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Abstract

The goal of compositional generalization
benchmarks is to evaluate how well models gen-
eralize to new complex linguistic expressions.
Existing benchmarks often focus on lexical gen-
eralization, the interpretation of novel lexical
items in syntactic structures familiar from train-
ing. Structural generalization tasks, where a
model needs to interpret syntactic structures
that are themselves unfamiliar from training,
are often underrepresented, resulting in overly
optimistic perceptions of how well models can
generalize. We introduce SLOG, a semantic
parsing dataset that extends COGS (Kim and
Linzen, 2020) with 17 structural generaliza-
tion cases. In our experiments, the generaliza-
tion accuracy of Transformer models, includ-
ing pretrained ones, only reaches 40.6%, while
a structure-aware parser only achieves 70.8%.
These results are far from the near-perfect accu-
racy existing models achieve on COGS, demon-
strating the role of SLOG in foregrounding the
large discrepancy between models’ lexical and
structural generalization capacities.

1 Introduction

Compositional generalization benchmarks that test
the ability to understand novel utterances based
on composition of known parts (Montague, 1974;
Partee, 1984; Fodor and Pylyshyn, 1988) have
emerged as a useful tool for model evaluation in
semantic parsing. COGS (Kim and Linzen, 2020)
in particular has become a widely-used benchmark,
as it is designed to expose a generalization gap be-
tween training and testing data that many recent
semantic parsers still struggle with.

COGS distinguishes two distinct types of gen-
eralization challenges: lexical generalization tests
a model’s ability to interpret novel combinations
of known lexical items and known linguistic struc-
tures (Figure 1a), whereas structural generalization
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(a) Lexical generalization: object → subject (COGS)
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(b) Structural generalization: RC object→RC subject (SLOG)

Figure 1: Examples of lexical generalization in COGS
(a), and structural generalization in SLOG (b). The
SLOG task requires mapping the generalization exam-
ples to their logical forms; the corresponding logical
forms are shown in Table 1.

tests the ability to combine known structures into
a novel structure (Figure 1b). Importantly, most
of the generalization types in COGS are lexical
generalization (18 out of 21 generalization types,
86% of the dataset). As lexical generalization is
arguably easier than structural generalization (e.g.,
solvable by simple slot-filling), this imbalance may
lead to overall performance numbers that are overly
optimistic with regard to a model’s capacity to gen-
eralize compositionally (Yao and Koller, 2022).

To facilitate a more comprehensive evalua-
tion of structural generalization, we introduce
SLOG, a Structural LOng-distance dependencies
Generalization benchmark. SLOG extends COGS
to include 17 cases of structural generalization in to-
tal (14 new cases and 3 existing cases from COGS)
(§2). The novel generalizations we introduce target
two key structural features of human language (§3):
recursion and filler-gap dependencies.

We use SLOG to evaluate a sequence-to-
sequence (seq2seq) Transformer model trained



Training Generalization

COGS Emma saw the dog. ;
*dog(x3); see.agent(x1,Emma) ∧
see.theme(x1, x3)
The cat ran. ; *cat(x1); run.agent(x2, x1)

The dog ran. ;
*dog(x1); run.agent(x2, x1)

SLOG Emma saw the dog that Max held. ;
*dog(x3); see.agent(x1,Emma) ∧
see.theme(x1, x3) ∧ dog.nmod(x3, x6) ∧
hold.agent(x6,Max) ∧ hold.theme(x6, x3)
The cat ran. ; *cat(x1); run.agent(x2, x1)

The dog that Max saw ran. ;
*dog(x1); dog.nmod(x1, x4) ∧
see.agent(x4,Max) ∧ see.theme(x4, x1)
∧ run.agent(x5, x1)

Table 1: Examples of lexical generalization in COGS and structural generalization in SLOG with their corresponding
COGS logical form (LF) representation. The task requires mapping (;) the English sentences to their LFs.

from scratch (Vaswani et al., 2017), two pretrained
Transformers (T5-base; Raffel et al. 2020 and
LLaMA; Touvron et al. 2023), and a structure-
aware1 model (AM-Parser; Weißenhorn et al.
2022). In comparison to their overall performance
on COGS, all models exhibit considerably lower
performance on SLOG (§5). An error analysis
reveals that the structure-aware AM-Parser gener-
alizes well on the existing structural generalization
cases in COGS but struggles with the gap construc-
tions introduced in SLOG due to inherent structural
limitations, which we discuss in §5.3. Transform-
ers tend to erroneously repeat frequent meaning rep-
resentation subsequences observed during training.
Even with pretraining, they struggle with unseen
long-distance dependencies, which we attribute to
their bias towards shorter predicate-argument de-
pendencies. Overall, the discrepancy in perfor-
mance between SLOG and COGS demonstrates
the utility of SLOG in exposing the overall limi-
tations of current semantic parsing models shown
to achieve high performance on existing general-
ization benchmarks, as well as highlighting the
different weaknesses of these models.

2 The SLOG Benchmark

SLOG follows the semantic parsing format used in
COGS, where the task is to translate English ex-
pressions into logic-based meaning representations.
As in COGS, there is a systematic gap between the
training set and the generalization set: there are
constructions in the generalization set that are not
included in the training set, but pieces of construc-
tions included in the training set can be recombined
to arrive at their correct meanings. For example,
as illustrated in Table 1, noun phrases that appear

1In this paper, ‘structure-aware’ refers specifically to mod-
els that incorporate explicit representations of linguistic struc-
ture.

only in object position during training must be rein-
terpreted in subject position during generalization.

SLOG2 is generated using manually specified
rules (§3), adopting the same meaning represen-
tation as COGS. The COGS logical form (LF),
derived from Reddy et al. (2017), uses indexed con-
stants to represent entities or events. For example,
in the first example of Table 1, x3 denotes an entity
that is both a dog and the theme of a seeing event,
while x1 denotes the seeing event. The constant
names are determined by the linear position of the
phrasal head in the input sentence.

SLOG contains 17 structural generalization
cases grouped into four categories. These general-
ization cases are primarily motivated by frequency
asymmetries in natural language, where simpler
structures are more common than complex ones; in
other words, SLOG assesses whether NLP models
can extrapolate from frequent patterns to rare ones.

We describe the four categories below; see Ta-
ble 2 for the full list of generalization cases.

2.1 Novel Recursion Depth

Recursion allows smaller phrases to be combined
to create larger phrases. This combination process
can be repeated an unbounded number of times.
COGS tests a model’s ability to apply recursion in
two cases: sentential complements (tail CP recur-
sion)3 and nominal prepositional phrase modifiers
(tail PP recursion). For both cases, the training set
contains recursive depths of 0–2, where 0 indicates
the absence of any PP or CP, and the generalization
set contains the strictly greater depths 3–12.

By contrast, the SLOG training set includes re-
cursion of depths 0–2 and 4, and the generalization

2The generation code and SLOG dataset are available at
https://github.com/bingzhilee/SLOG.

3Nested clauses with right-branch embeddings like [Max
knows that [Mary knows [that Emma cooks]CP ]CP ]CP

https://github.com/bingzhilee/SLOG


Generalization cases Training Generalization

§2.1 Novel Recursion Depth

Deeper depth generalization
✓Prepositional phrases (PP)

max depth 4 → depth 5-12
Ava saw the ball in the bottle on
the table.

Ava saw the cat in the box on the
mat on the bed on the floor in the
room.

✓Tail CP recursion
max depth 4 → depth 5-12

Ava believed that Emma said that
a fish froze.

Ava said that Emma liked that
Max believed that Noah found
that Liam saw that the cat slept.

Center embedding
max depth 4 → depth 5-12

Eva saw the cat that the horse
that the dog liked chased.

Ava held the dress that a store that
a girl that a boy that a cat that a
man drew saw loved knew sold.

Shallower depth generalization
Prepositional phrases
max depth 4 → depth 3

Emma saw the ball in the bottle
on the table on the floor in the
office.

Ava saw the cat on the mat on the
floor in the office.

Tail CP recursion
max depth 4 → depth 3

Ava believed that Emma said that
Max found that a cat saw that a
fish froze.

Ava said that Emma liked that
Max believed that the cat slept.

Center embedding
max depth 4 → depth 3

Eva saw the cat that the horse
that the dog that the man that
the girl loved found liked chased.

Emma bought the dress that the
store that the woman that Mike
knew liked sold.

§2.2 Novel Combination of Modified Phrases and Grammatical Roles

PP in direct object NPs
✓→ PP in subject NPs Noah ate the cake on the plate. The cake on the table burned.
→ PP in indirect object NPs Noah ate the cake on the plate. Max gave a fish to a cat on a table.

RC in direct object NPs
→ RC in subject NPs Noah saw the cat that froze. The cat that froze smiled.
→ RC in indirect object NPs Noah saw the cat that froze. Max gave a fish to a cat that ran.

§2.3 Novel Gap Positions

Subject, direct object-extracted RC
→ Indirect object-extracted RC

Noah saw the cat that gave a fish
to Liam. ⊕ Noah saw the cat that
Liam liked _.

Noah saw the cat that Emma gave
a cake to _ .

Subject, direct object wh-questions
→ Indirect object wh-questions

Who saw the cat? ⊕ What did
Emma see _?

Who did Noah give the cake to _?

§2.4 Novel wh-questions

Subject, object wh-Q of simple transitives

→ Active subject wh-questions
Who saw the cat?
⊕ Emma wanted to sleep.

Who wanted to sleep ?

→ Passive subject wh-questions
Who did Emma see _?
⊕ The boy was found by Emma.

Who was helped by Emma?

→ Direct object wh-questions
with ditransitive verbs

What did Emma see _?
⊕ Emma gave a fish to the cat.

What did Emma give _ to the cat?

→ Wh-questions with modified NPs
What did the cat see _?
⊕ the cat on the mat What did the cat on a table see _?

→ Wh-questions long movement What did the cat see _? ⊕ Emma
said that the cat saw a fish.

What did Emma say that the cat
found _?

Table 2: A full list of SLOG generalization cases. Each sentence in the table corresponds to a (sentence, logical
form) pair, as illustrated in Table 1. ⊕ denotes the composition of two observed structures, which allows to
interpret the target novel structure. Some cases cover multiple constructions: e.g., all ditransitive verbs include both
double-object and prepositional constructions. The three cases marked with ‘✓’ are structural generalization cases
already present in the COGS dataset.



set contains both the intermediate depth 3 and the
greater depths 5–12. Including both shallower and
deeper embeddings in the generalization set allows
us to determine if any difficulty in generalizing to
an unseen embedding depth is a consequence of
the model’s more general difficulty in processing
longer sequences than observed in training (Lake
and Baroni, 2018; Herzig et al., 2021; Anil et al.,
2022) rather than a more specific issue with apply-
ing recursion to generate novel constructions.

In addition to this new depth split, SLOG in-
troduces a new recursion construction. COGS in-
volves only tail recursion, which features recursive
PPs and CPs with right-branch embeddings. SLOG
extends this with center embedding, where a phrase
is embedded in the middle of another of the same
type, leaving elements on both sides of the embed-
ded component and producing well-parenthesized
long-distance dependencies, as denoted by the sub-
script numbers:

(1) Eva saw the mouse [that the cat1 [ that the
dog2 chased2 ] held1 ].

At the same recursion depths, the average LF length
increases from PP recursion to tail CP recursion to
center embedding.

In natural language, recursion depth is rarely
greater than five, and center embedding is gener-
ally limited to two levels (Karlsson, 2007, 2010).
By contrast, SLOG includes recursion up to depth
12. While this may surpass human processing abil-
ities for reasons presumed to be linked to memory
constraints (Gibson and Thomas, 1999; Karlsson,
2007), deeper embedding depth remains grammati-
cal, echoing Chomsky’s competence versus perfor-
mance distinction. Importantly, we also note that
our goal with SLOG is to evaluate the linguistic
competence of NLP models, whose goal is not to
simulate human performance limitations.

2.2 Novel Combination of Modified Phrases
and Grammatical Roles

SLOG also tests the capacity to interpret complex
noun phrases (NPs) in new positions. In addition
to PP modifiers included in COGS, we introduce
relative clause modifiers.

2.2.1 Prepositional Phrase Modifiers
In COGS, NPs modified by PPs are seen only as
direct objects (2), and need to be interpreted as sub-
jects during generalization (3). SLOG adds general-
ization cases targeting indirect object modification
(4).

(2) Noah saw [a cat on the table]dobj .
(3) [The cat on the mat]subj ran.
(4) Emma gave [a cat on the mat]iobj a fish.

We expect sub-cases of indirect object modifica-
tion to pose challenges of varying difficulty, de-
pending on the length of the predicate-argument
dependency. In particular, generalization to indi-
rect object modification in active oblique datives
(4) introduces a dependency between the verb gave
and the direct object a fish across the non-argument
NP the mat.4 In contrast, sub-cases like (5a) and
(5b), where the non-argument NP occurs at the end
of the sentence, do not include a dependency across
an intervening NP; we therefore expect them to be
relatively easier.

(5) a. Emma gave a fish to [a cat on the
mat]iobj .

b. A fish was given to [a cat on the
mat]iobj .

SLOG’s training set additionally includes stan-
dalone PP-modified NPs (e.g., the NP the cat
on the table on its own5) to prevent modifiers
from being associated with only a particular range
of token indices, as pointed out by Wu et al.
(2023).6 Such standalone NPs, which are com-
mon in child-directed speech (Wells and Bridges,
1981; Cameron-Faulkner et al., 2003) but were not
a part of COGS, serve as a signal that the distri-
bution of PP-modified NPs is not restricted to the
object position.

2.2.2 Relative Clause Modifiers
Similar to PP modifiers, NPs with relative clause
(RC) modifiers, as in (6), can occupy any position
that an unmodified NP can fill. We expect RC
modifiers to pose a greater challenge compared to
PP modifiers, as they involve gap constructions, in
which a phrase needs to be interpreted in a position
other than its canonical position in a declarative
clause. We refer to this as extraction (Sag, 2010),
and we mark gap positions with an underscore.
In (6), the dog should be interpreted as if it occupies
the gap position as the direct object of held; in the
logical form, this is represented by the fact that x3
is filling both see.theme and hold.theme.

4This observation also holds true for the generalization to
subject modification shown in (3).

5the cat on the table ; *cat(x1); *table(x4);
cat.nmod.on(x1, x4)

6PPs in COGS were restricted to the object position, so
models never observed the association of modifiers with
linearly-earlier indices, which makes it difficult to isolate this
effect from structural generalization.



(6) Emma saw the dog that Max held __.
; *dog(x3); see.agent(x1, Emma)

∧ see.theme(x1, x3) ∧
dog.nmod(x3, x6) ∧ hold.agent(x6,

Max) ∧ hold.theme(x6, x3)

Similar to the case of the PP modifiers (§2.2.1), the
training set contains direct object NPs modified by
RCs as well as standalone RC-modified NPs, as
in (7). The generalization set contains RC modi-
fiers for subject NPs, as in (8a), and indirect object
NPs, as in (8b):

(7) TRAINING

a. Liam saw [the cat that Emma held
__]dobj .

b. the cat that Liam fed __

(8) GENERALIZATION

a. [The cat that Emma found __]subj
smiled.

b. Liam gave [a cat that Emma held
__]iobj a fish.

2.3 Novel Gap Positions
The SLOG training set contains both subject and di-
rect object extraction in RCs (9); these are the most
frequent extraction positions in both written and
spoken English corpora (Roland et al., 2007). The
generalization set includes extraction of indirect
objects (10), a less frequent construction.

(9) TRAINING

a. Liam saw the boy that ate a cake.
b. Liam saw the boy that Emma loved __

(10) GENERALIZATION

a. Liam saw the boy that Emma gave a
cake to __ .

SLOG also tests for the interpretation of novel
gap positions in wh-questions. As with RCs, the
training set includes questions with either subject
or direct object extraction (11), and the general-
ization set contains questions with indirect object
extraction (12).

(11) TRAINING
a. Who did Emma love __?
b. Who ate a cake?

(12) GENERALIZATION
a. Who did Emma give a cake to __?.

In a wh-question (11a), a wh-filler (who) in the
initial position of the clause is interpreted as if it
occupied the gap (again indicated with an under-
score) in the direct object position of love.

2.4 Novel Wh-questions

Next, we evaluate generalization to extraction cases
that involve familiar gap positions—subject and di-
rect object—paired with verb types that have never
been observed in wh-questions during training. For
this case, the training set contains wh-questions
with simple transitive verbs (13) and declarative
sentences with various verb types: transitive, in-
transitive and ditransitive. The generalization set
includes five novel types of wh-questions that have
not been observed during training, though their
declarative counterparts have.

The novel wh-questions have varying distance
between the wh-filler and the gap. Subject wh-
questions, which maintain the same word order as
their declarative counterparts, exhibit no gap (14a,
14b). Questions about direct objects of ditransitive
verbs (14c), as well as questions with NPs modified
by either a PP or an RC (14d),7 have moderately
long filler-gap distances. The filler-gap distance
is longest for object extraction out of embedded
clauses (14e).

(13) TRAINING

(The training set also includes the declara-
tive counterparts of (14).)

a. Who saw a cat ?

b. What did Emma see __?

(14) GENERALIZATION

a. Who froze ?

b. What was frozen ?

c. What did the boy give __ to Liam?

d. What did Max give a cat that slept __?

e. What did a boy say that Max believed
that the cat saw __?

3 Dataset Generation

Grammar SLOG is generated from a probabilis-
tic Synchronous Context-Free Grammar (SCFG)
implemented in Alto (Gontrum et al., 2017). This
grammar simultaneously generates the English ex-
pressions and their corresponding meaning repre-
sentations (see Appendix B for more details).

Training and generalization sets We follow a
similar sampling procedure to COGS. A total of

7Wh-questions with PP- or RC-modified NPs include vari-
ous constructions where modifiers appear in subjects, direct
objects, or indirect objects, exhibiting an average filler-gap
distance similar to ditransitive verb wh-questions.



10,607 sentences are sampled from the probabilis-
tic SCFG and then split into training, in-domain
validation and in-domain test sets with an 8:1:1
ratio. The splits are then merged with the corre-
sponding COGS splits. We then add 100 standalone
PP-modified NPs and 100 standalone RC-modified
NPs to the training set, as discussed in Section 2.2.

We also include what we refer to as primitive ex-
posure examples for each ditransitive verb and verb
accepting CP arguments,8 totaling 40 primitives.
These are standalone verb lexical meanings, such
as, hope ; λa.λb.λe.hope.agent(e,b)
∧ hope.ccomp(e,a). This results in a final
training set of 32,755 examples and 4,046 exam-
ples in both validation and in-distribution test sets.

For the generalization set, we use separate gram-
mars for each generalization case. We sample 1000
examples from each of the 17 cases, yielding a total
of 17,000 examples. For the training set and the
generalization set, the maximum lengths of the in-
put English sentences are 28 and 61 tokens, respec-
tively. The maximum lengths of the corresponding
output logic forms are 229 and 599 tokens. See
Appendix B for more details.

4 Experimental Setup

Models We evaluate the performance of seq2seq,
autoregressive, and structure-aware models on
SLOG. The seq2seq models we evaluate are a
Transformer we train on SLOG from scratch
(vanilla Transformer henceforth; Vaswani et al.
2017), and a finetuned pretrained Transformer (T5;
Raffel et al. 2020) that has demonstrated strong
performance on multiple compositional generaliza-
tion tasks (Herzig et al., 2021). The autoregressive
Transformer model we evaluate is LLaMa (Touvron
et al., 2023). Finally, the structure-aware model
we evaluate is the AM-Parser (Groschwitz et al.,
2018), which achieves near-perfect accuracy on
COGS (Weißenhorn et al., 2022). Previous work
has shown that structure-aware models perform
well on compositional generalization tasks, specifi-
cally those involving structural generalization (Yao
and Koller, 2022). Following Weißenhorn et al.
(2022), we first have the AM-Parser predict an in-
termediate dependency tree, and then convert it to
a graph-based representation of the SLOG logical
form. We use the A* AM-parser from Lindemann

8Primitive examples of these two verb types let us incorpo-
rate their infinitive forms, used in wh-questions, into SLOG’s
vocabulary.

et al. (2020) for our experiments, as it yields the
best overall results compared to alternative versions
of AM-parser, such as the one in Groschwitz et al.
(2018).9 We run each experiment with five different
random seeds. See Appendix A for more details.

Evaluation metric Most studies report exact
match accuracy on COGS. This metric has two
limitations that may lead to an underestimation of
a model’s generalization capacity. First, because
the COGS LF is conjunctive, reorderings of the
conjuncts are semantically equivalent; yet, under
exact match accuracy, only a single order is consid-
ered correct. Second, the COGS LF uses Skolem
constants with a naming scheme tied to the lin-
ear indices of phrasal heads in the input. While
a commitment to a systematic naming scheme is
necessary for consistent evaluation, different nam-
ing schemes up to the renaming of the constants
in the gold LF yield equivalent LFs (e.g., (15a) vs.
(15b)). Such LFs would be considered incorrect
under exact match.

To incorporate semantic equivalence up to con-
junct reordering and constant renaming, at eval-
uation time, we alphabetically sort the conjuncts
of the gold LFs, and subsequently index variables
based on their appearance order in the sorted LFs.
The same modifications are applied to the model
outputs. This process results in the reformatted out-
put as shown in (16); applying these modifications
to (15a) and (15b) yields the same outcome. Then,
computing exact match on these postprocessed LFs
captures the targeted semantic equivalence.

(15) Gold LF and model-predicted LF for What
did the baby eat?:
a. Gold: eat.theme(x4, ?) ∧

eat.agent(x4, x3) ∧ baby(x3)

b. Out: eat.agent(x3, x6) ∧
eat.theme(x3,?) ∧ baby(x6)

(16) Reordered and reindexed version:

a. baby(y2) ∧ eat.agent(y1, y2)

∧ eat.theme(y1, ?)

This reformatted exact-match metric is used for all
results reported in the main text; see Appendix C.1
and Table 5 for more details.

5 Results

Overall, seq2seq Transformers, both trained from
scratch and pretrained, display low accuracy on

9For a detailed discussion, please refer to Appendix D.
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Figure 2: Accuracy on SLOG, with error bars indicating
variations across five runs. We also show the best pub-
lished results on COGS (indicated with †), as reported
in Yao and Koller (2022).

SLOG (Figure 2), in line with earlier studies on
structural generalization in seq2seq models (Yao
and Koller, 2022). This is also the case for the more
recent autoregressive Transformer LLaMa, whose
performance is similar to that of T5. As Figure 2
shows, high accuracy on the full COGS dataset,
where 86% of the generalization cases are lexical,
can obscure low performance on structural gener-
alization, highlighting the need for the expanded
structural generalization tests included in SLOG.

SLOG additionally reveals weaknesses in the
AM-Parser that COGS did not. While the AM-
Parser achieves 90% accuracy on the structural
generalization subset of COGS (Figure 2), it faces
systematic difficulties with several generalization
types introduced in SLOG (Figure 3).

Performance varied substantially across gener-
alization categories (Figure 3); in particular, all
models achieved near-perfect accuracy on Active
subject wh-questions and Shallower PP recursion.
These cases were the least structurally complex in
their respective categories (§2.3 and §2.1).We high-
light specific error types in the rest of this section;
see Appendix C for full results and additional error
analysis.

5.1 Unobserved Depth and Length Both
Affect Depth Generalization

The maximum depth observed in training was four
levels of embedding for all three recursive struc-
tures tested. All models achieve greater than 90%
accuracy on unseen shallower PP recursion (three
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Figure 3: Aggregate accuracy on SLOG by general-
ization category, with error bars denoting the standard
deviation across generalization cases within each cate-
gory over five model runs.

levels of embedding). A considerably lower perfor-
mance is observed for seq2seq models with shal-
lower tail CP recursion (<61%); in particular, the
Transformer trained from scratch consistently fails
to generalize to shallower center embedding, with
zero accuracy overall. Transformer models show
systematically lower performance on deeper re-
cursions (5-12 levels of embedding), whereas the
structure-aware model is robust to depth variation.

Vanilla
Transformer

T5 LLaMa
AM

parser

At or below max training output length
PP recursion 29.3 37.0 46.0 100.0
Tail CP recursion 3.0 17.7 40.2 100.0
Center embedding 0.0 0.0 0.0 100.0

Beyond max training output length
PP recursion 0.0 0.0 0.0 100.0
Tail CP recursion 0.0 0.0 0.0 100.0
Center embedding 0.0 0.0 0.0 100.0

Table 3: Mean accuracy (%) on unseen deeper recursion
cases, broken down by whether the expected output falls
within or exceeds the range of training output lengths
(maximum training output = 229 tokens).

We investigate the relation between length and
depth generalization further by dividing the deeper
depth generalization cases into examples that are
shorter vs. longer than the maximum output length
observed in training (229 output tokens). Results
are shown in Table 3. All tested Transformer mod-
els are unable to generalize to examples longer than
the maximum output length observed in training;



this result is consistent with the difficulty of length
extrapolation observed in the literature (Hupkes
et al., 2020; Anil et al., 2022). Length extrap-
olation does not capture the full story, however:
the model’s performance is limited even when the
length of the generalization examples falls within
the range of observed output lengths. This indi-
cates that unobserved depth indeed plays a role in
these models’ poor generalization to deeper struc-
tures, in addition to known difficulties in length
generalization.

5.2 Unobserved Long-distance Dependencies
Make Generalization Difficult

Generalizing to subject modification (both PP and
RC) is one of the most challenging cases. Seq2seq
models achieve near-zero accuracy, even with the
additional cue from the standalone modified NPs
that modification can appear outside of object posi-
tions. This challenge echoes previous findings on
COGS (Akyurek and Andreas, 2021; Zheng and La-
pata, 2022; Yao and Koller, 2022). The remainder
of this section focuses on the analysis of PP modi-
fication cases, but similar patterns are observed for
RC modifiers, which we discuss in Appendix C.3.

Common error patterns across Transformer mod-
els reveal a bias towards shorter predicate-argument
dependencies. For instance, in sentences like A cat
on the mat froze, models often misinterpret the
closer NP the mat as the subject.

A further breakdown of the modifier generaliza-
tion performance by construction shows that ex-
amples involving longer predicate-argument depen-
dency (i.e., there is an intervening non-argument
NP between the predicate and the argument) tend to
be more difficult for all models (Table 4). However,
the Transformer-based models show a stronger bias
towards linearly adjacent predicate-argument struc-
tures. Further analysis (Appendix C.2) shows that
seq2seq models additionally fall prey to inference
patterns akin to a modification rule “attach PPs
to NPs in immediate post-verb position”, which
is compatible with the training data but leads to
incorrect generalization.

5.3 Gap Generalizations Are Challenging for
All Tested Models

For gap generalization cases, all models display
low accuracy and considerable variability across
different runs as shown in Figure 3. While Trans-
former models are biased towards more frequent
subsequences of output LFs observed during train-

ing (see Appendix C.4), the structure-aware AM-
Parser demonstrates different generalization diffi-
culties.

The AM-Parser systematically fails on every in-
stance of wh-questions involving long movement
(e.g. What did Ava say that the cat saw __?). This
issue arises from its internal prediction of depen-
dency trees, which represent how meaning repre-
sentations are compositionally constructed. For
these wh-questions, the required dependency trees
are nonprojective since the edge from the embed-
ded verb to the wh-pronoun crosses the matrix verb.
However, the AM-Parser used in our study only
supports projective dependency trees, leading to
incorrect prediction of sentence structure.10 This
issue with projectivity can serve as a diagnostic
for structural limitations of similar structure-aware
parsers (Liu et al., 2022; Qiu et al., 2022a).

Furthermore, on the indirect and direct object
wh-questions, the AM-Parser performs very un-
predictably, with accuracies ranging from 0 to 80
depending on the random seed. This is because at
the bottom of its compositional process, the AM-
Parser predicts the lexical meaning for each token
in the sentence (supertag). In these generalization
types, the gold meaning representations in the test
set require supertags that are infrequent in training.
Thus, while the AM-Parser can compensate the
distribution shift of the meaning representations as
a whole, SLOG exposes its weakness to distribu-
tion shifts in the lexical supertags. A more detailed
discussion is provided in Appendix D.

6 Related Work

Previous research has shown that recurrent neu-
ral network (RNN) architectures often struggle
with learning complex long-range relations from
simpler formal languages (Avcu et al., 2017; Ma-
halunkar and Kelleher, 2019). Our results on
SLOG reveal that unseen long-distance predicate-
argument dependencies pose considerable difficulty
for Transformer-based models as well (§5.2). For
filler-gap dependencies, prior work has centered
on syntactic tasks involving wh-questions or rel-
ative clauses (Wilcox et al., 2018; Marvin and
Linzen, 2018; Li et al., 2023; i.a.). These studies
primarily use language modeling as the task and do
not require mapping to semantic representations.
SLOG incorporates both long-distance predicate-

10Alternative versions of the AM-Parser that can handle
non-projective trees exist and are discussed in Appendix D.



Generalization cases
Long pred-arg
dependency?

Vanilla
Transformer

T5 LLaMa
AM

parser
Sub-case: Passive indirect objects

A fish was given to [ a cat on the mat ]iobj.
✗ 95.5 97.5 98.2 93.6

Sub-case: Indirect object in PP datives

Emma gave a fish to [ a cat on the mat ]iobj.
✗ 22.9 50.5 75.5 100.0

Sub-case: Indirect object in double object datives

Emma gave [ a cat on the mat ]iobj a fish.
✓ 4.5 9.7 36.3 77.9

Subject

[A cat on a mat]subj ate a fish.
✓ 0.0 0.8 28.9 57.6

Table 4: Performance of PP modification generalization broken down by construction. Bold orange words denote
long predicate-argument dependencies, while bold black words indicate short ones.

argument and filler-gap dependencies within a se-
mantic parsing setup.

Generalizing recursive patterns to deeper struc-
tures has been investigated in both artificial neural
networks and humans using artificial languages
(Christiansen and Chater, 1999; Lakretz et al.,
2021; McCoy et al., 2021). Our findings under-
score Transformer-based models’ limitations with
deeper recursive structures, corroborating the ob-
servations of Hupkes et al. (2020); Lakretz et al.
(2021). In contrast, human studies have shown that
they can learn and extrapolate center-embedding
patterns to greater depth in artificial languages
(Fitch and Hauser, 2004; McCoy et al., 2021).

Generalization cases in SLOG draw inspiration
from the frequency gaps in natural language, where
common patterns serve as a foundation for gen-
eralizing to rarer structures. This has connec-
tions to language acquisition in children, who have
limited exposure to complex, less frequent struc-
tures, yet need to generalize to novel complex ut-
terances by extrapolating from familiar linguistic
elements (Perfors et al., 2011; Tomasello and Ol-
guin, 1993; Atkinson et al., 2018). Human profi-
ciency in such generalizations is attributed to in-
ductive biases rooted in systematic compositional
rules. However, the Transformer-based models we
tested, despite excelling in lexical generalization
scenarios, face challenges when presented with un-
familiar linguistic structures requiring such rule
induction, hinting at potentially different or inade-
quate underlying mechanisms. More broadly, how
the compositional generalization cases proposed
in this work can be connected to human language
acquisition is an interesting area of future study.

7 Conclusions

We introduce SLOG, a semantic parsing dataset
that extends the COGS benchmark with a focus on
structural generalization, which is often underrep-
resented in current benchmarks for compositional
generalization. Using SLOG, we assess the struc-
tural generalization capacity of Transformer mod-
els (both pretrained and trained from scratch), as
well as AM-Parser, a structure-aware model. While
all models achieve good overall accuracy on COGS
(≥ 78%), their performance on SLOG is substan-
tially lower, especially for Transformer models (≤
41%). Furthermore, even the structure-aware AM-
Parser, which achieved strong performance on all
structural generalization cases of COGS, performs
poorly on several of the newly introduced general-
ization types in SLOG. Our error analysis shows
that all Transformer models tested struggle with in-
terpreting unseen long-distance dependencies and
deeper recursive constructions than observed in
training. On the other hand, the AM-Parser, despite
its stronger overall performance (71%), displays
categorical failures on gap generalization due to its
inherent parser design limitations. Overall, SLOG
exposes the limitations of a range of models that
have previously been claimed to achieve good com-
positional generalization, and can serve as a useful
analytic tool for guiding future improvements.

Limitations

SLOG is a synthetic corpus and covers only a frac-
tion of the diverse structures in English. Further-
more, previous research has demonstrated that the
design of meaning representations (MR) can have
a nontrivial effect on model performance in seman-
tic parsing tasks (Guo et al., 2019; Herzig et al.,
2021; Qiu et al., 2022b). For example, as noted
by Wu et al. (2023), the variable indexing scheme



may introduce additional semantically irrelevant
challenges when assessing structural generaliza-
tion. SLOG’s reformatted exact-match evaluation
metric partially addresses this concern by taking
into consideration several variations of MRs that
are semantically equivalent, including MRs that are
equivalent up to constant renaming. However, a
more comprehensive study of the effect of artifacts
from the formalism is left to future work.

There also exist challenges specific to the evalu-
ation of pretrained models. That is, distributional
shift between training and generalization sets in-
tended by SLOG, such as withholding the construc-
tions PPs modifying subject NPs from training, is
difficult to strictly enforce when pretraining is in-
volved (Kim et al., 2022). This potential violation
of distributional control makes the interpretation
of the obtained results difficult; we cannot disen-
tangle whether generalization success in pretrained
models derives from genuine compositional capa-
bilities or simply exposure during pretraining to
the target constructions meant to be withheld from
the evaluated models. Still, corpus analyses such
as Karlsson (2007) suggest that deep center embed-
ding beyond three levels is very rare in naturally
occurring data, so it is possible that very deep em-
bedded structures are withheld as intended even
from models exposed to large amounts of pretrain-
ing data. We hope the additional structural gen-
eralization cases that SLOG offers can also help
with future work investigating the interaction be-
tween structures available in pretraining data and
structural generalization.
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Csordas and colleagues’ experiments. Models are
trained for 50k steps with a batch size of 128.

For the T5 experiments, we finetune T5-base11

using a learning rate of 1.5e-5 and no label smooth-
ing, warmup or early stopping. We finetune the
model for 50k steps using a batch size of 2048.

For the LLaMA experiments, we finetune
llama-7b-hf12 with LoRA (Hu et al., 2021).13

We set the learning rate to 3e-4, LoRA rank to 8,
alpha to 32 and dropout to 0.1. We finetune the
model for 5K steps with a batch size of 64, with
100 warmup steps and no label smoothing or early
stopping. We apply LoRA to Wq and Wv weight
matrices in the model.

All our experiments were run five times, us-
ing different random seeds. The final checkpoints
from each run were used for evaluation on both
in-domain test and out-of-domain generalization
sets.

B Data generation

B.1 Meaning representations
We use Alto (Gontrum et al., 2017) to implement a
probabilistic Synchronous Context-Free Grammar
(SCFG), which simultaneously generates pairs of
English expressions and their corresponding mean-
ing representations. Since SCFG cannot handle
logical variables (Wong and Mooney, 2007), we
use a variable-free representation proposed by Qiu
et al. (2022a) (17a) as an intermediate representa-
tion during generation. The variable-free logical
form (LF) can be deterministically postprocessed
into the original COGS LF (17b) with additional
information and specific constraints: (i) We rely on
the word order in the input sentence to label the
Skolem constants (i.e. variables); (ii) While the
variable-free LF is unable to represent binding re-
lations correctly as pointed out by Wu et al. (2023),
an additional constraint that disallows duplicate
nouns enables the intended binding relations to be
identified unambiguously.

(17) A cat slept. ;
a. Variable-free LF:

sleep(agent=cat)

b. COGS LF:
cat(x1) ∧
sleep.agent(x2, x1)

11https://huggingface.co/t5-base
12https://huggingface.co/spaces/tloen/

alpaca-lora
13https://github.com/tloen/alpaca-lora

(18) A cat wanted to sleep. ;

a. Variable-free LF:
want(agent=cat,
xcomp=sleep(agent=cat))

b. COGS LF:
cat(x1) ∧
want.agent(x2,x1) ∧
want.xcomp(x2, x4) ∧
sleep.agent(x4,x1)

In the original COGS LF, entities or events spec-
ified by the predicates are represented by indexed
constants (17b). In its variable-free counterpart
(17a), sleep denotes the sleeping event, cat ex-
presses the existence of a cat entity and fills the
agent role of the sleeping event. In this way,
each predicate in the LF has a set of arguments
directly connected to their thematic roles without
using variables.

Since the variable-free LF often results in a more
compact LF, it has been adopted as the primary
meaning representation in several prior work (Qiu
et al., 2022b; Drozdov et al., 2022). We move away
from this practice and keep the original COGS
LF as the main meaning representation—as briefly
mentioned above, the variable-free LF cannot rep-
resent binding relations accurately unless some ex-
ternal heuristic or constraint is introduced for dis-
ambiguation. For example, the variable-free LF in
(18a) is ambiguous between the meaning of A cat
wanted to sleep and A cat wanted a (different) cat
to sleep, whereas the COGS LF in (18b) unambigu-
ously represents the meaning of A cat wanted to
sleep.

While we release the SLOG dataset in both LFs
and report the results using the variable-free LF
in Appendix E to enable comparison with existing
work, we strongly recommend using the original
COGS LF for evaluation on SLOG in future work.

B.2 Grammar and sampling details

SLOG expands upon the COGS vocabulary, which
consists of 503 nouns and 113 verbs, to addition-
ally include wh-words (who, what) and that used as
a relative pronoun. In SLOG, for the sake of sim-
plicity, we only consider restrictive relative clauses
introduced by that regardless of the animacy of the
head NPs. For indirect object-extracted instances,
we use the preposition stranding structure, such as
the boy that Emma give a cake to, rather than the
boy to whom Emma gave a cake.

https://huggingface.co/t5-base
https://huggingface.co/spaces/tloen/alpaca-lora
https://huggingface.co/spaces/tloen/alpaca-lora
https://github.com/tloen/alpaca-lora


The dataset includes the 30,000 examples from
the initial COGS training set, and new examples
that fall into one of the following categories:

• Relative clauses within object NPs, equal in
number to instances with PP modifications

• Subject and object wh-questions matching the
quantity of their corresponding declarative
sentences

• An equal number of four-level-nesting recur-
sion constructions as the depth-2 instances in
initial COGS

• A primitive example for each ditransitive
verbs and verbs accepting complement clause
(CP) arguments

Finally, the SLOG sampling process excludes sen-
tences with duplicate nouns (e.g. Emma saw
Emma.), as mentioned in Section B.1.

Semantic plausibility Following COGS, our
grammar implements simplified selectional restric-
tions, focusing mainly on animacy constraints. For
instance, the subjects of unergative verbs are lim-
ited to animate entities, as in the cat smiled. As a
result, our generated sentences may include seman-
tically odd but syntactically well-formed sentences,
such as non-edible object being the theme of eat
or spatial incongruities like a house in a bottle.
While these semantic limitations are unlikely to
affect models trained from scratch, they may in-
fluence the performance of models that have been
pretrained on naturalistic language data. It’s impor-
tant to note that our primary aim is to assess the
extent to which models rely on compositional struc-
tural generalization to derive meaning. In line with
the classic example “colorless green ideas sleep
furiously” (Chomsky, 1957), which demonstrates
that syntactic structure can be independent of se-
mantic coherence, we argue that a model capable
of compositional generalization should be able to
map such sentences to an appropriate logical form
as long as they are structurally well-formed.

Structural disambiguation choice In SLOG,
mappings to logical forms are designed to be un-
ambiguous, particularly for sentences that are in-
herently ambiguous due to prepositional phrase
attachment ambiguity, such as Ava saw the ball in
the bottle on the mat. This design choice, following
COGS, is to use right-branching disambiguation for

all meaning representations. Consequently, SLOG
ensures that PP modifiers are consistently inter-
preted as nested NP-attachments—Ava saw [the
ball [in the bottle [on the mat]]], although a VP-
attachment might sometimes seem more intuitive
depending on the context. This approach ensures
that there exists an unambiguous target meaning
representation for each expression in the dataset
(and this is clearly signaled by the training data),
rather than preserving the ambiguity which may
complicate the evaluation protocol.

C Full results and additional analyses

All models perform very well on the in-domain
test set (accuracy over 99%). All experiments in
this work were conducted on the out-of-domain
generalization set, and we report the full results of
the experiments discussed in Section 5 in Table 5.

C.1 Effect of the reformatted exact-match
metric

All models exhibit higher overall accuracy with the
reformatted exact-match evaluation compared to
the initial metric, notably pretrained models with
an increase of over 10 percentage points (Table 5).
This suggests that the initial exact-match metric
may have underestimated model performance.

C.2 PP Modifiers in unseen positions

As discussed in Section 5.2, generalization to
PP modification involving unseen long predicate-
argument dependencies is challenging for all evalu-
ated models. Among such constructions, PP modi-
fication in the indirect object position (20a) is less
challenging than subject position (19). A possi-
ble explanation is that the former has a closer sur-
face resemblance to direct object modification—
modifiers attach to an immediate post-verb NP. In-
deed, we observe that a higher proportion of in-
direct object modifications are partially correct;
models correctly predicted the PP-modified NP, but
erred in the argument structure.

Table 4 also shows that Transformers perform
worse on Indirect object in PP datives (20c) com-
pared to Passive indirect objects (20b), although
neither subcase introduces long predicate-argument
dependencies.

(19) PP within subject NPs:
[A cat on a mat]subj ate a fish.

(20) Sub-cases of PP within indirect object NPs:



Generalization cases
Vanilla

Transformer
T5 LLaMa AM-Parser

Deeper PP recursion 13.1±1.5 13.1±1.5 15.7±0.7 16.6±1.0 19.8±1.1 20.6±1.0 100.0±0.0

Deeper tail CP recursion 0.2±0.1 0.9±0.3 0.8±0.2 5.3±0.4 3.9±0.4 12.1±0.7 100.0±0.0

Deeper center embedding 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 99.5±0.4

Shallower PP recursion 98.7±0.8 98.7±0.8 90.2±2.2 93.1±1.9 97.3±0.9 98.9±0.6 100.0±0.0

Shallower tail CP recursion 32.6±3.6 55.2±4.2 44.8±2.8 60.9±2.1 85.4±3.6 98.1±0.7 100.0±0.0

Shallower center embedding 0.0±0.0 0.0±0.0 0.0±0.0 64.1±19.1 0.0±0.0 50.7±5.7 100.0±0.0

PP in subject NPs 0.0±0.0 0.0±0.0 0.0±0.0 0.8±0.5 12.3±4.4 28.9±3.5 57.6±8.1

PP in indirect object NPs 42.5±2.2 42.5±2.2 50.1±1.7 53.8±1.4 55.0±3.9 71.2±4.2 90.4±8.1

RC in subject NPs 0.0±0.0 0.0±0.0 0.0±0.0 0.2±0.2 3.4±1.6 29.5±3.4 55.8±8.4

RC in indirect object NPs 34.4±6.0 34.8±6.1 35.1±1.9 36.6±2.1 48.6±1.9 55.0±2.1 74.4±6.4

Indirect object-extracted RC 4.7±5.6 4.7±5.7 0.0±0.0 0.0±0.0 0.1±0.3 2.5±3.2 0.0±0.0

Indirect object wh-questions 35.9±8.3 42.4±13.5 0.0±0.0 0.4±0.7 27.9±9.3 73.5±18.4 41.4±42.4

Active subject wh-questions 96.7±2.6 97.1±2.4 90.5±4.0 98.1±1.7 92.8±6.4 93.3±6.0 99.8±0.6

Passive subject wh-questions 27.4±1.7 31.9±5.4 20.3±3.8 100.0±0.0 4.8±4.5 15.3±17.5 100.0±0.1

Direct object wh-questions 2.8±3.4 16.0±12 47.2±1.0 98.5±0.9 0.5±0.5 8.6±5.7 29.4±33.5

Wh-questions with modified NPs 17.6±0.9 17.8±1.3 20.5±1.0 36.8±0.4 15.8±0.6 20.8±2.4 55.6±12.5

Wh-questions long movement 4.0±7.8 4.9±9.5 23.3±4.3 24.9±5.1 0.8±1.4 3.0±4.7 0.0±0.0

Overall 24.2±1.0 27.1±2.0 23.4±1.1 40.6±1.0 27.6±1.0 40.1±1.8 70.8±4.3

Table 5: Mean accuracy (%) using exact-match is shown in gray, accuracy using reformatted exact-match described
in Section 4 is shown in black. AM-Parser’s graph-based output yields identical scores for both metrics hence only
a single column is reported.

a. Indirect object in double object datives:
Emma gave [ a cat on the mat ]iobj a
fish.

b. Passive indirect objects: A fish was
given to [ a cat on the mat ]iobj.

c. Indirect object in PP datives: Emma
gave a fish to [ a cat on the mat ]iobj.

The predominant error pattern in the former sub-
case was incorrect attachment of PP modifiers to
the direct object NP. For example (21b), modifier
the mat denoted by x9 was attached to a fish in-
stead of the cat. This suggests that Transformers
additionally fall prey to inference patterns akin to a
modification rule “attach PPs to NPs in immediate
post-verb position”, which is compatible with the
training data but does not lead to correct general-
ization.

(21) Gold LF and model-predicted LF for
Emma gave a fish to the cat on the mat:
a. Gold: *cat (x6); *mat(x9);

give.agent (x1,Emma)
∧ give.theme (x4, x3) ∧
give.recipient (x1, x6)∧
fish(x3) ∧ cat.nmod.on (x6, x9)

b. Out: *cat (x6); *mat(x9);
give.agent (x1,Emma)
∧ give.theme (x4, x3) ∧
give.recipient (x1, x6)∧
fish(x3) ∧ fish.nmod.on (x3, x9)

C.3 RC Modifiers in unseen positions

Generalizing RC modifiers to unseen positions
presents a similar challenge as PP modification
cases, due to unobserved long-distance dependen-
cies. As shown in Table 6, all models exhibit
a significant performance discrepancy between
constructions involving unseen long predicate-
argument dependencies and those that do not.

For novel positions that introduce long predicate-
argument dependencies, RC modification in the
indirect object appears more difficult than in the
subject position, contrary to the case with PP mod-
ifiers. The primary error pattern (22) demonstrates
that models struggle to detect the RC boundary
when the relative clause ends with a verb. They
systematically misinterpret the indirect object a
fish of the main verb gave as the direct object
of the adjacent embedded verb slept.

(22) Gold LF and model-predicted LF for
Emma gave a cat that slept a fish:
a. Gold: give.agent (x1,Emma)

∧ give.recipient (x1, x3)
∧ give.theme (x1, x7)∧
cat(x3) ∧ cat.nmod (x3, x5) ∧
sleep.agent(x5, x3) ∧ fish(x7)

b. Out: give.agent (x1,Emma)
∧ give.theme (x1, x3) ∧
cat(x3) ∧ cat.nmod (x3, x5)
sleep.agent(x5, x3) ∧
sleep.theme(x5, x7) ∧fish(x7)



Generalization cases
Long pred-arg
dependency?

Vanilla
Transformer

T5 LLaMa
AM

parser
Sub-case: Passive indirect objects

A fish was given to [ a cat that slept ]iobj.
✗ 72.0±6.6 74.2±2.7 97.1±1.2 99.5±0.6

Sub-case: Indirect object in PP datives

Emma gave a fish to [ a cat that slept ]iobj.
✗ 27.0±9.8 38.9±5.3 72.7±7.8 99.3±1.1

Sub-case: Indirect object in double object datives

Emma gave [ a cat that slept ]iobj a fish.
✓ 7.9±8.5 0.2±0.2 0.3±0.3 28.9±17.2

Subject

[A cat that slept]subj ate a fish.
✓ 0.0±0 0.2±0.2 29.4±3.4 51.7±8.4

Table 6: Performance of RC modification generalization broken down by construction.

C.4 Gap constructions

While performing poorly on indirect object-
extracted relative clauses (23), all tested models
systematically mirror the direct object-extracted
RC pattern in training, as demonstrated by the in-
correct output (23b). They furthermore show dis-
tinct difficulties when handling wh-questions cases,
as will be discussed in the remainder of this section.

(23) Input: Ella cooked the servant that Emma
gave a tool to __ .
a. Gold: *servant(x3);cook.agent

(x1, Ella) ∧ cook.theme(x1, x3)
∧ servant.nmod( x3, x6)
∧ give.agent(x6, Emma)
∧ give.theme (x6, x8) ∧
give.recipient(x6, x3) ∧ tool
(x8)

b. Models output:
*servant(x3);cook.agent(x1,
Ella) ∧ cook.theme(x1, x3)
∧ servant.nmod( x3, x6)
∧ give.agent(x6, Emma)
∧ give.theme (x6, x3) ∧
give.recipient(x6, x8) ∧ tool
(x8)

C.4.1 Direct and indirect wh-questions
The Transformer trained from scratch and LLaMa
frequently misinterpret the theme role in direct ob-
ject wh-questions. For example, they often fail to
map wh-words to ‘?’ as illustrated in (24b):

(24) Input: What did Emma sell to Liam ?
a. Gold:sell.theme (x3, ?)∧

sell.agent (x3, Emma) ∧
sell.recipient(x3,Liam)

b. Output of Vanilla Transformer and LLaMa:
sell.theme (x3, x5) ∧
sell.agent (x3, Emma)∧
sell.recipient(x3,Liam)

c. AM-Parser’s output:
sell.agent (x3, ?) ∧
sell.theme (x3, Emma)∧
sell.recipient(x3,Liam)

This error pattern can be traced back to frequency
of the subsequences in the training data. Three

types of tokens can appear post-comma in the out-
put LF space: x, ? denoting wh-words, or a proper
noun (PropN), such as Emma. The subsequence
theme(xi, xj) is 20 times more frequent than
theme(xi,?) and theme(xi,PropN). This
discrepancy does not affect all models equally; in
fact, T5 can generalize correctly for some con-
structions despite this skewed label distribution,
achieving near-perfect accuracy for direct object
wh-questions. However, when it comes to less fre-
quent constructions—indirect object wh-questions,
T5 overgeneralizes. In 94.6% of these cases, it
erroneously produces the observed direct object
wh-questions pattern theme(xi,?), instead of
the correct but unseen recipient(xi,?). This
observation aligns with the findings of Wu et al.
(2023); Yao and Koller (2022), who noted that the
decoder of Transformer models tends to exhibit a
heavy bias towards generating observed n-grams.

C.4.2 Wh-questions with long-distance
movement

All models achieve very low accuracy when gen-
eralizing to longer filler-gap dependency across
CPs, but an error analysis shows that Transformer
and structure-aware models face distinct challenges.
As shown in (25b), the Transformer trained from
scratch commonly misinterprets the complemen-
tizer that (corresponding to ccomp in LF) as a
relative pronoun (nmod). Additionally, it tends
to interpret the wh-word as the direct object of
the CP verb, e.g., say. In the most common
errors for T5 and LLaMa (25c), the whole gap
conjunct (paint.theme(x7, ?)) is missing, re-
vealing their difficulties in establishing long-range
filler-gap dependencies between the initial wh-
word and the embedded gap position. On the other
hand, AM-Parser cannot decode non-projective de-
pendencies, thus has 0% accuracy (see more de-
tailed discussion of the issue in §D).



(25) Input: What did Liam say that the bear
painted __ ?
a. Gold: *bear(x6); say.agent

(x3,Liam) ∧ say.ccomp (x3,x7)
∧ paint.agent (x7,x6) ∧
paint.theme (x7,?)

b. Output of vanilla Transformer: *bear(x6);
say.agent (x3,Liam) ∧ say.theme
(x3,?) ∧ say.nmod (x3,x7)
∧ paint.agent (x7,x6) ∧
paint.theme (x7,?)

c. Output of T5 and LLaMa: *bear(x5);
say.agent (x3,Liam) ∧ say.ccomp
(x3,x7) ∧ paint.agent (x7,x5)

C.4.3 Wh-questions with modified NPs
In wh-questions with PP and RC modifiers, even
though the SLOG training set only contains wh-
questions with unmodified NPs, all models gener-
alize well (accuracy > 80%) to direct object NPs
with modifiers (e.g., Who ate a cake on the table?).
These are cases where the modification pattern is
observed in training as a part of declarative sen-
tences. In contrast, performance declines when
models encounter wh-questions with modifiers in
the indirect object position (i.e., modification struc-
ture not observed as part of declarative sentences).
Similarly, for wh-questions with subject position
modifiers, the performance is very low: both T5
and vanilla Transformer achieve near-zero accu-
racy, and LLaMa achieves around 5%.

This observation mirrors the patterns discussed
in §5.2, attributed to difficulties introduced by un-
seen subject-verb dependencies across PPs or RCs.
In contrast, the structure-aware model exhibits sig-
nificantly better performance in wh-question with
subject modification.

C.4.4 Passive subject wh-questions
For subject wh-questions, which exhibit no gap,
T5 and AM-Parser perform near-perfectly on both
active and passive subject questions. Transformer
trained from scratch and LLaMa also perform well
on active subject questions, but achieve much lower
performance on passive subject questions. This
performance discrepancy is the most evident in
sub-cases where passive subjects function as theme
(e.g., (26))—the Transformer trained from scratch
has near-zero accuracy for these sub-cases, sys-
tematically failing to map wh-words to ‘?’ as in
(26b):

(26) Input: What was eaten by Emma ?

a. Gold: eat.theme (x2, ?) ∧
eat.agent (x2, Emma)

cook

S2

theme

S1

agent

Figure 4: Example of a supertag in an AM dependency
tree.

b. Output of Vanilla Transformer and
LLaMa: eat.theme (x2, x4) ∧
eat.agent (x2, Emma)

As discussed in Section C.4, this error pattern may
result from the highly imbalanced label distribu-
tion in training output space. Both LLaMa and
Transformer trained from scratch are inclined to
repeat the substantially more common subsequence
theme(xi, xj) over theme(xi,?).

D AM-Parser-specific issues

While the AM-Parser achieves strong performance
on most generalization types, it faces systematic
difficulties in handling novel gap structures. In
particular, its accuracy on wh-questions involv-
ing long-distance movement and indirect object-
extracted relative clauses is always 0. Additionally,
its accuracy significantly fluctuates across runs for
both direct and indirect object wh-questions. Here,
we give a detailed explanation of error patterns for
these challenging types.

Background The AM-Parser maps input sen-
tences to graphs by parsing each input sentence
to an AM dependency tree, which is then deter-
ministically evaluated to a graph (Groschwitz et al.,
2018). In the AM dependency tree, each token is la-
beled with a supertag—a small graph illustrated in
Figure 4—that captures the lexical meaning of the
token. The tree’s edges represent the compositional
structure of the sentence, which specifies how the
meaning of the sentence is recursively computed
from the supertags. The supertag in Figure 4 repre-
sents the meaning of cooked in the sentence Ella
cooked the servant that Emma gave a tool to. The
blue markers “S1” and “S2” indicate that two argu-
ments are still needed to fill the agent and theme
roles of cook.

Wh-questions with long movement We show
an example of a predicted AM dependency tree
for a wh-question with long movement in Figure 5



and the corresponding gold AM dependency tree
in Figure 6. As discussed in Section 5.3, the parser
used in this paper is limited to predicting projective
AM dependency trees, but the gold AM depen-
dency tree in Figure 6 is non-projective (the edge
snapped -> Who crosses the edge root ->
appreciate). Thus it is impossible for the AM-
Parser to predict the correct compositional struc-
ture.

Instead of the A* parser, one could instead use
the fixed-tree decoder of Groschwitz et al. (2018),
which is capable of predicting non-projective AM
dependency trees. This parser achieves nonzero
accuracy (36%) on wh-questions with long move-
ment, confirming our hypothesis that the projec-
tivity is the issue. However, the A* parser outper-
forms the fixed-tree decoder on most other gener-
alization types, which is why we only report its re-
sults in the main body of the paper. The transition-
based AM-Parser of Lindemann et al. (2020) can
also predict non-projective trees, but uses a differ-
ent probability model that is incompatible with the
training algorithm of Groschwitz et al. (2021) that
we use here.

Note that the A* AM-Parser shares its limitation
to projective structures with many other structure-
aware models. For instance, the LeAR model of
Liu et al. (2021) uses phrase-structure trees as com-
positional structures, and the CSL-T5 parser of Qiu
et al. (2022a) uses phrase-structure trees during the
data augmentation process. Because phrase struc-
ture trees are equivalent to projective dependency
trees, they are likely to encounter similar difficul-
ties on SLOG.

Direct & indirect wh-questions and indirect
object-extracted RC The AM-Parser consis-
tently shows zero accuracy for indirect object-
extracted RCs and exhibits big performance fluc-
tuation across different runs for direct and indirect
wh-questions. This is because in these general-
ization types, the gold meaning representations in
the test set require supertags that are infrequent in
training.

We show an example of AM dependency trees
for a direct object wh-question in Figure 7, with
gold supertags in Figure 7a and predicated su-
pertags in Figure 7b. The issue here is that the
model predicts the wrong supertag for sell, treating
What as its agent instead of theme, and Emma
as its theme rather than agent, which results in
the erroneous output LF as shown in (24c). The

AM-Parser is limited to using supertags that it ob-
served during training (possibly with different node
labels to accommodate novel lexical material). For
the direct wh-question case, the correct supertag
was actually present in the training data, but was
much less frequent than the erroneous one in Fig-
ure 7b. We observe a similar discrepancy in the
frequency distribution between predicted and gold
supertags for indirect object-extracted RCs and in-
direct wh-questions.

We conjecture that the AM-Parser was overly
sensitive to the supertag distribution in the training
data, pointing to a further architectural limitation.
Thus, while the AM-Parser can compensate the
distribution shift of the meaning representations as
a whole, SLOG exposes its weakness to distribution
shifts in the lexical supertags.

E Results with variable-free LFs

Table 7 reports the accuracy on SLOG using
variable-free logical forms. The AM-Parser is un-
able to handle the variable-free format and there-
fore is omitted. The hyperparameters for the three
tested models are the same as the experiments de-
scribed in Appendix A.

The variable-free LF, as discussed in Appendix B
and Wu et al. (2023), exhibits certain limitations
and ambiguities which render direct comparisons
with variable-based LF results inappropriate. Re-
gardless, all three models achieve higher accuracy
scores on the variable-free LFs compared to the
COGS LFs, with pretrained models experiencing a
particularly significant boost. This aligns with the
observations of Qiu et al. 2022b.

Despite the change in LF, the overall trends and
challenges remain consistent. The Transformer
trained from scratch struggles with the same gen-
eralization cases, failing to extrapolate to deeper
recursion depths and struggling with cases in-
volving unseen long-distance dependencies. Pre-
trained models, while exhibiting better overall per-
formance, continue to struggle with more struc-
turally complex generalization cases in their re-
spective categories. These include deeper center
embedding, indirect object-extracted RC and wh-
questions with long movement.



Who did the cat appreciate that Oliver snapped ?
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Figure 5: Example of predicted AM dependency tree for wh-questions with long movement

Who did the cat appreciate that Oliver snapped ?

() ⊥ (S0()) () (S1(), S2()) ⊥ () (S1(), S2()) ⊥
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Figure 6: Example of gold AM dependency tree for wh-questions with long movement

What did Emma sell to Liam ?

(S0()) ⊥ (S1()) (S0(), S1(), S2()) ⊥ (S2()) ⊥

APPS0

root

APPS1

APPS2

(a) What Emma

sell

S0

theme

S1

agent

S2

recipient Liam

(b) What Emma

sell

S0

agent

S1

theme

S2

recipient Liam

Figure 7: AM dependency tree for a direct object wh-question. (a) displays the gold supertags and (b) shows the
incorrect predicted supertags.



Generalization cases
Vanilla

Transformer
T5 LLaMa

Deeper PP recursion 7.8±1.8 63.0±2.9 90.9±3.3

Deeper tail CP recursion 1.0±0.5 46.2±2.6 44.1±7.9

Deeper center embedding 0.0±0.0 7.8±1.1 9.4±2

Shallower PP recursion 98.2±1.6 99.6±0.9 100.0±0.0

Shallower tail CP recursion 89.3±3.3 99.3±1.6 100.0±0.0

Shallower center embedding 0.1±0.2 99.8±0.3 99.8±0.4

PP in subject NPs 0.2±0.3 73.2±9.0 93.4±4.8

PP in indirect object NPs 29.3±10.7 97.4±2.1 98.1±1.9

RC in subject NPs 0.1±0.1 60.8±6.3 73.9±13.5

RC in indirect object NPs 4.0±1.9 71.9±0.8 73.6±3.9

Indirect object-extracted RC 0.0±0.0 62.4±7.5 3.3±2.8

Indirect object wh-questions 34.1±31.1 93.4±4.8 83.8±11.3

Active subject wh-questions 99.0±0.5 99.8±0.3 96.2±2.6

Passive subject wh-questions 57.3±23.8 99.9±0.1 96.0±3.0

Direct object wh-questions 41.8±3.8 48.4±0.4 44.1±4.6

Wh-questions with modified NPs 18.1±2.3 68.0±1.9 69.4±6.8

Wh-questions long movement 7.4±3.7 45.6±4.6 35.7±6.5

Total 28.7±4.1 72.7±1.1 71.3±3

Table 7: Mean accuracy (%) on SLOG using the variable-free logical form of Qiu et al. (2022a).


