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Abstract
Experts in machine learning distinguish them-001
selves from amateurs by leveraging domain002
knowledge to effectively navigate the myriad003
decisions involved in model selection, hyper-004
parameter optimisation, and resource alloca-005
tion. This distinction is especially critical for006
Language Models (LMs), whose repeated fine-007
tuning trials incur substantial computational008
overhead and raise environmental concerns.009
Yet, no single AutoML framework simultane-010
ously addresses both model selection and hyper-011
parameter optimisation for resource-efficient012
LM fine-tuning.013

We propose XAutoLLM, a novel AutoML014
framework that integrates meta-learning to015
warm start the search space. By drawing on016
task- and system-level meta-features, XAu-017
toLLM reuses insights from previously tuned018
LMs on related tasks. Through extensive exper-019
imentation on four text classification datasets,020
our framework discovers solutions in up to021
half the search time, reduces search errors022
by as much as sevenfold, and produces over023
40% more pipelines that achieve improved per-024
formance–time trade-offs than a robust base-025
line. By systematically retaining and learn-026
ing from prior experiments, XAutoLLM en-027
ables resource-friendly, Green AI fine-tuning,028
thereby fostering sustainable NLP pipelines029
that balance state-of-the-art outcomes with min-030
imised computational overhead.031

1 Introduction032

Experts in Machine Learning (ML) distinguish033

themselves not merely through superior tools or034

abundant data but by utilising domain knowledge035

to focus on promising model and hyperparameter036

configurations. Rather than mindlessly testing all037

combinations, they use their experience to identify038

a small subset of promising options, ensuring their039

approach is strategic and informed.040

Automated Machine Learning (AutoML) seeks041

to replicate part of this expert-driven process by042

automating model selection, pipeline construction, 043

and Hyperparameter Optimisation (HPO) (Hutter 044

et al., 2019). However, AutoML systems often 045

lack the rich background knowledge required to 046

effectively prune less promising solutions. Meta- 047

learning addresses this gap by learning from past 048

AutoML runs, providing insights that guide fu- 049

ture executions (Vanschoren, 2019). This approach 050

avoids exhaustive searches and shortens optimisa- 051

tion cycles. 052

Although AutoML techniques have matured in 053

areas such as tabular and vision tasks (Hutter et al., 054

2019), applying them to language modelling re- 055

mains underdeveloped (Tornede et al., 2023). LMs 056

are extremely resource-intensive to train and fine- 057

tune (Wang et al., 2023b), even for smaller archi- 058

tectures like BERT (Devlin et al., 2018) or T5 (Raf- 059

fel et al., 2020). Repeated model evaluations can 060

thus be prohibitively costly, motivating Green AI 061

efforts to curb the environmental footprint of large- 062

scale NLP. Yet, most existing AutoML systems 063

for LMs focus on HPO in isolation (Mallik et al., 064

2024), overlooking the need for a holistic solu- 065

tion that jointly optimises both model selection and 066

HPO, especially under tight resource constraints. 067

We present XAutoLLM, a meta-learning- 068

enhanced framework that biases the AutoML 069

search space via warm-start strategies to address 070

these shortcomings. In particular, we integrate ex- 071

pert heuristics and prior experiences (encoded as 072

meta-features of tasks and hardware configurations) 073

into the initial sampling distribution. By jumpstart- 074

ing the search with knowledge about plausible or 075

implausible configurations, XAutoLLM systemati- 076

cally filters out resource-heavy, low-yield pipelines. 077

This open-source tool aims to unify model selec- 078

tion and HPO for LLMs, enabling practitioners 079

to fine-tune models more efficiently and sustain- 080

ably. The proposed framework is an open-source 081

tool available for the language modelling research 082

community (Appendix A). 083
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We summarise the main contributions of our pa-084

per as follows:085

• We propose XAutoLLM, the first AutoML086

framework that simultaneously tackles model087

selection and hyperparameter optimisation for088

LM fine-tuning.089

• We introduce an extensible meta-learning090

mechanism that leverages task and system091

meta-features to guide the search, balancing092

performance and efficiency constraints.093

• We demonstrate the effectiveness of our ap-094

proach through extensive experimentation on095

four text classification tasks, discovering solu-096

tions in up to half the time of a robust baseline,097

reducing error rates by as much as sevenfold,098

and achieving competitive or superior perfor-099

mance.100

2 Related Work101

AutoML strategies in language modelling can be102

divided into two (not necessarily disjoint) sub-103

sets: AutoML for LLMs and LLMs for Au-104

toML (Tornede et al., 2023). The former com-105

prises AutoML techniques to produce optimal LM106

pipelines tailored for specific scenarios, akin to107

traditional AutoML. The latter employs language108

models to enhance the AutoML process, for ex-109

ample, by providing linguistic interfaces to config-110

ure the optimisation process or leveraging them to111

guide the search (e.g., using LMs to generate code112

for optimal ML pipelines).113

AutoML for LLMs in particular poses signif-114

icant challenges (Tornede et al., 2023). Namely,115

LMs are extremely resource-intensive (Bannour116

et al., 2021), even when only considering their117

later stages (e.g., fine-tuning, inference). Table 1118

compares AutoML approaches that leverage LLMs119

according to relevant features characterising their120

responses to the field’s challenges.121

We observe that there are more LLMs for Au-122

toML systems than vice versa, likely due to the123

proliferation of prompt engineering and increased124

access to open-source language models. For in-125

stance, Zhou et al. (2022) developed the Automatic126

Prompt Engineer (APE) system, which achieved127

performance competitive with human-generated in-128

structions. In contrast, systems such as GL-Agent129

(Wei et al., 2023), AutoM3L (Luo et al., 2024) and130

GizaML (Sayed et al., 2024) integrate language131
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APE ✓ ✓
GPT-NAS ✓ ✓ ✓ ✓
GL-Agent ✓
AutoGen ✓ ✓ ✓

EcoOptiGen ✓ ✓ ✓
AutoML-GPT ✓ ✓ ≈
HuggingGPT ≈ ✓ ✓ ✓

AutoM3L ✓ ✓ ✓ ≈
PriorBand ✓ ✓ ✓ ✓

GizaML ✓ ✓ ✓ ✓
GE ✓ ✓ ✓ ✓ ≈

AutoGOAL ✓ ✓ ✓ ✓
Introduced in this paper

XAutoLLM ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of systems for AutoML with
LLMs

models into their optimisation strategies to pro- 132

duce graph learning pipelines, highly capable multi- 133

modal ML pipelines, and time-series forecasting 134

pipelines, respectively. 135

Systems like AutoGen (Wu et al., 2023), GPT- 136

NAS (Yu et al., 2024), GE (Morris et al., 2024), 137

AutoML-GPT (Zhang et al., 2023), and Hugging- 138

GPT (Shen et al., 2024) are hybrids that span both 139

categories; they leverage LMs to produce LM- 140

based solutions. However, the last two differ from 141

traditional AutoML (and NAS) systems: AutoML- 142

GPT does not evaluate solution candidates (only 143

simulates their training), and HuggingGPT pro- 144

duces responses to prompts without outputting the 145

pipelines capable of handling them. 146

Often, the choice of model is as, if not more, 147

critical than the hyperparameter configuration 148

used to produce responses. We found that Au- 149

toGOAL (Estevanell-Valladares et al., 2024) op- 150

timises pipelines by balancing efficiency and per- 151

formance metrics, taking into account both model 152

selection and HPO, but only supports LMs for in- 153

ference. All other AutoML for LLMs systems we 154

surveyed, such as EcoOptiGen (Wang et al., 2023a) 155

and PriorBand (Mallik et al., 2024), focus solely 156

on HPO. 157

Nonetheless, we find no single framework that 158

simultaneously addresses model selection and hy- 159

2



perparameter optimisation for LM fine-tuning, pri-160

marily when resource limitations exist. This moti-161

vates our proposal of XAutoLLM, a meta-learning-162

based AutoML system designed to fill these gaps163

in efficiency and performance via multi-objective164

optimisation.165

3 Proposal166

We propose XAutoLLM, the first AutoML system167

to combine model selection and hyperparameter168

optimisation for fine-tuning LMs. We leverage an169

explicable and extensible meta-learning method170

that employs accumulated knowledge from pre-171

vious evaluations to bias the initial search space172

towards solutions similar to those that have proven173

effective in related tasks. In AutoML terminology,174

this constitutes a sophisticated warm-start mech-175

anism that accelerates convergence by exploiting176

task similarities identified through meta-features.177

The core innovation of XAutoLLM lies in its178

ability to dynamically adjust the search space based179

on task-level similarities and multi-objective opti-180

misation criteria. This capability enables resource-181

efficient fine-tuning under constrained computa-182

tional budgets. Our framework utilises the opti-183

misation strategy and pipeline abstraction from184

AutoGOAL1 (Estevez-Velarde et al., 2020), along-185

side embedding and generative models for vari-186

ous NLP tasks available within AutoGOAL’s al-187

gorithm pool. Table 2 summarises the language188

models available in the pool at the time of writ-189

ing, along with their respective categories. While190

the original system supports these models solely191

for inference (Estevanell-Valladares et al., 2024),192

XAutoLLM enables fine-tuning via three distinct193

methods: Low-Rank Adaptation (Hu et al., 2021),194

traditional fine-tuning, and a partial fine-tuning ap-195

proach that freezes all parameters except those of196

the final layers.197

3.1 Process Overview198

XAutoLLM integrates prior experience into an it-199

erative optimisation pipeline. First, resource con-200

straints are defined and relevant historical evalua-201

tions (experiences) are retrieved from a centralised202

repository (Section 3.2). Next, meta-features203

capturing both the current task properties (Sec-204

tion 3.2.1) and system capabilities (Section 3.2.2)205

1Open-source framework available at https://github.
com/autogoal/autogoal. Its license allows for dealing with
the software without restriction

Category Language Model

Encoders

BERT (Devlin et al., 2018)
DistilBERT (Sanh et al., 2020)
RoBERTa (Liu et al., 2019)
XLM-RoBERTa (Conneau et al., 2020)
DeBERTa (He et al., 2021)
DeBERTaV3 (He et al., 2023)
MDeBERTaV3 (He et al., 2023)
ALBERT-v1 (Lan et al., 2019)
ELECTRA (Clark et al., 2020)

Generative

T5 (Raffel et al., 2020)
FLAN-T5 (Chung et al., 2024)
GPT-2 (Radford et al., 2019)
PHI-3 (Abdin et al., 2024)

Table 2: LMs available in AutoGOAL’s algorithm pool.

are extracted to assess task complexity and avail- 206

able computational resources. The search space is 207

then probabilistically adjusted using these insights, 208

emphasising configurations relevant to the current 209

scenario and historically associated with high per- 210

formance while de-emphasising those linked to er- 211

rors (Section 3.3). Finally, the fine-tuning routine 212

commences, guided by these refined configurations, 213

and the results of each evaluation are recorded in 214

the experience store to inform future optimisation 215

cycles. 216

3.2 Experience Store 217

Central to XAutoLLM’s functionality is its reposi- 218

tory of past evaluations, referred to as experiences. 219

These records capture key elements such as algo- 220

rithm choices, parameter configurations, task meta- 221

features, and system hardware details, enabling 222

informed decision-making in subsequent optimisa- 223

tion cycles. 224

3.2.1 Task Meta-Features. 225

Task meta-features provide insights into dataset 226

complexity, variability, and class distribution (see 227

Table 3). For example, entropy and imbalance 228

ratios reflect dataset skewness, while document 229

length statistics capture textual complexity. These 230

features are critical for tailoring fine-tuning strate- 231

gies to specific task requirements. 232

3.2.2 System Meta-Features. 233

Hardware characteristics (e.g., number of CPU 234

cores, RAM size) are equally crucial for ensuring 235

that fine-tuning remains feasible within resource 236

constraints (see Table 4). For instance, while large 237
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Category Feature Rationale

Instance/Class

Nr Instances Scalability
Nr Classes Complexity
Entropy Distribution
Min Cls Prob Imbalance
Max Cls Prob Imbalance
Imbalance Ratio Skewness

Documents
Avg. Length Complexity
Std. Length Variability
Coef. Var. Length Consistency

Landmark PCA + D.Tree Acc. Baseline

Table 3: Rationale for selected dataset meta-features

models like GPT-4 (OpenAI, 2023) may yield supe-238

rior results compared to smaller alternatives, their239

feasibility depends heavily on available computa-240

tional resources.241

XAutoLLM constructs a holistic representation242

of each optimisation scenario by combining task-243

specific and system-level meta-features, enabling244

robust similarity assessments across diverse con-245

texts.246

3.3 Warm-Start Optimization247

Building on our experience store, we propose248

a warm-start mechanism that biases the initial249

search towards promising fine-tuning configura-250

tions. Given a new task with meta-features tT , we251

measure its similarity to each stored experience via252

a distance function Dist(tT , ti) (e.g. Euclidean or253

Cosine).254

To modulate the influence of past experiences255

based on their similarity to T , we introduce an256

adaptive decay parameter β. Two formulations are257

proposed:258

Std-Only: β =
βscale

σd + ϵ
259

Std-Plus-Mean: β =
βscale

max(σd, ϵ) + µd
260

where σd and µd denote the standard deviation and261

mean of the distances {di} across all experiences,262

respectively, and ϵ > 0 is a small constant to pre-263

vent division by zero.264

Utility-Driven Prioritization. XAutoLLM as-265

signs a utility score ui to each positive experience266

(i.e., those with valid performance scores) to bias267

the search process toward promising configurations.268

We consider three approaches:269

Feature Rationale

CPU physical cores
Parallel Processing Capabilities

CPU logical cores

CPU max frequency Processing Speed

RAM size
Data Handling Capabilities

VRAM size

Table 4: Rationale for selected system meta-features

Weighted Sum. The utility score for experi- 270

ence ei is computed as 271

ui = wF1 ·
F1i

F1max
+wtime ·

(
1− eti − etmin

etmax − etmin

)
272

where F1i represents the F1macro score, eti is the 273

evaluation time, and the weights wF1, wtime ≥ 0 274

satisfy wF1 + wtime = 1. 275

Linear Front. Using non-dominated sorting, 276

experiences are assigned to N fronts. The utility 277

score is given by 278

ui =
N − ri
N

279

where ri denotes the rank of experience ei. This 280

linear scaling ensures that the highest-ranked ex- 281

perience attains a score of 1, with a proportional 282

decrement for lower-ranked experiences. 283

Logarithmic Front. To accentuate differences 284

among top-ranked experiences, we propose a loga- 285

rithmic ranking-based utility function: 286

ui =
ln(N − ri + 1)

ln(N + 1)
287

This formulation compresses the utility differences 288

among lower-ranked experiences while preserving 289

a steeper gradient among the highest-ranked ones, 290

which is particularly useful in scenarios where a 291

slight improvement in rank corresponds to a sub- 292

stantial performance gain. 293

These utility scores modulate the learning rate 294

adjustments. Specifically, the learning rate for a 295

positive experience ei is updated as 296

α+
i = α+

max ui e
−βdi 297

whereas, conversely, negative experiences are de- 298

emphasised using 299

α−
i = α−

max e
−βdi 300
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Here, α+
max and α−

max are parameters that can be301

either fixed values or adaptively computed based302

on the amount of available positive and negative303

experiences, respectively.304

Probabilistic Model Adjustment. The proba-305

bilistic model governing configuration parameters306

is updated iteratively:307

P (c | θ)← (1− α+
i )P (c | θ) + α+

i Pi(c | θ),308

P (c | θ)← (1 + α−
i )P (c | θ)− α−

i Pi(c | θ)309

Positive adjustments increase the probability of310

configurations similar to those associated with suc-311

cessful experiences, while negative adjustments312

decrease the probability of configurations linked to313

suboptimal outcomes. This warm-start mechanism314

enables XAutoLLM to efficiently explore promis-315

ing regions of the search space while avoiding re-316

dundant evaluations of suboptimal configurations.317

See Appendix A for additional implementation de-318

tails.319

4 Experimentation320

We evaluated our warm-started XAutoLLM pro-321

posal by comparing its performance and the qual-322

ity of generated solutions against a version of323

XAutoLLM without meta-learning. This ro-324

bust baseline corresponds to the proposal from325

Estevanell-Valladares et al. (2024), which has326

demonstrated strong performance in both single-327

objective (Estevez-Velarde et al., 2020) and multi-328

objective scenarios, albeit with an extended algo-329

rithm pool (including our fine-tuning implementa-330

tions).331

We designed two experimental setups to evalu-332

ate our proposal on diverse text classification sce-333

narios. First, we conducted a pilot evaluation for334

Single-Objective optimisation scenarios to directly335

compare performance improvements (Section 4.1).336

Then, we assessed Multi-Objective optimisation337

capabilities to evaluate our proposal’s ability to338

balance resource efficiency and performance (Sec-339

tion 4.2). See Appendix A for supplementary ex-340

perimentation details.341

Table 5 summarises the classification tasks se-342

lected for evaluation. We chose semantically di-343

verse tasks with varying computational resource344

requirements and performance expectations. For345

instance, Reusens et al. (2024) reported that the346

maximum F1macro scores for LIAR and MELD347

were 0.23 and 0.40, respectively, compared to 0.89348

Class. Task Dataset Cls Size

Fake news LIAR (Wang, 2017) 6 12,836
Topic AG News (Zhang et al., 2015) 4 127,600
Polarity SST2 (Socher et al., 2013) 2 68,221
Emotion MELD (Poria et al., 2018) 7 13,708

Table 5: Text Classification tasks selected for evaluation.

for SST2 and 0.93 for AGNews. Similarly, AG- 349

News comprises nearly ten times the number of 350

samples as LIAR and MELD. 351

Experimental Setup 352

All experiments were executed on an i9-9900K 353

CPU with 127 GB RAM and an RTX TITAN GPU 354

(24 GB VRAM). We preemptively generated meta- 355

learning experiences by running XAutoLLM with- 356

out meta-learning for 48 hours on each task (Table 357

6). We used F1macro and evaluation time (ET ) 358

as optimisation objectives with a one-hour timeout 359

per pipeline evaluation. 360

Dataset
Generated Available

Pos Neg Total Pos Neg Total

LIAR 100 236 336 116 480 596
SST2 33 122 155 183 594 777
MELD 68 190 258 148 526 674
AG News 15 168 183 216 548 764

Table 6: Disposition of experiences participating in the
experiments.

4.1 Single-Objective Evaluation 361

The single-objective setup compared the baseline 362

system against three warm-start configurations with 363

varying levels of initial bias (low, moderate, high). 364

These configurations were derived by generating 365

fourteen parameter combinations, grouping them 366

by Total Variation (TV ), and selecting the top rep- 367

resentatives from each group. We employed the 368

Std-Only beta scale for regulating distances (See 369

Section 3.3). 370

Figure 1 shows the resulting probabilities for 371

fine-tuning methods after applying warm-start con- 372

figurations on LIAR. Configurations were sorted by 373

their variation over the baseline distribution. Level 374

groups were demarcated iteratively based on ap- 375

proximately doubling variation differences. 376

Table 7 reports results from six runs per config- 377

uration on LIAR and SST2 over 24 hours. Across 378

both datasets, while peak performance improve- 379

ments were modest, significant gains were ob- 380
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Probabilities of Fine-tuning Method/Model Type (LIAR)
0 - LIAR baseline (Var: 0.000)
1 - LIAR adaptative-pos + fixed-neg (no distance) (Var: 0.000)
2 - LIAR fixed-pos (euc, k=1.0) (Var: 0.008)
3 - LIAR fixed-pos + fixed-neg (euc, k=1, f1 + eval time) (Var: 0.008)
4 - LIAR fixed-pos (euc, k=0.5) (Var: 0.046)
5 - LIAR fixed-pos (cos, k=1.0) (Var: 0.055)
6 - LIAR adaptive-pos (Var: 0.059)
7 - LIAR fixed-pos + fixed-neg (cos, k=1, f1 + eval time) (Var: 0.061)
8 - LIAR fixed-pos + fixed-neg (euc, k=0.5, f1 + eval time) (Var: 0.074)
9 - LIAR adaptive-pos + adaptive-neg (Var: 0.111)
10 - LIAR fixed-pos (cos, k=0.5) (Var: 0.116)
11 - LIAR fixed-pos + fixed-neg (cos, k=0.5, f1 + eval time) (Var: 0.221)
12 - LIAR fixed-pos (no distance) (Var: 0.262)
13 - LIAR fixed-pos + adaptive-neg (no distance) (Var: 0.324)
14 - LIAR fixed-pos + fixed-neg (no distance) (Var: 1.269)

Figure 1: Fine-tuning method probabilities for LIAR under 14 meta-learning configurations, sorted by TV relative
to the uniform baseline. Blue indicates near-baseline, while green, orange, and red denote low, moderate, and high
bias levels. Patterned markers (10, 13, 14) represent our selected experiment configurations.

Dataset Config. Max F1m Mean F1m TT50 (h) TT75 (h) TT90 (h) No. Eval E. Ratio

LIAR

Baseline 0.248 ±0.018 0.09 ±0.004 2.00 6.38 8.15 173 0.69
Low WS 0.253 ±0.006 0.11 ±0.008 1.35 4.10 9.05 166 0.61
Mod WS 0.251 ±0.015 0.11 ±0.008 1.57 4.88 6.43 165 0.46
High WS 0.247 ±0.006 0.10 ±0.009 1.37 5.42 10.74 156 0.24

SST2

Baseline 0.928 ±0.018 0.56 ±0.053 1.69 2.07 4.64 85 0.83
Low WS 0.917 ±0.016 0.59 ±0.063 1.28 2.41 5.09 98 0.80
Mod WS 0.941 ±0.004 0.56 ±0.064 0.70 3.88 5.21 55 0.69
High WS 0.932 ±0.002 0.56 ±0.058 0.41 0.41 2.23 58 0.58

Table 7: Overview of XAutoLLM performance on optimising F1macro for LIAR and SST2. Results are averaged
over six runs with different seeds. ‘Max F1m’ and ‘Mean F1m’ show the mean and standard deviation, respectively;
‘TT50’, ‘TT75’, and ‘TT90’ report the average time to reach 50%, 75%, and 90% F1m; and ‘No. Eval’ and ‘E.
Ratio’ indicates the average number of pipeline evaluations and the ratio of such evaluations that were errors.

served in the convergence speed against the base-381

line (reduced TT50, TT75 and TT90). On LIAR,382

none of the configurations outperformed the base-383

line on max F1macro with statistical significance,384

but mean F1macro exhibited an overall significant385

effect (p < 0.01). However, the pairwise compar-386

isons were insignificant after correction, likely due387

to insufficient samples (n = 6).388

Results on SST2 show a similar pattern of incre-389

mental yet not always statistically significant gains390

in maximum performance, with Mod WS reaching391

the highest max F1macro. Although the ANOVA392

(McHugh, 2011) test reached significance for max393

F1macro (p = 0.031), the Friedman (Pereira et al.,394

2015) test yielded a slightly more conservative out-395

come, highlighting the variability in effect sizes396

across runs.397

The efficiency advantages of warm-starting were 398

more pronounced in both tasks. In LIAR, TT50 399

and TT75 decreased notably for Low WS, while 400

Mod WS reached TT90 almost 1.7 hours faster 401

than the baseline. In SST2, Mod WS, the best per- 402

forming in max F1macro, displayed a similar pat- 403

tern as LIAR’s best, improving TT50 and TT75 404

but with slightly worse TT90 compared to base- 405

line. High WS displayed the best time-to-threshold 406

values in SST2, where it at least improved 2 times 407

against baseline. Additionally, we notice a direct 408

proportionality between the initial bias level and 409

the ratio of errors discovered in the search. 410

4.2 Multi-Objective Evaluation 411

Multi-objective evaluations were conducted across 412

all four datasets (Table 5). For each task, we evalu- 413
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ated the original LIAR candidates (Figure 1) along-414

side six newly selected candidates. These addi-415

tional candidates were chosen by independently se-416

lecting warm-start configurations with median and417

maximum TV from each group, derived from over418

180 combinations evaluated per task (see Appendix419

B for details on the selected candidate configura-420

tions).421

Config.
Max
F1m

Mean
F1m

Min
ET

Mean
ET

HV
PO
R.

No.
Eval

Error
Ratio

L
IA

R

Baseline 0.26 0.10 12 540 0.67 1 336 0.70
Low (LIAR) 0.26 0.10 16 480 0.15 2 197 0.70
Low (Med) 0.25 0.09 31 380 0.54 2 220 0.69
Low (Max) 0.25 0.09 21 410 0.12 3 190 0.66
Mod (LIAR) 0.26 0.10 36 462 0.02 2 132 0.53
Mod (Med) 0.24 0.10 13 469 0.07 2 146 0.61
Mod (Max) 0.25 0.08 44 516 0.07 4 121 0.39
High (LIAR) 0.25 0.10 6 153 0.30 1 302 0.09
High (Med) 0.25 0.10 9 277 0.18 1 193 0.33
High (Max) 0.26 0.09 12 252 0.13 1 208 0.25

SS
T

2

Baseline 0.94 0.64 61 1065 0.09 1 155 0.78
Low (LIAR) 0.90 0.48 373 1148 0.30 2 87 0.82
Low (Med) 0.90 0.52 227 840 0.05 3 62 0.83
Low (Max) 0.94 0.58 252 784 0.03 2 98 0.81
Mod (LIAR) 0.93 0.56 245 996 0.39 1 59 0.64
Mod (Med) 0.94 0.52 132 1030 0.09 2 34 0.55
Mod (Max) 0.93 0.52 184 1170 0.13 2 58 0.51
High (LIAR) 0.92 0.62 365 1160 0.04 3 42 0.61
High (Med) 0.94 0.53 164 844 0.18 1 52 0.68
High (Max) 0.94 0.61 320 857 0.31 1 53 0.79

M
E

L
D

Baseline 0.41 0.14 39 769 0.19 3 258 0.73
Low (LIAR) 0.46 0.14 20 532 0.11 1 150 0.64
Low (Med) 0.45 0.11 17 387 0.52 1 229 0.64
Low (Max) 0.39 0.09 30 477 0.62 1 186 0.65
Mod (LIAR) 0.40 0.11 26 514 0.00 3 106 0.39
Mod (Med) 0.40 0.11 36 546 0.05 3 130 0.52
Mod (Max) 0.38 0.09 24 590 0.14 3 110 0.52
High (LIAR) 0.44 0.14 7 179 0.16 1 260 0.10
High (Med) 0.43 0.13 21 466 0.47 2 124 0.45
High (Max) 0.42 0.12 12 322 0.01 2 233 0.51

A
G

N
E

W
S

Baseline 0.90 0.52 308 1091 0.04 2 254 0.91
Low (LIAR) 0.93 0.73 349 1183 0.03 2 93 0.90
Low (Med) 0.92 0.65 665 1589 0.41 1 83 0.89
Low (Max) 0.93 0.60 560 1164 0.00 1 77 0.90
Mod (LIAR) 0.92 0.46 404 1345 0.24 1 50 0.80
Mod (Med) 0.93 0.59 484 1102 0.02 2 48 0.79
Mod (Max) 0.92 0.56 249 1402 0.03 1 57 0.73
High (LIAR) 0.93 0.46 318 1437 0.01 2 45 0.71
High (Med) 0.93 0.51 253 833 0.19 1 58 0.86
High (Max) 0.92 0.54 350 1576 0.02 3 46 0.73

Table 8: Overview of performance of XAutoLLM on
optimizing F1macro and ET on LIAR, SST2, MELD
and AG NEWS. Data for each candidate corresponds to
one run with a shared random seed.

Table 8 presents the results of the experiment.422

In addition to standard performance metrics like423

maximum F1macro and minimum evaluation time424

(ET ), we report Hypervolume (HV ) and Pareto-425

Optimality Rank (PO R.). The ranking follows426

the methodology outlined by Ibrahim et al. (2024)427

but with HV , max F1macro and min ET as the428

performance indicators to capture the tradeoffs of429

the candidates.430

Although LIAR’s baseline remains highly com- 431

petitive—having both the highest max F1macro 432

and the top HV —it is not always optimal in other 433

scenarios. For instance, High (LIAR) in LIAR 434

achieves PO Rank 1 by drastically reducing mean 435

evaluation time (153 vs 387) without sacrificing 436

too much performance (max F1macro=0.25). A 437

similar issue arises in SST2: while the baseline 438

again attains the highest max F1macro, some WS 439

approaches produce faster convergence and ulti- 440

mately surpass it in HV (e.g., Low (LIAR) attains 441

a much lower min ET of 12 and a similar perfor- 442

mance). 443

In MELD and AG NEWS, the meta-learning 444

approaches outperform the baselines on multi- 445

objective metrics. In MELD, Low (Med) achieves 446

the best HV = 0.52 (against the baseline’s 0.19) 447

and near-max performance (0.45). Its PO Rank 1 448

indicates a difference in Pareto front quality com- 449

pared to the baseline. In AG NEWS, Low (Med) 450

delivers an HV = 0.41—far exceeding the base- 451

line’s 0.04—while improving max F1macro from 452

0.90 to 0.92. Across both datasets, high initial bias 453

more consistently reduces evaluation time and error 454

rates while maintaining or slightly surpassing the 455

baseline in peak F1macro. 456
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Figure 2: Ratio of fine-tuning pipelines outperforming
the strong baseline per configuration and task.

From an exploration-efficiency perspective, WS 457

candidates show clear advantages. Figure 2 shows 458

the rate of discovered solutions by each warm-start 459

configuration that improved over the robust base- 460

line balancing efficiency and performance. High 461

configurations produced the best winning ratios, 462

with almost 50% of the pipelines discovered by 463

High (LIAR) outperforming the baseline while di- 464

minishing up to seven times the ratio of discovered 465

errors during the search. 466

Overall, these outcomes highlight that the warm- 467
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start strategy simultaneously confers tangible bene-468

fits across multiple objectives, lowering error rates469

and search overhead while preserving or improving470

classification performance.471

5 Discussion472
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Figure 3: LM fine-tuning pipelines discovered by XAu-
toLLM on SST2.

Our results demonstrate the importance of lever-473

aging prior knowledge in AutoML. The most sig-474

nificant difference with the baseline comes in tasks475

where relevant experience from similar tasks is476

available (see Figure 4 showing MELD and LIAR477

are most alike). Conversely, tasks with little or no478

relevant background knowledge benefit less from479

meta-learning. This highlights the need to balance480

exploitation and exploration adaptively, leaving481

room for standard AutoML searches when histor-482

ical data is sparse. By discriminating less mean-483

ingful experiences, XAutoLLM effectively avoids484

over-biasing the search space. This was the case485

with SST2 and AG News, for which the system486

lacked a large relevant experience pool but still dis-487

covered pipelines outperforming a robust baseline488

(see Figure 3 and Appendix C for all Pareto Front489

visualizations).490
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Figure 4: Distance between Tasks according to their
meta-features (See Section 3.2.1).

Combining experience discrimination with adap- 491

tive probabilistic adjustments yields the best of 492

both worlds: faster convergence to near-optimal so- 493

lutions when prior knowledge is significant while 494

remaining robust in problems with fewer references. 495

For instance, on SST2, our approach discovered 496

pipelines that reduced evaluation time by up to 6× 497

while maintaining macro F1 performance within 498

one percentage point of the global best. Similarly, 499

experiments on LIAR and MELD show winning 500

ratios of around 40% and 50%, respectively, mean- 501

ing that a substantial fraction of the solutions dis- 502

covered by XAutoLLM strike a superior balance 503

between efficiency and performance. This supports 504

our central hypothesis that integrating prior knowl- 505

edge is crucial for enhancing AutoML pipelines. 506

A core motivation of our framework is to re- 507

duce the carbon footprint and environmental toll 508

of repeated large-scale language model fine-tuning. 509

By systematically reusing insights from past runs, 510

XAutoLLM significantly reduces redundant evalu- 511

ations and lowers the overall error rate during the 512

search. Beyond simply lowering compute hours, 513

this approach aligns with the growing Green AI 514

ethos in NLP (Wang et al., 2023b), emphasising the 515

importance of responsible resource usage. Our ex- 516

periments illustrate that warm-start meta-learning 517

not only improves performance but also stream- 518

lines the search process, yielding algorithms that 519

better balance efficiency and performance. 520

6 Conclusions 521

We introduced XAutoLLM, the first AutoML 522

framework that jointly addresses model selection 523

and hyperparameter optimisation for LM fine- 524

tuning. Using past experiences to warm-start the 525

search process, our method achieves up to 2× faster 526

convergence, sevenfold lower error ratios, and dis- 527

covered pipelines with a 6× reduction in evalu- 528

ation time while maintaining highly competitive 529

macro F1 scores. With winning ratios of 40% and 530

50% on LIAR and MELD, respectively, our results 531

demonstrate that XAutoLLM effectively balances 532

performance and efficiency. These improvements 533

support a more sustainable, Green AI approach by 534

significantly reducing redundant computations and 535

producing more resource-efficient fine-tuned LMs. 536

Our open-source framework is available for the lan- 537

guage modelling research community (Appendix 538

A). 539
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7 Limitations540

We identify some limitations to our study that high-541

light avenues for further investigation:542

Computational Overhead. Although our meta-543

learning warm-start mechanism reduces the num-544

ber of redundant evaluations, language model fine-545

tuning remains computationally expensive. Users546

with limited GPU or CPU resources might face547

practical hurdles when repeatedly tuning larger548

transformer architectures. Nonetheless, our results549

show that even moderate hardware settings can550

benefit from XAutoLLM’s efficiency gains.551

Task and Data Scope. Our current experiments552

target text classification tasks of moderate scale.553

While these findings strongly support the effective-554

ness of XAutoLLM, further research is needed to555

confirm its utility in more diverse tasks such as se-556

quence labelling or multi-modal pipelines, as well557

as in domains with highly specialised data (e.g.,558

biomedical or legal corpora). Such explorations559

would help affirm the broad generalizability of our560

approach.561

Risk of Negative Transfer. XAutoLLM adap-562

tively weighs past experiences based on their rel-563

evance to a new task. However, negative trans-564

fer remains possible if the experience repository565

predominantly contains data from tasks that differ566

markedly or contain suboptimal configurations. Al-567

though our decay mechanisms mitigate this risk,568

future enhancements might include automated out-569

lier detection or more selective filtering strategies570

to safeguard against inconsistent past knowledge.571

Lack of Ablation Studies. We have demon-572

strated the overall value of XAutoLLM’s meta-573

learning approach, but deeper insight could be574

gained through dedicated ablation studies. Specif-575

ically, isolating the impact of different distance576

metrics or rank-based scoring schemes would illu-577

minate the contributions of each component. Our578

positive results indicate these elements collectively579

improve efficiency and performance, yet targeted580

experiments would offer more granular guidance.581

Framework Coupling. Our approach builds on582

the AutoGOAL framework to leverage its pipeline583

abstraction, multi-objective optimisation capabili-584

ties and broad algorithm pool. While this integra-585

tion streamlines experimentation, transferring XAu-586

toLLM’s warm-start mechanism to other AutoML587

platforms may require additional adaptation. The 588

underlying concepts, however, remain framework- 589

agnostic and can be extended with appropriate en- 590

gineering. 591
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A Additional Implementation Details and786

Experimental Configurations787

In this section, we provide key implementation de-788

tails to ensure that our work is fully reproducible.789

All configuration candidates used in our single-790

objective experiments are fully specified in the791

main text (see Figure 1). In contrast, candidates792

for multi-objective experiments are available in793

Appendix B due to the extremely high number of794

tested configurations. In our evaluations, candi-795

date configurations were designed with two distinct796

learning rate schemes and distance discrimination797

strategies, as detailed below.798

A.1 Learning Rate Configuration and Update799

Strategy800

We adopt a dual-mode configuration for the learn-801

ing rate updates applied to the probabilistic model.802

In experiments employing fixed learning rates, we 803

set the parameters to 804

α+
max = 0.05 and α−

max = −0.02. 805

For configurations using adaptive learning rates, 806

the values are computed as 807

α+
max =

1

Npos
and α−

max = − 1

Nneg
808

Where Npos and Nneg denote the number of positive 809

and negative experiences, respectively. Although 810

these rates are expressed with positive and nega- 811

tive signs to indicate the direction of the update 812

(reinforcing or de-emphasizing a configuration), all 813

update steps are executed using the absolute values. 814

A.2 Normalization of Meta-Features 815

All meta-features used for computing distances are 816

standardized using a standard scaler normalizer. 817

This normalizer computes the mean and standard 818

deviation of the feature vectors (with a small ep- 819

silon added to avoid division by zero) and returns 820

the standardized data. This ensures that distance 821

computations are robust and comparable across fea- 822

tures. 823

A.3 Beta Scale and Utility Functions 824

For the decay parameter β, two formulations are 825

employed: the std-only beta scale is used in single- 826

objective experiments, whereas the std-plus-mean 827

beta scale is applied in multi-objective settings. 828

All candidates for the single-objective experi- 829

ments utilize a weighted sum approach with the F1 830

score weight set to 1 and the evaluation time weight 831

set to 0. Detailed specifications of candidate config- 832

urations can be found in the visualizations provided 833

in the respective sections (Section 4.1 for single- 834

objective, and Appendix B for multi-objective). 835

A.4 Experimental Setup and Computational 836

Resources 837

The main text fully discloses our experimental 838

setup (See Section 4). All experiments were con- 839

ducted on an Intel i9-9900K CPU with 127 GB 840

RAM and an RTX TITAN GPU (24 GB VRAM). 841

Each pipeline evaluation was granted a one-hour 842

timeout. 843

A.5 Framework Overview and Dependencies 844

XAutoLLM is implemented on top of the Auto- 845

GOAL framework (Estevanell-Valladares et al., 846
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2024; Estevez-Velarde et al., 2020), leveraging its847

optimization strategy and abstractions. Our im-848

plementation is developed in Python and utilizes849

the HuggingFace Transformers library (Wolf et al.,850

2019) to access pre-trained language models. A851

complete list of dependencies, environment setup852

instructions, and detailed documentation on how853

to run the experiments (and statistical testing), re-854

produce the results, and navigate the codebase is855

provided in the repository.856

The code and all associated materials can be ac-857

cessed at the following anonymous GitHub repos-858

itory: https://anonymous.4open.science/r/859

XAutoLLM-A010 (currently private for blind review;860

will be made public upon completion of the review861

process).862

B Multi-Objective Initial Probabilities863

This section provides detailed illustrations of the864

initial probability distributions assigned to each865

fine-tuning method under varying meta-learning866

configurations. These figures supplement our multi-867

objective experiments from Section 4.2 by visual-868

ising how each configuration biases the AutoML869

search before any evaluations.870

Recall that we generated up to 180 candidate871

configurations per dataset by systematically vary-872

ing:873

1. Inclusion/exclusion of positive (successful)874

and negative (error) past experiences,875

2. Utility functions (e.g., weighted sum, linear876

front, logarithmic front),877

3. Distance metrics (Euclidean, Cosine) and878

their scaling,879

4. α+
max and α−

max values (fixed or adaptive) (See880

Section 3.3).881

Each configuration yields a distinct initial proba-882

bility vector for the available fine-tuning methods,883

with deviations from the baseline distribution mea-884

sured via Total Variation (TV). Grouping config-885

urations by TV allows us to categorise them into886

low, moderate, and high bias levels relative to the887

baseline’s uniform initialisation.888

LIAR. Figure 5 shows the initial probabilities of889

using each fine-tuning method for the LIAR dataset,890

sorted by their overall difference from the base-891

line. Blue bars indicate the baseline configuration,892

whereas green, orange, and red bars represent con- 893

figurations increasingly diverging from the base- 894

line. We marked selected representative configura- 895

tions (patterned bars) for each bias level. 896

SST2. Figure 6 illustrates the same analysis on 897

SST2. Although the dataset differs substantially 898

from LIAR regarding meta-features (e.g., number 899

of classes, data size, label distribution), we observe 900

a similar pattern in how the bias level shifts proba- 901

bilities among alternative fine-tuning methods. The 902

High (Max) configuration notably shows more ag- 903

gressiveness than LIAR’s. 904

MELD. Figure 7 shows the MELD dataset’s ini- 905

tial distributions. As discussed in Section 4, MELD 906

shares some meta-feature similarities with LIAR 907

(see Figure 4), causing some distributions to con- 908

centrate around methods found promising in LIAR’s 909

prior runs. 910

AG News. Lastly, Figure 8 displays the candidate 911

configurations for AG NEWS, a large corpus with 912

four news categories. 913

These visualisations underscore how our meta- 914

learning strategy adapts the search space before 915

optimisation begins. By systematically adjusting 916

the initial probabilities, XAutoLLM avoids mind- 917

lessly searching all possibilities and exploits task 918

similarities to emphasise configurations that are 919

historically more successful or resource-feasible. 920
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Initial Prob. of Fine-tuning Method/Model Type (LIAR)

Baseline (max, Var: 0.000)
liar - no-pos a-neg euc  k(0.5) - utility (linear_front) (median, Var: 0.028)
liar - no-pos a-neg - utility (weighted_sum) (max, Var: 0.050)
liar - a-pos a-neg euc  k(0.5) - utility (weighted_sum) (median, Var: 0.222)
liar - no-pos f-neg cos  k(1) - utility (weighted_sum) (max, Var: 0.389)
liar - no-pos f-neg euc  k(0.5) - utility (linear_front) (median, Var: 0.993)
liar - f-pos f-neg - utility (weighted_sum) (max, Var: 1.023)

Figure 5: Initial probability distributions for fine-tuning methods on LIAR.
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Initial Prob. of Fine-tuning Method/Model Type (SST2)
Baseline (max, Var: 0.000)
sst2 - no-pos a-neg euc  k(0.5) - utility (linear_front) (median, Var: 0.032)
sst2 - no-pos a-neg - utility (weighted_sum) (max, Var: 0.057)
sst2 - a-pos no-neg euc  k(0.5) - utility (linear_front) (median, Var: 0.272)
sst2 - f-pos a-neg - utility (logarithmic_front) (max, Var: 0.451)
sst2 - a-pos f-neg euc  k(0.5) - utility (weighted_sum) (median, Var: 0.998)
sst2 - no-pos f-neg cos  k(0.5) - utility (weighted_sum) (max, Var: 1.590)

Figure 6: Initial probability distributions for fine-tuning methods on SST2
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Initial Prob. of Fine-tuning Method/Model Type (MELD)

Baseline (max, Var: 0.000)
meld - no-pos a-neg euc  k(0.5) - utility (linear_front) (median, Var: 0.033)
meld - no-pos a-neg - utility (weighted_sum) (max, Var: 0.059)
meld - a-pos no-neg cos  k(0.5) - utility (linear_front) (median, Var: 0.262)
meld - no-pos f-neg euc  k(1) - utility (weighted_sum) (max, Var: 0.538)
meld - no-pos f-neg euc  k(0.5) - utility (linear_front) (median, Var: 0.992)
meld - f-pos f-neg - utility (logarithmic_front) (max, Var: 0.999)

Figure 7: Initial probability distributions for fine-tuning methods on MELD
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Baseline (max, Var: 0.000)
ag_news - no-pos a-neg euc  k(0.5) - utility (linear_front) (median, Var: 0.044)
ag_news - no-pos a-neg - utility (weighted_sum) (max, Var: 0.079)
ag_news - a-pos no-neg cos  k(0.5) - utility (linear_front) (median, Var: 0.298)
ag_news - f-pos a-neg - utility (logarithmic_front) (max, Var: 0.474)
ag_news - no-pos f-neg euc  k(0.5) - utility (linear_front) (median, Var: 0.994)
ag_news - no-pos f-neg - utility (weighted_sum) (max, Var: 1.444)

Figure 8: Initial probability distributions for fine-tuning methods on AG News

923

C Pareto Front Visualizations924

Figure 9 illustrate the Pareto fronts discovered by925

XAUTOLLM on each dataset (LIAR, SST2, MELD,926

and AG NEWS). In each plot, the blue line repre-927

sents the Pareto front of baseline solutions (i.e., the928

standard AutoML search without meta-learning).929

The coloured markers (triangles, diamonds, stars)930

represent pipelines discovered when applying our931

warm-start (WS) configurations. Each point is plot-932

ted in (ET, F1macro) space, where:933

• ET (x-axis) is the wall-clock time for a 934

pipeline to be evaluated (lower is better). 935

• F1macro (y-axis) measures classification per- 936

formance (higher is better). 937

Points that lie to the left of or above the baseline 938

front dominate the baseline in at least one objec- 939

tive. In most cases, WS solutions (e.g., High WS - 940

Median, Mod WS - LIAR) simultaneously improve 941

upon the baseline’s ET and F1macro, indicating 942

superior pipelines. Below, we discuss notable ob- 943

servations by dataset. 944
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Figure 9: Pareto Fronts discovered by the different configurations of XAutoLLM on LIAR, SST2, MELD and AG
News.

LIAR. Figure 9a shows how multiple WS con-945

figurations produce pipelines faster than or more946

accurate than any baseline point, effectively push-947

ing the Pareto frontier upward and leftward. Con-948

sistent with the distance analysis (Figure 4 in the949

main paper), LIAR benefits enormously from rele-950

vant historical experience in its meta-learning pool.951

Evidently, HIGH WS - LIAR dominates the task,952

diminishing the error ratio by sevenfold and achiev-953

ing around 40% winning ratio (Figure 2).954

SST2. Figures 9b and 3 (also referenced in Sec-955

tion 5 of the main text) reveals a more moderate im-956

provement, given fewer closely related prior tasks.957

Still, several WS pipelines dominate certain base-958

line solutions by achieving higher F1macro in less959

time. Notice that points above and to the left of the960

blue line reflect pipelines outperforming baseline961

results on both objectives.962

MELD. Figure 9c demonstrates how MELD, like963

LIAR, sees numerous WS-discovered solutions out-964

classing the baseline. These configurations often 965

exploit shared meta-features between MELD and 966

LIAR (see Figure 4), culminating in faster conver- 967

gence and higher accuracy, with fewer errors dur- 968

ing the search. Mirroring LIAR, HIGH WS - LIAR 969

dominates, diminishing the error ratio by sevenfold 970

and almost getting 50% winning ratio (Figure 2). 971

AG News. Lastly, Figure 9d shows that while AG 972

NEWS has only moderate overlap with other tasks, 973

WS still yields solutions that meet or beat baseline 974

performance in time-accuracy trade-offs. Notably, 975

MOD and HIGH-bias configurations reduce error 976

rates (see Table 8 in the main text), suggesting 977

that historical knowledge, even if partially relevant, 978

helps prune more obviously unproductive hyperpa- 979

rameter regions. 980

Overall, these Pareto front analyses confirm that 981

XAUTOLLM leverages prior knowledge to reduce 982

exploration overhead, often uncovering solutions 983

that surpass a strong baseline in both F1macro and 984

15



evaluation time.985
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