20

25

30

35

40

Action Model Learning from Noisy Traces: a Probabilistic Approach
Paper ID #228

Primary Keywords: (/) Learning

Abstract

We address the problem of learning planning domains from
plan traces that are obtained by observing the environment
states through noisy sensors. In such situations, approaches
that assume correct traces are not applicable. We tackle the
problem by designing a probabilistic graphical model where
preconditions and effects of every planning domain operators,
and traces’ observations are modeled by random variables.
Probabilistic inference conditioned by the observed traces al-
lows our approach to derive a posterior probability of an atom
being a precondition and/or an effect of an operator. Planning
domains are obtained either by sampling or by applying the
maximum a posteriori criterion. We compare our approach
with a frequentist baseline and the currently available state-
of-the-art approaches. We measure the performance of each
method according to two criteria: reconstruction of the orig-
inal planning domain and effectiveness in solving new plan-
ning problems of the same domain. Our experimental anal-
ysis shows that our approach learns action models that are
more accurate w.r.t. state-of-the-art approaches, and strongly
outperforms other approaches in generating models that are
effective for solving new problems.

Introduction

The problem of learning symbolic planning domains, aka
action model learning, (Aineto, Celorrio, and Onaindia
2019; Grand, Pellier, and Fiorino 2020; Mordoch, Juba, and
Stern 2023) consists of inducing a symbolic planning do-
main from a set of observations of the executions of domain
actions. Most of the proposed approaches start from a set
of plan traces (Arora et al. 2018), i.e., sequences of (partial)
descriptions of the states of the environment interleaved by
the executed actions. Moreover, state descriptions are (of-
ten implicitly assumed to be) the result of decoding the sub-
symbolic signals acquired through the agent’s sensors.
Assuming that the interpretation of the signal leads to a
semantically correct description of the environment’s state
is often unrealistic. This is particularly evident when sen-
sors generate high-throughput data, such as images, audio
signals, natural language, point clouds, etc. In these cases,
the mapping from perceptions to symbolic states is typi-
cally provided by deep neural networks, which return the
truth value of state variables starting from the signals. For
example, starting from the picture of an object book;, a

neural network returns if the object is open or closed, i.e.
open(book;) = true or open(book;) = false.

In such situations, action model learning approaches that
assume correct traces, such as (Yang, Wu, and Jang 2007;
Cresswell and Gregory 2011; Cresswell, McCluskey, and
West 2013; Stern and Juba 2017; Lamanna et al. 2021),
are not applicable. There are existing approaches designed
for handling noisy traces (Rodrigues, Gérard, and Rou-
veirol 2011; Mourao et al. 2012; Segura-Muros, Pérez, and
Fernandez-Olivares 2018; Grand, Pellier, and Fiorino 2020);
however, we believe that the problem of action model learn-
ing from noisy plan traces cannot be considered fully ad-
dressed; especially when the noise level is particularly high,
where current state-of-the-art approaches do not provide a
satisfactory performance.

We posit that adopting a more principled approach in-
volving a probabilistic model, which explicitly represents
the components of the problem along with the associated
hypotheses and priors, has the potential to provide superior
results. Consequently, we design an approach, called Noisy
Offline Learning of Action Models (NOLAM), that is based
on a probabilistic graphical model, where preconditions and
effects of every planning domain operators, and traces’ ob-
servations are modeled by random variables. More precisely,
for each operator, every atom involving a subset of object
types that are involved by the operator is associated with a
boolean random variable that models whether the atom be-
longs to the set of positive (or negative) preconditions of the
operator; similarly for the sets of positive and negative ef-
fects of the operator. Therefore, NOLAM learns a probability
distribution of the preconditions and effects of each operator,
which is conditioned on the input noisy plan traces and max-
imum noise level. Probabilistic inference on the probabilis-
tic model adopted by NOLAM, conditioned by the observed
traces, allows NOLAM to derive a posterior probability of
an atom being a precondition and/or an effect of a planning
domain operator. Planning domains are obtained either by
sampling or by applying the maximum a posteriori criterion.

The advantage of employing probabilistic models for
solving the action model learning problem lies in their abil-
ity to explicitly represent the (in)dependency hypotheses
between random variables (associated with operators pre-
conditions and effects) and explicitly model prior knowl-
edge about their distribution. For example, the probabilis-

45

50

55

60

65

70

75

80

85

90

95

100

110

115

120

125

130

135

140

tic model adopted by NOLAM considers the dependence be-
tween an atom being a precondition and/or an effect of an
operator. Moreover, NOLAM also models the prior knowl-
edge of an atom being true/false in a given state. This ap-
proach offers the flexibility to explore various adaptations
of the probabilistic model of NOLAM by adjusting priors and
(in)dependence hypotheses.

The practical effectiveness of the proposed approach has
been proved in an extensive experimental analysis on 23 past
International Planning Competitions (IPCs) domains (Val-
lati et al. 2015). We compare NOLAM with a frequentist
baseline and currently available state-of-the-art approaches.
We measure the performance of each approach according to
two criteria: reconstruction of the original planning domain
and effectiveness in solving new planning problems of the
same domain. Our experimental analysis shows that NOLAM
outperforms all other approaches in terms of both accuracy
of the learned action models and in generating models that
are effective for solving planning problems.

The paper is structured as follows, we firstly discuss exist-
ing approaches for learning action models offline from noisy
plan traces. Next, we provide some basic notions of planning
domains and formally define plan traces with noisy states.
Then, we describe in detail the probabilistic model adopted
by NOLAM in terms of random variables and (in)dependence
assumptions. Afterward, we provide an ablation study of
NOLAM where we compare different assumptions about the
prior knowledge and different criteria for performing proba-
bilistic inference conditioned by the observed traces. Finally,
we perform a comparison between NOLAM, a baseline, and
two state-of-the-art approaches, by evaluating the accuracy
of the learned models and the performance in generating
models that are effective for solving planning problems.

Related Work

The action model learning problem has been widely stud-
ied under different assumptions on the environment states
and agent actions (Zhuo et al. 2010; Aineto, Celorrio, and
Onaindia 2019; Lamanna et al. 2021; Verma, Marpally, and
Srivastava 2021; Juba and Stern 2022; Mordoch, Juba, and
Stern 2023). We discuss related approaches by focusing on
the ones that learn action models offline from an input set of
noisy plan traces. In (Mourdo et al. 2012), the authors pro-
pose a method, namely ALICE, for learning action models
from traces with noisy and incomplete states. ALICE trains
a set of classifiers for predicting the action effects, and then
extracts an action model from the classifiers in the form of a
set of rules. However, the method proposed in (Mourio et al.
2012) is tested only with large amounts of data (i.e. about
20000 transitions per domain) and small noise levels (i.e.
from 0 to 0.05). On the contrary, NOLAM achieves high per-
formance with fewer data (i.e. few hundred of transitions per
domain) and works with a noise rate ranging from 0 to 0.4.
Another approach for learning action models from plan
traces with noisy actions is proposed in (Zhuo and Kamb-
hampati 2013). The proposed approach takes as input a set
of plan traces with no intermediate states, computes a set of
“candidate” action models consistent with the input traces,
and defines the probability distribution of the “candidate”

action models conditioned on the input traces. They learn
the parameters of such a probability distribution by means
of a policy gradient algorithm (Sutton and Barto 2018). The
approach in (Zhuo and Kambhampati 2013) is substantially
different from NOLAM since it does not deal with partial
traces where intermediate states are noisy. Learning action
models from traces with noisy intermediate states is the aim
of this work.

In (Segura-Muros, Pérez, and Fernandez-Olivares 2018),
authors propose planminer, a method for learning action
models from traces with noisy and incomplete states. For
each planning domain operator, they build a dataset consist-
ing of the transitions where the operator appears and then
learn a set of logical rules by applying an inductive learning
algorithm on the operator dataset. The learned rules can be
related to either preconditions or effects of the operator. Fi-
nally, the rules are converted to a PDDL (McDermott et al.
1998) action model.

The work by (Agravante, Kimura, and Tatsubori 2023)
learns action models from traces (with possibly noisy states)
by means of a neuro symbolic model that relies on inductive
logic (Riegel et al. 2020). They model the preconditions and
effects of an operator as a set of logical rules, where each
atom is associated with a binary weight. Then, they learn the
binary weights and translate the weighted rules into a PDDL
action model. However, no experimental analysis shows how
introducing noise in the intermediate states affects the per-
formance of this method.

Another method for learning action models from traces
with noisy states is proposed in (Rodrigues, Gérard, and
Rouveirol 2011). The proposed method learns a set of log-
ical rules associated with preconditions and effects of ac-
tions, and then incrementally specialize or generalize the
learned rules as new transitions are given as input. However,
the method in (Rodrigues, Gérard, and Rouveirol 2011) is
evaluated on a single domain (i.e. blocksworld) for learning
the preconditions and effects of a single operator from a few
hundred operator transitions. Our approach does not require
such a large amount of data, i.e. it learns operator precondi-
tions and effects from a few dozen of operator transitions.

Most importantly, the majority of the above approaches
is based on inductive logic, which makes these approaches
strongly depend on the input plan traces and less robust
to high levels of noise in the states of the traces. On the
contrary, NOLAM does not have this limitation. Further-
more, NOLAM uses a novel approach based on a proba-
bilistic graphical model that allows to express a variety
of (in)dependence assumptions between preconditions and
effects of the planning domain operators. All of the ap-
proaches above are evaluated in a limited number of IPC
domains ranging from 1 to 6, using an error metric that does
not differentiate between the completeness and correctness
of the learned models. On the contrary, we empirically prove
the effectiveness of NOLAM by conducting an extensive ex-
perimental evaluation on 23 IPC domains; we evaluate the
learned action models by means of standard precision and
recall metrics adopted in (Aineto, Celorrio, and Onaindia
2019; Lamanna et al. 2021), and the validity of the plans
computed with the learned action models.

145

150

155

160

165

170

175

180

185

190

195

200

205

210

215

220

225

230

240

245

250

There is a set of approaches that learn symbolic ac-
tion models from continuous high-dimensional observations
such as RGB images (Kurutach et al. 2018; Konidaris, Kael-
bling, and Lozano-Pérez 2018; Asai and Fukunaga 2018;
Hafner et al. 2019; Asai 2019; Asai and Muise 2021; Sar-
tor et al. 2023). These approaches map noisy perceptions
into latent propositional states by means of deep neural net-
works, and learn action models where preconditions and ef-
fects are specified in terms of latent state variables. How-
ever, the learned models can be used only for planning in the
latent space, and the latent states need to be decoded back
to human comprehensible representations. NOLAM does not
suffer from these drawbacks, and could in principle learn ac-
tion models from continuous high-dimensional observations
by integrating deep neural networks that map the continuous
observations into (possibly noisy) symbolic states.

Background

Let P be a set of predicates with associated arity, and O be
a set of operator names with associated arity. Predicates and
operators of arity n are called n-ary predicates and n-ary op-
erators. Given an n-tuple @ = (x1,...,x,) of distinct sym-
bols (constants or variables), let P(x) be the set of atomic
formulas p(z;,,...,x;,) obtained by applying the m-ary
predicate p € P to any m-tuple of symbols (z;,,...,z;,)
in & (with 1 < iy,...,14,, < n). For instance, if P contains
the single binary predicate on, and © = (21, x9, 23). Then,
P(e) = {on(w;,z;) |1 < i,j < 3}.

Definition 1 (Action schema) An action schema for an n-
ary operator name op € O on the set of predicates P is
a tuple <par(0p), pret (op), pre~ (op), eff " (op), eff (0p)>,
where par(op) is a tuple of variables, pre™ (op), pre™ (op),
eff ™ (op), and eff ~ (op) are four sets of atoms in P(par(op)).

Definition 2 (Ground action) The ground action
a = op(er,...,cn) of an n-ary operator name
op € O w.rt. the constants ci,...,c, is the triple
(pret(a), pre™(a), eff " (a), eff " (a)), where pre(a) (resp.
pre(a), eff™(a), eff (a)) is obtained by replacing the
i-th parameter of par(op) in pre™(op) (resp. pre™(op),
eff ™ (op), eff ~ (op)) with ¢;.

We use the term lifted, as the opposite of grounded, to re-
fer to expressions and actions where constants have been re-
placed with parameters.

Definition 3 (Action model) An action model M is a triple
(P,O,H) where P is a set of predicates, O is a set of op-
erator names with their arity and, for every op € O, H
is a function mapping an operator name op into an action
schema.

Definition 4 (Trace) A trace t is a set of n transitions
{(si,ai, s) Y7, where s, = s; \ eff " (a;) Ueff™ (a;).

Given a plan 7 = (aq,...,a,), the plan trace of « is
a trace tr = {(s;—1,a;,5;)}, where the transitions are
generated by executing 7 from sg. Similarly, a set 7 of m
traces can be defined as |J]", ¢;.

Definition 5 (Noisy trace) Given a trace t, a noisy trace t
of t is a set of n transitions {(8;, a;, §,) }_, where §; (resp.
§%) is obtained by changing the truth value of some atom in
s; (resp. s}).

Notice that the only difference between a trace ¢ and a
noisy trace ¢ generated from ¢ is in terms of truth values of
state atoms, whereas ¢ and ¢ shares the same set of ground
actions. We denote by T asetof noisy traces generated from
T, where every i € 7 is a noise trace of t,eT.

Method

Our method is based on a probabilistic model that explains
how a given set of observations, i.e. the state transitions in
a set of noisy traces, can be generated by the execution of a
set of operators with a certain action schema. Given a set of
observations of the state transitions generated by executing
an operator op € O, we want to find, for every atom p(x) €
P(par(op)), the probability that p(x) is a positive/negative
precondition and/or a positive/negative effect of op.

Graphical model for noisy trace generation

We start by introducing the random variables that model the
sets of preconditions and effects of an operator, the truth
values of propositions in the state transitions generated by
executing the operator, and the noisy truth values of propo-
sitions in the same state transitions observed through noisy
sensors. Then, we describe the probabilistic model adopted
by NOLAM for inferring the probability of an atom being
a positive/negative precondition (or effect), given the truth
values of such atom in the observed state transitions.

For each operator op € O of an action model M, and
for every atom p(x) € P(par(op)), we introduce two ran-
dom variables R, ,z) and E,,) that take values in
{+,—,0}. The variable R, ,(a) (resp. E,, ,(«)) indicates
if p(x) is a positive, a negative, or is not a precondition
(resp. effect) of op. For example, R, () = + indicates
that p(z) € pret (op).

We make the following independence assumptions:

* For every pair of distinct operators op, op’ € O and for
every atom p(x), we assume that Rop p(z) and R
are independent, similarly for R, ,(») and Eopr p(a)s
Eop p@) and Egp 2y, and Eqp) and R (o). This
assumption is typically adopted in PDDL, where the
specification of the sets of preconditions and effects of
an operator does not depend on the sets of preconditions
and effects of a different operator.

op’ ,p(x)

* For every operator op € O and pair of distinct atoms
p(x),p'(z') € P(par(op)), we assume that R, ,(x)
and .Rop,p’(m’) are independent; E,, () an op.p’ (@)
are independent, and R, ,z) and E,, ,/(4/) are inde-
pendent. This assumption is rather strong; however, it is
an acceptable trade-off between complexity and perfor-
mance. Indeed, considering dependencies between mul-
tiple preconditions and effects would result in an expo-
nential increase in the inference complexity. Notice that,
we do not assume that R, and F) are inde-
pendent.

op,p(x) op,p(

260

265

270

275

280

285

290

295

300

305

310

315

320

325

330

335

340

350

G

t1=1,....n

Figure 1: Graphical model showing the dependencies among
the random variables adopted for modelling Pr(N | R, E).

The above assumptions allow us to describe NOLAM by fo-
cusing on a single operator op € O and atom p(x) €
P(par(op)), though NOLAM can be applied to a set of op-
erators O and set of predicates applied to the operators pa-
rameters. For the sake of readability, in the following, we
refer to Ry, () and Ey, (o) as R and E, respectively.
The second group of random variables concerns the (ob-
served) truth values of ground atoms in the state transitions
obtained by executing an operator op € O. Let T be a set
of n transitions of op and 7 be a set of noisy traces gen-
erated from 7. For each (s;,0p(c;),s;) € T, we intro-
duce two boolean random variables X; and Y; that repre-
sent the truth values of the ground atom p(c;) in s; and s/,
respectively. For example, both X; and Y; being true indi-
cates that p(¢;) € s; N s}. Similarly, for the noisy transition

(3:,0p(c),8,) € T, we introduce two boolean random vari-

ables X; and Y; that represent the truth values of the ground
atom p(c;) in §; and §;, respectively. We model noise in
the sensors by the conditional probabilities P(X; | X;) and
P(Y; | Y;), which are two equal Bernoulli distributions with

parameter e € [0,1],i.e., P(X; =% | X; = z) isequal to e
if # # x and (1 — e) otherwise; similarly for P(Y; | Y;).

For each combination of values (z,y) € {0,1}*, we in-
troduce a random variable N (*¥) that counts the number of
transitions in 7 where (X;,Y;) = (z,y):

(z,y) — .-
NED =3 15, S=ew M
i=1
Let N = (NOD NGO NOD N(0.0)) be a random vec-
tor of variables that take values in {0, ..., n}.

The dependencies among the previously introduced ran-
dom variables are described in the graphical model in Figure
1. Notice that, since we do not assume R and E to be inde-
pendent, we consider (R, E) as a unique variable that takes
values in {4, —, @}2. Similarly, since X; and Y; are not inde-
pendent, we consider (X, Y;) as a single variable that takes
values in {0, 1}2. The variables X; and Y; depend on R and
FE since, e.g., when (R, E') = (+, —) then (X,,Y;) = (1,0);
whereas X depends on X since, with probability 1 — e,
X = 2 when X = ; similarly for Y and Y. Finally, NV
depends on X ; and Yi, as of Equation (1).

We assume that P(X;,Y; | R, FE) are equal for every i
in {1,...,n}. Furthermore, P(X; | X;,Y;) = P(X; | X;)

(V) =00] [V =01] [XY)=00] [x¥)=011)]

e —~

—
I
o
N

N

(G0 =00] [&H=0D] [E7)=00)]](X,)?)(LUL\

P(X=1Y=1|R=0,E=4)=(1—-k)e(1—e)+ k(1 —e¢)?

Figure 2: Computing P(X =1,V =1 | R=0,E = +).

and P(Y; | X;,Y;) = P(Y; | Y;) since X; (or ¥;) only de-
pends on X; (or Y;). Finally, we assume that P(Xi | X;) =
P(Y; | Y;), and they are equal for every i in {1,...,n}, ie.
the probability of correctly observing X, (or Y;) does not
change in different state transitions of 7. This is reasonable
when, e.g., the value of X is observed through a noisy sen-
sor with a fixed noise level. Therefore, in the following we
omit the index ¢ from X;,Y;, X i, and Yl The independence
of P(X;,Y; | R, E) from i implies that Pr(N =n | R, E)
factorizes as:

(") [[PrX=2Y=¢|RE"")

n
T,y

where Pr(X,Y | R,E) is obtained by marginalizing
Pr(X | X)Pr(Y | Y)Pr(X,Y | R,E)over X and Y, i.e.:

> Pr(X|X =a)Pr(Y]Y =y)Pr(X =2,Y =y|R,E)

z,Y

We finally need to provide a model for P(X,Y | R, E). No-
tice that P(X,Y | R, E) is deterministic when R is differ-
ent from (). For instance, if R = + and E = —, i.e. if p(x)
is a positive precondition and a negative effect, then p(x)
must be true before and false after executing the operator,
and therefore Pr(X =1,Y =0|R=+,F = —) = L.
When R = () and E = —, i.e. p() is neither a positive nor
a negative precondition, X can be either O or 1. The value of
Y instead is determined by X and E. For instance, if X = 1
and E = (), then Y must be 1. We therefore need to intro-
duce a prior k € [0, 1] of X being true. In our experiments,
we set k = 0.5 since changing the value of £ had no signifi-
cant impact on the performance.

Example 1 An example where we compute P(X =1, Y =
1| R=0,FE = +) is shown in Figure 2 and detailed in the

following. We compute Pr(X =1,Y =1|R=0,E = +)

355

360

365

370

375

380

385

390

395

400

405

by marginalizing over X and'Y :

Y O Pr(X=1Y=1X==zY =y)
zye{0,1} Pr(X=2,Y=ylR=0,E=+4)

Since Pr(X = 2,Y = 0| R =0,E = +) = 0 for
every x € {0, 1}, we have that the above summation can be
written as:
Pr(X=1Y=1|X=0,Y=1)
-Pr(X=0Y=1|R=0,E=+)
+Pr(X=1,Y=1|X=1Y=1)
Pr(X=1,Y=1|R=0,E=+)
and the above sum is equal to:
e(l—e)Pr(X=0,Y=1|R=0,E=+)
+(1-e?Pr(X=1,Y=1|R=0,E=+)
which can be formulated as:
e(l—e)Pr(X =0)+(1-e)?Pr(X =1)
and we finally obtain:
e(l—e)k+(1—e)?(1—k)
we can derive Pr(X = z,Y =y | R = r,E = e) for
(z,y) € {0,1}? and (r,e) € {+,—,0}? in a similar way.

We report all possible values of Pr()A(,SA/ | R,E) in the
supplementary material.

Estimating preconditions and effects
Our objective is to estimate the posterior probability of
(R, E) given the observations IV, i.e. Pr(R,E | N).

The posterior Pr(R, E | N) can be exploited for obtain-
ing an approximation of an action model that generates the
traces 7. By the Bayes Theorem, Pr(R,E | N) can be
formulated as:

Pr(N | R,E)Pr(R,E)
Pr(N)

3

where Pr(N | R, E) is typically referred to as likelihood,
whereas Pr(R, E) is a prior, and P(IN) is the probability
of the observations IN.

The probability Pr(IN') can be computed by marginaliz-
ing over R and F as follows:

> Pr(N,R=rE=e).)
re€{+,—,0}

The joint probability Pr(IN, R, E') can be decomposed as:
Pr(N | R,E)Pr(R,E) (5)

where the prior Pr(R, E) is given as input, and the like-
lihood Pr(N | R,E) is computed according to Equa-
tion (2). After deriving Pr(R,E | NN), for each opera-
tor op € O and p(x) € P(par(op)), NOLAM derives the

sets prejp, pre,,, effjp and eff ,, by applying the maximum

a posteriori criterion on Pr(R, E | N).

Domain #types |P| |O| max arity P max arity O
driverlog 6 6 6 2 4
n-puzzle 2 3 1 2 3
transport 7 5 3 2 5
tpp 8§ 7 4 3 7
hanoi 3 3 1 2 3
gripper 4 4 3 3 4
elevators 6 8 6 2 5
floortile 4 10 7 2 4
zenotravel 6 4 5 2 6
depots 10 6 5 2 4
ferry 2 5 3 2 2
satellite 4 8 5 2 4
spanner 6 6 3 2 4
gold-miner 1 12 7 2 2
nomystery 6 6 3 3 6
blocksworld 1 5 4 2 2
barman 10 15 12 2 6
parking 2 5 4 2 3
rover 7 25 9 3 6
matching-bw 2 10 10 2 3
sokoban 3 4 2 3 5
grid 3 9 5 2 4
miconic 2 6 4 2 2

Table 1: Statistics of the IPC classical planning domains. For
every domain (1st column), we report the number of object
types (2nd column), the number of predicate names (3rd col-
umn), the number of operators (4th column), the maximum
predicates arity (5th column), and the maximum operators
arity (6th column).

Experiments

We evaluate the accuracy of the action models learned by
NOLAM from a set of noisy traces and the effectiveness of
the learned action models for solving planning problems.
We firstly perform an ablation study of NOLAM, and then
a comparison with state-of-the-art approaches.

Benchmarks We conduct an experimental analysis on 23
classical planning domains taken from past [PCs. To gener-
ate the noisy traces used for learning, we proceeded as fol-
lows. For each domain, we generated 10 random problems
using the generators available from past IPCs. The statistics
about the domains are reported in Table 1. For every gener-
ated problem, we computed a solution plan with the ground
truth action model provided in the IPCs. As a planner we
adopted FastDownward (Helmert 2006) and a lazy greedy
best-first search with context-enhanced additive (Eyerich,
Mattmiiller, and Roger 2012) and FastForward (Hoffmann
2001) heuristics. By executing every solution plan from the
initial state of the solved problem, we obtained a set 7 of
10 traces for each domain. The generated traces contain a
number of transitions ranging from 1 to 70, a number of ob-
jects ranging from 3 to 58, and a number of ground atoms
ranging from 8 to 687. Finally, the set T of noisy traces
has been obtained by randomly changing the truth value

410

415

420

425

430

435

440

445

450

460

465

470

475

of each ground atom in every state in 7 with probability
e €{0,0.1,0.2,0.3,0.4}.

Evaluation metrics To evaluate the learned action models
we use two main criteria. A first criterion measures the capa-
bility of reconstructing the ground truth model, by compar-
ing the action model M, learned from the set of noisy traces
7’, with the ground truth model M, which generated the set
of traces 7. We compare the learned and ground truth action
models using the well-known precision and recall metrics on
the preconditions and effects of the operators. The precision
Pyret (op) and recall Rye+(op) Of the positive preconditions
of an operator op € O are defined as:

P [pre’ (op) N pre* (op)|

e T pie (op)|
R, _ lpte’(op) Npre* (op)|
preren) [pre*(op)]

where pre® (op) and pret(op) are the sets of positive pre-
conditions of op in M and M, respectively. Similarly, we
define the precision and recall for the sets pre—, eff " and
eff ~. The overall precision P,, for an operator op is defined
by considering the sets pre(op) = pre™ (op) U pre™ (op) and
eff (op) = eff T (op) U eff~ (op):

p_ lpie(op) Npre(op)| + |eff(op) N eff(op)|
3 |pte(op)| -+ [eff (op)|

R _ |pre(op) N pre(op)| + |eff(op) N eff(op)|
op —

=

We explicitly define P,, instead of averaging Pyret(op)s
Pore (op)> Peft+ (op)» a1 Pegr— (o), because for domain with-
out negative preconditions Fpre- (op) and Rpre-(op) are not
significative. However, we want to evaluate the impact of
learning wrong negative preconditions. Therefore, we adopt
the above definition of F,, in our ablation study for mea-
suring the impact of wrong predictions of negative precon-
ditions. The average precision P (or recall R) of M wrt.
M is defined by averaging P,, (or R,,;) for all the operators
op € O.

A second criterion concerns the capability of the learned
models of solving problems. There are situations where it is
preferable to learn an action model capable of solving more
problems, than an action model more similar to the ground
truth model. Indeed, an error in the prediction of a precon-
dition or an effect can have a substantially different impact
on the learned model’s capability of solving problems. For
example, if the learned model has a precondition that is not
in the ground truth model but is implied by another precon-
dition in the ground truth model, such a precondition would
not have a negative impact on solving problems effectively.
Instead, a learned model that contains an effect that is not in
the ground truth model may produce non-executable plans.

Therefore, we also evaluate the capability of a learned
action model to generate valid plans, i.e. plans that are
executable and actually achieve the goal according to the

[pre(op)| + [eff (op

AN - — 0
R 2(n@D pL0)) 2(n(0:D) 1, 0.0)) 1
3n 3n 3

E n(0,1) n(1,0) n(L1) 1 (0,0)
n n n

Table 2: Pr(V =v) withV € {R,E} and v € {4, —,0}.

ground truth model. We measure such capability by com-
puting two ratios EP and EV of solved problems and valid
plans to a set of problems:

EP — # problems with a solution plan in M

problems

__ # problems with a solution plan in M valid in M
N # problems

EV

All the experiments have been conducted on a CPU Apple
M1 Pro with 16 GB of RAM. !

Ablation study We firstly perform an ablation study of
NOLAM to investigate how different methods for deriving

M from Pr(R, E | N) and different assumptions about the
prior Pr(R, E) affect the precision and recall of M.

We compare two methods for deriving M from the poste-
rior Pr(R, E' | N): maximum a posteriori (MAP) and sam-
pling (sample).

We also consider an orthogonal analysis that distinguishes
the situations where the absence of negative preconditions
is given as input knowledge by setting Pr(R = — F) =
0, and the situation where Pr(R, F) admits also negative
preconditions. We refer to the situation where Pr(R =
—,E) = 0 by index pre™. The resulting variants of NO-
LAM are denoted by MAP, sample, MAPy.+, and sam-
plege+. We factorize the prior Pr(R, E) as Pr(R) - Pr(E),

where Pr(R) and Pr(E) are estimated from 7 according
to the formulas reported in Table 2. For example, the prior
Pr(E = +) is obtained as the ratio of transitions where the
ground atom is false in the previous state and true in the des-
tination state. It is worth noting that having Pr(R = () =0
would make every atom either a positive or a negative pre-
condition. To avoid this situation, we set Pr(R = 0)) = 1.
We report the average precision and recall of the action
models learned by MAP, MAP .+, sample and sample e+
in Figures 3 and 4, respectively. The measures of preci-
sion and recall are averaged over 23 domains. Not surpris-
ingly, MAP.+ (or sampleye+) achieves higher precision
than MAP (or sample), while the recall is comparable. This
is because, for every domain, the ground truth model has no
negative preconditions, and MAP.+ (or sampley+) can-
not introduce negative preconditions in the learned model.
However, we noticed that most of the negative precondi-
tions learned by MAP and sample for a single operator are
implied by some positive preconditions of such an opera-
tor. For example, in the blocksworld domain, the operator

'The code is available in the supplementary material

480

485

490

495

500

505

510

515

520

525

530

535

0.4- —=== MAPpre+ ’ '_\‘
—-— sample
0.3 P
samplepre+
0.2~ i | |)
0.0 0.1 0.2 0.3 0.4
e

Figure 3: Average precision of the action models learned
by different variants of NOLAM when error e ranges from
0to 0.4.

MAP

0.4 ~==" MAPpre*
—-— sample
0.3- P
samplepre+
0.2~ | . I)
0.0 0.1 0.2 0.3 0.4

e

Figure 4: Average recall of the action models learned by
different variants of NOLAM when error e ranges from 0
to 0.4.

pret
planminer
Ppret Rpret

ALICE NOLAM
l:’pre‘r Rpre+ PeffJr ReffJr

NOLAM
e |Poret Rpret

baseline
Ppret Rpret

eff™ eff ™
baseline
Peff+ ReffJr

ALICE
Peff’ Reff’

ALICE NOLAM baseline
Petr+ Refr |Pefr— Regr— |Pefr- Rer-

planminer
Peff’ Reff’

planminer
Peff+ RefFJr

0 |0.83 0.97 |0.79 0.97 (0.77 0.93 [0.78 0.42
0.1/0.82 0.96 |0.78 0.97|0.66 0.54 |0.70 0.39
0.2/10.79 091 |0.78 0.96|0.56 0.59 [0.56 0.40
0.3/0.78 0.82 |0.75 0.90|0.51 0.54 [0.50 0.38
0.4/0.66 0.70 |0.61 0.77]0.45 0.52 |0.44 0.38

0.97 0.97]0.97 0.97]0.93 0.93 [0.85 0.81
0.96 0.97/0.95 0.95 |0.52 0.70 [0.69 0.72 |0.90 0.910.92 0.90 [0.40 0.57
0.92 0.95|0.92 0.91 [0.51 0.67 |0.45 0.48 |0.83 0.87|0.84 0.81 |0.32 0.50 [0.48 0.51
0.83 0.9 |0.68 0.60 [0.35 0.54 |0.39 0.47
0.54 0.63|0.28 0.24 |0.22 0.37 |0.29 0.31

0.84 0.87 |0.80 0.74

0.66 0.61

0.92 0.92]0.92 0.91

0.36 0.43
0.33 0.41

0.77 0.82|0.60 0.52 {0.34 0.53
0.48 0.60|0.23 0.17 |{0.21 0.32

Table 3: Comparison of the average precision and recall for the positive preconditions and positive/negative effects of the action
models learned from 10 traces with error e ranging from 0 to 0.4. The precision and recall values are averaged over 23 domains.
The average CPU time (in seconds) required for learning every single action model is 0.2s for NOLAM, 0.18s for baseline,

0.14s for ALICE and 7.23s for planminer.

PUT-DOWN(z) has the positive precondition HOLDING(z),
indicating that to put down a block x the agent must be hold-
ing x. However, when e.g. e = 0 then MAP and sample learn
the negative precondition ~HANDEMPTY (), indicating that,
to put down z, the agent hand cannot be empty, which is
implied by HOLDING(x) being true. It is worth noting that
learning negative preconditions implied by positive ones de-
creases the precision P but does not affect the effectiveness
of the learned action models for computing valid plans.

Interestingly, the recall of MAP (or MAP.+) is higher
than the recall of sample (or sampley.+), and the gap in
terms of recall tends to increase as the error e increases.
These results show that the maximum a posteriori criterion
provides action models that are more accurate in terms of re-
call and better or comparable in terms of precision than the
sampling criterion, regardless of the admittance of negative
preconditions.

Comparison with state-of-the-art approaches We com-
pare NOLAM with a baseline and two state-of-the-art ap-
proacheszz planminer (Segura-Muros, Pérez, and Fernandez-
Olivares 2018) and ALICE (Mourao et al. 2012). Since plan-

2For other approaches there is no available code, which prevents
us from further comparisons

miner and ALICE learn action models with negative precon-
ditions, for a fair comparison, we adopt the MAP variant of
NOLAM. We also compare with a frequentist baseline, which
we refer to as baseline, that considers only the priors Pr(R)
and Pr(E) defined in Table 2 and selects the values v for R
and E that maximize the priors.

We report the average precision and recall grouped by
pret, eff ™ and eff~ for error e ranging from 0 to 0.4 (Ta-
ble 3). The metrics P~ and R~ are not reported since
the considered domains have no negative preconditions. NO-
LAM always outperforms planminer and ALICE in both preci-
sion and recall, in many cases, by a large margin (e.g. when
0.2 < e < 0.4). On average, NOLAM improves the pre-
cision and recall w.r.t. planminer of 0.29 and 0.25, respec-
tively; similarly, NOLAM improvements of precision and re-
call w.r.t. ALICE are respectively 0.25 and 0.36 on average.
These results show that NOLAM learns action models that
are much more accurate than the ones learned by current
state-of-the-art approaches.

Surprisingly, our baseline achieves competitive perfor-
mance w.r.t. NOLAM. The precision P+ achieved by NO-
LAM is always greater than the one achieved by baseline.
However, when 0.2 < e < 0.4, the recall R+ is better
for baseline. We believe this is because baseline adds more

540

545

550

555

560

565

570

575

580

585

590

595

600

1.0-

0.9- —_— NOLA.M
baseline
ey planminer
2 0.7-% —— ALICE
Co6-
2
@ 0.5-
o
o 0.4-
£03-
0.2-
0.1- ;
0.0 - T B I [em=—e e _}
0.0 0.1 0.2 0.3 0.4

Figure 5: Average ratio of valid plans produced with the
learned action models.

positive preconditions to every operator, introducing posi-
tive preconditions that are not in M (which reduces Pye+),
but reducing the number of positive preconditions that are
in M and not in M (which increase I2j.+). The preci-
sion P+ of NOLAM is better than or comparable to Pg+
achieved by baseline for all considered values of e; simi-
larly for Re¢+, P.s— and R - . Notably, with high error e,
i.e.e € {0.3,0.4}, NOLAM outperforms baseline in terms of
(positive and negative) affects precision and recall by a large
average margin (0.21 and 0.35, respectively). This is empir-
ical evidence that, with high levels of noise, NOLAM is more
robust than baseline in learning accurate action models.

We further evaluate the action models learned by NOLAM,
baseline, planminer, and ALICE on their capability of solv-
ing new planning problems, i.e., problems that were not used
for generating the set of traces 7. For each domain, we ran-
domly generated a new set of 10 problems, and solved them
with the learned models. For solving each problem, we set
a CPU time limit of 60 seconds, which was sufficient for
solving every problem with the ground truth action model.

Figure 6 and 5 report the measures of EP and EV averaged
over the 23 considered domains. We evaluated the validity
of the plans by means of the validation tool adopted in past
IPCs (Howey, Long, and Fox 2004).

NOLAM strongly outperforms ALICE in terms of EV, for
all considered values of e; similarly, NOLAM strongly out-
performs planminer for all considered values of e but e = 0,
where planminer learns action models that produce plans
as valid as NOLAM ones. However, the valid plans ratio
achieved by planminer drastically decreases when e > 0.
Surprisingly, the EV achieved by ALICE is always lower than
0.06. We noticed that the action models learned by ALICE
lack of static preconditions, even when e = 0, which is a
possible reason that causes them to not produce valid plans.
Interestingly, the failures of planminer and ALICE are not
mainly due to the fact that they do not find solution plans.
Indeed, the values of EP achieved by planminer and ALICE
are always higher than 0.27 and 0.21, respectively.

—— NOLAM
baseline

o =
o o

o 0.8-_

2 UV S planminer
—— ALICE

c o e
U o o~

0.4-

0.3-

0.2-

0.1-

0.0~ ! : . ‘

0.0 0.1 0.2 0.3 0.4
e

Solved problems rat

Figure 6: Average ratio of problems solved with the
learned action models.

The gap between EP and EV is lower for NOLAM and
baseline than for ALICE and planminer. Hence, the action
models learned by NOLAM and baseline produce a lower
number of invalid plans than the action models learned by
ALICE and planminer.

Notably, despite the performance of the action models
learned by NOLAM and baseline are comparable in terms
of precision and recall, the models learned by NOLAM are
much more effective for solving planning problems. The
improvement of NOLAM w.r.t. baseline over plans valid-
ity ranges from 0.04 to 0.26, and decreases as the error
e increases. Even though baseline achieves higher R+
and higher/comparable P and P.g+ than NOLAM when
e < 0.2, then EV is significantly higher for NOLAM than for
baseline. This is an empirical evidence that metrics precision
and recall can be misleading when evaluating the learned ac-
tion models quality. These results show that the probabilistic
model adopted by NOLAM allows to learn action models that
are much more effective for solving planning problems than
current state-of-the-art approaches.

Conclusions and Future Work

We presented an approach for learning action models of-
fline from an input set of plan traces with noisy states. Our
approach, namely NOLAM, models the fact that an atom
is a precondition or effect of an operator by means of a
probabilistic model. NOLAM performs probabilistic infer-
ence given a set of observations consisting of the transitions
in the plan traces. We compare NOLAM with two state-of-
the-art approaches on 23 IPC planning domains, by evaluat-
ing the accuracy of the learned models and the effectiveness
of the learned models for solving planning problems. In our
experimental analysis, NOLAM strongly outperforms other
approaches. In future work, we will extend NOLAM to an
online setting, where the traces are generated online by ex-
ecuting action and observing the environment state through
noisy sensors.

605

610

615

620

625

630

635

640

645

650

655

660

665

670

675

680

685

690

References

Agravante, D. J.; Kimura, D.; and Tatsubori, M. 2023.
Learning Neuro-Symbolic World Models with Logical Neu-
ral Networks. In PRL Workshop Series On Bridging the Gap
Between Al Planning and Reinforcement Learning.

Aineto, D.; Celorrio, S. J.; and Onaindia, E. 2019. Learning
action models with minimal observability. Artificial Intelli-
gence, 275: 104-137.

Arora, A.; Fiorino, H.; Pellier, D.; Métivier, M.; and Pesty,
S.2018. A review of learning planning action models. The
Knowledge Engineering Review, 33: €20.

Asai, M. 2019. Unsupervised Grounding of Plannable First-
Order Logic Representation from Images. In ICAPS.

Asai, M.; and Fukunaga, A. 2018. Classical Planning in
Deep Latent Space: Bridging the Subsymbolic-Symbolic
Boundary. In AAAL

Asai, M.; and Muise, C. 2021. Learning neural-symbolic
descriptive planning models via cube-space priors: the voy-
age home (to STRIPS). In Proceedings of the Twenty-Ninth
International Joint Conferences on Artificial Intelligence,
2676-2682.

Cresswell, S.; and Gregory, P. 2011. Generalised domain
model acquisition from action traces. In Proceedings of
the International Conference on Automated Planning and
Scheduling, volume 21, 42-49.

Cresswell, S. N.; McCluskey, T. L.; and West, M. M. 2013.
Acquiring planning domain models using LOCM. The
Knowledge Engineering Review, 28(2): 195-213.

Eyerich, P; Mattmiiller, R.; and Roger, G. 2012. Using
the context-enhanced additive heuristic for temporal and
numeric planning. In Towards Service Robots for Every-
day Environments: Recent Advances in Designing Service
Robots for Complex Tasks in Everyday Environments, 49—
64. Springer.

Grand, M.; Pellier, D.; and Fiorino, H. 2020. AMLSI:
A Novel Accurate Action Model Learning Algorithm. In
KEPS.

Hafner, D.; Lillicrap, T.; Fischer, L.; Villegas, R.; Ha, D.;
Lee, H.; and Davidson, J. 2019. Learning latent dynamics
for planning from pixels. In International conference on ma-
chine learning, 2555-2565. PMLR.

Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research, 26: 191-246.

Hoffmann, J. 2001. FF: The fast-forward planning system.
Al magazine, 22(3): 57-57.

Howey, R.; Long, D.; and Fox, M. 2004. VAL: Automatic
plan validation, continuous effects and mixed initiative plan-
ning using PDDL. In 16th IEEE International Conference
on Tools with Artificial Intelligence, 294-301. IEEE.

Juba, B.; and Stern, R. 2022. Learning probably approx-
imately complete and safe action models for stochastic
worlds. In AAAI volume 36, 9795-9804.

Konidaris, G.; Kaelbling, L. P.; and Lozano-Pérez, T. 2018.
From Skills to Symbols: Learning Symbolic Representa-
tions for Abstract High-Level Planning. J. Artif. Intell. Res.,
61:215-289.

Kurutach, H.; Tamar, A.; Yang, G.; Russell, S.; and Abbeel,
P. 2018. Learning Plannable Representations with Causal
InfoGAN. In NIPS.

Lamanna, L.; Saetti, A.; Serafini, L.; Gerevini, A.; and
Traverso, P. 2021. Online Learning of Action Models for
PDDL Planning. In IJCAI 4112-4118.

McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C. A.;
Ram, A.; Veloso, M.; Weld, D. S.; and Wilkins, D. E. 1998.
PDDL—The Planning Domain Definition Language. Tech-
nical Report DCS TR-1165, Yale Center for Computational
Vision and Control, New Haven, Connecticut.

Mordoch, A.; Juba, B.; and Stern, R. 2023. Learning safe
numeric action models. In AAAI, volume 37, 12079-12086.

Mourdo, K.; Zettlemoyer, L.; Petrick, R. P.; and Steedman,
M. 2012. Learning STRIPS operators from noisy and in-
complete observations. In Proceedings of UAI, 614-623.
Riegel, R.; Gray, A.; Luus, F.; Khan, N.; Makondo, N.;
Akhalwaya, I. Y.; Qian, H.; Fagin, R.; Barahona, F.; Sharma,
U.; et al. 2020. Logical neural networks. arXiv preprint
arXiv:2006.13155.

Rodrigues, C.; Gérard, P.; and Rouveirol, C. 2011. Incre-
mental learning of relational action models in noisy envi-
ronments. In ILP 2010, 206-213. Springer.

Sartor, G.; Oddi, A.; Rasconi, R.; and Santucci, V. G. 2023.
Intrinsically Motivated High-Level Planning for Agent Ex-
ploration. In International Conference of the Italian Associ-
ation for Artificial Intelligence, 119-133. Springer.

Segura-Muros, J. A.; Pérez, R.; and Fernandez-Olivares, J.
2018. Learning numerical action models from noisy and par-
tially observable states by means of inductive rule learning
techniques. KEPS, 46.

Stern, R.; and Juba, B. 2017. Efficient, safe, and probably
approximately complete learning of action models. In Pro-
ceedings of the 26th International Joint Conference on Arti-
ficial Intelligence, 4405-4411.

Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT press.

Vallati, M.; Chrpa, L.; Grze$, M.; McCluskey, T. L.; Roberts,
M.; Sanner, S.; et al. 2015. The 2014 international planning
competition: Progress and trends. Ai Magazine, 36(3): 90—
98.

Verma, P.; Marpally, S. R.; and Srivastava, S. 2021. Ask-
ing the right questions: Learning interpretable action mod-
els through query answering. In AAAI, volume 35, 12024—
12033.

Yang, Q.; Wu, K.; and Jang, Y. 2007. Learning action mod-
els from plan examples using weighted MAX-SAT. Artif.
Intell., 171: 107-143.

Zhuo, H. H.; and Kambhampati, S. 2013. Action-Model Ac-
quisition from Noisy Plan Traces. In IJCAI, 2444-2450.
Zhuo, H. H.; Yang, Q.; Hu, D. H.; and Li, L. 2010. Learning
complex action models with quantifiers and logical implica-
tions. Artificial Intelligence, 174(18): 1540-1569.

695

700

705

710

715

720

725

730

735

740

745

