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ABSTRACT1

Music Information Retrieval (MIR) encompasses a broad2

range of computational techniques for analyzing and un-3

derstanding musical content, with recent deep learning ad-4

vances driving substantial improvements. Building upon5

these advances, this paper explores how large language6

models (LLMs) can serve as an integrative bridge to con-7

nect and integrate information from multiple MIR tools,8

with a focus on enhancing automatic chord recognition9

performance. We present a novel approach that positions10

text-based LLMs as intelligent coordinators that process11

and integrate outputs from diverse state-of-the-art MIR12

tools—including music source separation, key detection,13

chord recognition, and beat tracking. Our method converts14

audio-derived musical information into textual representa-15

tions, enabling LLMs to perform reasoning and correction16

specifically for chord recognition tasks. We design a 5-17

stage chain-of-thought framework that allows GPT-4o to18

systematically analyze, compare, and refine chord recog-19

nition results by leveraging music-theoretical knowledge20

to integrate information across different MIR components.21

Experimental evaluation on three datasets demonstrates22

consistent improvements across multiple evaluation met-23

rics, with overall accuracy gains of 1-2.77% on the MIREX24

metric. Our findings demonstrate that LLMs can effec-25

tively function as integrative bridges in MIR pipelines,26

opening new directions for multi-tool coordination in mu-27

sic information retrieval tasks. 128

1. INTRODUCTION29

In tonal music systems, chords serve as the fundamental30

harmonic building blocks, providing the structural foun-31

dation that shapes musical expression and emotional con-32

tent. The ability to identify and understand chord progres-33

sions plays a crucial role in music education, enabling stu-34

dents to develop deeper comprehension of harmonic rela-35

tionships and musical structure. Given the importance of36

chords in musical understanding and practice, automatic37
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chord recognition (ACR) has been a pivotal task in the field38

of music information retrieval (MIR). Recent advances in39

deep learning have revolutionized this field, leading to sub-40

stantial improvements in recognition accuracy compared to41

traditional signal processing approaches [1].42

Parallel to these advances in audio-based deep learning,43

text-based Large Language Models (LLMs) pre-trained on44

massive text corpora have demonstrated remarkable profi-45

ciency in reasoning and understanding across various do-46

mains, including musical knowledge and comprehension .47

Recent works have shown the capability of zero-shot text-48

based LLM models to perform music understanding tasks49

without fine-tuning [2]. Furthermore, subsequent research50

has demonstrated the effectiveness of these LLM models51

in musical applications such as music generation [3], audio52

effect prediction [4], and error detection in MIR tasks [5].53

These findings suggest that LLMs’ text-based reasoning54

abilities could enhance MIR task performance by process-55

ing music information that has been converted into textual56

representations.57

This paper aims to investigate whether the capabilities58

of text-based LLMs can be leveraged to understand mu-59

sical content and enhance the performance of MIR tasks.60

In this study, we focus specifically on the ACR task. We61

employ various state-of-the-art MIR tools, including mu-62

sic source separation [6], key detection [7], chord recogni-63

tion [1], and beat tracking [8], to extract musical informa-64

tion from audio signals. The outputs from these models are65

then converted into textual representations that are read-66

able by text-based LLMs. Without training or fine-tuning67

any deep learning models, we utilize prompt engineering68

and chain-of-thought (CoT) reasoning techniques to enable69

language models to refine and improve chord recognition70

results [9]. This approach explores the potential of com-71

bining existing audio analysis tools with the reasoning ca-72

pabilities of LLMs to achieve better performance in auto-73

matic chord recognition tasks.74

Figure 1 illustrates our proposed approach, which in-75

tegrates outputs from multiple MIR tools through a sys-76

tematic LLM-based reasoning framework. By convert-77

ing audio-derived musical information into textual repre-78

sentations, our method enables GPT-4o to perform cross-79

modal analysis and refinement, demonstrating the potential80

of language models as intelligent coordinators in music in-81

formation retrieval pipelines.82



Figure 1. Overview of the proposed LLM-enhanced chord recognition system. The system converts outputs from multiple
MIR tools (local key detection, beat tracking, source separation, and chord recognition) into standardized textual formats,
which are then processed by GPT-4o through a 5-stage chain-of-thought refinement process to produce enhanced chord
recognition results.

2. METHODOLOGY83

We employ GPT-4o [10] as an integrative bridge to connect84

and coordinate information from multiple MIR tools for85

enhanced automatic chord recognition. Our method con-86

verts audio-derived musical information into textual rep-87

resentations, enabling the LLM to perform reasoning and88

correction through a 5-stage chain-of-thought framework89

that systematically analyzes, compares, and refines chord90

recognition results.91

2.1 Audio Signal Analysis with MIR Tools92

To enhance automatic chord recognition performance, we93

employ multiple MIR tools to extract complementary mu-94

sical information from audio signals. We first utilize HT95

Demucs [6] for music source separation to generate sepa-96

rated audio tracks: drum-removed audio, drum-and-vocal-97

removed audio, and isolated bass stem. These separated98

tracks, along with the original full-mix audio, are then99

processed through a large-vocabulary chord recognition100

model capable of recognizing 301 distinct chord classes101

[1]. This multi-track approach aims to obtain multiple102

chord recognition results, as different source combina-103

tions may yield varying accuracy depending on the musi-104

cal content—the optimal configuration will be determined105

through systematic comparison in our refinement frame-106

work. For the bass stem specifically, we perform chord107

recognition but only retain the root/bass note information,108

discarding the chord quality components to avoid potential109

conflicts with the original chord sequence, as bass lines110

typically provide strong harmonic anchoring information111

that is most reliable for root note identification. To pro-112

vide tonal context for music-theoretical reasoning, we em-113

ploy local key detection [7] on the full-mix audio, which114

helps identify chord progressions that may be inconsistent115

with the detected key. For temporal alignment, we apply116

Beat This [8] to detect beat positions in the original au-117

dio, enabling precise synchronization of chord boundaries118

to musical beats. All outputs from these MIR tools are119

converted into standardized textual representations, allow-120

ing GPT-4o to integrate and reason about the multi-modal121

audio-derived information through our proposed 5-stage122

chain-of-thought refinement framework.123

2.2 5-Stage CoT Refinement124

2.2.1 Stage 1: Music Source Separation (MSS)125

In this stage, we perform chord recognition on three au-126

dio tracks generated from the source separation process:127

the original full-mix audio, the drums-removed audio, and128

the drums-and-vocals-removed audio. Each track con-129

figuration offers different advantages—removing drums130

eliminates non-tonal percussive interference that may con-131

fuse the chord recognition model, while the drums-and-132

vocals-removed track focuses purely on instrumental har-133

mony from bass and accompanying instruments. How-134

ever, vocals can sometimes reinforce harmonic content135

through melodic lines and harmonies, making the full-mix136

or drums-removed versions potentially more informative137

in certain passages. The LLM processes the chord recog-138

nition results from all three audio tracks and determines139

which result is optimal based on three criteria: the pro-140

portion of ’N’ (non-chord) labels, chord progression pat-141

terns, and music-theoretical plausibility. The selected best-142

performing result serves as the primary chord sequence,143

while the second-best result is retained as a reference for144

subsequent stages.145

2.2.2 Stage 2: Bass Correction146

In this stage, the LLM processes three inputs: the bass stem147

chord recognition results (with only root/bass note infor-148

mation retained), the local key estimation results, and the149

selected best-performing ACR result from Stage 1. Based150

on music theory knowledge, the LLM evaluates whether151

the bass stem chord recognition results are reliable. If152

deemed reliable, the process proceeds to the bass correc-153

tion phase; otherwise, this stage is skipped. During the154

bass correction phase, the LLM refines the chord recog-155



nition results from the previous stage using the bass stem156

information, focusing specifically on bass note corrections.157

If the bass note corresponds to a chord tone of the original158

chord, the chord remains unchanged or undergoes appro-159

priate inversion. If the bass note does not match the origi-160

nal chord tones but falls within the key, the LLM treats the161

bass note as the root and corrects the chord to the corre-162

sponding diatonic chord in the local key.163

2.2.3 Stage 3: Key Correction164

In this stage, the LLM evaluates the current chord recog-165

nition results based on local key estimation to identify po-166

tentially unreasonable segments. Additionally, the second-167

best chord recognition result from Stage 1 is used as a ref-168

erence. When discrepancies exist between the current re-169

sult and the reference, the LLM assesses whether the ref-170

erence result is superior based on chord patterns and music171

theory principles. In the prompt design, we instruct the172

LLM to adopt a conservative correction approach, main-173

taining flexibility for modal interchange, secondary domi-174

nant chords, and other common harmonic practices. Cor-175

rections are applied only to segments that are clearly in-176

consistent with established music theory principles.177

2.2.4 Stage 4: Anomaly Detection178

Building upon the results from Stage 3, this stage instructs179

the LLM to identify unreasonable chord segments again180

based on local key estimation information and music the-181

ory knowledge. The LLM also evaluates whether certain182

segments labeled as ’N’ (non-chord) should actually con-183

tain chord information. To enhance the LLM’s reasoning184

process, we design a two-step approach on this stage: first,185

the LLM lists potentially problematic segments along with186

the reasons for identifying them as problematic; then, the187

LLM applies corrections based on the reasoning it has pre-188

viously claimed. This explicit reasoning step improves the189

transparency, robustness, and accuracy of the correction190

process.191

2.2.5 Stage 5: Beat Alignment192

This stage performs beat alignment based on the beat track-193

ing results. Unlike previous stages, this stage does not uti-194

lize LLMs but employs a rule-based approach for align-195

ment. Each detected beat corresponds to a quarter note,196

which we subdivide into equal parts to calculate all six-197

teenth note positions. The start time and end time of each198

chord label from the final chord recognition results are di-199

rectly aligned to the nearest sixteenth note beat positions.200

To prevent degradation from inaccurate beat tracking, we201

skip this stage if the required temporal displacement ex-202

ceeds a predefined threshold.203

3. EXPERIMENT204

3.1 Dataset205

Our experiments are evaluated on three datasets. The first206

dataset, IdolSongsJp, consists of 15 tracks created by com-207

missioning professional composers to produce music in the208

style of Japanese idol groups [11]. The second dataset209

comprises a subset of 192 full-length pop songs selected210

from UsPop2002 2 . The third dataset is an in-house col-211

lection containing 20 Western pop songs, featuring only212

chorus segments that have been professionally annotated213

with chord labels by expert musicians. These datasets are214

accompanied by label files that specify the start time, end215

time, and type of the chord.216

3.2 Baseline Chord Recognition Model217

We employ the large-vocabulary chord transcription sys-218

tem , which utilizes chord structure decomposition to han-219

dle extensive chord vocabularies as our baseline ACR220

model [1]. This baseline model is capable of recognizing221

301 distinct chord classes, including the following cate-222

gories: basic triads (maj, min, aug, dim), inverted triads223

(maj/3, maj/5, min/b3, min/5), seventh chords (maj7, 7,224

min7, dim7, hdim7), extended chords (maj9, 9, min9, 11,225

13), suspended chords (sus4, sus2, sus4(b7)), and slash226

chords (maj/2, maj/b7, min/2, min/b7), along with a non-227

chord class (N).228

3.3 Text-based Information Representation229

To enable LLM processing, all MIR tool outputs230

are converted into standardized textual formats using231

a consistent three-column structure: <start_time>232

<end_time> <label>. Chord recognition and key de-233

tection results follow the format with chord labels using234

the Harte shorthand notation system [12]. For example,235

"A:maj/3" represents an A major chord with the third in the236

bass, while "F:min7" denotes an F minor seventh chord.237

For bass stem analysis, we discard chord quality compo-238

nents to extract only the pitch calss. Beat tracking re-239

sults utilize the same temporal format with beat positions240

numbered 1-4, where "1" indicates the downbeat and "2",241

"3", "4" represent subsequent beats within each measure.242

Throughout all five stages, we maintain consistent adher-243

ence to these formats in both LLM inputs and outputs, en-244

suring seamless integration between processing stages.245

3.4 Evaluation Metrics246

For evaluation, we assess the performance of our proposed247

LLM-enhanced chord recognition system using framewise248

chord recognition accuracy. The metric calculates the per-249

centage of correctly identified chord labels at each time250

frame throughout the audio tracks. All evaluation scores251

are computed using the mir_eval library [13], which252

provides standardized implementations of music informa-253

tion retrieval evaluation metrics. Specifically, the adopted254

metrics in this study are: root only, root and thirds, ma-255

jor/minor, triads, sevenths, tetrads and MIREX (considered256

correct if it shares at least three pitch classes in commons).257

3.5 Results and Discussion258

Table 1 shows the framewise chord recognition accuracy259

across different datasets and processing stages. Our pro-260

2 https://github.com/tmc323/Chord-Annotations



Dataset Stage MIREX Root Majmin Thirds Triads Sevenths Tetrads

IdolSongsJp [11]

Baseline [1] 79.50 80.91 80.52 77.73 74.93 65.72 59.19
MSS 80.67 82.29 82.35 79.48 76.67 67.11 60.45
Bass Correction 80.71 82.29 82.35 79.48 76.67 67.11 60.45
Key Correction 80.69 82.29 82.35 79.48 76.67 67.11 60.45
Anomaly Detection 81.16 82.77 82.82 79.92 77.11 67.48 60.80
Beat Alignment 80.73 82.44 82.27 79.56 76.70 67.00 60.46

UsPop2002

Baseline [1] 80.07 82.52 82.06 79.55 72.47 72.55 63.18
MSS 80.85 83.22 82.94 80.04 73.16 73.20 63.69
Bass Correction 80.84 83.22 82.92 80.04 73.13 73.06 63.54
Key Correction 80.89 83.24 82.96 80.35 73.18 73.20 63.68
Anomaly Detection 80.95 83.36 83.04 80.47 73.25 73.24 63.73
Beat Alignment 81.13 83.54 83.21 80.64 73.42 73.39 63.87

In-house dataset

Baseline [1] 83.29 80.25 80.79 79.48 78.89 67.17 64.52
MSS 84.12 81.63 81.01 79.97 79.52 73.91 69.57
Bass Correction 84.04 81.54 80.92 79.88 79.42 73.80 69.46
Key Correction 85.29 82.29 82.28 81.13 80.67 74.15 69.50
Anomaly Detection 85.93 83.05 82.63 81.57 80.98 74.49 69.81
Beat Alignment 86.06 83.30 82.81 81.79 81.17 74.64 69.94

Table 1. Framewise chord recognition accuracy (%) across different datasets and processing stages. "Original" represents
the baseline ACR model results obtained directly from the original full mix music audio tracks. Bold values indicate the
best accuracy for each metric within each dataset.

posed LLM-enhanced system demonstrates consistent im-261

provements across various datasets and evaluation metrics.262

Most stages effectively enhance ACR accuracy, with the263

overall system achieving improvements of 1-2.77% on the264

MIREX metric across all datasets, representing substantial265

gains in automatic chord recognition performance.266

However, several noteworthy observations emerge from267

detailed analysis. The Bass Correction stage occasionally268

results in decreased accuracy across most scenarios. Upon269

examining individual songs, we find that while most tracks270

experience minor improvements or maintain stable perfor-271

mance, a subset of songs suffers from sustained bass notes272

that cause the system to incorrectly modify properly recog-273

nized chord changes. These corrections replace dynamic274

chord progressions with static diatonic chords correspond-275

ing to the persistent bass note. Since these erroneous cor-276

rections typically occupy longer durations, they exert a dis-277

proportionately dominant impact on overall dataset perfor-278

mance.279

Our in-house dataset exhibits significantly more pro-280

nounced improvements compared to the other two datasets.281

We attribute this enhanced performance to two factors: the282

dataset contains only chorus segments, providing shorter283

contexts that enable more reliable LLM processing, and284

the increased pattern regularity in chorus sections allows285

the LLM to make more confident and accurate corrections.286

During the beat alignment stage, IdolSongsJp repre-287

sents the only dataset showing performance degradation.288

Analysis reveals that Japanese idol-style songs feature289

more frequent chord changes compared to conventional290

pop music, rendering beat alignment ineffective for this291

particular musical style with its characteristic rapid har-292

monic rhythm.293

4. CONCLUSION AND FUTURE WORK294

This study presented a novel approach that leverages295

LLMs as integrative bridges to enhance automatic chord296

recognition by coordinating information from multiple297

MIR tools. Through our 5-stage CoT framework, a closed298

source GPT-4o model successfully demonstrated the abil-299

ity to perform music-theoretical reasoning and systemati-300

cally refine chord recognition results by integrating outputs301

from music source separation, key detection, chord recog-302

nition, and beat tracking systems. Experimental results303

across three diverse datasets show consistent improve-304

ments, with accuracy gains of 1-2.7% on the MIREX met-305

ric, validating the effectiveness of using text-based reason-306

ing to complement traditional deep learning approaches.307

Building upon the success of this integrative approach,308

numerous avenues for enhancement and expansion present309

themselves. Incorporating music structure segmenta-310

tion could enhance system stability by applying segment-311

specific refinement strategies, potentially making the ap-312

proach more robust across different musical sections. The313

integration of music genre classification would enable314

genre-specific system prompts, allowing the LLM to apply315

more targeted musical knowledge and correction strategies316

tailored to different musical styles, from jazz harmonies to317

electronic music progressions.318

Beyond chord recognition, this framework demon-319

strates significant potential for broader cross-modal en-320

hancement across other MIR tasks, including music tran-321

scription, music sturcture segmentation, and integrated322

multi-task MIR systems. This approach could advance to-323

ward more comprehensive language model integration in324

music information retrieval, where LLMs serve as central325

reasoning engines coordinating multiple specialized audio326

analysis tools.327
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