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Abstract

Experts in machine learning distinguish them-
selves from amateurs by leveraging domain
knowledge to effectively navigate the myriad
decisions involved in model selection, hyper-
parameter optimisation, and resource alloca-
tion. This distinction is especially critical for
Language Models (LMs), whose repeated fine-
tuning trials incur substantial computational
overhead and raise environmental concerns.
Yet, no single AutoML framework simultane-
ously addresses both model selection and hyper-
parameter optimisation for resource-efficient
LM fine-tuning.

We propose XAutoLLM, a novel AutoML
framework that integrates meta-learning to
warm start the search space. By drawing on
task- and system-level meta-features, XAu-
toLLM reuses insights from previously tuned
LMs on related tasks. Through extensive exper-
imentation on four text classification datasets,
our framework discovers solutions in up to
half the search time, reduces search errors
by as much as sevenfold, and produces over
40% more pipelines that achieve improved per-
formance—time trade-offs than a robust base-
line. By systematically retaining and learn-
ing from prior experiments, XAutoLLM en-
ables resource-friendly, Green Al fine-tuning,
thereby fostering sustainable NLP pipelines
that balance state-of-the-art outcomes with min-
imised computational overhead.

1 Introduction

Experts in Machine Learning (ML) distinguish
themselves not merely through superior tools or
abundant data but by utilising domain knowledge
to focus on promising model and hyperparameter
configurations. Rather than mindlessly testing all
combinations, they use their experience to identify
a small subset of promising options, ensuring their
approach is strategic and informed.

Automated Machine Learning (AutoML) seeks
to replicate part of this expert-driven process by

automating model selection, pipeline construction,
and Hyperparameter Optimisation (HPO) (Hutter
et al., 2019). However, AutoML systems often
lack the rich background knowledge required to
effectively prune less promising solutions. Meta-
learning addresses this gap by learning from past
AutoML runs, providing insights that guide fu-
ture executions (Vanschoren, 2019). This approach
avoids exhaustive searches and shortens optimisa-
tion cycles.

Although AutoML techniques have matured in
areas such as tabular and vision tasks (Hutter et al.,
2019), applying them to language modelling re-
mains underdeveloped (Tornede et al., 2023). LMs
are extremely resource-intensive to train and fine-
tune (Wang et al., 2023b), even for smaller archi-
tectures like BERT (Devlin et al., 2018) or T5 (Raf-
fel et al., 2020). Repeated model evaluations can
thus be prohibitively costly, motivating Green Al
efforts to curb the environmental footprint of large-
scale NLP. Yet, most existing AutoML systems
for LMs focus on HPO in isolation (Mallik et al.,
2024), overlooking the need for a holistic solu-
tion that jointly optimises both model selection and
HPO, especially under tight resource constraints.

We present XAutoLLM, a meta-learning-
enhanced framework that biases the AutoML
search space via warm-start strategies to address
these shortcomings. In particular, we integrate ex-
pert heuristics and prior experiences (encoded as
meta-features of tasks and hardware configurations)
into the initial sampling distribution. By jumpstart-
ing the search with knowledge about plausible or
implausible configurations, XAutoLLM systemati-
cally filters out resource-heavy, low-yield pipelines.
This open-source tool aims to unify model selec-
tion and HPO for LLMs, enabling practitioners
to fine-tune models more efficiently and sustain-
ably. The proposed framework is an open-source
tool available for the language modelling research
community (Appendix A).



We summarise the main contributions of our pa-
per as follows:

* We propose XAutoLLM, the first AutoML
framework that simultaneously tackles model
selection and hyperparameter optimisation for
LM fine-tuning.

* We introduce an extensible meta-learning
mechanism that leverages task and system
meta-features to guide the search, balancing
performance and efficiency constraints.

* We demonstrate the effectiveness of our ap-
proach through extensive experimentation on
four text classification tasks, discovering solu-
tions in up to half the time of a robust baseline,
reducing error rates by as much as sevenfold,
and achieving competitive or superior perfor-
mance.

2 Related Work

AutoML strategies in language modelling can be
divided into two (not necessarily disjoint) sub-
sets: AutoML for LLMs and LLMs for Au-
toML (Tornede et al., 2023). The former com-
prises AutoML techniques to produce optimal LM
pipelines tailored for specific scenarios, akin to
traditional AutoML. The latter employs language
models to enhance the AutoML process, for ex-
ample, by providing linguistic interfaces to config-
ure the optimisation process or leveraging them to
guide the search (e.g., using LMs to generate code
for optimal ML pipelines).

AutoML for LLMs in particular poses signif-
icant challenges (Tornede et al., 2023). Namely,
LMs are extremely resource-intensive (Bannour
et al., 2021), even when only considering their
later stages (e.g., fine-tuning, inference). Table 1
compares AutoML approaches that leverage LLMs
according to relevant features characterising their
responses to the field’s challenges.

We observe that there are more LLMs for Au-
toML systems than vice versa, likely due to the
proliferation of prompt engineering and increased
access to open-source language models. For in-
stance, Zhou et al. (2022) developed the Automatic
Prompt Engineer (APE) system, which achieved
performance competitive with human-generated in-
structions. In contrast, systems such as GL-Agent
(Wei et al., 2023), AutoM3L (Luo et al., 2024) and
GizaML (Sayed et al., 2024) integrate language
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Table 1: Comparison of systems for AutoML with
LLMs

models into their optimisation strategies to pro-
duce graph learning pipelines, highly capable multi-
modal ML pipelines, and time-series forecasting
pipelines, respectively.

Systems like AutoGen (Wu et al., 2023), GPT-
NAS (Yu et al., 2024), GE (Morris et al., 2024),
AutoML-GPT (Zhang et al., 2023), and Hugging-
GPT (Shen et al., 2024) are hybrids that span both
categories; they leverage LMs to produce LM-
based solutions. However, the last two differ from
traditional AutoML (and NAS) systems: AutoML-
GPT does not evaluate solution candidates (only
simulates their training), and HuggingGPT pro-
duces responses to prompts without outputting the
pipelines capable of handling them.

Often, the choice of model is as, if not more,
critical than the hyperparameter configuration
used to produce responses. We found that Au-
toGOAL (Estevanell-Valladares et al., 2024) op-
timises pipelines by balancing efficiency and per-
formance metrics, taking into account both model
selection and HPO, but only supports LMs for in-
ference. All other AutoML for LLMs systems we
surveyed, such as EcoOptiGen (Wang et al., 2023a)
and PriorBand (Mallik et al., 2024), focus solely
on HPO.

Nonetheless, we find no single framework that
simultaneously addresses model selection and hy-



perparameter optimisation for LM fine-tuning, pri-
marily when resource limitations exist. This moti-
vates our proposal of XAutoLLM, a meta-learning-
based AutoML system designed to fill these gaps
in efficiency and performance via multi-objective
optimisation.

3 Proposal

We propose XAutoLLM, the first AutoML system
to combine model selection and hyperparameter
optimisation for fine-tuning LMs. We leverage an
explicable and extensible meta-learning method
that employs accumulated knowledge from pre-
vious evaluations to bias the initial search space
towards solutions similar to those that have proven
effective in related tasks. In AutoML terminology,
this constitutes a sophisticated warm-start mech-
anism that accelerates convergence by exploiting
task similarities identified through meta-features.

The core innovation of XAutoLLM lies in its
ability to dynamically adjust the search space based
on task-level similarities and multi-objective opti-
misation criteria. This capability enables resource-
efficient fine-tuning under constrained computa-
tional budgets. Our framework utilises the opti-
misation strategy and pipeline abstraction from
AutoGOAL! (Estevez-Velarde et al., 2020), along-
side embedding and generative models for vari-
ous NLP tasks available within AutoGOAL’s al-
gorithm pool. Table 2 summarises the language
models available in the pool at the time of writ-
ing, along with their respective categories. While
the original system supports these models solely
for inference (Estevanell-Valladares et al., 2024),
XAutoLLM enables fine-tuning via three distinct
methods: Low-Rank Adaptation (Hu et al., 2021),
traditional fine-tuning, and a partial fine-tuning ap-
proach that freezes all parameters except those of
the final layers.

3.1 Process Overview

XAutoLLM integrates prior experience into an it-
erative optimisation pipeline. First, resource con-
straints are defined and relevant historical evalua-
tions (experiences) are retrieved from a centralised
repository (Section 3.2). Next, meta-features
capturing both the current task properties (Sec-
tion 3.2.1) and system capabilities (Section 3.2.2)

'Open-source framework available at https://github.
com/autogoal/autogoal. Its license allows for dealing with
the software without restriction

Language Model

BERT (Devlin et al., 2018)
DistilBERT (Sanh et al., 2020)
RoBERTa (Liu et al., 2019)
XLM-RoBERTa (Conneau et al., 2020)
DeBERTa (He et al., 2021)
DeBERTaV3 (He et al., 2023)
MDeBERTaV3 (He et al., 2023)
ALBERT-v1 (Lan et al., 2019)
ELECTRA (Clark et al., 2020)

T5 (Raffel et al., 2020)
FLAN-TS5 (Chung et al., 2024)
GPT-2 (Radford et al., 2019)
PHI-3 (Abdin et al., 2024)

Category

Encoders

Generative

Table 2: LMs available in AutoGOAL’s algorithm pool.

are extracted to assess task complexity and avail-
able computational resources. The search space is
then probabilistically adjusted using these insights,
emphasising configurations relevant to the current
scenario and historically associated with high per-
formance while de-emphasising those linked to er-
rors (Section 3.3). Finally, the fine-tuning routine
commences, guided by these refined configurations,
and the results of each evaluation are recorded in
the experience store to inform future optimisation
cycles.

3.2 Experience Store

Central to XAutoLLM’s functionality is its reposi-
tory of past evaluations, referred to as experiences.
These records capture key elements such as algo-
rithm choices, parameter configurations, task meta-
features, and system hardware details, enabling
informed decision-making in subsequent optimisa-
tion cycles.

3.2.1 Task Meta-Features.

Task meta-features provide insights into dataset
complexity, variability, and class distribution (see
Table 3). For example, entropy and imbalance
ratios reflect dataset skewness, while document
length statistics capture textual complexity. These
features are critical for tailoring fine-tuning strate-
gies to specific task requirements.

3.2.2 System Meta-Features.

Hardware characteristics (e.g., number of CPU
cores, RAM size) are equally crucial for ensuring
that fine-tuning remains feasible within resource
constraints (see Table 4). For instance, while large
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Category Feature Rationale
Nr Instances Scalability
Nr Classes Complexity
Entropy Distribution
Instance/Class Min Cls Prob Imbalance
Max Cls Prob Imbalance
Imbalance Ratio Skewness
Avg. Length Complexity
Documents  Std. Length Variability
Coef. Var. Length ~ Consistency
Landmark PCA + D.Tree Acc. Baseline

Table 3: Rationale for selected dataset meta-features

models like GPT-4 (OpenAl, 2023) may yield supe-
rior results compared to smaller alternatives, their
feasibility depends heavily on available computa-
tional resources.

XAutoLLM constructs a holistic representation
of each optimisation scenario by combining task-
specific and system-level meta-features, enabling
robust similarity assessments across diverse con-
texts.

3.3 Warm-Start Optimization

Building on our experience store, we propose
a warm-start mechanism that biases the initial
search towards promising fine-tuning configura-
tions. Given a new task with meta-features ¢, we
measure its similarity to each stored experience via
a distance function Dist(¢7,¢;) (e.g. Euclidean or
Cosine).

To modulate the influence of past experiences
based on their similarity to 7', we introduce an
adaptive decay parameter 3. Two formulations are
proposed:

/650ale
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Std-Plus-Mean: [ =
where o4 and p4 denote the standard deviation and
mean of the distances {d;} across all experiences,
respectively, and € > 0 is a small constant to pre-
vent division by zero.

Utility-Driven Prioritization. XAutoLLM as-
signs a utility score u; to each positive experience
(i.e., those with valid performance scores) to bias
the search process toward promising configurations.
We consider three approaches:

Feature Rationale

CPU physical cores . o
CPU logical cores Parallel Processing Capabilities
CPU max frequency Processing Speed

RAM size . s
VRAM size Data Handling Capabilities

Table 4: Rationale for selected system meta-features

Weighted Sum. The utility score for experi-
ence e; is computed as

F1; t; — etmi
— +wtime'<1_ i — Clmin )

U; = W1 -
Flmax €tmax — €tmin

where F'1; represents the F'1 a0 SCOTE, €t; is the
evaluation time, and the weights wgy, Wme > 0
satisfy wg; + Wiime = 1.

Linear Front. Using non-dominated sorting,
experiences are assigned to NV fronts. The utility
score is given by

N—TZ'
N

U; =

where 7; denotes the rank of experience e;. This
linear scaling ensures that the highest-ranked ex-
perience attains a score of 1, with a proportional
decrement for lower-ranked experiences.

Logarithmic Front. To accentuate differences
among top-ranked experiences, we propose a loga-
rithmic ranking-based utility function:

ln(N —r; + 1)
U = ————————
' In(N 4+ 1)

This formulation compresses the utility differences
among lower-ranked experiences while preserving
a steeper gradient among the highest-ranked ones,
which is particularly useful in scenarios where a
slight improvement in rank corresponds to a sub-
stantial performance gain.

These utility scores modulate the learning rate
adjustments. Specifically, the learning rate for a
positive experience e; is updated as

at + o~ Bds

i — Omax Wi

whereas, conversely, negative experiences are de-
emphasised using
e Bdi

ai = amax



Here, o/, and o, are parameters that can be
either fixed values or adaptively computed based
on the amount of available positive and negative

experiences, respectively.

Probabilistic Model Adjustment. The proba-
bilistic model governing configuration parameters
is updated iteratively:

P(c|0)+ (1—af)P(c|0)+af P(c|0),
P(c|0)«— (1+a; )P(c|0)—a; P(c|b)

Positive adjustments increase the probability of
configurations similar to those associated with suc-
cessful experiences, while negative adjustments
decrease the probability of configurations linked to
suboptimal outcomes. This warm-start mechanism
enables XAutoLLM to efficiently explore promis-
ing regions of the search space while avoiding re-
dundant evaluations of suboptimal configurations.
See Appendix A for additional implementation de-
tails.

4 Experimentation

We evaluated our warm-started XAutoLLM pro-
posal by comparing its performance and the qual-
ity of generated solutions against a version of
XAutoLLLM without meta-learning. This ro-
bust baseline corresponds to the proposal from
Estevanell-Valladares et al. (2024), which has
demonstrated strong performance in both single-
objective (Estevez-Velarde et al., 2020) and multi-
objective scenarios, albeit with an extended algo-
rithm pool (including our fine-tuning implementa-
tions).

We designed two experimental setups to evalu-
ate our proposal on diverse text classification sce-
narios. First, we conducted a pilot evaluation for
Single-Objective optimisation scenarios to directly
compare performance improvements (Section 4.1).
Then, we assessed Multi-Objective optimisation
capabilities to evaluate our proposal’s ability to
balance resource efficiency and performance (Sec-
tion 4.2). See Appendix A for supplementary ex-
perimentation details.

Table 5 summarises the classification tasks se-
lected for evaluation. We chose semantically di-
verse tasks with varying computational resource
requirements and performance expectations. For
instance, Reusens et al. (2024) reported that the
maximum F'l,,,.0 scores for LIAR and MELD
were (.23 and 0.40, respectively, compared to 0.89

Class. Task Dataset Cls Size
Fake news  LIAR (Wang, 2017) 6 12,836
Topic AG News (Zhang et al., 2015) 4 127,600
Polarity SST2 (Socher et al., 2013) 2 68,221
Emotion MELD (Poria et al., 2018) 7 13,708

Table 5: Text Classification tasks selected for evaluation.

for SST2 and 0.93 for AGNews. Similarly, AG-
News comprises nearly ten times the number of
samples as LIAR and MELD.

Experimental Setup

All experiments were executed on an 19-9900K
CPU with 127 GB RAM and an RTX TITAN GPU
(24 GB VRAM). We preemptively generated meta-
learning experiences by running XAutoLLM with-
out meta-learning for 48 hours on each task (Table
6). We used F'l,,4cr0 and evaluation time (ET)
as optimisation objectives with a one-hour timeout
per pipeline evaluation.

‘ Generated ‘ Available
Dataset

‘ Pos Neg Total ‘ Pos Neg Total
LIAR 100 236 336 116 480 596
SST2 33 122 155 183 594 777

MELD 68 190 258 | 148 526 674
AGNews | 15 168 183 | 216 548 764

Table 6: Disposition of experiences participating in the
experiments.

4.1 Single-Objective Evaluation

The single-objective setup compared the baseline
system against three warm-start configurations with
varying levels of initial bias (low, moderate, high).
These configurations were derived by generating
fourteen parameter combinations, grouping them
by Total Variation (1T'V'), and selecting the top rep-
resentatives from each group. We employed the
Std-Only beta scale for regulating distances (See
Section 3.3).

Figure 1 shows the resulting probabilities for
fine-tuning methods after applying warm-start con-
figurations on LIAR. Configurations were sorted by
their variation over the baseline distribution. Level
groups were demarcated iteratively based on ap-
proximately doubling variation differences.

Table 7 reports results from six runs per config-
uration on LIAR and SST?2 over 24 hours. Across
both datasets, while peak performance improve-
ments were modest, significant gains were ob-
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0s - LIAR baseline (Var: 0.000)

- LIAR adaptative-pos + fixed-neg (no distance) (Var: 0.000)
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11 - LIAR fixed-pos + fixed-neg (cos, k=0.5, f1 + eval time) (Var: 0.221)
12 - LIAR fixed-pos (no distance) (Var: 0.262)

13 - LIAR fixed-pos + adaptive-neg (no distance) (Var: 0.324)

14 - LIAR fixed-pos + fixed-neg (no distance) (Var: 1.269)
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Figure 1: Fine-tuning method probabilities for LIAR under 14 meta-learning configurations, sorted by 7'V’ relative
to the uniform baseline. Blue indicates near-baseline, while green, orange, and red denote low, moderate, and high

bias levels. Patterned markers (10, 13, 14) represent ou

r selected experiment configurations.

Dataset Config. Max F'1,, Mean F'1,,, T7T50(h) TT75(h) TT90 (M) No.Eval E.Ratio
Baseline  0.248 £0.018 0.09 £0.004 2.00 6.38 8.15 173 0.69

LIAR Low WS 0.253 £0.006 0.11 £0.008 1.35 4.10 9.05 166 0.61
Mod WS 0.251 £0.015 0.11 £0.008 1.57 4.88 6.43 165 0.46
High WS 0.247 £0.006  0.10 £0.009 1.37 5.42 10.74 156 0.24
Baseline  0.928 £0.018 0.56 £0.053 1.69 2.07 4.64 85 0.83

SST2 Low WS 0.917 £0.016  0.59 £0.063 1.28 241 5.09 98 0.80
Mod WS 0.941 £0.004 0.56 £0.064 0.70 3.88 5.21 55 0.69
High WS 0.932 £0.002 0.56 £0.058 0.41 0.41 2.23 58 0.58

Table 7: Overview of XAutoLLM performance on optimising F'1,,,.r, for LIAR and SST2. Results are averaged

over six runs with different seeds. ‘Max F'1,,,” and ‘Mea

n F'1,,” show the mean and standard deviation, respectively;

“TTS50°, “TT75°, and ‘TT90’ report the average time to reach 50%, 75%, and 90% F'1,,,; and ‘No. Eval’ and ‘E.

Ratio’ indicates the average number of pipeline evaluat

served in the convergence speed against the base-
line (reduced T'T'50, TT75 and T790). On LIAR,
none of the configurations outperformed the base-
line on max F'1,,,.r, With statistical significance,
but mean F'1,,4.r0 exhibited an overall significant
effect (p < 0.01). However, the pairwise compar-
isons were insignificant after correction, likely due
to insufficient samples (n = 6).

Results on SST2 show a similar pattern of incre-
mental yet not always statistically significant gains
in maximum performance, with Mod WS reaching
the highest max F'1,,4¢r0. Although the ANOVA
(McHugh, 2011) test reached significance for max
Fl,4er0 (p = 0.031), the Friedman (Pereira et al.,
2015) test yielded a slightly more conservative out-
come, highlighting the variability in effect sizes
across runs.

ions and the ratio of such evaluations that were errors.

The efficiency advantages of warm-starting were
more pronounced in both tasks. In LIAR, TT'50
and T'1'75 decreased notably for Low WS, while
Mod WS reached 7790 almost 1.7 hours faster
than the baseline. In SST2, Mod WS, the best per-
forming in max F'1,,4.r0, displayed a similar pat-
tern as LIAR’s best, improving 7750 and 17175
but with slightly worse 7790 compared to base-
line. High WS displayed the best time-to-threshold
values in SST2, where it at least improved 2 times
against baseline. Additionally, we notice a direct
proportionality between the initial bias level and
the ratio of errors discovered in the search.

4.2 Multi-Objective Evaluation

Multi-objective evaluations were conducted across
all four datasets (Table 5). For each task, we evalu-



ated the original LIAR candidates (Figure 1) along-
side six newly selected candidates. These addi-
tional candidates were chosen by independently se-
lecting warm-start configurations with median and
maximum 7'V from each group, derived from over
180 combinations evaluated per task (see Appendix
B for details on the selected candidate configura-
tions).

Max Mean Min Mean PO No. Error

Config. Fl,, Fl, ET ET Y R Eval Ratio
Baseline 026 0.10 12 540 0.67 1 336 0.70
Low (LIAR) 026 010 16 480 0.5 2 197 070
Low (Med) 025 009 31 38 054 2 220 0.69
Low (Max) 025 009 21 410 0.2 3 190 0.66
% Mod (LIAR) 026 0.0 36 462 002 2 132 053
S Mod Med) 024 010 13 469 007 2 146 061
Mod Max) 025 008 44 516 007 4 121 039
High (LIAR) 025 010 6 153 030 1 302 0.09
High(Med) 025 010 9 277 0.8 1 193 033
HighMax) 026 009 12 252 013 1 208 025
Baseline 094 064 61 1065 009 1 155 078
Low (LIAR) 090 048 373 1148 030 2 87 082
Low (Med) 090 052 227 840 005 3 62 083
Low (Max) 094 058 252 784 003 2 98 081
& Mod (LIAR) 093 056 245 996 039 1 59  0.64
2 Mod Med) 094 052 132 1030 009 2 34 055
Mod Max) 093 052 184 1170 0.3 2 58 0.1
High (LIAR) 092 0.62 365 1160 004 3 42 061
High (Med) 094 053 164 844 018 1 52 068
High Max) 094 061 320 87 031 1 53 0.79
Baseline 041 014 39 769 019 3 258 073
Low (LIAR) 046 014 20 532 0.1 1 150 0.64
Low (Med) 045 0.1 17 387 052 1 229 0.64
Low (Max) 039 009 30 477 062 1 186 0.65
8 Mod (LIAR) 040 0.11 26 514 000 3 106 0.39
€ Mod(Med) 040 0.1 36 546 005 3 130 052
Mod Max) 038 009 24 590 0.4 3 110 052
High (LIAR) 044 014 7 179 016 1 260 0.10
High (Med) 043 0.3 21 466 047 2 124 045
HighMax) 042 012 12 322 001 2 233 051
Baseline 090 052 308 1091 004 2 254 091
Low (LIAR) 093 073 349 1183 003 2 93 090
Low (Med) 092 065 665 158 041 1 83  0.89
2 Low(Max) 093 060 560 1164 000 1 77 090
B Mod (LIAR) 092 046 404 1345 024 1 50  0.80
éMod(Med) 093 059 484 1102 002 2 48 079
< Mod Max) 092 056 249 1402 003 1 57 073
High (LIAR) 093 046 318 1437 001 2 45 071
High Med) 093 051 253 833 019 1 58 0.86
HighMax) 092 054 350 1576 002 3 46 073

Table 8: Overview of performance of XAutoLLM on
optimizing F'1,,4cr0 and ET on LIAR, SST2, MELD
and AG NEWS. Data for each candidate corresponds to
one run with a shared random seed.

Table 8 presents the results of the experiment.
In addition to standard performance metrics like
maximum F'l,,,,-, and minimum evaluation time
(E'T), we report Hypervolume (H V') and Pareto-
Optimality Rank (PO R.). The ranking follows
the methodology outlined by Ibrahim et al. (2024)
but with HV, max F'l,,4¢r0 and min ET' as the
performance indicators to capture the tradeoffs of
the candidates.

Although LIAR’s baseline remains highly com-
petitive—having both the highest max F'l,,4cr0
and the top HV—it is not always optimal in other
scenarios. For instance, High (LIAR) in LIAR
achieves PO Rank 1 by drastically reducing mean
evaluation time (153 vs 387) without sacrificing
too much performance (max F'l,,4cr0=0.25). A
similar issue arises in SST2: while the baseline
again attains the highest max F'1,,4cr0, SOme WS
approaches produce faster convergence and ulti-
mately surpass it in HV (e.g., Low (LIAR) attains
a much lower min E7T" of 12 and a similar perfor-
mance).

In MELD and AG NEWS, the meta-learning
approaches outperform the baselines on multi-
objective metrics. In MELD, Low (Med) achieves
the best HV = 0.52 (against the baseline’s 0.19)
and near-max performance (0.45). Its PO Rank 1
indicates a difference in Pareto front quality com-
pared to the baseline. In AG NEWS, Low (Med)
delivers an HV = 0.41—far exceeding the base-
line’s 0.04—while improving max F'1,,40r0 from
0.90 to 0.92. Across both datasets, high initial bias
more consistently reduces evaluation time and error
rates while maintaining or slightly surpassing the
baseline in peak F'1,,4cr0-

Winning Ratio by WS Configuration

05 SST2

= LIAR
= MELD
04 mmm AGNEWS

e
w

Winning Ratio
o
5

0.1

0o lII lII Nin III III |I|
P O @ O & @
& & SN

&
Nl » N &
N\ . N\ S &
N & & N > > o By 5N

S ey S S ¥ <+ &¥ o

P & @
& &

&

Figure 2: Ratio of fine-tuning pipelines outperforming
the strong baseline per configuration and task.

From an exploration-efficiency perspective, WS
candidates show clear advantages. Figure 2 shows
the rate of discovered solutions by each warm-start
configuration that improved over the robust base-
line balancing efficiency and performance. High
configurations produced the best winning ratios,
with almost 50% of the pipelines discovered by
High (LIAR) outperforming the baseline while di-
minishing up to seven times the ratio of discovered
errors during the search.

Overall, these outcomes highlight that the warm-



start strategy simultaneously confers tangible bene-
fits across multiple objectives, lowering error rates
and search overhead while preserving or improving
classification performance.

5 Discussion
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Figure 3: LM fine-tuning pipelines discovered by XAu-
toLLM on SST2.

Our results demonstrate the importance of lever-
aging prior knowledge in AutoML. The most sig-
nificant difference with the baseline comes in tasks
where relevant experience from similar tasks is
available (see Figure 4 showing MELD and LIAR
are most alike). Conversely, tasks with little or no
relevant background knowledge benefit less from
meta-learning. This highlights the need to balance
exploitation and exploration adaptively, leaving
room for standard AutoML searches when histor-
ical data is sparse. By discriminating less mean-
ingful experiences, XAutoLLM effectively avoids
over-biasing the search space. This was the case
with SST2 and AG News, for which the system
lacked a large relevant experience pool but still dis-
covered pipelines outperforming a robust baseline
(see Figure 3 and Appendix C for all Pareto Front
visualizations).
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Figure 4: Distance between Tasks according to their
meta-features (See Section 3.2.1).

Combining experience discrimination with adap-
tive probabilistic adjustments yields the best of
both worlds: faster convergence to near-optimal so-
lutions when prior knowledge is significant while
remaining robust in problems with fewer references.
For instance, on SST2, our approach discovered
pipelines that reduced evaluation time by up to 6x
while maintaining macro F'1 performance within
one percentage point of the global best. Similarly,
experiments on LIAR and MELD show winning
ratios of around 40% and 50%, respectively, mean-
ing that a substantial fraction of the solutions dis-
covered by XAutoLLM strike a superior balance
between efficiency and performance. This supports
our central hypothesis that integrating prior knowl-
edge is crucial for enhancing AutoML pipelines.

A core motivation of our framework is to re-
duce the carbon footprint and environmental toll
of repeated large-scale language model fine-tuning.
By systematically reusing insights from past runs,
XAutoLLM significantly reduces redundant evalu-
ations and lowers the overall error rate during the
search. Beyond simply lowering compute hours,
this approach aligns with the growing Green Al
ethos in NLP (Wang et al., 2023b), emphasising the
importance of responsible resource usage. Our ex-
periments illustrate that warm-start meta-learning
not only improves performance but also stream-
lines the search process, yielding algorithms that
better balance efficiency and performance.

6 Conclusions

We introduced XAutoLLM, the first AutoML
framework that jointly addresses model selection
and hyperparameter optimisation for LM fine-
tuning. Using past experiences to warm-start the
search process, our method achieves up to 2x faster
convergence, sevenfold lower error ratios, and dis-
covered pipelines with a 6x reduction in evalu-
ation time while maintaining highly competitive
macro F'1 scores. With winning ratios of 40% and
50% on LIAR and MELD, respectively, our results
demonstrate that XAutoLLM effectively balances
performance and efficiency. These improvements
support a more sustainable, Green Al approach by
significantly reducing redundant computations and
producing more resource-efficient fine-tuned LMs.
Our open-source framework is available for the lan-
guage modelling research community (Appendix
A).



7 Limitations

We identify some limitations to our study that high-
light avenues for further investigation:

Computational Overhead. Although our meta-
learning warm-start mechanism reduces the num-
ber of redundant evaluations, language model fine-
tuning remains computationally expensive. Users
with limited GPU or CPU resources might face
practical hurdles when repeatedly tuning larger
transformer architectures. Nonetheless, our results
show that even moderate hardware settings can
benefit from XAutoLLM’s efficiency gains.

Task and Data Scope. Our current experiments
target text classification tasks of moderate scale.
While these findings strongly support the effective-
ness of XAutoLLM, further research is needed to
confirm its utility in more diverse tasks such as se-
quence labelling or multi-modal pipelines, as well
as in domains with highly specialised data (e.g.,
biomedical or legal corpora). Such explorations
would help affirm the broad generalizability of our
approach.

Risk of Negative Transfer. XAutoLLM adap-
tively weighs past experiences based on their rel-
evance to a new task. However, negative trans-
fer remains possible if the experience repository
predominantly contains data from tasks that differ
markedly or contain suboptimal configurations. Al-
though our decay mechanisms mitigate this risk,
future enhancements might include automated out-
lier detection or more selective filtering strategies
to safeguard against inconsistent past knowledge.

Lack of Ablation Studies. We have demon-
strated the overall value of XAutoLLM’s meta-
learning approach, but deeper insight could be
gained through dedicated ablation studies. Specif-
ically, isolating the impact of different distance
metrics or rank-based scoring schemes would illu-
minate the contributions of each component. Our
positive results indicate these elements collectively
improve efficiency and performance, yet targeted
experiments would offer more granular guidance.

Framework Coupling. Our approach builds on
the AutoGOAL framework to leverage its pipeline
abstraction, multi-objective optimisation capabili-
ties and broad algorithm pool. While this integra-
tion streamlines experimentation, transferring XAu-
toLLM’s warm-start mechanism to other AutoML

platforms may require additional adaptation. The
underlying concepts, however, remain framework-
agnostic and can be extended with appropriate en-
gineering.
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A Additional Implementation Details and
Experimental Configurations

In this section, we provide key implementation de-
tails to ensure that our work is fully reproducible.
All configuration candidates used in our single-
objective experiments are fully specified in the
main text (see Figure 1). In contrast, candidates
for multi-objective experiments are available in
Appendix B due to the extremely high number of
tested configurations. In our evaluations, candi-
date configurations were designed with two distinct
learning rate schemes and distance discrimination
strategies, as detailed below.

A.1 Learning Rate Configuration and Update
Strategy

We adopt a dual-mode configuration for the learn-
ing rate updates applied to the probabilistic model.
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In experiments employing fixed learning rates, we
set the parameters to

+ ey

amax

0.05 and o, = —0.02.

For configurations using adaptive learning rates,
the values are computed as

1
N, pos

1
N, neg

+ —
max ~

o and oy,

Where N5 and Ny denote the number of positive
and negative experiences, respectively. Although
these rates are expressed with positive and nega-
tive signs to indicate the direction of the update
(reinforcing or de-emphasizing a configuration), all
update steps are executed using the absolute values.

A.2 Normalization of Meta-Features

All meta-features used for computing distances are
standardized using a standard scaler normalizer.
This normalizer computes the mean and standard
deviation of the feature vectors (with a small ep-
silon added to avoid division by zero) and returns
the standardized data. This ensures that distance
computations are robust and comparable across fea-
tures.

A.3 Beta Scale and Utility Functions

For the decay parameter (3, two formulations are
employed: the std-only beta scale is used in single-
objective experiments, whereas the std-plus-mean
beta scale is applied in multi-objective settings.
All candidates for the single-objective experi-
ments utilize a weighted sum approach with the F'1
score weight set to 1 and the evaluation time weight
set to 0. Detailed specifications of candidate config-
urations can be found in the visualizations provided
in the respective sections (Section 4.1 for single-
objective, and Appendix B for multi-objective).

A4 Experimental Setup and Computational
Resources

The main text fully discloses our experimental
setup (See Section 4). All experiments were con-
ducted on an Intel i19-9900K CPU with 127 GB
RAM and an RTX TITAN GPU (24 GB VRAM).
Each pipeline evaluation was granted a one-hour
timeout.

A.5 Framework Overview and Dependencies

XAutoLLM is implemented on top of the Auto-
GOAL framework (Estevanell-Valladares et al.,



2024; Estevez-Velarde et al., 2020), leveraging its
optimization strategy and abstractions. Our im-
plementation is developed in Python and utilizes
the HuggingFace Transformers library (Wolf et al.,
2019) to access pre-trained language models. A
complete list of dependencies, environment setup
instructions, and detailed documentation on how
to run the experiments (and statistical testing), re-
produce the results, and navigate the codebase is
provided in the repository.

The code and all associated materials can be ac-
cessed at the following anonymous GitHub repos-
itory: https://anonymous.4open.science/r/
XAutoLLM-A®@10 (currently private for blind review;
will be made public upon completion of the review
process).

B Multi-Objective Initial Probabilities

This section provides detailed illustrations of the
initial probability distributions assigned to each
fine-tuning method under varying meta-learning
configurations. These figures supplement our multi-
objective experiments from Section 4.2 by visual-
ising how each configuration biases the AutoML
search before any evaluations.

Recall that we generated up to 180 candidate
configurations per dataset by systematically vary-
ing:

1. Inclusion/exclusion of positive (successful)
and negative (error) past experiences,

Utility functions (e.g., weighted sum, linear
front, logarithmic front),

Distance metrics (Euclidean, Cosine) and
their scaling,

+ —
amax and amax

Section 3.3).

values (fixed or adaptive) (See

Each configuration yields a distinct initial proba-
bility vector for the available fine-tuning methods,
with deviations from the baseline distribution mea-
sured via Total Variation (TV). Grouping config-
urations by TV allows us to categorise them into
low, moderate, and high bias levels relative to the
baseline’s uniform initialisation.

LIAR. Figure 5 shows the initial probabilities of
using each fine-tuning method for the LIAR dataset,
sorted by their overall difference from the base-
line. Blue bars indicate the baseline configuration,
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whereas green, orange, and red bars represent con-
figurations increasingly diverging from the base-
line. We marked selected representative configura-
tions (patterned bars) for each bias level.

SST2. Figure 6 illustrates the same analysis on
SST2. Although the dataset differs substantially
from LIAR regarding meta-features (e.g., number
of classes, data size, label distribution), we observe
a similar pattern in how the bias level shifts proba-
bilities among alternative fine-tuning methods. The
High (Max) configuration notably shows more ag-
gressiveness than LIAR’s.

MELD. Figure 7 shows the MELD dataset’s ini-
tial distributions. As discussed in Section 4, MELD
shares some meta-feature similarities with LIAR
(see Figure 4), causing some distributions to con-
centrate around methods found promising in LIAR’s
prior runs.

AG News. Lastly, Figure 8 displays the candidate
configurations for AG NEWS, a large corpus with
four news categories.

These visualisations underscore how our meta-
learning strategy adapts the search space before
optimisation begins. By systematically adjusting
the initial probabilities, XAutoLLM avoids mind-
lessly searching all possibilities and exploits task
similarities to emphasise configurations that are
historically more successful or resource-feasible.
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Figure 5: Initial probability distributions for fine-tuning methods on LIAR.
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Figure 6: Initial probability distributions for fine-tuning methods on SST2
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Initial Prob. of Fine-tuning Method/Model Type (MELD)
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Figure 7: Initial probability distributions for fine-tuning methods on MELD
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Figure 8: Initial probability distributions for fine-tuning methods on AG News

e ET (x-axis) is the wall-clock time for a
pipeline to be evaluated (lower is better).

C Pareto Front Visualizations
* F'lhacro (y-axis) measures classification per-

Figure 9 illustrate the Pareto fronts discovered by formance (higher is better).
XAUTOLLM on each dataset (LIAR, SST2, MELD,
and AG NEWS). In each plot, the blue line repre- Points that lie fo the left of or above the baseline

sents the Pareto front of baseline solutions (i.e., the  front dominate the baseline in at least one objec-
standard AutoML search without meta-learning).  tive. In most cases, WS solutions (e.g., High WS -
The coloured markers (triangles, diamonds, stars)  Median, Mod WS - LIAR) simultaneously improve
represent pipelines discovered when applying our ~ upon the baseline’s E'T" and F'lp,cro, indicating
warm-start (WS) configurations. Each point is plot-  superior pipelines. Below, we discuss notable ob-
ted in (ET, Flnacro) Space, where: servations by dataset.
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Figure 9: Pareto Fronts discovered by the different configurations of XAutoLLM on LIAR, SST2, MELD and AG

News.

LIAR. Figure 9a shows how multiple WS con-
figurations produce pipelines faster than or more
accurate than any baseline point, effectively push-
ing the Pareto frontier upward and leftward. Con-
sistent with the distance analysis (Figure 4 in the
main paper), LIAR benefits enormously from rele-
vant historical experience in its meta-learning pool.
Evidently, HIGH WS - LIAR dominates the task,
diminishing the error ratio by sevenfold and achiev-
ing around 40% winning ratio (Figure 2).

SST2. Figures 9b and 3 (also referenced in Sec-
tion 5 of the main text) reveals a more moderate im-
provement, given fewer closely related prior tasks.
Still, several WS pipelines dominate certain base-
line solutions by achieving higher F'1acr0 1n less
time. Notice that points above and to the left of the
blue line reflect pipelines outperforming baseline
results on both objectives.

MELD. Figure 9c demonstrates how MELD, like
LIAR, sees numerous W S-discovered solutions out-
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classing the baseline. These configurations often
exploit shared meta-features between MELD and
LIAR (see Figure 4), culminating in faster conver-
gence and higher accuracy, with fewer errors dur-
ing the search. Mirroring LIAR, HIGH WS - LIAR
dominates, diminishing the error ratio by sevenfold
and almost getting 50% winning ratio (Figure 2).

AG News. Lastly, Figure 9d shows that while AG
NEWS has only moderate overlap with other tasks,
WS still yields solutions that meet or beat baseline
performance in time-accuracy trade-offs. Notably,
MOD and HIGH-bias configurations reduce error
rates (see Table 8 in the main text), suggesting
that historical knowledge, even if partially relevant,
helps prune more obviously unproductive hyperpa-
rameter regions.

Overall, these Pareto front analyses confirm that
XAUTOLLM leverages prior knowledge to reduce
exploration overhead, often uncovering solutions
that surpass a strong baseline in both F'1,c, and



evaluation time.
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