDP Twins News

0%

25%

50%

75%

100%
U
F
X
Z
Lo
R
DR
S
T
RA

(a) How often is a particular metalearner optimal?

1 2 3 4 5

Unique metalearners in top five

0%

10%

20%

30%

40%

(b) How diverse are the best five metalearners? (IHDP)

ACIC IHDP Twins News

0%

25%

50%

75%

100%
DT
SVM
GP
LR
GB
kNN
RF
NN
ET

(c) How often is a particular baselearner chosen?
Propensity Outcome Effect

0%

25%

50%

75%

100%
GP
DT
RF
ET
GB
kNN
SVM
NN
LR

(d) What baselearner is best per model type? (IHDP)
Figure 1: AutoCATE enables insights into CATE estimation. We analyze hundreds of pipelines
optimized by AutoCATE (see Section 5). Metalearners—(a) Different metalearners can be optimal
for a data set, highlighting the need for searching across them. (b) The top five pipelines often feature
a mix of different metalearners (e.g. {T, T,RA,RA,DR}: 3 unique types), showing that different
metalearners can perform well and suggesting potential for combining them. Baselearners—(c)
The chosen baselearners are also diverse, and (d) different model types favor different ones. Using a
single baselearner is thus likely suboptimal, supporting our choice to tune submodels independently.

• END-TO-END PROTOCOLS—We develop end-to-end protocols that ensure robust performance
across diverse data sets and applications. Our approach addresses key aspects often overlooked in
CATE estimation, such as preprocessing, feature selection, or ensembling. This perspective uncov-
ers novel insights (see Figure 1), questions (e.g., the intricate trade-off between using data for train-
ing or validation) and solutions (e.g., multi-objective optimization with different evaluation criteria).
• SOFTWARE PACKAGE—We provide AutoCATE as an open-source software package, enabling
automated CATE estimation in a few lines of code. This way, we democratize access to advanced
ML techniques for CATE estimation and make them accessible for practitioners unfamiliar with
ML. Additionally, AutoCATE provides a platform for future research, encouraging research on all
aspects of the ML pipeline for CATE estimation that supports practical, real-world applications.

2 RELATED WORK

Our work is most related to two areas in ML: (1) AutoML, and (2) CATE estimation and validation.

2.1 AUTOMATED MACHINE LEARNING (AUTOML)

AutoML focuses on the automatic and efficient construction of high-performing ML pipelines. This
entails making a series of design choices regarding preprocessing, feature transformation and selec-
tion, ML algorithms, and hyperparameter tuning (Karmaker et al., 2021). As the optimal choices
depend on the data and task, AutoML is essentially a search problem. While combinations could
be tried randomly, more efficient search methods have been developed, e.g., based on Bayesian
optimization (Bergstra et al., 2011; Snoek et al., 2012; Alaa & van der Schaar, 2018). Similarly,
meta-learning has been applied to integrate information across other data sets in the search (Feurer
et al., 2015). AutoML has made significant progress across data modalities, such as structured data
(Erickson et al., 2020), text (Shi et al., 2021) or images (Bisong & Bisong, 2019). A critical aspect of
AutoML is its accessibility, often provided through low-code solutions for practitioners unfamiliar
with ML (LeDell & Poirier, 2020; Erickson et al., 2020; Jarrett et al., 2021; Wang et al., 2021).

Automated solutions exist for a wide range of tasks, including semantic segmentation (Chen et al.,
2018), machine translation (So et al., 2019), reinforcement learning (Runge et al., 2019), or time

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

series forecasting (Jarrett et al., 2021). For more comprehensive overviews, see Elsken et al. (2019)
and He et al. (2021). However, to the best of our knowledge, AutoML has not yet been applied to
CATE estimation. As discussed, estimating treatment effects presents unique challenges, such as the
absence of a ground truth, covariate shift due to confounding, and the need for intermediary models
in metalearners and risk measures. These complexities render standard AutoML approaches ill-
suited for CATE estimation and illustrate the need for approaches specialized to CATE estimation.

Research gap—No existing AutoML solutions tackle the unique challenges of CATE estimation.

2.2 TREATMENT EFFECT ESTIMATION AND MODEL VALIDATION

Estimation. Various ML methodologies have been proposed for estimating treatment effects. Met-
alearners are general strategies for using standard supervised learning algorithms for CATE estima-
tion (Künzel et al., 2019). Additionally, various ML algorithms have been adapted for CATE esti-
mation, such as Gaussian processes (Alaa & van der Schaar, 2017), neural networks (Shalit et al.,
2017; Yoon et al., 2018), decision trees (Rzepakowski & Jaroszewicz, 2012), or random forests
(Wager & Athey, 2018; Oprescu et al., 2019). Notably, other parts of the ML pipeline are also
more complicated when estimating treatment effects, such as missing value imputation (Berrevoets
et al., 2023), feature selection (Zhao et al., 2022), and ensemble selection (Mahajan et al., 2023).

Building an ML pipeline for CATE estimation presents significant challenges, related to the ab-
sence of ground truth CATE and the number of design choices involved. Due to the no free lunch
theorem, no ML algorithm be optimal in all possible settings. Additionally, there is no globally op-
timal metalearner, as performance similarly depends on the (unknown) data generating process and
sample size (Curth & van der Schaar, 2021). Finally, tuning is more involved: for example, a DR-
Learner combines four models (to estimate the propensity, the outcome per treatment group, and the
final treatment effect)–each of which can be a different baselearner with separate hyperparameters.

Model validation. As the CATE is unobserved, various evaluation criteria have been proposed for
validating CATE estimators. A common approach is the error in predicting the observed potential
outcome µ, i.e., the µ-risk. However, this criterion has several limitations (Curth & van der Schaar,
2023; Doutreligne & Varoquaux, 2023): it does not account for confounding, may not accurately
predict CATE error1, and is not applicable to estimators that directly predict the CATE. To mitigate
the first issue, an inverse propensity weighted variant µIPW-risk, can be considered. Other evaluation
criteria address all issues by constructing labels based on plug-in estimates (e.g., S- or T -risk) or
metalearner pseudo-outcomes (e.g., R- and DR-risk), see Appendix B.2 for a detailed overview.

There is no consensus on the optimal validation criterion. While Schuler et al. (2018) and Doutre-
ligne & Varoquaux (2023) advocate for the R-risk, Mahajan et al. (2023) favor the T - and DR-risk.
Conversely, Curth & van der Schaar (2023) show that the effectiveness of different risk measures
varies with various factors, such as the metalearner and data generating process, with no single crite-
rion being universally optimal. Additionally, Doutreligne & Varoquaux (2023) stress the flexibility
of the estimators used to construct the pseudo-labels, with Mahajan et al. (2023) recommending the
use of AutoML. These complexities and design choices highlight the need for automated procedures.

Research gap—Despite significant recent advances in ML for both CATE estimation and model
validation, critical gaps remain in understanding when to use specific methods, how to effectively
tune them, and how to address essential but overlooked aspects like preprocessing or ensembling.

3 PROBLEM FORMULATION

Notation and assumptions. We represent an instance by a tuple (x, t, y), with covariates X ∈X ⊂
Rd, a treatment T ∈ T ={0, 1}, and an outcome Y ∈ Y ⊂R. The potential outcome Y associated
with a treatment t is denoted as Y (t). We aim to estimate the conditional average treatment effect
(CATE): τ = E[Y (1) − Y (0)|X]. Estimating the CATE from observational data requires standard
assumptions (see Appendix A.2). More background on CATE estimation is provided in Appendix A.

1For example, consider the case where both potential outcomes are overestimated by the same amount.
Even though µ-risk would indicate a poor model quality, the resulting CATE estimates would still be accurate.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Machine Learning Pipelines — Building Blocks

 Preprocessing Baselearners

Feature
Transformation Scaling

Feature
Selection

Evaluation Estimation Ensembling

T

RA

DRS

Lo Z

X R

U F

Gradient Boosting

Linear Regression

Neural Network

Random Forest

Extra Trees

Support Vector
Machine

Gaussian Process

k-Nearest
Neighbours

Decision Tree

Treatment Effect Estimation — Core Functionalities

Top 1 Top 5

Pareto Stacking

DR

Z

RkNN

U F

T

IF

Figure 2: AutoCATE overview. We estimate treatment effects in three stages: (1) Evaluation–
learning the appropriate risk measure(s), (2) Estimation–tuning a CATE estimation pipeline, and
(3) Ensembling–selecting a final model or constructing an ensemble. We build ML pipelines for
evaluation and estimation based on a collection of preprocessing algorithms and ML baselearners.

Goals and challenges. We aim to develop a general procedure for learning a pipeline for CATE
estimation from an observational data set. Formally, this is a counterfactual Combined Algorithm Se-
lection and Hyperparameter optimization (CASH) problem. It involves searching over ML pipelines
ah with algorithms a ∈ A and hyperparameters h ∈ Ha to minimize the error on test data Dtest:

argmin
a,h

L(ah|Dtest). (1)

An algorithm a can be an ML method tailored for CATE estimation or a metalearner combining one
or more baselearners. Solving the counterfactual CASH problem involves several unique challenges.
An algorithm’s quality of fit on the train data L(ah|Dtrain) is unobserved, as there is no ground truth
CATE. Additionally, there is covariate shift between the observational training data and test data due
to confounding. Both points present challenges for both building and validating an ML pipeline.

4 AUTOCATE: END-TO-END, AUTOMATED CATE ESTIMATION

AutoCATE finds an optimal ML pipeline in three stages: evaluation, estimation, and ensembling.
(1) EVALUATION: In the first stage, we construct a proxy risk for L based on a risk measure (e.g.,
R-risk) and evaluation metric (e.g., MSE). To accurately estimate this risk on the validation data,
we perform an automated search over preprocessors, ML algorithms, and their hyperparameters.

(2) ESTIMATION: The second stage automatically searches over combinations of preprocessors,
metalearners, baselearners, and their hyperparameters to obtain ML pipelines for CATE estimation.

(3) ENSEMBLING: The final stage uses the proxy risk from the first stage to select and combine
estimation pipelines from the second stage. The result can be a single ML pipeline or an ensemble.

A high-level overview of AutoCATE’s functionalities and building blocks is shown in Figure 2.

4.1 STAGE 1: EVALUATION—DESIGNING A PROXY RISK AND EVALUATION PROTOCOL

The counterfactual CASH problem requires minimizing L(ah|Dtest), which involves two challenges:
the lack of ground truth τ and the presence of covariate shift due to confounding. To tackle these, the
evaluation stage measures risk by learning pseudo-labels–i.e., proxies for τ–from validation data.

Risk measures. AutoCATE includes different possible risk measures, described in Appendix B.2.
We include pseudo-labels used in metalearners (DR-, R-, Z-, U -, and F), plug-in risks (T and
1NN), and a risk approximation using influence functions (IF). We exclude the µ- and µIPW-risks
as they do not apply to all metalearners, and the S-risk due to poor results in prior work (e.g.,
Mahajan et al., 2023). As constructing these risk measures requires accurately estimating nuisance
parameters, we search over preprocessing and ML algorithms to find good-performing ML pipelines.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

There is no ground truth, and different measures may be preferable depending on the (unknown) data
generating process. To make our evaluation more robust, we allow for combining different measures.
Similarly, since pseudo-outcomes are learned from data, there is no “true” version, enabling us to
construct multiple version of a single risk (e.g., two R-risks). Using multiple risk measures results
in a multi-objective search problem. To account for the varying scales of different risks, we nor-
malize them by comparing each model’s performance to an average treatment effect (ATE) baseline.

Metrics and implementation. Given a risk measure, different metrics can compare the pseudo-
outcomes and CATE predictions to evaluate the quality of the ML pipeline. We include general
metrics of predictive accuracy, like the mean squared error (MSE) or mean absolute percentage
error (MAPE), and metrics related to a downstream application, such as the Area Under the Qini
Curve (AUQC) when ranking effects (Vanderschueren et al., 2024). The R-risk requires a metric that
accommodates weights. Finally, we allow for a stratified training-validation split or a stratified k-
fold cross-validation procedure. Figure 8 shows more information on these evaluation frameworks.

4.2 STAGE 2: ESTIMATION—BUILDING A CATE ESTIMATION PIPELINE

Different metalearners can be used to estimate the CATE. Metalearners are general frameworks
for using ML algorithms to estimate treatment effects. As such, they are versatile, accommodate
various ML algorithms, and can be efficiently trained using existing ML packages. Common ex-
amples include the S-Learner (single model with the treatment as a feature), Lo-Learner (single
model with treatment interaction terms), and T -Learner (separate models for each treatment group).
Other metalearners use pseudo-outcomes that converge to the treatment effect, such as the DR-,
X-, R-, RA-, Z-, U -, and F -Learners. Appendix B.1 provides more detailed information on each
metalearner. Our package uses the CausalML implementations where available (Chen et al., 2020).

4.3 STAGE 3: ENSEMBLING—SELECTING AND ENSEMBLING ESTIMATION PIPELINES

The pipelines from the estimation stage are evaluated with risk measures from the evaluation stage.
The final ensembling stage selects the best pipeline(s) for prediction. We describe different possi-
ble approaches here, with detailed descriptions provided in Appendix B.5. Almost no established
methods exist for ensembling CATE estimators and, due to the lack of ground truth, most standard
ensembling methods are not applicable. AutoCATE can select the best-performing pipeline or the
top five for improved robustness and accuracy. We also include a novel stacking procedure that as-
signs weights (between zero and one) to each pipeline and optimizes these to minimize the squared
error with respect to the pseudo-outcomes. The weights are regularized, with tuning on a holdout set.
Finally, we also include the stacking procedure with softmax weights of Mahajan et al. (2023)–to
the best of our knowledge, this is the only existing ensemble method tailored for CATE estimation.

With multiple risk measures in a multi-objective search, there may not be a single optimal pipeline,
but rather a Pareto frontier. One strategy is to select all Pareto optimal points, though pipelines
that perform very well on only a single measure may not work well generally. To select pipelines
with good general performance, we can select the pipeline (or the top five) with the lowest average
risk across objectives. Similarly, we can select based on each pipeline’s Euclidean distance to the
origin, or its average rank across objectives. Finally, we can apply the abovementioned stacking
procedure for each risk measure separately and averaging the weights in a final stacked pipeline.

4.4 ML PIPELINE BUILDING BLOCKS: PREPROCESSING AND ML BASELEARNERS

We construct ML pipelines in both the evaluation and estimation stage. The building blocks for these
include preprocessors and ML algorithms, all built on top of scikit-learn (Pedregosa et al.,
2011). For preprocessing, we provide different feature selection and scaling algorithms. As base-
learners, we include different ML algorithms with both classification and regression counterparts,
ranging from linear regression to random forests. We provide more information in Appendix B.3.

The final search space includes a variety of preprocessors, metalearners, baselearners, and their
hyperparameters. Efficient optimization schemes such as Bayesian optimization could be used,
but we use random search throughout this work to focus on other design choices in AutoCATE.
Nevertheless, we implement our search using optuna (Akiba et al., 2019), allowing easy inte-
gration of sophisticated optimizers like a Tree-structured Parzen Estimator (Bergstra et al., 2011).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4.5 LOW-CODE CATE ESTIMATION THROUGH AUTOCATE’S API

AutoCATE is implemented in Python2, following scikit-learn’s design principles (Pedregosa
et al., 2011). The low-code API enables automated CATE estimation with just four lines of code:
1 from src.AutoCATE import AutoCATE # Import the AutoCATE class
2 autocate = AutoCATE() # Initialize the AutoCATE object
3 autocate.fit(X_train, t_train, yf_train) # Find the best pipeline(s)
4 cate_pred = autocate.predict(X_test) # Predict the CATE for new data

Initialization arguments can be specified (e.g., the number of estimation trials; see Appendix B.6).

5 EMPIRICAL EVALUATION: COMPARING AUTOMATED STRATEGIES

This section empirically compares design choices for solving the counterfactual CASH problem for
all three stages: evaluation (5.2), estimation (5.3), and ensembling (5.4). We identify best practices
and benchmark the resulting configuration against common approaches for CATE estimation (5.5).

5.1 EXPERIMENTAL SETUP: DATA AND EVALUATION METRICS

Our experiments compare various automated, end-to-end strategies for learning a CATE estimation
pipeline. Using AutoCATE, we evaluate design choices in each stage: evaluation, estimation, and
ensembling. To obtain general insights, we leverage a collection of standard benchmarks for CATE
estimation: IHDP (Hill, 2011), ACIC Dorie et al. (2019), News (Johansson et al., 2016), and Twins
(Louizos et al., 2017); see Appendix C for details. These semi-synthetic benchmarks include 247
distinct data sets that vary in outcome (regression and classification), dimensionality, size, and appli-
cation area, allowing for a comprehensive analysis AutoCATE. Unless noted otherwise, results are
reported in precision in estimating heterogeneous treatment effects (PEHE):

√
PEHE =

√
(τ − τ̂)2.

For each experimental result, the caption clarifies the AutoCATE configuration used. For the eval-
uation and estimation stages, we describe the search strategy for automatically optimizing the ML
pipelines, including base- and metalearners involved and the number of optimization trials per stage.
Unless stated otherwise, AutoCATE select the best ML pipeline based on best average performance.

5.2 ANALYZING AUTOCATE—STAGE 1: EVALUATION PROTOCOL

We analyze the evaluation protocol by comparing risk measures, metrics, and evaluation procedures.

5.2.1 HOW TO MEASURE RISK REGARDING CATE PREDICTIONS?

What risk measure works best? We compare predictive error resulting from model selection with
different risk measures in Table 1a. Three options consistently show low error: the DR-, kNN -,
and T -risk. These results largely correspond with existing work. Curth & van der Schaar (2023);
Mahajan et al. (2023) similarly found the DR-risk to work well, though the kNN -risk works com-
paratively better in our experiments. Although Curth & van der Schaar (2023) reported worse results
for the T -risk, both our findings and those in Mahajan et al. (2023) show that it can give good results
with proper tuning of the underlying models. We further analyze the impact of tuning in Figure 3:
increased tuning for the evaluation models generally results in better downstream performance. To
test whether congeniality bias affects our results (Curth & van der Schaar, 2023), we repeat this
experiment for different metalearners in Table 7. Again, the T -, DR-, and kNN -risk perform best.

Is it beneficial to use multiple risk measures? We explore the impact of combining different risk
measures in a multi-objective search, hypothesizing that this could lead to more robust pipeline se-
lection as each measure is a different proxy to the same ground truth. Table 1b shows both results
for risk measure combinations, and for multiple versions of a single measure based on different
estimates. We observe that combining different types or different versions of risk measures can in-
deed improve performance, though no strategy substantially improves upon the best single measure.

2Our package and experimental code are available at https://anonymous.4open.science/r/AutoCATE-E103.

6

https://anonymous.4open.science/r/AutoCATE-E103

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

DR F IF kNN R T U Z
IHDP 2.12±.34 3.33±.55 3.13±.45 2.22±.36 3.37±.71 2.15±.35 3.58±.72 5.40±.86

ACIC 1.56±.09 1.74±.10 2.52±.16 1.74±.10 1.63±.10 1.52±.09 1.72±.09 2.40±.15

Twins .333±.00 .340±.00 .340±.01 .323±.00 .335±.00 .323±.00 .359±.01 .350±.01

News 2.42±.07 2.48±.07 2.73±.09 2.43±.07 2.51±.08 2.42±.07 2.60±.09 3.02±.11

(a) Comparing downstream performance for different risk measures

Combining risks T -risk—Multiple versions Best
All DR,T DR,T,kNN Top 1 Top 2 Top 3 Top 5 single

IHDP 2.48±.36 2.19±.35 2.13±.35 2.15±.35 2.15±.35 2.17±.35 2.11±.36 2.12±.34

ACIC 1.94±.13 1.58±.09 1.60±.09 1.52±.09 1.54±.08 1.55±.09 1.52±.08 1.52±.09

Twins .331±.01 .323±.00 .324±.00 .323±.00 0.323±.00 .323±.00 .324±.00 .323±.00

News 2.52±.07 2.41±.06 2.41±.07 2.42±.07 2.41±.07 2.43±.07 2.43±.07 2.42±.07

(b) Comparing downstream performance for different combinations of risk measures

Table 1: Performance for validation based on different risk measures. Results in
√

PEHE±SE

(lower is better). Bold highlights the best results, with underlined values falling within 1 standard
error. Results for 50 evaluation trials and 50 estimation trials with a T -Learner and gradient boosting.

1 10 100 500

Evaluation trials

1.75

2.00

2.25

2.50

√
P

E
H

E

IHDP

1 10 100 500

Evaluation trials

1.50

1.75

2.00

2.25

√
P

E
H

E

ACIC

1 10 100 500

Evaluation trials

0.322

0.324

0.326

0.328

√
P

E
H

E
Twins

1 10 100 500

Evaluation trials

2.35

2.40

2.45

2.50

√
P

E
H

E

News

Figure 3: How many iterations should we tune evaluation models? We compare downstream
results, based on different number of trials used to tune the models underlying the evaluation metrics.
Results for a T -risk and 50 estimation trials with a T -Learner and gradient boosting.

5.2.2 WHAT EVALUATION PROCEDURE TO USE?

How to set the holdout ratio? Risk measures require estimates learned from validation data, creat-
ing a trade-off between using data for evaluation or estimation. Figure 4 presents results for different
holdout ratios, illustrating this trade-off and showing that a holdout ratio of 30-50% generally works
well. We use 30% for holdout in the rest of this work. Although more folds in cross-validation often
improve model performance in supervised settings, we do not observe this effect for AutoCATE
(see Table 6), likely due to the complex interplay between the number of folds and the holdout ratio.

What evaluation metric to use? All previous experiments used the mean squared error (MSE) to
compare the predicted CATE and pseudo-outcome(s), corresponding with the goal of minimizing
PEHE. However, depending on the downstream application, alternative metrics might be more im-
portant. Using these in AutoCATE is straightforward. Table 2 shows results for two such metrics:
the mean absolute percentage error (MAPE) and area under the Qini curve (AUQC). As hypothe-
sized, selecting models based on a particular metric generally improves performance for that metric.

5.3 ANALYZING AUTOCATE—STAGE 2: ESTIMATION PROTOCOL

Given an evaluation protocol, we can compare strategies for the estimation stage. This section
examines how including different metalearners and baselearners affects AutoCATE’s performance.

Metalearners. Figure 5 compares different versions of AutoCATE with either all meta- and base-
learners (see Figure 2 for an overview), or only the best per category. The complete “AllMeta-
AllBase” sometimes performs poorly. While performance generally improves with more trials, poor
results persists even after 100 trials on the News data. Further inspection reveals that bad iterations
are due to instability of the R- and U -Learners: these are chosen due to good initial performance
on the validation set, but can perform exceptionally poor on the test data after retraining on all
data. Other metalearners (F and Z) are almost never chosen. Therefore, “BestMeta” excludes these

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0.1 0.3 0.5 0.7 0.9

Holdout ratio

2.0

2.5
√

P
E

H
E

IHDP

0.1 0.3 0.5 0.7 0.9

Holdout ratio

1.6

1.8

2.0

√
P

E
H

E

ACIC

0.1 0.3 0.5 0.7 0.9

Holdout ratio

0.32

0.34

0.36

√
P

E
H

E

Twins

0.1 0.3 0.5 0.7 0.9

Holdout ratio

2.4

2.5

√
P

E
H

E

News

Figure 4: How much data to use for evaluation? We show results for different holdout ratios
and fit a polynomial function for each data set to gain insight into the optimal ratio. Results for 50
evaluation trials with a T -risk and 50 estimation trials with a T -Learner and gradient boosting.

MSE MAPE AUQC
√

PEHE 2.15±0.35 2.28±.36 2.26±.41

MAPE 1.76±1.30 1.40±.94 0.50±.15

AUQC 0.92±0.01 0.88±.02 0.96±.01

(a) IHDP

MSE MAPE AUQC
√

PEHE 1.52±.09 1.67±.09 1.50±.08

MAPE 1.10±.21 1.03±.14 1.11±.24

AUQC 0.91±.01 0.90±.01 0.91±.01

(b) ACIC

MSE MAPE AUQC
√

PEHE .323±.00 .323±.00 .344±.00

MAPE — — —
AUQC 0.00±.00 0.00±.01 0.03±.01

(c) Twins

MSE MAPE AUQC
√

PEHE 2.42±.07 2.52±.07 2.46±.07

MAPE 5.75±.74 5.83±.69 5.86±.85

AUQC 0.66±.01 0.64±.01 0.65±.01

(d) News
Table 2: Comparing different evaluation metrics. We compare model selection with different
evaluation metrics. For the Twins data set, MAPE cannot be calculated, as the true CATE can
be zero. Bold highlights the best results, with underlined values falling within 1 standard error.
Colored cells show the hypothesis that matching metrics will yield the best performance. Results

for 50 evaluation trials with a T -risk and 50 estimation trials with a T -Learner and gradient boosting.

metalearners (R, F , Z, and U), resulting in improved stability and performance. Appendix D.2
compares metalearners’ precision and time efficiency, and shows how often metalearners are chosen.

Baselearners. The “BestBase” versions in Figure 5 only use base learners that typically perform
well with tabular data: random forests, extremely randomized trees, gradient boosting, and mul-
tilayer perceptrons. This constraint is applied to both evaluation and estimation pipelines. While
selecting these baselearners improves performance, it is less significant than filtering metalearners.

5.4 ANALYZING AUTOCATE—STAGE 3: ENSEMBLING PROTOCOL

The ensemble stage compares pipelines built in the estimation stage using the objective(s) learned
in the evaluation stage. Selected pipelines are re-trained on the entire data and saved for inference.

Single objective. With a single objective, we can select the best pipeline (Top 1), the best five (Top
5), or use stacking to build a final estimator that combines all pipelines. Table 3a compares these
strategies, showing that combining pipelines improves performance for all data sets except Twins.
Appendix D.3 illustrates how an ensemble’s predictions can help assess an estimate’s uncertainty.

Multiple objectives. Model selection is more complex with multiple objectives. We can select the
best pipelines based on the average normalized score, Euclidean distance to the origin, or average
rank, to then select the top one or top five pipelines. Alternatively, we can create stacking esti-
mators for each objective and average the weights (“Stacking”), or select all Pareto optimal models
(“Pareto”). Table 3b compares these strategies. Single pipelines typically underperform compared to
ensembles built from the top five pipelines, all Pareto optimal pipelines, or stacking. Selecting based
on average performance yields the best performance. No single strategy is consistently optimal.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

1 2 5 10 20 50 100 200

Estimation trials

101

103

√
P

E
H

E

IHDP

1 2 5 10 20 50 100 200

Estimation trials

101

103

105

√
P

E
H

E

ACIC

1 2 5 10 20 50 100 200

Estimation trials

1.0

10.0

√
P

E
H

E

Twins
AllMeta–AllBase

AllMeta–BestBase

BestMeta–AllBase

BestMeta–BestBase

1 2 5 10 20 50 100 200

Estimation trials

102

104

√
P

E
H

E

News

Figure 5: What meta- and baselearners to include? We compare different search spaces for
AutoCATE, either including all metalearners (AllMeta) or only the best (BestMeta), as well as all
baselearners (AllBase) or only the best (BestBase). Results for 50 evaluation trials with a T -risk.

Best model(s) Stacking
Top 1 Top 5 COP Softmax

IHDP 2.15±.35 1.90±.34 1.96±.34 2.83±.51

ACIC 1.52±.09 1.34±.08 1.42±.09 1.33±.09

Twins .323±.00 .325±.00 .344±.00 .331±.00

News 2.42±.07 2.33±.06 2.33±.06 2.32±.06

(a) Comparing ensemble strategies for a single T -risk

Average Distance Ranking Stacking
Top 1 Top 5 Top 1 Top 5 Top 1 Top 5 COP Softmax Pareto

IHDP 2.19±.35 1.84±.31 2.27±.37 2.99±.54 3.58±.66 2.99±.54 1.94±.32 2.83±.51 2.19±.36

ACIC 1.58±.09 1.35±.08 1.55±.08 1.41±.08 1.69±.08 1.41±.08 1.43±.09 1.33±.09 1.50±.08

Twins .323±.00 .325±.00 .323±.00 .341±.00 .367±.01 .341±.00 .349±.00 .331±.00 .326±.00

News 2.41±.06 2.32±.06 2.42±.07 2.38±.07 2.58±.08 2.38±.07 2.34±.06 2.32±.06 2.39±.07

(b) Comparing ensemble strategies when combining DR- and T -risks

Table 3: Ensemble strategies. We compare ensembling strategies for a single or multiple objectives
in terms of

√
PEHE. Bold highlights the best results, underlined values lie within 1 standard error.

Results for 50 evaluation trials and 50 estimation trials with a T -Learner and gradient boosting.

5.5 BENCHMARKING AUTOCATE AGAINST COMMON ALTERNATIVES

This section compares the optimized configuration of AutoCATE with some common alternative
approaches for tuning CATE estimation pipelines. These benchmarks select the best model using
the error in predicting observed outcomes (µ-risk). We include both S- and T -Learners. For T -
Learners, we tune models separately for the control and treatment groups. First, we compare a
T -Learner with gradient boosting tuned based on the µ-risk against AutoCATE using only a T -
Learner and gradient boosting optimized for T -risk. While these strategies are similar, AutoCATE
evaluates the entire pipeline jointly and (potentially) adds preprocessing. Conversely, the traditional
T -Learner’s search is more efficient as it tunes models separately per group. Figure 6 compares the
two approaches: the µ-risk strategy performs worse for Twins, but better for ACIC. Finally, Figure 7
compares AutoCATE with S- and T -Learners using random forests and gradient boosting. These
approaches are conceptually simple, but represent common and strong baselines. We observe that,
for each data set, AutoCATE can obtain at least competitive performance to the best approach.
These strong results are due to two factors. First, AutoCATE offers greater flexibility through a
larger search space, including more meta- and baselearners and preprocessing (Table 10 analyzes
the added value of preprocessing). Second, model selection is better aligned with the goal of CATE

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

1 20 50 100 200

Estimation trials

2

4

6

√
P

E
H

E

IHDP

1 20 50 100 200

Estimation trials

1.4

1.6

√
P

E
H

E

ACIC

1 20 50 100 200

Estimation trials

0.33

0.34

√
P

E
H

E

Twins

1 20 50 100 200

Estimation trials

2.4

2.6

√
P

E
H

E

News
AutoCATE

µ-risk

Figure 6: Comparing AutoCATE with tuning based on µ-risk. We compare tuning a T -Learner
with gradient boosting using either AutoCATE (based on a T -risk) or tuning based on the MSE on
the observed outcome. AutoCATE uses a T -risk with 50 evaluation trials and top 1 model selection.

1 2 5 10 20 50 100 200 500 1000

Estimation trials

0

2

4

6

√
P

E
H

E

IHDP

1 2 5 10 20 50 100 200 500 1000

Estimation trials

1.5

2.0

2.5

√
P

E
H

E

ACIC
S-RF

T-RF

S-GB

T-GB

AutoCATE–1

AutoCATE–5

1 2 5 10 20 50 100 200 500 1000

Estimation trials

0.32

0.33

0.34

√
P

E
H

E

Twins

1 2 5 10 20 50 100 200 500 1000

Estimation trials

2.25

2.50

2.75

3.00

√
P

E
H

E

News

Figure 7: Benchmarking AutoCATE. We compare AutoCATE with common benchmarks using
S- and T -Learners with random forests and gradient boosting. AutoCATE uses a T -risk with 50
evaluation trials and BestMeta-BestBase search spaces, with either Top 1 or Top 5 model selection.

estimation, using the T -risk, and can include an ensemble of pipelines for improved performance.
Appendix D.4 shows similar results for ranking treatment effects with data from uplift modeling.

6 CONCLUSION

Despite the availability of ML methods for CATE estimation, their adoption remains limited, due to
the complexity of implementing, tuning, and validating them. We framed the problem of finding an
ML pipeline for CATE estimation as a counterfactual CASH problem and proposed AutoCATE: the
first end-to-end, automated solution tailored for treatment effect estimation. Based on this solution,
we analyzed design choices for evaluation, estimation, and ensembling, and identified best practices.
The resulting approach was validated, outperforming widely used strategies for CATE estimation.

To maximize AutoCATE’s practical impact, several limitations need to be addressed. Although
AutoCATE relies on standard assumptions for causal inference, it is crucial to assess its robustness
against violations of these assumptions and potentially protocols for such scenarios. Additionally,
most of the data used in this work is semi-synthetic (IHDP, ACIC, and News), which may not fully
capture the complexities of real-world data. Although validating CATE estimates remains inherently
challenging, approaches from related fields could offer inspiration (see e.g. Devriendt et al., 2020).

AutoCATE enables a comprehensive analysis of existing methods (see Figure 1 and Appendix D.5),
facilitating a better understanding of CATE estimation and guiding the development of new ap-
proaches. We envision opportunities for future research in all stages. For evaluation, advanced
multi-objective strategies could improve performance and robustness. Novel methods for estima-
tion could be automatically discovered using Neural Architecture Search. Generally, efficiency can
be improved with better search algorithms or strategies (e.g., by re-using nuisance models across
metalearners). Related to this, the optimal time allocation between the stages remains an open ques-
tion, where meta-learning could help by incorporating data set characteristics (Feurer et al., 2015).
Finally, more advanced ensembling could be developed (e.g., combining different metalearners).

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM
SIGKDD international conference on knowledge discovery & data mining, pp. 2623–2631, 2019.

Ahmed Alaa and Mihaela van der Schaar. Autoprognosis: Automated clinical prognostic modeling
via bayesian optimization with structured kernel learning. In International conference on machine
learning, pp. 139–148. PMLR, 2018.

Ahmed Alaa and Mihaela van der Schaar. Validating causal inference models via influence func-
tions. In International Conference on Machine Learning, pp. 191–201. PMLR, 2019.

Ahmed M Alaa and Mihaela van der Schaar. Bayesian inference of individualized treatment effects
using multi-task gaussian processes. Advances in neural information processing systems, 30,
2017.

Susan Athey and Guido W Imbens. Machine learning methods for estimating heterogeneous causal
effects. stat, 1050(5):1–26, 2015.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-parameter
optimization. Advances in neural information processing systems, 24, 2011.

Jeroen Berrevoets, Fergus Imrie, Trent Kyono, James Jordon, and Mihaela van der Schaar. To
impute or not to impute? missing data in treatment effect estimation. In International Conference
on Artificial Intelligence and Statistics, pp. 3568–3590. PMLR, 2023.

Ekaba Bisong and Ekaba Bisong. Google automl: cloud vision. Building Machine Learning and
Deep Learning Models on Google Cloud Platform: A Comprehensive Guide for Beginners, pp.
581–598, 2019.

Huigang Chen, Totte Harinen, Jeong-Yoon Lee, Mike Yung, and Zhenyu Zhao. Causalml: Python
package for causal machine learning. arXiv preprint arXiv:2002.11631, 2020.

Liang-Chieh Chen, Maxwell Collins, Yukun Zhu, George Papandreou, Barret Zoph, Florian Schroff,
Hartwig Adam, and Jon Shlens. Searching for efficient multi-scale architectures for dense image
prediction. Advances in neural information processing systems, 31, 2018.

Alicia Curth and Mihaela van der Schaar. Nonparametric estimation of heterogeneous treatment
effects: From theory to learning algorithms. In International Conference on Artificial Intelligence
and Statistics, pp. 1810–1818. PMLR, 2021.

Alicia Curth and Mihaela van der Schaar. In search of insights, not magic bullets: Towards de-
mystification of the model selection dilemma in heterogeneous treatment effect estimation. In
International Conference on Machine Learning, pp. 6623–6642. PMLR, 2023.

Floris Devriendt, Darie Moldovan, and Wouter Verbeke. A literature survey and experimental eval-
uation of the state-of-the-art in uplift modeling: A stepping stone toward the development of
prescriptive analytics. Big data, 6(1):13–41, 2018.

Floris Devriendt, Jente Van Belle, Tias Guns, and Wouter Verbeke. Learning to rank for uplift
modeling. IEEE Transactions on Knowledge and Data Engineering, 34(10):4888–4904, 2020.

Vincent Dorie, Jennifer Hill, Uri Shalit, Marc Scott, and Daniel Cervone. Automated versus do-it-
yourself methods for causal inference: Lessons learned from a data analysis competition. Statis-
tical science, 34(1):43–68, 2019.

Matthieu Doutreligne and Gaël Varoquaux. How to select predictive models for causal inference?
arXiv preprint arXiv:2302.00370, 2023.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey.
Journal of Machine Learning Research, 20(55):1–21, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy, Mu Li, and Alexan-
der Smola. Autogluon-tabular: Robust and accurate automl for structured data. arXiv preprint
arXiv:2003.06505, 2020.

Stefan Feuerriegel, Dennis Frauen, Valentyn Melnychuk, Jonas Schweisthal, Konstantin Hess, Ali-
cia Curth, Stefan Bauer, Niki Kilbertus, Isaac S Kohane, and Mihaela van der Schaar. Causal
machine learning for predicting treatment outcomes. Nature Medicine, 30(4):958–968, 2024.

Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum, and Frank
Hutter. Efficient and robust automated machine learning. Advances in neural information pro-
cessing systems, 28, 2015.

Alexander Franks, Alexander D’Amour, and Avi Feller. Flexible sensitivity analysis for observa-
tional studies without observable implications. Journal of the American Statistical Association,
2020.

Tomas Geffner, Javier Antoran, Adam Foster, Wenbo Gong, Chao Ma, Emre Kiciman, Amit Sharma,
Angus Lamb, Martin Kukla, Nick Pawlowski, et al. Deep end-to-end causal inference. arXiv
preprint arXiv:2202.02195, 2022.

Xin He, Kaiyong Zhao, and Xiaowen Chu. Automl: A survey of the state-of-the-art. Knowledge-
based systems, 212:106622, 2021.

Jennifer L Hill. Bayesian nonparametric modeling for causal inference. Journal of Computational
and Graphical Statistics, 20(1):217–240, 2011.

Kevin Hillstrom. Minethatdata: E-mail analytics and data-driven market-
ing, 2008. URL https://blog.minethatdata.com/2008/03/
minethatdata-e-mail-analytics-and-data.html. Accessed: 2024-09-26.

Paul W Holland. Causal inference, path analysis and recursive structural equations models. ETS
Research Report Series, 1988(1):i–50, 1988.

Daniel G Horvitz and Donovan J Thompson. A generalization of sampling without replacement
from a finite universe. Journal of the American statistical Association, 47(260):663–685, 1952.

Daniel Jarrett, Jinsung Yoon, Ioana Bica, Zhaozhi Qian, Ari Ercole, and Mihaela van der Schaar.
Clairvoyance: A pipeline toolkit for medical time series. In International Conference on Learning
Representations, 2021.

Maciej Jaskowski and Szymon Jaroszewicz. Uplift modeling for clinical trial data. In ICML work-
shop on clinical data analysis, volume 46, pp. 79–95, 2012.

Andrew Jesson, Sören Mindermann, Uri Shalit, and Yarin Gal. Identifying causal-effect inference
failure with uncertainty-aware models. Advances in Neural Information Processing Systems, 33:
11637–11649, 2020.

Andrew Jesson, Sören Mindermann, Yarin Gal, and Uri Shalit. Quantifying ignorance in individual-
level causal-effect estimates under hidden confounding. In International Conference on Machine
Learning, pp. 4829–4838. PMLR, 2021.

Fredrik Johansson, Uri Shalit, and David Sontag. Learning representations for counterfactual infer-
ence. In International conference on machine learning, pp. 3020–3029. PMLR, 2016.

Shubhra Kanti Karmaker, Md Mahadi Hassan, Micah J Smith, Lei Xu, Chengxiang Zhai, and Kalyan
Veeramachaneni. Automl to date and beyond: Challenges and opportunities. ACM Computing
Surveys (CSUR), 54(8):1–36, 2021.

Edward H Kennedy. Towards optimal doubly robust estimation of heterogeneous causal effects.
Electronic Journal of Statistics, 17(2):3008–3049, 2023.

Sören R Künzel, Jasjeet S Sekhon, Peter J Bickel, and Bin Yu. Metalearners for estimating heteroge-
neous treatment effects using machine learning. Proceedings of the national academy of sciences,
116(10):4156–4165, 2019.

12

https://blog.minethatdata.com/2008/03/minethatdata-e-mail-analytics-and-data.html
https://blog.minethatdata.com/2008/03/minethatdata-e-mail-analytics-and-data.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Kim Larsen. Information: Data exploration with information theory methods, 2023. URL https:
//cran.r-project.org/package=Information. R package version 0.2.1, Accessed:
2024-09-26.

Erin LeDell and Sebastien Poirier. H2o automl: Scalable automatic machine learning. In Proceed-
ings of the AutoML Workshop at ICML, volume 2020. ICML San Diego, CA, USA, 2020.

Victor SY Lo. The true lift model: a novel data mining approach to response modeling in database
marketing. ACM SIGKDD Explorations Newsletter, 4(2):78–86, 2002.

Christos Louizos, Uri Shalit, Joris M Mooij, David Sontag, Richard Zemel, and Max Welling.
Causal effect inference with deep latent-variable models. Advances in neural information pro-
cessing systems, 30, 2017.

Divyat Mahajan, Ioannis Mitliagkas, Brady Neal, and Vasilis Syrgkanis. Empirical analysis of model
selection for heterogeneous causal effect estimation. In The Twelfth International Conference on
Learning Representations, 2023.

Xinkun Nie and Stefan Wager. Quasi-oracle estimation of heterogeneous treatment effects.
Biometrika, 108(2):299–319, 2021.

Michael Oberst, Fredrik Johansson, Dennis Wei, Tian Gao, Gabriel Brat, David Sontag, and Kush
Varshney. Characterization of overlap in observational studies. In International Conference on
Artificial Intelligence and Statistics, pp. 788–798. PMLR, 2020.

Diego Olaya, Jonathan Vásquez, Sebastián Maldonado, Jaime Miranda, and Wouter Verbeke. Uplift
modeling for preventing student dropout in higher education. Decision support systems, 134:
113320, 2020.

Miruna Oprescu, Vasilis Syrgkanis, and Zhiwei Steven Wu. Orthogonal random forest for causal
inference. In International Conference on Machine Learning, pp. 4932–4941. PMLR, 2019.

Miruna Oprescu, Jacob Dorn, Marah Ghoummaid, Andrew Jesson, Nathan Kallus, and Uri Shalit.
B-learner: Quasi-oracle bounds on heterogeneous causal effects under hidden confounding. In
International Conference on Machine Learning, pp. 26599–26618. PMLR, 2023.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn:
Machine learning in python. the Journal of machine Learning research, 12:2825–2830, 2011.

Scott Powers, Junyang Qian, Kenneth Jung, Alejandro Schuler, Nigam H Shah, Trevor Hastie, and
Robert Tibshirani. Some methods for heterogeneous treatment effect estimation in high dimen-
sions. Statistics in medicine, 37(11):1767–1787, 2018.

Peter M Robinson. Root-n-consistent semiparametric regression. Econometrica: Journal of the
Econometric Society, pp. 931–954, 1988.

Craig A Rolling and Yuhong Yang. Model selection for estimating treatment effects. Journal of the
Royal Statistical Society Series B: Statistical Methodology, 76(4):749–769, 2014.

Donald B Rubin. Estimating causal effects of treatments in randomized and nonrandomized studies.
Journal of educational Psychology, 66(5):688, 1974.

Donald B Rubin. Causal inference using potential outcomes: Design, modeling, decisions. Journal
of the American Statistical Association, 100(469):322–331, 2005.

Frederic Runge, Danny Stoll, Stefan Falkner, and Frank Hutter. Learning to design rna. In Interna-
tional Conference on Learning Representations, 2019.

Piotr Rzepakowski and Szymon Jaroszewicz. Decision trees for uplift modeling with single and
multiple treatments. Knowledge and Information Systems, 32:303–327, 2012.

Alejandro Schuler, Michael Baiocchi, Robert Tibshirani, and Nigam Shah. A comparison of
methods for model selection when estimating individual treatment effects. arXiv preprint
arXiv:1804.05146, 2018.

13

https://cran.r-project.org/package=Information
https://cran.r-project.org/package=Information

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Uri Shalit, Fredrik D Johansson, and David Sontag. Estimating individual treatment effect: general-
ization bounds and algorithms. In International conference on machine learning, pp. 3076–3085.
PMLR, 2017.

Amit Sharma and Emre Kiciman. Dowhy: An end-to-end library for causal inference. arXiv preprint
arXiv:2011.04216, 2020.

Xingjian Shi, Jonas Mueller, Nick Erickson, Mu Li, and Alexander J Smola. Benchmarking multi-
modal automl for tabular data with text fields. arXiv preprint arXiv:2111.02705, 2021.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. Advances in neural information processing systems, 25, 2012.

David So, Quoc Le, and Chen Liang. The evolved transformer. In International conference on
machine learning, pp. 5877–5886. PMLR, 2019.

Irene Teinemaa, Javier Albert, and Nam Pham. UpliftML: A Python Package for Scalable Uplift
Modeling. https://github.com/bookingcom/upliftml, 2021. Version 0.0.1.

Toon Vanderschueren, Robert Boute, Tim Verdonck, Bart Baesens, and Wouter Verbeke. Optimizing
the preventive maintenance frequency with causal machine learning. International Journal of
Production Economics, 258:108798, 2023.

Toon Vanderschueren, Wouter Verbeke, Felipe Moraes, and Hugo Manuel Proença. Metalearners
for ranking treatment effects. arXiv preprint arXiv:2405.02183, 2024.

Stefan Wager and Susan Athey. Estimation and inference of heterogeneous treatment effects using
random forests. Journal of the American Statistical Association, 113(523):1228–1242, 2018.

Chi Wang, Qingyun Wu, Markus Weimer, and Erkang Zhu. Flaml: A fast and lightweight automl
library. Proceedings of Machine Learning and Systems, 3:434–447, 2021.

Jinsung Yoon, James Jordon, and Mihaela van der Schaar. Ganite: Estimation of individualized
treatment effects using generative adversarial nets. In International conference on learning rep-
resentations, 2018.

Weijia Zhang, Jiuyong Li, and Lin Liu. A unified survey of treatment effect heterogeneity modelling
and uplift modelling. ACM Computing Surveys (CSUR), 54(8):1–36, 2021.

Zhenyu Zhao, Yumin Zhang, Totte Harinen, and Mike Yung. Feature selection methods for uplift
modeling and heterogeneous treatment effect. In IFIP International Conference on Artificial
Intelligence Applications and Innovations, pp. 217–230. Springer, 2022.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

The appendix starts with a more detailed introduction and background to CATE estimation in Ap-
pendix A. The next sections provide more details on AutoCATE (Appendix B), describe the data
sets used in this work (Appendix C), and present additional empirical results (Appendix D). Finally,
we compare AutoCATE with other packages for CATE estimation in Appendix E.

A BACKGROUND ON CATE ESTIMATION

This section provides a more detailed introduction and background on treatment effect estimation.
In accordance to the main body, we denote an instance by a tuple (x, t, y), with covariates X ∈ X ⊂
Rd, a treatment T ∈ T = {0, 1}, and an outcome Y ∈ Y ⊂ R. Following the potential outcomes
framework (Rubin, 1974; 2005), we describe an instance’s potential outcome Y for a given treatment
T = t as Y (t). The Conditional Average Treatment Effect (CATE) is then defined as the expected
difference in outcomes between treating and not treating:

E
[
Y (1)− Y (0)|X

]
. (2)

Knowing this effect is crucial in a variety of domains, such as education (Olaya et al., 2020), health-
care (Feuerriegel et al., 2024), and maintenance (Vanderschueren et al., 2023). Estimating the CATE
from observational data involves significant challenges (Appendix A.1), requires standard assump-
tions (Appendix A.2), and tailored ML methods (Appendix A.3). We explain these in the following.

A.1 CHALLENGES: THE FUNDAMENTAL PROBLEM AND CONFOUNDING

The fundamental problem of causal inference (Holland, 1988) is that, for each instance, we only
observe either Y (0) or Y (1), depending on what treatment was administered. We refer to the ob-
served outcome as the factual outcome and the unobserved outcome as the counterfactual outcome.
Because one outcome is always unobserved, we never know the true CATE τ , which means that
there is no ground truth CATE available for training or validation.

In observational data, the outcome that was observed is typically not random: some instances were
more likely to be treated, while other instances were more likely not to receive treatment. For
example, in healthcare, patients may be more likely to receive a new treatment if they have access
to better healthcare, have no pre-existing conditions, and are younger. The covariates that influence
both the outcome and treatment assignment are called confounders, with the resulting non-random
treatment assignment sometimes referred to as confounding.

Confounding presents an additional challenge for CATE estimation and validation as it results in co-
variate shift. Some instance-treatment pairs (the counterfactuals) will be absent in the observational
training data compared to the hypothetical test data that contains all instance-treatment pairs (both
factuals and counterfactuals). Because of this, an ML model may focus too much on the observed
data points at the cost of worse predictions for the counterfactuals and, as such, the test data overall.

A.2 ASSUMPTIONS FOR IDENTIFIABILITY

Identifying the causal effect from observational data requires making standard assumptions: consis-
tency, overlap, and unconfoundedness. This section explains these assumptions in more detail.

Assumption 1 (Consistency) The observed outcome given a treatment is the potential outcome
under that treatment: Y |X, t = Y (t)|X .

Assumption 2 (Overlap) For each instance, there is a non-zero probability of receiving each treat-
ment given their covariates: ∀ x ∈ X and t ∈ T : P (T = t|X = x) > 0. This condition ensures
that there is sufficient variability in the treatment assignment.

Assumption 3 (Unconfoundedness) Given an instance’s covariates, its potential outcomes are in-
dependent of the treatment assignment: Y (0), Y (1) ⊥⊥ T |X . This condition implies that all factors
influencing both the treatment assignment and outcome are included in X . In other words, there are
no unobserved confounders.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

There has recently been much interest in CATE estimation under violation of these assumptions. For
example, by quantifying the uncertainty or sensitivity of an estimate to a possible violation (Franks
et al., 2020; Jesson et al., 2020; 2021), characterizing overlap violations (Oberst et al., 2020), or
developing metalearners that can deal with unobserved confounders (Oprescu et al., 2023). We
believe that extending AutoCATE to deal with these settings and to incorporate these methods will
improve its potential for real-world applicability even further. As such, we consider it an important
direction for future versions.

A.3 CATE ESTIMATION: META- AND BASELEARNERS

We briefly describe the approach of estimating the CATE with a metalearner here. A straightforward
way of estimating the CATE is using a single ML model, where the treatment variable is considered
an ordinary input variable. This metalearner is called the S-Learner and can be implemented with
a wide variety of baselearners (i.e., ML algorithms that predict an outcome based on data, such as
a decision tree or neural network). An alternative metalearner, the T -learner, fits two models–one
model for each treatment group. Both models can use the same baselearner or a different one. More
information on the metalearners in AutoCATE is provided in Appendix B.1. For more extensive
overviews, we refer to Devriendt et al. (2018), Zhang et al. (2021), and Feuerriegel et al. (2024).

B AUTOCATE: ADDITIONAL INFORMATION

This section presents information on metalearners (Appendix B.1), risk measures for evaluation (Ap-
pendix B.2), and AutoCATE’s search spaces for preprocessors and baselearners (Appendix B.3).

B.1 METALEARNERS

We describe the metalearners implemented in AutoCATE in more detail below. We first define the
estimates that make up the building blocks of these models: the estimated propensity score ê(x) =
E(t|x), the treatment-group specific outcome ŷ0(x) = E(y|x, t = 0) and ŷ1(x) = E(y|x, t = 1),
and the treatment-unaware outcome µ̂(x) = E(y|x). In the following, the function f describes a
model that is learned with a base learner such as a neural network or gradient boosting.

S-Learner. The S-Learner, or single learner, simply uses the treatment as a variable: fS(x, t) =
E(y|x, t). The CATE τ is then estimated as τ̂ = ŷ1 − ŷ0 = fS(x, t = 1)− fS(x, t = 0).

Lo-Learner (Lo, 2002). The Lo-Learner is similar to an S-Learner, in the sense that it uses
the treatment as a variable, but it adds interaction terms between the covariates x and treatment
t: fLo(x, t) = E(y|x, t, x · t). The CATE τ is then estimated as τ̂ = ŷ1 − ŷ0 = fLo(x, t =
1)− fLo(x, t = 0).

T -Learner. The T -Learner constructs two models–one per treatment group: f0
T (x) = E(y|x, t =

0) and f1
T (x) = E(y|x, t = 1), and predicts the CATE as τ̂ = ŷ1 − ŷ0 = f1

T (x)− f0
T (x).

X-Learner (Künzel et al., 2019). The X-Learner first learns two treatment-specific outcome
models: ŷ0(x) and ŷ1(x). It then uses these to impute the counterfactual outcome for each in-
stance and, as such, obtain a pseudo-outcome τ̃X for the treatment effect: τ̃0X = ŷ1(x) − y
if t = 0, and τ̃1X = y − ŷ0(x) else. For each treatment group, a model is then learned on
these pseudo-outcome: f0

X(x) = τ̃0X and f1
X(x) = τ̃1X . The final effect model then estimates

fX(x) = g(x)f0
X + (1− g(x))f1

x and predicts the treatment effect as τ̂ = fX(x). g(x) ∈ [0, 1] is a
weighting function, typically the estimated propensity score g(x) = ê(x).

RA-Learner (Curth & van der Schaar, 2021). The RA-Learner or regression-adjusted learner
is similar to an X-Learner, but directly learns the final model on the pseudo-outcomes: fRA(x) =
E(τ̃X |x), predicting the treatment effect as τ̂ = fRA(x).

Z-Learner. The transformed outcome approach (Jaskowski & Jaroszewicz, 2012; Powers et al.,
2018) or inverse propensity weighted estimator (Curth & van der Schaar, 2021) uses a pseudo-

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Data

Train
estimation

models

Train
validation

models

Validate
validation

models

Single Split Cross-Validation

Training Validation

1 - holdout ratio holdout ratio

Training Validation

1 - holdout ratio holdout ratio

Data

Iteration 1

Train
estimation

models

Train
validation

models

Validate
validation

models

Training Validation

Training Validation

1 - holdout ratio holdout ratio

Fold 1 Fold 3Fold 2

1 / number of folds 1 / number of folds1 / number of folds

Figure 8: Evaluation framework. We show two possible frameworks for validating pipelines based
on a single split or a cross-validation procedure. For each, the data is split in three groups to (1) train
the estimation pipelines, (2) train the validation pipelines, and (3) validate the validation pipelines.

outcome based on the Horvitz-Thompson transformation (Horvitz & Thompson, 1952): τ̃Z =(
t

ê(x) − 1−t
1−ê(x)

)
y. The Z-Learner then estimates fZ(x) = E(τ̃Z |x) and predicts the treatment

effect as τ̂ = fZ(x).

U -Learner. The U -Learner is based on a pseudo-outcome τ̃U = y−µ̂(x)
t−ê(x) . The final model fits

fU (x) = E(τ̃U |x) and predicts the treatment effect as τ̂ = fU (x).

F -Learner (Athey & Imbens, 2015). The F -Learner uses the pseudo-outcome τ̃F =
t−ê(x)

ê(x)(1−ê(x))y. The final model fits fF (x) = E(τ̃F |x) and predicts the treatment effect as τ̂ = fF (x).

DR-Learner (Kennedy, 2023). The DR-Learner is a robust version of the Z-Learner, based on
the pseudo-outcome τ̃Z =

(
t

ê(x) − 1−t
1−ê(x)

)
y+

(
1− t

ê(x)

)
ŷ1(x)−

(
1− 1−t

1−ê(x)

)
ŷ0(x). The final

model is fDR(x) = E(τ̃DR|x) and predicts the treatment effect as τ̂ = fDR(x).

R-Learner (Nie & Wager, 2021). The R-Learner, based on Robinson’s decomposition (Robin-
son, 1988), fits a model fR(x) using a weighted loss function with pseudo-outcomes τ̃R = y−µ̂(x)

t−ê(x)

and weights w = (t− ê(x))2. The treatment effect can then directly be predicted as τ̂ = fR(x).

B.2 EVALUATION AND RISK MEASURES

The evaluation framework and data splitting underlying AutoCATE is shown in Figure 8. Below,
we describe the different types of risk measures included in our framework.

Metalearner pseudo-outcomes. An instance’s true CATE τ is unknown, but we can use the
pseudo-outcomes τ̃ used by the T -, Z-, U -, F -, DR-, and R-Learners (see above) as ground truth.

Influence Function (IF) (Alaa & van der Schaar, 2019). The influence function criterion gives
an estimate of an ML pipeline’s estimation error. It is based on a pseudo-outcome of the treatment
effect τ̃ , estimated with a T -Learner. This pseudo-outcome is then debiased using the influence
function. The final criterion is:

(1−B) τ̃2 +By(τ̃ − τ̂)−D(τ̃ − τ̂)2 + τ̃2

with D = t− ê(x), C = ê(x)(1− ê(x)), and B = 2tDC−1.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Hyperparameter Range
VarianceThreshold

threshold [0, 0.04]

SelectPercentile
k [5, n dim]
score func mutual info {regression, classif}

(a) Feature Selection

Hyperparameter Range
StandardScaler

—

RobustScaler
—

(b) Feature Scaling

Table 4: Preprocessor search spaces. We describe the search spaces for the different preprocessors.
If a hyperparameter is not mentioned, we use its default. All preprocessors are implemented with
scikit-learn (Pedregosa et al., 2011); we refer to their documentation for more information.

k-Nearest Neighbor (kNN) (Rolling & Yang, 2014). The nearest neighbor matching measure
finds the nearest neighbor in the opposite group, defined using the Euclidean distance, and uses
its outcome as the counterfactual outcome. As such, it is essentially a T -Learner pseudo-outcome
where the baselearner is restricted to a nearest neighbor model. We extend upon this by allowing
alternative versions to be constructed by increasing k.

B.3 PREPROCESSOR AND BASELEARNER SEARCH SPACES

Preprocessors. ML pipelines include three (optional) steps to preprocess the data before being
fed to a model: feature selection, transformation, and scaling. For feature selection, include Vari-
anceThreshold, SelectPercentile, or no selection. For feature scaling, we include StandardScaler,
RobustScaler, or no scaling. Finally, we include feature transformation algorithms in our software
package (SplineTransformer, PolynomialFeatures, KBinsDiscretizer), but do not include them in the
experiments as they significantly slowed down training times. Other steps for feature selection and
scaling from scikit-learn are similarly supported, but not included in the experiments, which is why
we do not discuss them here. Table 4 provides detailed information on the search spaces.

Baselearners. We present the search spaces for all baselearners’ hyperparameters in Table 5.
These are based largely upon existing AutoML packages (e.g., FLAML (Wang et al., 2021)) and
some (limited) experimentation, so these may be improved in future versions.

AutoCATE’s resulting search space of ML pipelines for CATE estimation is vast, with 2,187 pos-
sible pipelines even without considering hyperparameters:

3 feature selection × 3 scaling × 27 metalearner-baselearner configurations × 9 baselearners (3)

with 27 = 1 (S)+ 2 (T)+ 4 (DR)+ 5 (X)+ 4 (R)+ 3 (RA)+ 1 (Lo)+ 2 (Z)+ 3 (U)+ 2 (F),
i.e., the sum of all baselearners required per metalearner.

B.4 EXAMPLE ML PIPELINE

We give an example of a pipeline built by AutoCATE, excluding baselearner hyperparameters.
Evaluation using a T -Risk evaluation, with control outcomes estimated with gradient boosting and
treatment outcomes estimated using a neural network. Estimation by first selecting a top percentile
of features based on the F-value between the label and feature, followed by a DR-Learner where
propensity scores are estimated with a support vector machine, control outcomes with gradient
boosting, treatment outcomes with a linear regression, and the final effect with a random forest.
This example illustrates the complexity of an ML pipeline for CATE estimation–in this case, there
are six different ML models with several hyperparameters each. If an ensemble is used for estima-
tion, this complexity increases even more.

B.5 ENSEMBLING AND MULTI-OBJECTIVE MODEL SELECTION

This section describes the different approaches for ensembling and multi-objective model selection
included in our framework. With multiple objectives, no globally optimal ML pipeline may exist.
We explore various strategies for ranking and selecting models in this context. We denote a pipeline

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Hyperparameter Range
Gradient Boosting

n estimators [50, 2000]
subsample [0.4, 10]
min samples split [2, 500]
learning rate [0.05, 0.5]
n iter no change [5, 100]
max leaf nodes None
max depth None

Random Forest
n estimators [50, 500]
max depth None
min samples split [2, 100]
max features [0.4, 1.0]

Extra Trees
n estimators [50, 500]
max depth None
min samples split [2, 100]
max features [0.4, 1.0]

Decision Tree
max depth [1, 2000]
min samples split [2, 500]
min samples leaf [1, 500]
max features [0.4, 1.0]

Hyperparameter Range
Linear/Logistic Regression

alpha [1e−6, 1e6]

Gaussian Process
n restarts optimizer [0, 5]
normalize y [True,False]
alpha [1e−5, 1e2]
max iter predict [100, 1000]

Support Vector Machine
C [1e−6, 1e6]
kernel [linear, poly, rbf, sigmoid]
degree [1, 10]

k-Nearest Neighbors
n neighbors [1, 30]
weights [uniform, distance]

Neural Network
hidden layers [1, 3]
hidden neurons [8, 64]
alpha [1e−6, 1e1]
learning rate init [5e−4, 1e−2]
batch size [16, 64]
activation [tanh, relu]
max iter 200
solver adam
early stopping True

Table 5: Baselearner search spaces. We describe the search spaces for each baselearner. If
a hyperparameter is not mentioned, we use its default. All baselearners are implemented with
scikit-learn (Pedregosa et al., 2011); we refer to their documentation for more information.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

i’s normalized score on objective j as sij . As different risk measures and metrics have different
scales, we normalize each of these scores by dividing the raw score s̃ij with the raw score of a
constant ATE baseline s̃ATE

j : sij =
s̃ij
s̃ATE
j

.

Average (normalized) score. For each pipeline i, we compute the normalized average score across
objectives:

Si =
1

m

m∑
j=1

sij ,

with m the number of objectives. We then select the pipeline(s) with the best Si.

Euclidean distance to the origin. We compute each pipeline i’s Euclidean distance to the origin:

Di =
1

m

√√√√ m∑
j=1

s2ij ,

with m the number of objectives. We then select the pipeline(s) with the lowest Di.

Average rank. Rank all pipelines i for each objective j, denoted as rij , and compute the average
rank:

Ri =
1

m

m∑
j=1

rij .

Select the pipeline(s) with the lowest Ri.

Stacking—Constrained Optimization Problem. To combine multiple pipelines into a stacked
estimator, we introduce a procedure that assigns weights wij (where 0 ≤ wi ≤ 1) to each pipeline
i, optimizing these weights to minimize the squared error of the weighted prediction with respect
to those pseudo-outcomes of objective j. We additionally add an l2 regularization term, which can
be tuned on a validation set. With multiple objectives, we repeat this for each objective and then
average the weights Wi =

∑m
j=1 wij .

Stacking—Softmax (Mahajan et al., 2023). An alternative stacking procedure is to determine
the weight of each estimator with a softmax function:

wij =
exp(κsij)∑m
j=1 exp(κsik)

,

with κ a temperature parameter that can be tuned. With multiple objectives, we repeat this for each
objective and then average the weights Wi =

∑m
j=1 wij .

Pareto. We select all pipelines that are Pareto optimal, meaning no other pipeline k satisfies:

skj ≥ sij ∀j and skj > sij for at least one j.

B.6 AUTOCATE’S API: ADDITIONAL INFORMATION

We give more information on AutoCATE’s initialization arguments in Listing 1.
1 class AutoCATE:
2 def __init__(
3 self,
4 # evaluation_metrics: Risk measures to evaluate the performance
5 evaluation_metrics=None,
6 # preprocessors: Preprocessors to try (defaults added later)
7 preprocessors=None,
8 # base_learners: Baselearners to try (defaults added later)
9 base_learners=None,

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

10 # metalearners: Metalearners to try (defaults added later)
11 metalearners=None,
12 # task: Type of task (’regression’ or ’classification’)
13 task="regression",
14 # metric: Metric used to evaluate the model (e.g., ’MSE’)
15 metric="MSE",
16 # ensemble_strategy: Strategy for selecting a final model
17 ensemble_strategy="top1average",
18 # single_base_learner: Use only one base learner
19 single_base_learner=False,
20 # joint_optimization: Same hyperparameters for baselearners
21 joint_optimization=False,
22 # n_folds: Number of folds for cross-validation
23 n_folds=1,
24 # n_trials: How many trials to optimize the estimation pipeline
25 n_trials=50,
26 # n_eval_versions: Number of versions of each risk measure
27 n_eval_versions=1,
28 # n_eval_trials: Number of trials for evaluating the model
29 n_eval_trials=50,
30 # seed: Random seed for reproducibility
31 seed=42,
32 # visualize: Whether to visualize results
33 visualize=False,
34 # max_time: Maximum time allowed for fitting the model
35 max_time=None,
36 # n_jobs: Number of parallel jobs to run
37 n_jobs=-1,
38 # cross_val_predict_folds: Folds for cross-validated estimates
39 cross_val_predict_folds=1,
40 # holdout_ratio: Ratio of data for validation (if single fold)
41 holdout_ratio=0.3
42):
43

44 # Initialization code (not included here)
45 ...

Listing 1: Arguments for the AutoCATE class initialization. We describe each argument and its
default initialization.

C DATA: ADDITIONAL INFORMATION

This section describes the data used in this work in more detail.

IHDP (Hill, 2011). The data come from the Infant Health and Development Program, describing
the impact of child care and home visits on children’s cognitive development. Treatments and out-
comes were simulated for a total of 100 data sets. Each version contains n = 747 instances and
d = 25 covariates.

ACIC (Dorie et al., 2019). The data from the ACIC 2016 competition was based on data from
the Collaborative Perinatal Project, studying drivers of developmental disorders in pregnant women
and their children. 77 distinct data sets were created, each with n = 4,802 instances and d = 58
covariates. 100 iterations were originally created for each data set, but we use only the first one for
each.

Twins (Louizos et al., 2017). The Twins data studies the effect of being the heavier twin on mor-
taility. n = 11,984 pairs of twins are included, with d = 46 features each. Only one version of this
data set exists, so we run 10 iterations of each experiment.

News (Johansson et al., 2016). This data simulates a reader’s reading experience (y) based on the
device they use for reading (t) and the news article (x). There are 50 distinct data sets, each with
n = 5,000 instances with and d = 3,477 covariates.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Below, we include results for two data sets on uplift modeling:

Hillstrom (Hillstrom, 2008). This data contains records of customers (n = 64,000) that were
contacted by a marketing campaign over e-mail. Originally, customers received either no mail, a
mail with men’s merchandise, or one with women’s merchandise, but we convert it to not contacted
(t = 0) or contacted (t = 0). For each customer, d = 10 covariates are available. As the outcome y,
we consider whether the customer visited the website or not.

Information (Larsen, 2023). The information data set comes from the R Information package. It
describes customers (n = 10,000, d = 68) in the insurance industry, as well as whether they were
contacted with a marketing campaign and whether they made a purchase.

D ADDITIONAL RESULTS

D.1 STAGE 1: EVALUATION

Table 6 shows results for evaluating with k-fold cross validation for different values of k.

1 2 3 4 5 10
IHDP 2.15±.35 2.16±.35 2.10±.35 2.07±.33 2.29±.42 2.25±.41

ACIC 1.52±.09 1.58±.08 1.48±.08 1.51±.09 1.50±.08 1.53±.09

Twins .323±.00 .324±.00 .322±.00 .324±.00 .344±.00 .346±.00

News 2.42±.07 2.40±.07 2.41±.06 2.41±.07 2.45±.07 2.45±.07

Table 6: The effect of k in k-fold cross validation. For each data set, we show result for a varying
number of cross-validation folds. Results for 50 evaluation trials with a T -risk and 50 estimation
trials with a T -Learner and gradient boosting.

Risk measures may suffer from congeniality bias, by being predisposed to favor their related met-
alearners (Curth & van der Schaar, 2023). For example, a T -risk may pick a T -Learner more often,
even when it is suboptimal. The results in our main body found that the T -risk works very well
with a T -Learner, but these results may not hold in general due to congeniality bias. Therefore, we
again compare the different risk measures when estimating with either S-Learners only or selected
metalearners in Table 7

D.2 STAGE 2: ESTIMATION

Figure 9 shows how often each metalearner gets picked in AutoCATE’s BestMeta configuration.
The difference in metalearner selection rates illustrates the importance of data-driven metalearner
selection, as facilitated by AutoCATE. Interestingly, other metalearners are preferred for a binary
outcome (Twins) than for continuous outcomes (all others). This finding suggests that different
BestMeta configurations may be optimal for different outcomes.

T56RA 35

S

4

Lo

3

X

2

IHDP

RA49

S

14
T

13

X
12

DR

6

Lo

5

ACIC

RA50

DR

30

S

20

Twins

RA

28

T

22

X

16

Lo 12

S

12

DR

10

News

Figure 9: Metalearner selection. We show how many times a metalearner gets picked (in % of all
data set iterations) for a given data set. Results for AutoCATE’s BestMeta configuration, including
the S-, T -, Lo-, X-, RA-, DR-, and U -Learners, with 50 evaluation and 500 estimation trials.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

DR F IF kNN R T U Z
IHDP 3.21±.55 3.64±.60 4.60±.78 3.11±.53 3.48±.58 3.10±.54 3.62±.58 4.12±.70

ACIC 1.61±.09 1.79±.10 2.07±.10 1.88±.09 1.73±.10 1.58±.09 1.85±.10 2.16±.12

Twins .328±.00 .328±.00 .347±.02 .320±.00 .325±.00 .320±.00 .321±.00 .330±.00

News 2.47±.09 2.51±.08 2.97±.13 2.49±.09 2.76±.12 2.46±.08 2.78±.13 2.99±.14

(a) Estimation with an S-Learner

DR F IF kNN R T U Z
IHDP 2.07±.32 3.43±.60 5.75±.70 2.11±.34 3.45±.56 2.17±.37 3.18±.56 4.38±.71

ACIC 1.40±.09 1.87±.11 2.24±.14 1.97±.13 1.57±.10 1.35±.09 1.79±.11 2.16±.11

Twins .328±.00 .327±.00 .384±.03 .324±.00 .328±.00 .326±.00 .344±.01 .348±.01

News 2.42±.07 2.60±.08 2.95±.12 2.42±.07 2.75±.15 2.43±.07 2.78±.13 2.77±.11

(b) Estimation with selected metalearners (BestMeta configuration: S, T , DR, X , RA, Lo)

Table 7: Performance for validation based on different risk measures. Results in
√

PEHE±SE

(lower is better). Bold highlights the best results, with underlined values falling within 1 standard
error. Results for 50 evaluation trials and 50 estimation trials with a gradient boosting baselearner.

We compare different metalearners in terms of
√

PEHE in Table 8. These results show that search-
ing across metalearners typically significantly improves precision compared to using only one met-
alearner. Moreover, some metalearners can result in very poor performance even after 200 opti-
mization trials. Typically, these results are due to exceptionally poor performance in some iterations
(e.g., the R-Learner). Additionally, we compare the performance trade-off in terms of time and
precision for best metalearners in Figure 10. These results show that the S-, T -, and Lo-Learner
are often the fastest to train and the most precise in terms of

√
PEHE. These results illustrate the

potential of improving AutoCATE’s time efficiency by considering these trade-offs. To give a sense
of AutoCATE’s runtime, we include the required computation times to run AutoCATE on different
data sets in Table 9. Although some time is required, running our framework locally is feasible for
small to moderate data sets.

S T DR X R RA Lo Z U F AllMeta
IHDP 4.52±.74 2.52±.37 5.91±.98 5.46±.87 2752.36±1613.91 5.80±.89 2.47±.34 50.09±6.21 7.45±1.12 9.58±.95 1.54±.25 (−37.5%)
ACIC 4.00±.24 4.26±.14 3.61±.22 3.09±.16 477325.02±87957.53 3.27±.19 3.07±.13 150829.14±56790.59 5.75±.43 4.65±.35 1.62±.09 (−47.3%)
Twins .318±.00 .345±.01 .320±.00 .333±.00 77.408±33.07 .323±.00 .360±.00 .546±.01 .418±.01 .376±.00 .321±.00 (+00.9%)
News 2.89±.14 2.53±.07 3.38±.15 2.93±.13 36448.74±13452.34 3.14±.13 2.57±.08 16.06±1.80 2.74±.13 3.41±.11 2.40±.08 (−05.0%)

Table 8: Comparing metalearner precision. For each data set, we compare the different met-
alearner’s performance in terms of

√
PEHE, with the best result highlighted in bold. We also include

a comparison with searching over all metalearners (AllMeta) and, in brackets, show how much this
outperforms the best single metalearner. For each result, AutoCATE uses a T -risk with 50 evalua-
tion trials, 200 estimation trials, and top 1 average model selection.

2.5 5.0 7.5

Time [hours]

2.5

5.0

7.5

√
P

E
H

E

S

T

DRXRA

Lo

U

F
IHDP

10 20

Time [hours]

3

4

5

√
P

E
H

E

S
T

DR

XRALo

U

F

ACIC

5 10

Time [hours]

0.4

0.5

√
P

E
H

E

S
T

DRX RA
Lo

Z

U

F

Twins

10 20

Time [hours]

2.5

3.0

√
P

E
H

E

S

T

DR

X

RA

Lo

U

F
News

Figure 10: Comparing metalearner precision and time efficiency. We show each metalearner’s
performance in precision (

√
PEHE) and time (excluding outliers, see Table 8). For each, AutoCATE

uses a T -risk with 50 evaluation trials, 200 estimation trials, and top 1 average model selection.

A key innovation for AutoCATE is that it optimizes the entire ML pipeline, including preprocessing
steps. In Table 10, we present an ablation study for our framework with and without preprocess-

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

IHDP ACIC Twins News
n = 747; d = 25 n = 4,802; d = 58 n = 11,984; d = 46 n = 5,000; d = 3,477

1’21” 6’00” 29’38” 6’49”

Table 9: AutoCATE time complexity. We show the average runtime required to run AutoCATE’s
complete, end-to-end optimization on a single iteration of different data sets. For each data set, we
include the size (n) and dimensionality (d). AutoCATE uses 50 evaluation trials and 50 estimation
trials with the BestMeta–BestBase configuration. These experiments were conducted locally, on a
machine with an AMD Ryzen 7 PRO 4750U processor (1.70 GHz), 32 GB of RAM, and a 64-bit
operating system.

Preprocessing
✓ ✗

IHDP 1.25±.18 1.69±.27

ACIC 1.52±.09 1.58±.09

Twins .315±.00 .320±.00

News 2.33±.06 2.38±.07

Table 10: Analayzing the added value of preprocessing. We compare AutoCATE’s performance
with and without preprocessing included in the search space, in terms of

√
PEHE, with the best result

highlighted in bold. Preprocessing includes feature scaling and selection. AutoCATE results for a
T -risk with 50 evaluation trials and 50 estimation trials with the BestMeta–BestBase configuration.

ing. For all data sets, AutoCATE achieves the best performance with preprocessing, though the
improvement is only significant for the IHDP and Twins data.

We can also apply explainability techniques to understand what drives a pipeline’s predictions. Fig-
ure 11 illustrates this and shows how permutation feature importance can be used with AutoCATE.

D.3 STAGE 3: ENSEMBLING

The ensemble built by AutoCATE can be used to gauge the uncertainty regarding a prediction, by
highlighting the spread of predictions. We illustrate such an analysis in Figure 12.

D.4 BENCHMARKING AUTOCATE

Table 11 presents results for additional benchmarks: S- and T-Learners based on linear or logistic
models (without regularization).

Figure 13 shows additional results for two data sets for uplift modeling (see Appendix C for more
information on the data). The effectiveness of AutoCATE is related to at least three factors. First,
by using the AUQC metric, the search is aligned with the downstream task: prioritizing instances

5 2 9 0 18 19 16 13 4 11 10 3 7 12 15 14 1 24 22 20 21 6 17 8 23

Feature

0.0

0.1

0.2

0.3

0.4

S
q
u

ar
ed

d
is

ta
n

ce

Figure 11: Analyzing AutoCATE’s feature importance. We can analyze how much each feature
contributes to treatment effect heterogeneity. We illustrate this analysis for the first iteration of IHDP
using permutation feature importance, showing the squared distance to the original prediction when
permuting a feature column.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2

4

6

Figure 12: Assessing uncertainty with AutoCATE. The ensemble returned by AutoCATE can be
used to analyze uncertainty regarding the prediction. We illustrate this for the first 20 instances of
the first iteration of the IHDP data. For each instance, the (usually unknown) ground truth is shown
in green, while the predictions from the top five pipelines are shown in blue and with a violinplot.

AutoCATE Benchmarks
Top 1 Top 5 S–RF T–RF S–GB T–GB S–LR T–LR

IHDP 1.25±.18 1.38±.21 3.30±.57 2.61±.45 3.02±.52 1.86±.29 5.73±.89 2.41±.39

ACIC 1.52±.09 1.45±.10 1.67±.08 1.65±.09 1.48±.10 1.38±.09 4.13±.25 3.08±.15

Twins .315±.00 .314±.00 .318±.00 .331±.00 .319±.00 .334±.00 .320±.00 .335±.00

News 2.33±.06 2.29±.06 2.46±.09 2.39±.07 2.68±.11 2.40±.06 3.68±.17 2.93±.12

Table 11: Comparing AutoCATE with common benchmarks on CATE estimation. We compare
performance in terms of

√
PEHE, with the best result highlighted in bold. AutoCATE results for a

T -risk with 50 evaluation trials and 50 estimation trials with the BestMeta–BestBase configuration.

for treatment (Vanderschueren et al., 2024). Second, the search space for AutoCATE includes more
meta- and baselearners than the benchmarks. Third, the top five ensemble seems to improve the
stability and accuracy of the predicted ranking.

1 2 5 10 20 50 100 200 500 1000

Estimation trials

0.00

0.02

0.04

0.06

A
U

Q
C

Hillstrom

1 2 5 10 20 50 100 200 500 1000

Estimation trials

0.00

0.05

0.10

A
U

Q
C

Information
S–LR

T–LR

S–RF

T–RF

S–GB

T–GB

AutoCATE–1

AutoCATE–5

Figure 13: Benchmarking AutoCATE for treatment prioritization. We present additional results
in terms of AUQC for two uplift data sets, Hillstrom and Information. These show that AutoCATE
is a useful tool for prioritizing instances for treatment, and highlight that its optimization is more
effective at optimizing AUQC compared to the benchmarks based on µ-risk. AutoCATE uses a
T -risk with 50 evaluation trials and the AUQC metric, the BestMeta-BestBase search space, and
Top 1 or Top 5 ensembling.

D.5 ANALYZING AUTOCATE’S RESULTS

We analyze the results of AutoCATE’s optimized pipelines in Figure 14. These results illustrate how
AutoCATE can facilitate a higher-level, comprehensive analysis of methods for CATE estimation
and model validation.

E COMPARING SOFTWARE PACKAGES FOR CATE ESTIMATION

Table 12 lists software packages for CATE estimation, comparing their functionalities with
AutoCATE. Notably, no other package is focused on automated, end-to-end CATE estimation.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Z F DR T IF R U1NN

Z

F

DR

T

IF

R

U

1NN −1.0

−0.5

0.0

0.5

1.0

(a) Risk correlation (IHDP)

None

Variance

Percentile

None

Robust

S

RA

Lo

Z

F

LR

SVM

kNN
NN
DT

RF

GP

Selection Scaling Meta Base

(b) Pipeline composition (Twins)

Figure 14: Analyzing AutoCATE’s results. We present results analyzing pipelines optimized by
AutoCATE. Figure (a) shows the correlation between risk measures for a single IHDP iteration.
Surprisingly, risk measures can be strongly negatively correlated, suggesting potential for more
advanced multi-objective approaches that adaptively learn which objectives are reliable for a given
data set. Figure (b) visualizes the optimal pipelines learned across ten iterations for the Twins data.

PACKAGE FUNCTIONALITIES GENERAL INFORMATION
Name (1) (2) (3) (4) Language Reference Link

CausalML ✗* ✓ ✗ ✗ Python Chen et al. (2020) GitHub
EconML ✓§ ✓ ✓§ ✗ Python — GitHub
DoWhy ✗† ✓ ✗ ✗ Python Sharma & Kiciman (2020) GitHub
Causica ✗ ✓ ✗ ✗ Python Geffner et al. (2022) GitHub

UpliftML ✗ ✓ ✗ ✗ Python Teinemaa et al. (2021) GitHub
scikit-uplift ✗ ✗ ✗ ✗ Python — GitHub

grf ✗ ✓ ✓‡ ✗ R Wager & Athey (2018) CRAN

AutoCATE ✓ ✓ ✓ ✓ Python This work GitHub
*CausalML offers provides some tools for internal validity, such as comparing results across segments.
§EconML includes an R-risk and can provide an ensemble based on this risk measure.
†DoWhy includes robustness checks for assumption violations.
‡The grf package allows for evaluation based on the Targeting Operating Characteristics curve.

Table 12: Software package comparison. We provide an overview of commonly used packages
for CATE estimation and compare their functionalities with AutoCATE, showing whether they
support (1) evaluation, (2) estimation, (3) ensembling, and (4) automated, end-to-end optimization—
as provided by AutoCATE or similar.

26

https://github.com/uber/causalml
https://github.com/py-why/EconML
https://github.com/py-why/dowhy
https://github.com/microsoft/causica
https://github.com/bookingcom/upliftml
https://github.com/maks-sh/scikit-uplift
https://cran.r-project.org/web/packages/grf/index.html
https://anonymous.4open.science/r/AutoCATE-E103

	Introduction
	Related Work
	Automated Machine Learning (AutoML)
	Treatment Effect Estimation and Model Validation

	Problem Formulation
	AutoCATE: End-To-End, Automated CATE Estimation
	Stage 1: Evaluation—Designing a Proxy Risk and Evaluation Protocol
	Stage 2: Estimation—Building a CATE Estimation Pipeline
	Stage 3: Ensembling—Selecting and Ensembling Estimation Pipelines
	ML Pipeline Building Blocks: Preprocessing and ML Baselearners
	Low-Code CATE Estimation Through AutoCATE's API

	Empirical Evaluation: Comparing Automated Strategies
	Experimental Setup: Data and Evaluation Metrics
	Analyzing AutoCATE—Stage 1: Evaluation Protocol
	How to measure risk regarding CATE predictions?
	What evaluation procedure to use?

	Analyzing AutoCATE—Stage 2: Estimation Protocol
	Analyzing AutoCATE—Stage 3: Ensembling Protocol
	Benchmarking AutoCATE Against Common Alternatives

	Conclusion
	Background on CATE Estimation
	Challenges: The Fundamental Problem and Confounding
	Assumptions For Identifiability
	CATE Estimation: Meta- and Baselearners

	AutoCATE: Additional Information
	Metalearners
	Evaluation and Risk Measures
	Preprocessor and Baselearner Search Spaces
	Example ML Pipeline
	Ensembling and Multi-Objective Model Selection
	AutoCATE's API: Additional Information

	Data: Additional Information
	Additional Results
	Stage 1: Evaluation
	Stage 2: Estimation
	Stage 3: Ensembling
	Benchmarking AutoCATE
	Analyzing AutoCATE's Results

	Comparing Software Packages for CATE Estimation

