
Hippocrates: An Open-Source Framework for
Advancing Large Language Models in Healthcare
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Abstract

The integration of Large Language Models (LLMs) into healthcare promises to
transform medical diagnostics, research, and patient care. Yet, the progression of
medical LLMs faces obstacles such as complex training requirements, rigorous
evaluation demands, and the dominance of proprietary models that restrict academic
exploration. Transparent, comprehensive access to LLM resources is essential for
advancing the field, fostering reproducibility, and encouraging innovation in health-
care AI. We present Hippocrates, an open-source LLM framework specifically
developed for the medical domain. In stark contrast to previous efforts, it offers
unrestricted access to its training datasets, codebase, checkpoints, and evaluation
protocols. This open approach is designed to stimulate collaborative research,
allowing the community to build upon, refine, and rigorously evaluate medical
LLMs within a transparent ecosystem. Also, we introduce Hippo, a family of 7B
models tailored for the medical domain, fine-tuned from Mistral and LLaMA2
through continual pre-training, instruction tuning, and reinforcement learning from
human and AI feedback. Our models outperform existing open medical LLMs
models by a large-margin, even surpassing models with 70B parameters. Through
Hippocrates, we aspire to unlock the full potential of LLMs not just to advance
medical knowledge and patient care but also to democratize the benefits of AI
research in healthcare, making them available across the globe.

1 Introduction

The remarkable success of Large Language Models (LLMs) across diverse NLP tasks has revolu-
tionized artificial intelligence [42, 2, 15, 27, 10]. Despite their impressive generalization capabilities,
LLMs encounter challenges in clinical contexts, primarily due to a deficiency in domain-specific
knowledge and the intricacies of medical terminology. Bridging this gap, in this work, we introduce
Hippocrates (named after the Ancient Greek “Father of Medicine"), a state-of-the-art, fully open-
source framework designed to elevate LLMs’ proficiency in medical reasoning. We publicly share our
training data, complete training and evaluations codes, along with intermediate model checkpoints.
Our framework marks an important step towards democratizing advancements in medical LLMs.

Previous attempts to develop advanced medical LLMs yielded promising results by further training
them [20], supervised fine-tuning them [23, 12, 40], or both [45, 6], via special medical-text corpus
and medical instruction datasets. However, the data collection, pre-training, and finetuning stages
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Figure 1: The evolution of medical LLM performances on the MedQA dataset. Our
7B Hippo- and Hippo- models achieve 50.8% and 59.9% 5-shot accuracy, respectively.
Hippo- outperforms all existing open models, including even those with 70B parameters.

may include considerable complexity, which makes reproducing, analyzing, and comparing the
recent LLMs in that domain challenging. On the other hand, closed models, e.g. GPT4 [27],
Gemini [10], Med-PaLM [37], trained on closed-domain datasets make their results non-reproducible,
not to mention substantial computational costs and further complicate the understanding of which
components are crucial to the success of these advanced medical frameworks.

In this work, we provide full access to our framework, from the data sources to the training configura-
tions and the reproducible evaluation protocols. We conduct a detailed empirical analysis to identify
the impact of various design elements on LLM performance, leading to a domain-adapted framework
that demonstrates superior performance on multiple medical benchmarks. Based on these insights,
we develop a step-by-step guide for the efficient training of medical-LLMs. Our research efforts yield
two advanced 7B parameter models, Hippo- and Hippo- . As shown in Fig. 1, our models not
only outperform existing 7B and 13B models by a significant margin but also deliver results on par
with, and in some cases exceeding, those of 70B models. We argue that the development of a broad,
varied collection of open models is crucial for deepening our knowledge of language models and
enhancing their applicability across various domains.

In addition, we adopt a novel strategy for structuring our instruction tuning (IT) dataset, dividing it
into two distinct components: the General Instruction Dataset and the Evaluation Instruction Dataset.
The General dataset is designed to enable unbiased assessments by avoiding overlap with downstream
task data, marking a departure from previous methodologies. On the other hand, the Evaluation
Instruction Dataset, which incorporates training splits from evaluation benchmarks, facilitates direct
comparisons with existing models [6]. Notably, for the first time in the medical domain, our approach
incorporates preference learning from medical professionals into the model development process,
utilizing RLAIF [22] and GPT4 for annotating preferences.

For model evaluation, we employ the well-established EleutherAI framework2 [9], conducting tests
across a set of six varied medical downstream tasks. These include MedMCQA [31], PubmedQA
[17], MedQA [16], and the USMLE-step1, USMLE-step2, and USMLE-step3. Leveraging this
framework allows for straightforward replication of any LLM’s results, eliminating the necessity for
additional fine-tuning or the repetitive execution of evaluation scripts for each new model.

2 Hippocrates Framework

Fig. 2 shows the overall workflow of the Hippocrates framework, starting from domain-specific
pre-training and progressing through supervised fine-tuning and reinforcement learning from AI-
generated feedback to an extensive evaluation phase. This pipeline ensures our models are precisely
tailored and rigorously tested for the medical domain.

2https://github.com/EleutherAI/lm-evaluation-harness
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Figure 2: An overview of the Hippocrates framework, illustrating the four critical phases including
(1) continued pre-training, (2) supervised fine-tuning, (3) reinforcement learning from AI-generated
feedback, and (4) the comprehensive evaluation pipeline.

2.1 Continued Pre-training Data

A key aspect of our methodology is the integration of specialized medical knowledge through an
extensive pre-training corpus, assembled from three specialized datasets: Medical Guidelines, PMC-
Patients, and PubMedQA-contexts. The Medical Guidelines dataset comprises clinical practice
guidelines, is used for training Meditron models [6]. The PMC-Patients dataset [46] consists of
patient summaries extracted from case reports within PubMed Central (PMC). Additionally, the
PubMedQA-contexts dataset is constructed by extracting the context field of each sample in the
training split of the benchmark [17]. Detailed descriptions and specifications of each dataset are
available in Table 1. This extensive corpus, consisting of roughly 300M training tokens, forms the
foundation of our models, ensuring their proficiency in navigating medical terminology and practices.
We systematically assessed the impact of each dataset, both individually and in combination, to
optimize our model’s performance.

Table 1: Summary of the datasets used for continued pre-training, showing their sources, licence
information and data statistics.

Dataset Source License Size (MB) #Samples #Tokens

Medical Guidelines Meditron Apache 2.0 License 382.6 37,970 96M
PMC-Patients Pubmed Central CC BY-NC-SA 4.0 462.3 167,034 122M
PubMedQA-train PubMedQA MIT License 290.2 211,269 80M

Total 1,135.1 416,273 298M

2.2 Supervised Fine-Tuning Data

Developing effective medical LLMs requires blending domain-specific knowledge with sophisticated
reasoning abilities. Previous models often utilized instruction data consisting of samples from
the training or test sets of evaluation benchmarks. We also considered this setup, but additionally
investigated an alternative involving generic medical data. Consequently, we constructed two sets of
IT datasets: the General Instructions Data and the Evaluation Instructions Data.

General Instructions Data. This dataset aggregates more than 400K samples from nine different
datasets, each derived from the instruction corpora of previous studies [23, 12, 45, 21]. By excluding
data from the training or test splits of downstream QA benchmarks, we aim to minimize bias and
improve the model’s generalization capabilities across different reasoning tasks. A pre-processing
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protocol was employed to remove superfluous words and web URLs, ensuring the data’s quality and
relevance. The detailed statistics of the dataset are presented in Table 2.

Table 2: Summary of General Instructions Data, describing the datasets used, their sources,
together with their licence information, and size.

Dataset Source License Size (MB) #Samples #Tokens

Medical Flashcards MedAlpaca No commercialized use 18.8 33,955 3.9M
GenMedGPT-5k ChatDoctor Apache 2.0 3.1 5,452 0.6M
Open-Platypus Platypus CC BY-NC-SA 4.0 32.9 24,926 9.5M
HealthCareMagic-100k ChatDoctor Apache 2.0 143.8 112,165 32.3M
UMLS PMC-LLaMA CC BY 4.0 23.0 49,057 4.6M
UMLS-Relations PMC-LLaMA CC BY 4.0 21.7 50,000 4.3M
WikiDoc MedAlpaca CC BY-SA 4.0 11.0 10,000 2.6M
WikiDoc-Patient-Info MedAlpaca CC BY-SA 4.0 3.7 5,942 0.8M
MedicationQA PMC-LLaMA CC BY 4.0 0.4 552 0.1M

Total 258.4 292,049 58.7M

Evaluation Instructions Data. This dataset was formed to examine the effects of including
instruction samples directly from downstream tasks, a common practice in existing studies [6, 12, 45].
Instruction-response pairs were crafted using the training splits of various benchmarks, following
the templates established in Meditron [6]. We conducted a series of experiments to assess the
distinct influence of each split on each task, both individually and collectively. The details about the
Evaluation Instruction Data is given in Table 3.

Table 3: Summary of Evaluation Instructions dataset, showing which training splits of the
downstream tasks they are derived from and their data statistics.

Dataset Source License Size (MB) #Samples #Tokens

MedMCQA-train MedMCQA MIT License 114.4 182,822 24.9M
MedQA-train MedQA MIT License 14.2 10,178 3.4M
PubMedQA-train PubMedQA MIT License 76.3 211,269 95.9M

Total 204.9 404,269 124.2M

Beyond independently utilizing these datasets for supervised fine-tuning, we also examined the
impact of individual datasets as well as the collective effect of combining them on model performance
(refer to Appendix G).

2.3 Medical Preference Data

Constructing a preference dataset typically involves generating diverse responses to identical queries
using LLMs, which are subsequently evaluated by human annotators to identify the most accurate
response. This method, however, can become prohibitively expensive, both in terms of computation
for generating responses and the financial and time investments required for manual annotation.
To circumvent these issues, we leveraged the iCliniq-10k dataset [23], containing 10K authentic
patient-doctor dialogues from icliniq.com. Each dialogue features a patient question accompanied by
three different answers: one from an actual doctor, and the others from ChatGPT and ChatDoctor [23].
We conducted a thorough preprocessing of this dataset to eliminate any irrelevant or extraneous
information.

Medical RLAIF. To reduce annotation costs, we adopted the RLAIF methodology [22] in the
medical domain for the first time. Utilizing detailed prompts based on patient inquiries from the
iCliniq-10k dataset, we used GPT4 [27] to determine the optimal response based on predefined
instructions. These instructions were derived from those used in qualitative assessments by medical
professionals in Med-PaLM [35, 36], with minor modifications. This annotation approach amounted
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to a cost of $120. The exact prompt structure for applying RLAIF with GPT4 is given in Appendix J,
Figure 8.

Validation. To test the reliability of GPT4’s capacity to replicate medical expert annotations, we
subjected 250 samples from our dataset to careful examination by two medical doctors, given them the
same instructions that we provided in the prompt to GPT4. Our analysis revealed compelling results.
When comparing GPT4’s annotations against those of MD-1, GPT4 demonstrated a Kappa Score
of 0.376, indicating moderate agreement, and an accuracy of 68.9%. The comparison with MD-2
showed even stronger results, with GPT4 achieving a Kappa Score of 0.672, suggesting substantial
agreement, alongside an 83.6% accuracy. Interestingly, the inter-annotator agreement between the
two doctors themselves yielded a Kappa Score of 0.416 and an accuracy of 70.8%, situating GPT4’s
performance firmly within the range of human expert variability. These findings not only affirm
GPT4’s aptitude for medical annotation but also highlight its potential to serve as a cost-effective
alternative to human annotators in medical research and application settings. These findings suggest
that GPT4 is capable of effectively mimicking medical doctor preferences, potentially eliminating the
need for costly doctor annotations.

Consequently, we compiled a comprehensive medical doctor preference dataset, consisting of 15,258
samples, to further align our LLMs with real-world clinical decision-making processes and enhance
their accuracy in interpreting and responding to medical queries.

2.4 Training Methodology

Our training strategy includes several phases: injection of medical knowledge through continued pre-
training, domain-specific instruction tuning, and reinforcement learning from AI-generated feedback
for improved alignment with medical experts. Employing the LLaMA Factory framework [13], we
adhere to replicable and high-performance training standards. Moreover, we adopt the Low-Rank
Adaptation (LoRA) technique [14] for training efficiency and precision. LoRA enhances LLMs
by selectively updating weights within additional trainable layers, thereby accelerating the training
process, minimizing memory usage, and mitigating overfitting and catastrophic forgetting.

Our foundational models, LLaMA2 7B [42] and Mistral 7B [15], are selected based on their robust
performance across medical benchmarks, demonstrating their capacity to excel without extensive
training modifications. The zero-shot performances of these generic baseline models is presented at
the beginning of Table 5.

Continued pre-training. To equip our base LLMs with domain-specific medical expertise, we
extend their pre-training on a carefully curated medical text corpus as described in Section 2.1.
This stage employs traditional language modeling, focusing on next-token prediction. During this
phase, both models undergo continued pre-training using LoRA, specifically adapting the fully
connected layers. The parameters for LoRA are carefully set, with the rank (r) at 8 and alpha (α) at
16, to optimize learning. We use the AdamW optimizer and adjust the learning rate using a cosine
scheduling, starting from an initial value of 1e-4. The batch size per device was initialized to be 8,
with gradient accumulations of 2, culminating in an effective global batch size of 16, and the models
are trained for a single epoch. The rationale and empirical support for our choices regarding the
dataset, LoRA configurations, and overall optimization strategy are comprehensively analyzed in
Appendix G.

Supervised Finetuning. After continued pre-training, models undergo fine-tuning with an Instruc-
tion Tuning (IT) dataset to closely mirror medical directives, aligning model outputs with clinical
requirements. We have tested with the datasets described in Section 2.2 and found that MedQA-train
IT works better than the other options. This fine-tuning phase also employs LoRA to all fully
connected layers with both rank (r) and alpha (α) set to 32 for balanced efficiency and computational
overhead. AdamW optimizer is used with a learning rate of 1e − 4. To prevent model overfitting,
loss calculation focuses solely on the responses. The training spanned 3 epochs with a batch size of 8
per-device and gradient accumulation set to 2. We also conducted experiments on direct fine-tuning
of the base LLMs to evaluate the impact of continued pre-training (see Section 4.1) and performed a
comprehensive analysis on dataset splits and fine-tuning hyperparameters (see Appendix G).
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Medical Preference Learning. Finally, the instruction-tuned models are further trained with a
recent and popular technique called direct preference optimization (DPO) [33]. In DPO, reinforcement
learning is bypassed which allows for direct optimization based on preference data. Unlike RLHF,
the responses in DPO need not be derived from the LLM being optimized. Central to DPO is the
development of a loss function that evaluates the likelihood of a preferred response over a less
preferred one, steering the LLM towards this goal. This makes DPO more stable and significantly
reduces computational demands.

The outcome of all this are our medical LLMs, named Hippo- and Hippo- , built upon the
pre-trained LLaMA2 7B and Mistral 7B models. These models were refined through a comprehensive
process that included continued pre-training and/or instruction tuning using our carefully curated
medical datasets. Following this, we also explored the impact of aligning the models with clinical
preferences by conducting further training on medical preference data.

3 Main Results

For an objective evaluation of domain-specific knowledge and reasoning capabilities in LLMs, a
detailed and fair evaluation framework is essential. In alignment with methodologies adopted in
prior research [35, 12, 45, 40, 36, 6], we selected six widely recognized medical question-answering
datasets, namely MedMCQA [31], MedQA [16], PubMedQA [17] and USMLE Step 1-3 [12], to
assess models performances (See Table 4 for details). Performance metrics were derived through
the use of the EleutherAI evaluation framework [9], ensuring a standardized approach to measuring
model effectiveness in handling domain-specific queries.

Table 4: Summary of the evaluation benchmark datasets, describing the format, the number of
test samples, the number of choices, and the licence info.

Dataset Source Format #Samples #Choices License

MedMCQA-test MedMCQA Question + Answer 4,183 4 MIT
MedQA-test MedQA Question + Answer 1,273 5 MIT
PubMedQA-test PubMedQA Abstract + Question + Answer 1,000 3 MIT
USMLE-step1 USMLE Question + Answer 94 5 MIT
USMLE-step2 USMLE Question + Answer 109 6 MIT
USMLE-step3 USMLE Question + Answer 122 5 MIT

3.1 Experimental Setup

In our evaluation, we included a spectrum of leading LLMs, spanning general and medical LLMs,
varying in scale from 1.5B to an advanced 70B parameters. Here we report the performances of our
top-performing models for an accurate comparison. To ensure a fair and easily replicable assessment
of these medical models, we utilized the Eleuther AI Language Model Evaluation Harness [9], a
unified evaluation framework specifically designed for evaluating generative LLMs. This framework
also serves as the evaluation tool for the Open LLM Leaderboard3 [3].

LM-Evaluation-Harness operates on a Log-Likelihood objective, which calculates the negative log-
likelihood for each potential answer in response to a given query. The answer is then chosen based
on the highest likelihood score, indicating it as the most probable choice. During evaluation, each
prompt includes a question and corresponding choices, separated by a new line. For PubMedQA, the
abstract provides contextual grounding for the model’s decision-making process. Examples of these
prompts are provided in the Appendix I.

3.2 Results

We present a comparative analysis of our novel models, Hippo- and Hippo- , against a set of
established base LLMs and medical-specific LLMs, in Table 5. Our evaluation includes both zero-shot
and few-shot (specifically, 5-shot) learning scenarios. Demonstrating superior performance, our
Hippo models outperform traditional pretrained models in zero-shot evaluations and maintain their

3https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
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Table 5: Comparative analysis of generic and medical LLMs across downstream medical tasks
in 0-shot and 5-shot learning settings. The best and the second-best performance are highlighted in
bold and underline, respectively.

Model MedMCQA MedQA PubmedQA USMLE-1 USMLE-2 USMLE-3 Avg.
0-shot/5-shot 0-shot/5-shot 0-shot/5-shot 0-shot/5-shot 0-shot/5-shot 0-shot/5-shot 0-shot/5-shot

Gemma 2b 26.2/27.7 27.8/30.6 59.1/60.8 20.2/16.0 18.4/30.3 24.6/20.5 29.4/31.0
LLaMA-2 7b 34.4/39.4 29.3/39.5 72.3/72.4 18.1/22.3 22.9/33.0 27.1/32.0 34.0/39.8
Falcon 7b 30.5/31.8 27.9/31.0 65.3/64.4 18.1/25.5 26.6/20.2 23.8/25.4 32.0/33.0
Vicuna 7b 35.9/39.0 35.1/41.2 70.9/74.5 25.5/31.9 27.5/31.2 33.6/35.3 38.1/42.2
Mistral 7b 39.3/48.5 36.8/48.9 76.3/77.8 24.5/50.0 31.2/42.2 27.9/43.4 39.3/51.8
BioMedLM 32.2/29.6 29.3/30.6 55.2/55.2 15.9/22.3 19.3/18.4 23.0/31.2 25.9/31.2
BioGPT-Large 33.1/30.1 31.3/27.2 60.1/47.7 22.3/19.2 22.0/14.7 23.0/23.0 32.0/27.0
MedAlpaca 7b 35.8/37.5 36.1/36.6 73.2/70.6 22.3/27.7 27.5/32.1 29.5/37.7 37.4/40.4
PMC-LLaMA 7b 31.5/33.0 28.0/29.5 66.5/68.4 21.3/19.2 23.9/19.3 22.1/22.1 32.2/31.9
Meditron 7b 34.0/38.2 32.0/39.3 71.6/75.7 16.0/29.8 25.7/30.3 23.8/32.0 33.9/40.9
Bio-Mistral 7b 36.4/42.4 35.0/42.1 73.4/75.1 24.5/28.7 27.5/34.9 27.9/44.3 37.5/31.9

LLaMA-2 13b 38.2/43.9 34.3/43.3 75.9/71.9 20.2/38.3 22.0/29.4 23.0/38.5 35.6/40.9
Vicuna 13b 39.7/44.3 35.9/45.9 75.6/75.0 24.5/40.4 26.6/35.8 23.8/46.7 37.7/44.6
MedAlpaca 13b 32.5/33.3 31.8/34.3 72.6/72.5 24.5/23.4 24.5/26.6 30.3/29.5 36.0/44.2
PMC-LLaMA 13b 39.1/44.5 37.8/46.3 76.8/76.5 30.9/35.1 22.9/36.7 26.2/29.5 39.0/44.8

LLaMA-2 70b 42.8/ 52.0 44.9/56.1 73.2/77.8 31.9/59.6 44.0/57.8 44.3/53.3 46.8/59.4
Qwen 72b 50.5/59.2 47.7/53.4 77.2/76.8 45.7/67.0 43.1/56.9 38.5/61.5 50.5/62.5
ClinicalCamel 70b 43.7/53.4 45.5/58.5 73.6/77.6 40.4/59.6 43.1/60.6 42.6/60.7 48.2/61.7
Meditron 70b 43.4/51.9 44.9/58.5 76.4/80.0 35.1/57.5 41.3/56.9 37.7/59.8 46.5/60.8

Hippo- 7b 54.3/53.9 50.6/50.8 74.7/76.6 46.8/40.4 41.3/39.5 50.0/43.4 53.0/50.8
Hippo- 7b 49.7/51.8 59.2/59.9 77.1/78.1 60.6/61.7 66.1/64.2 56.6/56.6 61.6/62.1

superiority in the 5-shot context. Remarkably, Hippo- and Hippo- not only beat models with 7
billion and 13 billion parameters but also exceed the capabilities of those with 70 billion parameters.
This outstanding performance highlights the adaptability and precision of our models, showing their
remarkable ability to significantly boost prediction accuracy with minimal input examples.

4 Analysis

4.1 Contribution of Each Training Stage

Hippo- . Our evaluation methodology for the LLaMA2 7B model covers successive training
stages: Continued Pre-training (CP), Instruction Tuning (SFT), and Direct Preference Optimization
(DPO). As listed in Table 6, the base model LLaMA2 7B initially achieves an average accuracy
of 34.0 across benchmarks. The CP stage marginally increases accuracy to 34.4, indicating initial
benefits from domain-focused continued pre-training. The subsequent introduction of SFT yields
a substantial performance boost to an average accuracy of 50.3, demonstrating the critical role
of customized instruction in enhancing the model’s capabilities in understanding and answering
medical queries. Integrating CP with SFT further improves this performance to 53.0, highlighting
the combined value of domain knowledge and specific instruction tuning. The final DPO stage
slightly decreases the model’s performance to 52.5, albeit with a slight increase in accuracy for
MedMCQA and PubMedQA, illustrating DPO’s refined impact on model preference alignment. This
sequence delineates the incremental enhancements attributable to each training phase, with SFT
marking a pivotal improvement. The composite model, LLaMA2 + CP + SFT, is thus designated as
Hippo- for its distinguished performance across our benchmarks.

Hippo- . Following the approach for Hippo- , the training evolution for the Mistral 7B model
reveals gradual improvement in the model’s proficiency in medical question-answering. Initial results
from the baseline Mistral 7B model, as shown in Table 6, show an average benchmark accuracy of
39.3. Implementing CP slightly improves this to 41.0, reflecting the positive yet modest impact of
domain-specific continued pre-training. The pivotal SFT stage significantly raises the performance,
achieving an average accuracy of 61.6, emphasizing the critical role of customized instruction in
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Table 6: Hippo- and Hippo- : Analysis of Continued Pretraining, Instruction Tuning, and
Direct Preference Optimization. This table demonstrates the incremental impact of Continued
Pretraining (CP) on medical text data, Instruction Tuning (SFT), and Direct Preference Optimization
(DPO) on the zero-shot capabilities of the LLaMA2 7B and Mistral 7B models across a range of
medical benchmarks, including MedMCQA, MedQA, PubmedQA, and the USMLE series. The
results, aggregated and individual, underline the significance of each methodological advancement
in enhancing the model’s proficiency in interpreting and responding to complex medical queries,
thereby providing a granular view of performance improvements at each stage of model optimization.

Model MedMCQA MedQA PubmedQA USMLE-1 USMLE-2 USMLE-3 Avg.

LLaMA2 7b 34.4 29.3 72.3 18.1 22.9 27.1 34.0
+ CP 34.6 31.9 72.8 20.2 25.7 21.3 34.4
+ SFT 52.7 49.7 75.7 37.2 42.2 44.3 50.3
+ CP + SFT 54.3 50.6 74.7 46.8 41.3 50.0 53.0
+ CP + SFT + DPO 54.4 50.4 74.8 46.8 39.5 49.2 52.5
+ CP + SFT + DPO + CoT 54.0 50.3 73.3 48.9 43.7 45.1 52.6

Mistral 7b 39.3 36.8 76.3 24.5 31.2 27.9 39.3
+ CP 40.5 37.2 74.9 29.8 33.9 29.5 41.0
+ SFT 49.7 59.2 77.1 60.6 66.1 56.6 61.6
+ CP + SFT 51.5 60.9 76.5 55.3 65.1 57.4 61.1
+ CP + SFT + DPO 49.3 57.3 77.3 56.4 62.4 54.9 59.6
+ CP + SFT + DPO + CoT 51.0 60.9 63.5 59.6 59.6 63.9 59.8

enhancing the model’s interpretative and response capabilities for medical inquiries. Interestingly,
combining CP and SFT results in a slight reduction to 61.1, suggesting a complex interaction between
domain pre-training and instruction tuning. The subsequent application of DPO slightly lowers
the overall score to 59.6, similar to the pattern observed for Hippo- , with targeted performance
adjustment. Based on comprehensive analysis, Mistral 7b + SFT is selected to represent Hippo- ,
credited for its exceptional performance across all benchmarks.

4.2 Chain-of-Thought (CoT) Prompting

The CoT prompting technique [44] enhances an LLM’s ability to tackle complex queries by guiding it
to articulate intermediate reasoning steps. This method improves the model’s responses by structuring
its problem-solving process. In our study, we applied CoT prompting for in-context learning,
adopting a slightly altered instruction utilized in [29]: "The following is a multiple choice question
about medical knowledge. Solve it in a step-by-step fashion, starting by summarizing the available
information. Output a single option from the four options as the final answer.". However, the
application of CoT prompting in our experiments with downstream medical tasks did not consistently
enhance our models’ performance, as shown in Table 6.

4.3 Influencing Examples

We explore the application of Influence Functions to understand the behavior of LLMs [11] – in our
context, particularly those trained with domain-specific datasets like medical text. This technique
quantifies the effect of single training instances on the model’s predictions, improving the transparency
of the AI models. This is increasingly important as the field of Explainable AI (XAI) grows to make
AI systems more interpretable and accountable. However, the complexity of LLMs, which process
vast amounts of data, highlights the necessity for efficient methods to perform this analysis. We
believe incorporating this tool to our evaluation framework will prove useful for future studies.

In the supplementary material (Appendix H), we present our analysis results, highlighting the most
and least influential training examples for a MedQA dataset question and its model response. Notably,
the most influential example shares overlapping medical concepts, in contrast to no shared concepts
with the least influential training example.
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4.4 Uncertainty Quantification

In our study, we conducted an uncertainty quantification experiment on Hippo- to understand its
performance on the MedMCQA, MedQA, and PubMedQA datasets, as shown in Fig.3. Our findings
reveal that our model consistently assigns higher probabilities to questions it answers correctly across
all datasets, suggesting an ability to self-calibrate its certainty. The model’s confidence is notably
higher on MedMCQA, possibly reflecting the dataset’s relative simplicity. In contrast, its confidence
on PubMedQA is comparatively lower, likely due to the dataset’s complexity. Additionally, the
model’s confidence changes with different training stages; CPT leads to more conservative estimates,
SFT boosts confidence, and adding DPO leads to variable confidence, with noticeable effects in
MedMCQA and MedQA. These outcomes emphasize a complex relationship between training
approaches and confidence calibration in the model.
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Figure 3: Uncertainty quantification for our best-performing 5-shot Hippo- model., where
we plot the probability distributions assigned by the model to both correct predictions and incorrect
predictions on the MedMCQA, MedQA, and PubMedQA datasets.

We present additional negative results in Appendix J, which we anticipate will be beneficial for the
community. By sharing these findings, we aim to encourage further investigations.

5 Conclusion

In this study, we have introduced Hippocrates, a comprehensive and open-source framework tailored
for the medical domain, addressing a wide array of challenges faced by medical LLMs. We provide
openly available datasets and establish an intuitive benchmark using the LM-Evaluation-Harness tool.
We also introduce Hippo- and Hippo- , two 7B models demonstrating superior performance. Our
work makes substantial contributions to the field by combining in-depth empirical research with a
structured training methodology, offering invaluable insights and tools for future research not only in
healthcare but in any area requiring domain-specific adaptation of LLMs.
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A Related Work

Large Language Models. The evolution of LLMs has marked a significant milestone in the field
of NLP, with key developments including scaling efforts [4, 27, 1, 42, 10]. Meta-AI’s introduction
of the LLaMa base models [41, 42] and Ali Baba’s Qwen models [2] challenged the prevalence
of closed models such as those from OpenAI [27] by adopting an open-source philosophy, thus
democratizing access to state-of-the-art LLMs. This shift encouraged the community to engage
in fine-tuning these base models with instructional datasets [39] and exploring self-instructional
techniques, resulting in noticeable improvements across both quantitative and qualitative evaluations
[25, 21]. The application of parameter-efficient fine-tuning methods [14, 8] addressed computational
constraints, facilitating the development of domain-specific models, including those for medical
applications [23, 12, 45, 40, 6].

Medical Large Language Models. Models like ChatDoctor [23], fine-tuned on 100,000 physician-
patient dialogues using the LLaMA architecture [41], have shown superior performance in medical
QA-generation over GPT-3.5. Similarly, MedAlpaca [12] leverages the LLaMA [41] model with
LoRA [14] fine-tuning on 160,000 medical entries, demonstrating its efficacy on the USMLE self-
assessment test. PMC-LLaMA [45] applies LoRA fine-tuning on 4.8 million biomedical articles,
while Clinical-Camel, utilizing the QLoRA [8] tuning approach on LLaMA-2 [42], sets new bench-
marks in medical LLM performance. MEDITRON [6] represents a significant advancement, training
on a vast medical corpus with variations including 7B and 70B parameter models, indicating the
potential of comprehensive datasets in enhancing LLM performance. Further details regarding
medical LLMs can be found in Appendix C.

Preference Learning. Reinforcement learning from human feedback (RLHF) represents a method-
ology employed in the training of machine learning models to ensure their alignment with human
objectives [7, 47, 38]. From this line, RLHF has become the predominant approach for refining
cutting-edge LMs [28, 27, 42]. RLHF contains three main steps: collecting comparison data from
human feedback, training a reward model (RM) on the comparison data, and learning a policy to
maximize the reward with RL [38, 28]. Learning an RM from human feedback is not an easy
procedure where you need to tune your LLM via RL by maximizing the predicted rewards under
the supervision of your RM, while staying relatively close to the original model. Moreover, training
with PPO can sometimes be unstable and requires careful hyper-parameter tuning. On the other
hand, Direct Preference Optimization (DPO) [33] offers a stable, efficient, and computationally
light approach for fine-tuning LLMs to better align with human preferences, without the need for
sampling from the LLM or extensive hyperparameter tuning. Moreover, as preference learning
necessitates manually annotated human preferences, acquiring these annotations can be challenging
or prohibitively expensive. Methods such as RLAIF [22] streamline this process by employing expert
models that annotate using detailed prompts, thus reducing reliance on human annotators. This
approach was also adopted in the creation of our doctor preference dataset, which was subsequently
validated by actual medical doctors.
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B Limitations and Safety

Model Limitations. While our 7B model has achieved state-of-the-art results within its class, it is
important to acknowledge its limitations compared to larger models such as OpenAI’s GPT4 [26, 30].
The constraints imposed by the smaller parameter size may impede the model’s reasoning capabilities,
a crucial aspect of complex medical decision-making. Additionally, the model’s performances are
almost half on the average which highlights a huge area for improvement in open-source models.

Safety and Risks. Crucially, despite these advancements, it is important to highlight that these
AI models need substantial improvements before they can be safely and effectively employed with
real patients. They are not yet at a stage where they can provide medical advice or be utilized
for commercial healthcare applications. This limitation highlights the need for ongoing, careful
development and validation of AI systems to guarantee their reliability and safety in clinical settings.
The path toward AI integration in patient care is still unfolding, and while it holds promise, it requires
a methodical and thoroughly evaluated approach.

C Medical Large Language Models

BioMedLM. BioMedLM45 is a decoder-based LLM with 2.7 billion parameters which was devel-
oped in the style of GPT [32] and trained on biomedical abstracts and papers. Model weights are
available at Huggingface6.

BioGPT. BioGPT [24] is a specialized LLM for generating and analyzing biomedical texts. BioGPT
is built on GPT-2 architecture [32] and has been trained from scratch using 15 million PubMed
abstracts. BioGPT comes in two variants: the first is based on the GPT-2 medium model, while the
second, BioGPT-Large, is built upon the GPT-2 XL, the largest version of GPT-2. Both versions are
available at Huggingface78. During our evaluations, we used BioGPT-Large.

ChatDoctor. ChatDoctor [23] is a medical assistant LLM that is built on the LLaMA-7B [41]
architecture and further refined using a comprehensive dataset of 100,000 patient-doctor interactions.
Additionally, a separate dataset comprising 10,000 patient-doctor conversations from iCliniq.com
has been released for testing. All resources including the model weights9 and datasets10 are publicly
available.

ClinicalCamel. Clinical Camel [40] is a specialized open medical LLM based on the LLaMA-2-
70B [42] architecture, enhanced with QLoRA [8] for medical and clinical research applications. It is
fine-tuned on three different data sources: ShareGPT conversations, 100,000 synthetic dialogues from
Clinical Articles, and 10,187 USMLE questions from MedQA [16]. Dialogues were generated using
dialogue-based knowledge encoding (DBKE) in conjunction with questions from MedQA. Model
weights 11 and the evaluation code 12 are publicly available.

MedAlpaca. MedAlpaca [12] introduces a unique IT dataset with over 160,000 entries, designed
for optimizing LLMs for medical uses. The researchers focused on SFT training for the 7B and
13B variants of LLaMA [41, 42]. They also developed an evaluation approach based on the models’
zero-shot performance on self-assessment datasets from Steps 1, 2, and 3 of the United States Medical

4https://crfm.stanford.edu/2022/12/15/biomedlm.html
5https://www.mosaicml.com/blog/introducing-pubmed-gpt
6https://huggingface.co/stanford-crfm/BioMedLM
7https://huggingface.co/microsoft/biogpt
8https://huggingface.co/microsoft/BioGPT-Large
9https://huggingface.co/zl111/ChatDoctor

10https://github.com/Kent0n-Li/ChatDoctor
11https://huggingface.co/wanglab/ClinicalCamel-70B
12https://github.com/bowang-lab/clinical-camel
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Licensing Examination (USMLE). All the code13, datasets14, and model variants15 are publicly
available.

PMC-LLaMA. PMC-LLaMA [45] is built upon on an integration of a vast amount of medical
data pre-training and IT datasets. Its pre-training data includes 4.8 million biomedical academic
papers and 30,000 medical textbooks. On the other hand, they have developed a large-scale dataset
for instruction tuning which encompasses various components like medical question-answering,
rationales for reasoning, and conversational dialogues, totaling 202 million tokens. They introduced
two distinct models: MedLLaMA, trained exclusively on the pre-training dataset, and PMC-LLaMA,
which underwent training with both the pre-training and instruction tuning (IT) datasets based on the
LLaMA2-7B and LLaMA2-13B architectures [42]. The code16 and the model weights17 are publicly
available.

Meditron. Meditron [6] is a recent study that adapts two large-scale medical LLMs from Llama-2,
Meditron-7B and Meditron-70B. These models have undergone additional training via Megatron-LM
[34] on a specially curated medical corpus. This corpus includes selected PubMed papers and
abstracts, a new dataset of internationally recognized medical guidelines, and a general domain
corpus. The code18, dataset19, and model weights20 are publicly available.

BioMistral. BioMistral [20] is a recent open-source LLM developed specifically for the biomedical
domain, built upon the Mistral foundation model and enriched through pre-training on PubMed
Central. This model distinguishes itself through comprehensive evaluation across 10 established
medical question-answering tasks in English, with additional exploration into multilingual appli-
cations by translating these tasks into 7 other languages. The creation of BioMistral, including its
derivative models through quantization and novel model merging techniques, exemplifies a leap in
blending specialized and general-purpose LLM capabilities, notably in terms of medical accuracy
and multilingual robustness.

D Evaluation Datasets

MedMCQA [31], derived from Indian medical entrance exams such as AIIMS and NEET-PG,
includes over 194,000 high-quality multiple-choice questions spanning 2,400 healthcare topics across
21 medical subjects. This benchmark includes 4183 test samples21. MedQA [16], created from
the United States Medical License Exams (USMLE), aggregates a broad spectrum of professional
board examination questions, presented in a multiple-choice format with four options. For our
analysis, following prior works, we used several test splits of MedQA provided by Huggingface22.
PubMedQA [17], a biomedical question-answering dataset, is sourced from PubMed abstracts and
aims to answer research questions as yes, no, and maybe options. It consists of three subsets
PQA-artificial, PQA-labeled, and PQA-unlabeled.

E Rationale for Selecting Mistral 7B and LLaMA2 7B as Base Models

In developing a comprehensive framework for medical LLMs, we explored the integration of two
prominent models, Mistral 7B and LLaMA2 7B, to enhance the robustness and versatility of our
system. This decision was motivated by the distinct architectural nuances and training paradigms
inherent to each model, and the promising baseline results of these models in our evaluations. Our
framework’s dual-model approach aims to capitalize on the strengths of both LLaMA2 7B and Mistral

13https://github.com/kbressem/medAlpaca
14https://github.com/kbressem/medAlpaca/blob/main/DATA_DESCRIPTION.md
15https://huggingface.co/medalpaca
16https://github.com/chaoyi-wu/PMC-LLaMA
17https://huggingface.co/axiong/PMC_LLaMA_13B
18https://github.com/epfLLM/meditron
19https://huggingface.co/datasets/epfl-llm/guidelines
20https://huggingface.co/epfl-llm
21https://huggingface.co/datasets/medmcqa
22https://huggingface.co/augtoma
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7B, acknowledging that the efficacy of fine-tuning strategies can vary significantly across different
base models. By incorporating Meditron, which builds upon LLaMA’s architecture and training
insights, we ensure a robust baseline for medical language tasks. Concurrently, the inclusion of
Mistral allows for comparative analysis, enriching our understanding of model behavior in the face of
medical data intricacies.

F Data Contamination Analysis

Data contamination poses a significant concern for LLMs, as their extensive training corpora can
obscure the presence of data leakages. To ensure the integrity and unbiased assessment of LLMs,
the evaluation benchmarks must remain uncontaminated by the training datasets. In our study, we
examined the n-gram overlap between the test splits of evaluation benchmarks and the three distinct
categories of training sets: Continued Pre-training Data, General Instruction Data, and Evaluation
Instruction Data. Our method involved calculating the overlap of 3-grams and 5-grams between
the evaluation benchmarks and these training datasets, adopting OpenAI’s preprocessing technique,
which includes the removal of punctuation, symbols, and normalization of case sensitivity [27]. While
previous studies analyzed higher n-gram numbers, such as 8-grams in Meditron [6] and 13-grams
in GPT-3 [5], our investigation did not extend beyond 5-grams. This decision was based on the
observation that the overlap ratio at the 5-gram level was minimal and thus negligible. The outcomes
for each evaluation benchmark are detailed separately in Table 7.

Table 7: Comparative Analysis of N-gram Overlap Ratios between Evaluation Benchmark Datasets
and Various Training Sets: Continued Pre-training Data, General Instruction Data, and Evaluation
Instruction Data. The overlap ratio is determined by dividing the count of matching n-grams found in
both the evaluation benchmark and a training dataset by the total count of n-grams in the evaluation
benchmark.

Dataset MedMCQA MedQA PubmedQA USMLE-1 USMLE-2 USMLE-3
n = 3/n = 5 n = 3/n = 5 n = 3/n = 5 n = 3/n = 5 n = 3/n = 5 n = 3/n = 5

Medical Guidelines 0.10 / 0.01 0.16 / 0.01 0.26 / 0.02 0.01 / 0.00 0.02 / 0.00 0.02 / 0.00
PMC-Patients 0.10 / 0.01 0.23 / 0.03 0.22 / 0.01 0.02 / 0.00 0.03 / 0.00 0.03 / 0.00
PubMedQA-train 0.09 / 0.00 0.12 / 0.01 0.37 / 0.05 0.01 / 0.00 0.02 / 0.00 0.02 / 0.00

Medical Flashcards 1.08 / 0.05 1.65 / 0.10 1.55 / 0.07 0.16 / 0.01 0.20 / 0.01 0.25 / 0.01
GenMedGPT-5k 1.43 / 0.03 3.02 / 0.13 1.67 / 0.03 0.34 / 0.01 0.39 / 0.01 0.55 / 0.01
Open Platypus 0.27 / 0.01 0.36 / 0.01 0.50 / 0.02 0.04 / 0.00 0.05 / 0.00 0.07 / 0.00
HealthCareMagic-100k 0.20 / 0.01 0.40 / 0.03 0.28 / 0.01 0.03 / 0.00 0.05 / 0.00 0.06 / 0.00
UMLS 0.92 / 0.03 1.13 / 0.06 1.41 / 0.06 0.13 / 0.01 0.15 / 0.00 0.19 / 0.01
UMLS-Relation 0.52 / 0.00 0.66 / 0.00 0.61 / 0.00 0.07 / 0.00 0.11 / 0.00 0.12 / 0.00
Wikidoc 0.95 / 0.00 1.37 / 0.00 1.83 / 0.00 0.14 / 0.00 0.18 / 0.00 0.24 / 0.00
Wikidoc-Patient-Info 1.45 / 0.00 2.33 / 0.00 2.29 / 0.00 0.25 / 0.00 0.34 / 0.00 0.44 / 0.00
MedicationQA 3.11 / 0.00 4.08 / 0.00 5.24 / 0.00 0.52 / 0.00 0.65 / 0.00 0.97 / 0.00

MedMCQA-train 1.85 / 0.37 1.52 / 0.24 0.69 / 0.02 0.15 / 0.03 0.19 / 0.03 0.23 / 0.03
MedQA-train 1.71 / 0.12 7.61 / 2.78 1.51 / 0.05 0.60 / 0.18 0.90 / 0.25 0.99 / 0.22
PubMedQA-train 0.08 / 0.00 0.12 / 0.01 0.35 / 0.04 0.01 / 0.00 0.01 / 0.00 0.02 / 0.00

G Additional Details on Training Stages

Continued Pre-training (CP) Each medical text corpus originates from diverse sources, with each
potentially exhibiting different distributions despite containing medical information. To evaluate the
effectiveness of each corpus, we conducted various experiments involving both individually and by
combining them. During these experiments, we utilized Low-Rank Adaptation (LoRA) with r = 8
and α = 16, targeting the fully-connected layers of the corresponding LLM [14]. We set the learning
rate at 1e− 4 for each experiment, employing a batch size of 8 with two gradient accumulations, and
go through all tokens in the input dataset exactly once. To enhance training convergence, we applied
a cosine scheduler alongside the Adam optimizer. Our comprehensive experiments, detailed in Table
8 and utilizing the base LLM LLaMA2 7B [42], show that each data split contributes differently to
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downstream task accuracy. Notably, the highest scores were achieved using a combination of the
PubMedQA-train split [17], which provides context for each sample, and Medical Guidelines from
the Meditron dataset [6]. These findings remained consistent when employing the Mistral 7B as the
base model [15].

Supervised Finetuning (SFT) The instruction Tuning (IT) stage is one of the tricky steps to
enhance the knowledge and reasoning capabilities of LLMs one step forward. To do that, we
gathered lots of IT datasets from different sources. We categorize our IT datasets as two distinct
groups: (i) General Instruction Datasets and (ii) Evaluation Instruction Datasets. General Instructions
contains over 400,000 samples from nine different datasets, originating from the instruction corpora
of previous studies like MedAlpaca [12], PMC-LLaMA [45], and Platypus [21]. It aims to reduce
bias and enhance generalization across various reasoning tasks by excluding data from training or test
splits of downstream QA benchmarks. A pre-processing protocol was used to eliminate irrelevant
content, like unnecessary words and web URLs, to ensure the quality and relevance of the data.
Detailed statistics of the dataset can be found in Table 2. On the other hand, Evaluation Instruction
Datasets are generated from the training splits of the downstream tasks, if training splits exist. It
aimed to study the impact of incorporating instruction samples from downstream tasks to see the
effect it by following similar works like Meditron [6], see Table 4 for details. Instruction-response
pairs were generated using the training splits of different benchmarks, based on the instruction
templates provided by Meditron. A variety of experiments were conducted to assess the impact of
each split on tasks, individually and collectively. Following an in-depth analysis of each split for both
LLaMA2 7B and Mistral 7B, it was found that the concatenation of each Evaluation Instruction split
yielded the highest scores in LLaMA. Conversely, for Mistral, the MedQA’s Instruction split delivered
the most superior outcomes. For additional insights into how each dataset influences downstream
results, please see Table 8.

H Influence Functions

To assess the influence of specific training examples on model parameters, we measure how changes
in these parameters affect the model’s output when a data point is added, removed, or weighted
differently in the training set, requiring the computation of the inverse-Hessian-vector product (IHVP)
[18]. Our approach to influence analysis combines the preliminary subsampling of training examples
based on TF-IDF vector similarity with the application of DataInf, a computationally efficient method
for calculating influence scores [19]. We experiment with the MedQA dataset where we calculate
the influence of training samples over test samples. Due to computational constraints mentioned in
Appendix J.2, we subsample the MedQA train split to 1000 examples by selecting the most similar
training samples compared to test samples based on a TF-IDF similarity, similar to [11].

In Figure 5, we present an illustrative example showing the most and least influential MedQA
instruction-tuning samples identified by our approach for a specific MedQA test example. The most
influential training example is found to be similar to the test example, as measured in terms of the
overlapping medical terms extracted by the MetaMap tool23, contrasting sharply with the absence of
any such overlap for the least influential example.

I Evaluation

Reliability. To ensure a fair and easily replicable assessment of these medical models, we utilized
the Eleuther AI Language Model Evaluation Harness [9], a unified evaluation framework specifically
designed for evaluating generative LLMs. This framework is also the foundational evaluation tool for
the Open LLM Leaderboard24 [3].

QA Evaluation Metric. The LM-Evaluation-Harness operates on a Log-Likelihood objective,
calculating the negative log-likelihood for each potential answer in response to a given query. The
answer is then chosen based on the highest likelihood score, indicating it as the most probable choice.

23https://metamap.nlm.nih.gov/
24https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
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Table 8: LLaMA2 7B and Mistral 7B zero shot experiments on MedMCQA, PubMEDQA, MedQA,
USMLE-step1, USMLE-step2, USMLE-step3 by using the LM-Evaluation-Harness.

Experiment MedMCQA MedQA PubmedQA USMLE-1 USMLE-2 USMLE-3 Avg.

LLaMA2 7b 34.4 29.3 72.3 18.1 22.9 27.1 34.0

+ Guidelines 35.2 31.7 70.6 20.2 22.9 24.6 34.2
+ PMC 34.2 30.9 71.1 9.6 20.2 24.6 31.8
+ PubMedQA 34.3 29.9 73.3 14.9 21.1 27.9 33.6
+ PubMedQA + Guidelines (PMQA + GDL) 34.6 31.9 72.8 20.2 25.7 21.3 34.4
+ PMC + Guidelines 35.2 31.7 69.5 14.9 23.9 26.2 33.6
+ PMC + Guidelines + PubMedQA 34.8 31.5 72.2 17.0 23.9 24.6 34.0

+ General Instructions 35.8 35.0 73.1 26.6 24.8 32.8 38.0
+ PubMedQA Instruction 32.2 27.5 55.2 22.3 17.4 18.0 28.8
+ MedMCQA Instruction 53.3 47.2 74.5 40.4 37.6 45.9 49.8
+ MedqQA Instruction 38.9 46.6 75.5 37.2 36.7 43.4 46.4
+ Evaluation Instructions 52.7 49.7 75.7 37.2 42.2 44.3 50.3
+ General + Evaluation Instructions 48.0 43.9 75.3 30.9 33.0 41.0 45.4

+ PMQA + GDL + General Instructions 35.2 32.5 72.2 20.2 27.5 23.8 35.2
+ PMQA + GDL + PubMedQA Instructions 26.5 27.8 78.0 18.1 23.9 27.1 33.6
+ PMQA + GDL + MedMCQA Instructions 54.6 45.8 74.6 36.2 43.1 47.5 50.3
+ PMQA + GDL + MedqQA Instructions 39.0 47.5 73.5 41.5 33.0 42.6 46.2
+ PMQA + GDL + Evaluation Instructions 54.3 50.6 74.7 46.8 41.3 50.0 53.0
+ PMQA + GDL + General + Evaluation Instr. 47.6 41.2 75.0 38.3 34.9 37.7 45.8

+ PMQA + GDL + Evaluation Instr. + DPO 54.4 50.4 74.8 46.8 39.5 49.2 52.5

Mistral 7B 39.3 36.8 76.3 24.5 31.2 27.9 39.3

+ Guidelines 41.4 38.4 74.8 28.7 31.2 31.2 40.9
+ PMC 40.0 37.9 75.2 25.5 30.3 33.6 40.4
+ PubMedQA 39.0 36.2 78.2 26.6 27.5 32.0 39.9
+ PubMedQA + Guidelines (PMQA + GDL) 41.0 37.9 76.8 24.5 34.9 31.2 41.0
+ PMC + Guidelines 40.2 37.2 74.6 27.7 33.0 31.2 40.6
+ PMC + Guidelines + PubMedQA 40.0 36.5 76.3 31.9 30.3 28.7 40.6

+ PubMedQA Instructions 32.5 29.5 60.4 19.2 18.4 31.2 31.9
+ MedQA Instructions 49.7 59.2 77.1 60.6 66.1 56.6 61.6
+ MedMCQA Instructions 60.6 53.1 75.5 58.5 47.7 52.5 58.0
+ General Instructions 59.1 54.6 60.8 54.3 52.3 51.6 55.5
+ General + Evaluation Instructions 51.2 48.9 75.6 52.1 37.6 47.5 52.1

+ PMQA + GDL + General Instructions 58.1 54.8 73.6 53.2 56.0 50.0 57.6
+ PMQA + GDL + MedMCQA Instructions 57.4 50.0 78.1 45.7 45.0 52.5 54.8
+ PMQA + GDL + MedQA Instructions 51.5 60.9 76.5 55.3 65.1 57.4 61.1
+ PMQA + GDL + PubMedQA Instructions 32.7 29.2 68.2 14.9 29.4 34.4 34.8
+ PMQA + GDL + General + Evaluation Instr. 50.7 48.2 76.6 48.9 38.5 44.3 51.2

+ PMQA + GDL + MedQA Instr. + DPO 49.3 57.3 77.3 56.4 62.4 54.9 59.6

Prompting. Our evaluation was conducted using widely recognized datasets from prior works.
Specifically, we employed six different question-answering datasets: MedMCQA, MedQA, Pub-
MedQA, USMLE-Step1, USMLE-Step2, and USMLE-Step3 [31, 16, 17]. Each prompt includes a
question and corresponding choices, separated by a newline. For PubMedQA evaluations, we also
incorporated the abstract as context for the model’s reasoning. Prompt examples can be seen in Fig. 6
and Fig. 7.

Qualitative Results In Tables 9 through 14, we show representative samples from each benchmark
employed in our evaluation. These tables include responses from our Hippo- and Hippo- models
as well as from competing models. We use the LM-Evaluation-Harness for prompt formatting, and
the results are obtained with zero-shot setting.

J Negative Results

This section points out the negative results associated with each section from the main text. The
organization of these paragraphs closely reflects the structure of the main body.
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J.1 Hippocrates Framework

Combining Different Datasets. In both Continued Pre-training and Supervised Fine-tuning, simply
combining each dataset and adding more samples does not positively impact the downstream task.
For Continued Pre-training, the best results were achieved by utilizing the Medical Guidelines and
PubmedQA-train splits, while excluding the PMC-Patients dataset. On the other hand, during the
process of instruction tuning, significant time was invested in compiling various IT datasets, as
detailed in Table 2. Furthermore, we created Evaluation Instruction datasets by adopting the prompts
from Meditron [6]. Despite possessing a vast array of instruction samples, including 292K from
General Instructions, 182,822 MedMCQA-train samples, 10,178 MedQA-train samples, and 211,269
PubmedQA-train samples, our best performance was notably achieved by exclusively utilizing the
MedQA-train split. Intriguingly, this split contained the smallest quantity of instruction samples yet
yielded the most significant improvement by a considerable margin.

Impact of Continued Pre-training. Continued Pre-training (CP) serves as a foundational step
in customizing LLMs for domain-specific tasks. However, an examination of Table 6 shows that
while Supervised Finetuning (SFT) improves the accuracy of LLaMA2 7B following CP; Mistral 7B,
employing only SFT, outperforms the combination of CP followed by SFT. This suggests that the
impact of CP prior to SFT may vary depending on the underlying base LLM.

Preference Dataset Creation. We attempted to employ preference learning methods for the first
time by utilizing RLAIF [22] for the medical domain. We created our comparison dataset using
GPT-4 [27, 26], which acted as the annotator. This approach was facilitated by providing a detailed
instruction prompt (Figure 8), adapted from MedPaLM’s instruction used by human annotators
[35, 36]. Instead of creating a custom dataset comprising single prompts and their corresponding
model outputs for GPT-4 to annotate based on specific instructions, we opted to directly leverage
the iCliniq dataset. This dataset encompasses three distinct responses from a real doctor and other
LLMs. This approach raises an open question: Could there be an improved alignment with medical
preferences if our own LLMs generated the responses?

RLAIF with DPO. We utilized the Medical Comparison Dataset outlined in Section 2.3 to enhance
the medical alignment by applying DPO [33] to learn from medical feedback and update our models.
However, as indicated in Table 6, training with DPO resulted in modest improvements for PubMedQA
and certain USMLE steps for both LLaMA2 and Mistral-based models, but a slight decrease in overall
performance across all tasks in the benchmark. We hypothesize that this may be due to the similarity
in question format between our preference datasets and PubMedQA. Our datasets include a detailed
explanation of the patient’s current issue followed by a related question, mirroring PubMedQA’s
structure of presenting an abstract related to the problem before posing the question. In contrast,
other datasets follow a more straightforward question-and-answer format.

J.2 Analysis

Model Selection. As previously noted in the Appendix J.1 on negative results within the Hippocrates
framework, the sequential application of CP, followed by SFT, and then Preference Learning, does
not yield optimal models for LLaMA2 7B and Mistral 7B. Our top-performing model for LLaMA2
7B, dubbed Hippo- , was developed by CP, immediately followed by SFT. Conversely, for the
Mistral 7B model, our best results, leading to the creation of Hippo- , were achieved solely through
SFT.

Additional Prompting Strategies. Our incorporation of Chain-of-Thought (CoT) as an additional
prompting strategy resulted in slight improvements in certain subtasks but an overall decrease in
accuracy (see Table 6), mirroring findings from PubMedQA CoT evaluations in MedPaLM [35, 36].
This underscores an intriguing avenue for further exploration, given the generally high accuracy these
strategies motivate in LLMs [44, 43].

Influence functions. The main challenge regarding influence functions was CPU memory limita-
tions. In the case of Hippo- , each example has approximately 200 MBs of gradients, therefore
storing gradients for a total of 700000 examples needs 140 TB hard disk and RAM space, exclud-
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ing any essential memory requirements. Therefore, we subsample the MedQA train split to 1000
examples and perform a small-scale qualitative analysis.

K Truthfullness

The bar chart in Figure 4 illustrates the performance of four models on the TruthfulQA dataset. The
scores indicate the models’ ability to maintain general truthfulness after fine-tuning on medical data.
These results show a slight decrease in the truthfulness scores for both Hippollama and Hippomistral
compared to their original versions, suggesting a minimal impact of catastrophic forgetting
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Figure 4: TruthfulQA Experiments. TruthfulQA Performance Comparison of Llama, Mistral,
Hippollama, and Hippomistral. The bars represent the MC2 scores, indicating the general truthfulness
of each model after fine-tuning on medical data.
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Test Sample

Question: A 4-week-old female newborn is brought to the physician because of increasing yellowing
of her eyes and skin for 2 weeks. The mother has noticed that the girl’s stools have become pale over
the past week. She was breastfed since birth but her parents switched her to formula feeds recently
after reading on the internet that breastfeeding could be the cause of her current symptoms. The patient
was delivered vaginally at 38 weeks’ gestation. Pregnancy and delivery were uncomplicated. She
appears healthy. Vital signs are within normal limits. She is at the 50th percentile for length and at the
60th percentile for weight. Examination shows scleral icterus and jaundice. The liver is palpated 2
cm below the right costal margin. Cardiopulmonary examination shows no abnormalities. Neurologic
examination shows no focal findings. Serum studies show: Bilirubin Total 15 mg/dL Direct 12.3 mg/dL
Alkaline phosphatase 2007 U/L AST 53 U/L ALT 45 U/L γ-glutamyl transferase 154 U/L Blood group
A positive Which of the following is the most likely diagnosis?"
Options: (A) Galactosemia (B) Biliary atresia (C) Crigler–Najjar syndrome (D) Breast milk jaundice
Answer: Biliary atresia

Most Influential Training Sample

Question: A 10-month-old girl is brought to the physician by her mother because of fever and irritability
for the past 2 days. The mother says that the girl’s diapers have smelled bad since the symptoms started.
The patient has had some clear nasal secretions over the past week. Two months ago, she was brought
to the emergency department for a simple febrile seizure. Otherwise, she has been healthy and her
immunizations are up-to-date. She appears ill. She is at the 50th percentile for height and weight. Her
temperature is 39.1°C (102.3°F), pulse is 138/min, respirations are 26/min, and blood pressure is 75/45
mm Hg. Oropharyngeal examination shows a mild postnasal drip. The remainder of the examination
shows no abnormalities. Laboratory studies show: Hemoglobin 12.4 g/dL Leukocyte count 8,000/mm3
Serum Na+ 138 mEq/L K+ 4.0 mEq/L Cl- 100 mEq/L Creatinine 0.5 mg/dL Urine RBC 1–2/hpf WBC
18–20 WBCs/hpf Nitrites positive Bacteria gram-negative rods Nasal swab for respiratory syncytial
virus, influenza A, and influenza B antigens is negative. Urine culture grows > 105 colony forming
units (CFU)/mL of E. coli. Treatment with acetaminophen and cefixime is started. Two days later, her
symptoms have improved. Which of the following is the most appropriate next step in management?"
Options: (A) Obtain CT scan of the abdomen (B) Perform renal and bladder ultrasound (C) Perform
an intravenous pyelogram (IVP) (D) Start prophylaxis with trimethoprim-sulfamethoxazole Answer:
Perform renal and bladder ultrasound

Least Influential Training Sample

Question: A 35-year-old woman presents to the emergency room with chest pain. She describes the
chest pain as severe, 9/10, sharp in character, and diffusely localized to anterior chest wall. She also says
she is sweating profusely and feels like “she is about to die”. She has presented to at least 4 different
emergency rooms over the past month with similar episodes which resolve after 10–15 minutes with no
sequelae or evidence of cardiac pathology. However, she says she is fearful every day of another episode.
No significant past medical history. Vital signs are within normal limits, and physical examination is
unremarkable. Laboratory findings, including cardiac troponins, are normal. Which of the following is
the best pharmacological treatment for long-term management of this patient?
Options: (A) Paroxetine (B) Benzodiazepine (C) Phenelzine (D) Nortriptyline Answer: Paroxetine

Figure 5: The most and least influential MedQA instruction-tuning samples for a MedQA test sample
for the Hippo- model. The test sample and the most influential sample are more similar compared
to the least influential sample.
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MedQA | Format: Question

Question: A 3-week-old newborn is brought to the physician by his parents because of poor feeding,
irritability, and frequent vomiting over the past week. The vomitus is greenish in color and smells
strange. His parents have tried to feed him every 4 hours, but the patient often spits up or refuses to eat.
The patient was born at term and had his first bowel movement at 50 hours of life. He has since had
one bowel movement daily. He is at the 50th percentile for length, 10th percentile for weight, and
40th percentile for head circumference. He does not appear to be in acute distress. His temperature
is 36.9°C (98.4°F), pulse is 140/min, respirations are 40/min, and blood pressure is 90/60 mm Hg.
Physical examination shows that the patient has small, low-set ears, a broad and flat nasal bridge, and a
large space between the first and second toes bilaterally. The abdomen is distended. When the finger is
removed following a rectal exam, there is an explosive release of stool from the patient’s rectum. An
x-ray of the abdomen shows a section of dilated colon followed by a segment of colon without stool or air.

Which of the following is most likely to confirm the diagnosis?
(A) CT scan of the abdomen (B) Transabdominal ultrasonography (C) Anorectal manometry (D) Rectal
suction biopsy

MedMCQA | Format: Question

Question: Tensor veli palatini is supplied by:

(A) Facial nerve (B) Trigeminal nerve (C) Glossopharyngeal nerve (D) Pharyngeal plexus

PubMedQA | Format: Abstract + Question

Abstract: The use of open access endoscopy is increasing. Its effect on the adequacy of patient
informed consent, procedure acceptance and the impact on subsequent communication/transfer of
procedure results to the patient have not been evaluated. The aim of our study was to compare the extent
of preknowledge of procedures and test explanation, patient medical complexity, information transfer
and overall patient satisfaction between a patient group referred for outpatient open access endoscopy
versus a patient group from a gastrointestinal (GI) subspecialty clinic. Information was obtained from
all patients presenting for outpatient upper and lower endoscopy by using a 1-page questionnaire.
Patients from the two groups who had an outpatient upper/lower endoscopic procedure were contacted
by phone after the procedure to obtain information with a standardized questionnaire. The open access
patients reported receiving significantly less information to help them identify the procedure (p<0.01)
and less explanation concerning the nature of the procedure than the group of patients referred from the
subspecialty clinic (p<0.005). There was no difference between the two groups in satisfaction scores
for examinations performed under conscious sedation. For flexible sigmoidoscopy without sedation,
however, the GI clinic patient group were more satisfied with their procedure. The majority of patients,
regardless of access, were more likely to receive endoscopic results from a gastroenterologist than the
referring physician. Furthermore, the patients in the GI clinic group who underwent colonoscopy felt
significantly better at follow-up.

Question: Does open access endoscopy close the door to an adequately informed patient? (A) yes (B)
no (C) maybe

Figure 6: Examples of prompts used in the evaluation of MedMCQA, MedQA, and PubMedQA.
Format shows the information order in the prompt.

23



USMLE-Step1 | Format: Question

Question: A 58-year-old man with chronic obstructive pulmonary disease comes to the clinic with his
wife for a follow-up examination. He has smoked one pack of cigarettes daily for 35 years. He has
tried to quit smoking twice but was unsuccessful both times. At today’s visit, when the physician asks
the patient about smoking cessation, he says he is not ready to do so. The patient’s wife states her
husband’s smoking makes her cough and gives her chest tightness.

Which of the following is the most appropriate physician statement?
(A) "Are there any reasons why you might want to quit smoking?" (B) "Are you aware that your lung
condition is chronic at this point?" (C) "I’m sure you don’t want your wife to suffer as a result of your
smoking." (D) "The majority of your health issues would improve if you quit smoking." (E) "Why
haven’t you been able to stay off cigarettes?"

USMLE-Step2 | Format: Question

Question: A 32-year-old woman comes to the emergency department because of a 1-day history of
sharp, right-sided chest pain that worsens with coughing and sneezing. Four days ago, she had a mild
sore throat and runny nose followed by nonproductive cough 1 day later. Over-the-counter decongestant
and aspirin mildly relieved the symptoms. She has not had shortness of breath, blood-tinged sputum,
fever, or chills. She has a long-standing history of recurrent aphthous ulcers. Her only medication is
an oral contraceptive. Temperature is 37.2°C (99.0°F), pulse is 65/min, and respirations are 14/min.
Pulse oximetry on room air shows an oxygen saturation of 99%. Splinting is observed over the right
hemithorax with deep breathing. On cardiac examination, no abnormalities are heard. The remainder of
the examination shows no abnormalities. Chest x-ray shows no abnormalities.

Which of the following is the most appropriate next step in management?
(A) Azithromycin therapy (B) CT angiography (C) Electrocardiography (D) Ibuprofen therapy (E)
Prednisone therapy (F) Transthoracic echocardiography

USMLE-Step3 | Format: Question

Question: A 57-year-old woman comes to the office for a preoperative evaluation 2 weeks before
undergoing scheduled laparoscopic cholecystectomy. Medical history is otherwise unremarkable
and the patient takes no medications. Family history is significant for stable angina in her father
and rheumatoid arthritis in her mother. The patient has a 102-year-old grandmother who resides in
a nursing care facility and has Parkinson disease. The patient does not smoke cigarettes or drink
alcoholic beverages. During the interview, her face is expressionless. She has a flexed posture and
is unable to open her mouth wide. She is 173 cm (5 ft 8 in) tall and weighs 81 kg (179 lb); BMI is
27 kg/m2. Vital signs are normal. Physical examination discloses thickening and hardening of the
skin over the dorsum of the hands and forearms, as well as mild kyphosis. Strength testing shows no
abnormalities; muscle tension is normal. Passive and active range of motion of the upper extremities is
full. Gait is slow and deliberate. The remainder of the physical examination discloses no abnormal-
ities. Prior to surgery, further evaluation is indicated for which of the following conditions in this patient?

(A) Osteitis deformans (Paget disease) (B) Parkinson disease (C) Progressive supranuclear palsy (D)
Sarcopenia (E) Systemic sclerosis (scleroderma)

Figure 7: Examples of prompts used in the evaluation of USMLE-Step1, USMLE-Step2, and
USMLE-Step3. Format shows the information order in the prompt.
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Table 9: Example from MedMCQA benchmark with responses from different models.

MedMCQA

Question: Low insulin to glucagon ratio is seen in all of these except: (A) Glycogen synthesis (B)
Glycogen breakdown (C) Gluconeogenesis (D) Ketogenesis
Answer:

Gold Answer A

BioMistral-7B D) Ketogenesis
MediTron-7B (A) Glycogen synthesis
MediTron-70B (A) Glycogen synthesis
Hippo- (A) Glycogen synthesis
Hippo- Glycogen synthesis

Table 10: Example from MedQA benchmark with responses from different models.

MedQA

Question: A 65-year-old man is brought to the emergency department 30 minutes after the onset of
acute chest pain. He has hypertension and asthma. Current medications include atorvastatin, lisinopril,
and an albuterol inhaler. He appears pale and diaphoretic. His pulse is 114/min and blood pressure
is 130/88 mm Hg. An ECG shows ST-segment depressions in leads II, III, and aVF. Laboratory
studies show an increased serum troponin T concentration. The patient is treated for acute coronary
syndrome and undergoes percutaneous transluminal coronary angioplasty. At the time of discharge,
echocardiography shows a left ventricular ejection fraction of 58%. In addition to aspirin, which of the
following drugs should be added to this patient’s medication regimen? (A) Nifedipine (B) Enoxaparin
(C) Clopidogrel (D) Spironolactone
Answer:

Gold Answer C

BioMistral-7B B Enoxaparin
Meditron-7B (A) Nifedipine
Meditron-70B (C) Clopidogrel
Hippo- (C) Clopidogrel
Hippo- Clopidogrel
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Table 11: Example from PubMedQA benchmark with responses from different models.

PubMedQA

Abstract: Although observational data support an inverse relationship between high-density lipoprotein
(HDL) cholesterol and coronary heart disease (CHD), genetic HDL deficiency states often do not
correlate with premature CHD. Carotid intima-media thickness (cIMT) measurements were obtained
in cases comprising 10 different mutations in LCAT, ABCA1 and APOA1 to further evaluate the
relationship between low HDL resulting from genetic variation and early atherosclerosis. In a 1:2
case-control study of sex and age-related (+/-5 y) subjects (n=114), cIMT was nearly identical between
cases (0.66+/-0.17 cm) and controls (0.65+/-0.18 cm) despite significantly lower HDL cholesterol (0.67
vs. 1.58 mmol/l) and apolipoprotein A-I levels (96.7 vs. 151.4 mg/dl) (P<0.05)
Question: Do mutations causing low HDL-C promote increased carotid intima-media thickness?
Answer:

Gold Answer No

BioMistral-7B No, mutations causing low HDL-C do not promote increased carotid intima-
media thickness. This suggests that the relationship between HDL-C and
CHD is not causal.

MediTron-7B No
MediTron-70B No
Hippo- No, mutations causing low HDL-C do not promote increased carotid intima-

media thickness.
Hippo- No

Table 12: Example from USMLE-1 benchmark with responses from different models.

USMLE-1

Question: Results of a study that examined the impact of risk factors on cardiovascular health are
being evaluated. In the study,serum LDL-cholesterol (LDL) concentration is found to have a correlation
of 0.6 with serum high-sensitivity C-reactive protein (hs-CRP) concentration. Which of the following
statements best describes the relationship betweenLDL concentration and hs-CRP concentration based
on this finding? (A) Higher LDL concentrations are associated with higher hs-CRP concentrations
(B) Higher LDL concentrations are associated with lower hs-CRP concentrations (C) Higher LDL
concentrations cause higher hs-CRP concentrations (D) Higher LDL concentrations cause lower
hs-CRP concentrations
Answer:

Gold Answer A

BioMistral-7B A
MediTron-7B (A) Higher LDL concentrations are associated with higher hs-CRP concentra-

tions
MediTron-70B The correct answer is option (A).
Hippo- (A) Higher LDL concentrations are associated with higher hs-CRP concentra-

tions
Hippo- Higher LDL concentrations are associated with higher hs-CRP concentrations
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Table 13: Example from USMLE-2 benchmark with responses from different models.

USMLE-2

Question: A 16-year-old boy is brought to the emergency department because of a 2-day history
of fever, nausea, vomiting, headache, chills, and fatigue. He has not had any sick contacts. He
underwent splenectomy for traumatic injury at the age of 13 years. He has no other history of serious
illness and takes no medications. He appears ill. His temperature is 39.2°C (102.5°F), pulse is
130/min, respirations are 14/min, and blood pressure is 110/60 mm Hg. On pulmonary examination,
scattered crackles are heard bilaterally. Abdominal examination shows a well-healed midline scar and
mild, diffuse tenderness to palpation. Which of the following is the most appropriate next step in
management? (A) Antibiotic therapy (B) Antiemetic therapy (C) CT scan of the chest (D) X-ray of the
abdomen (E) Reassurance
Answer:

Gold Answer A

BioMistral-7B C
MediTron-7B (A) Antibiotic therapy
MediTron-70B The correct answer is option C.
Hippo- (A) Antibiotic therapy
Hippo- Antibiotic therapy

Table 14: Example from USMLE-3 benchmark with responses from different models.

USMLE-3

Question: A 34-year-old woman comes to the office because of a 1-month history of worsening right
upper quadrant abdominal pain and discomfort. She describes the pain as a dull ache and says it is not
affected by eating or defecating. She has not had nausea or changes in appetite or bowel habits. She
feels the pain constantly while she is awake, but it rarely keeps her from sleeping. Acetaminophen
provides occasional relief. She has been otherwise healthy. Medical history is unremarkable and
her only other medication is an oral contraceptive. Vital signs are normal. Abdominal examination
discloses hepatomegaly but no palpable masses or evidence of cirrhosis. Results of liver function tests
and serum α-fetoprotein concentration are within the reference ranges. Serologic studies for hepatitis B
and C are negative. Ultrasonography of the abdomen shows a 4×4-cm mass in the right lobe of the liver.
Which of the following is the most likely diagnosis? (A) Hepatic adenoma (B) Hepatocellular cancer
(C) Hydatid cyst (D) Metastatic ovarian cancer
Answer:

Gold Answer A

BioMistral-7B A
MediTron-7B (A) Hepatic adenoma.
MediTron-70B (A) Hepatic adenoma.
Hippo- (A) Hepatic adenoma
Hippo- Hepatic adenoma
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You are an expert medical knowledge assistant. Given a piece of question and two of its
possible answers, output 1 or 2 to indicate which answer is better. A good doctor answer has
to be useful, complete, and scientifically-grounded for the patience search query about health.
Compare the answers along 11 axes:

1. Scientific consensus: How does the answer relate to the consensus in the scientific
and clinical community?

2. Extent of possible harm: What is the extent or possible likelihood of possible
harm?

3. Evidence of correct comprehension: Does the answer contain any evidence of
correct reading comprehension? (indication the question has been understood)

4. Evidence of correct retrieval: Does the answer contain any evidence of correct
recall of knowledge? (mention of a relevant and/or correct fact for answering the
question)

5. Evidence of correct reasoning: Does the answer contain any evidence of correct
reasoning steps? (correct rationale for answering the question)

6. Evidence of incorrect comprehension: Does the answer contain any evidence of
incorrect reading comprehension? (indication the question has not been understood)

7. Evidence of incorrect retrieval: Does the answer contain any evidence of incorrect
recall of knowledge? (mention of an irrelevant and/or incorrect fact for answering
the question)

8. Evidence of incorrect reasoning: Does the answer contain any evidence of incor-
rect reasoning steps? (incorrect rationale for answering the question)

9. Inappropriate/incorrect content: Does the answer contain any content it
shouldn’t?

10. Missing content: Does the answer omit any content it shouldn’t?
11. Possibility of bias: Does the answer contain any information that is inapplicable or

inaccurate for any particular medical demographic?

Question - #question
Answer 1 - #answer1
Answer 2 - #answer2
Consider if the answer include agreement with scientific consensus, possibility and likelihood
of harm, evidence of comprehension, reasoning and retrieval ability, presence of inappropriate,
incorrect or missing content, possibility of bias in the answer and explain which answer is
one is better along with these axes.
Rationale: #GPT-4 choice

Figure 8: The GPT-4 prompt used for reinforcement learning from AI-generated feedback.
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