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ABSTRACT

Replay-based methods have shown superior performance to address catastrophic
forgetting in continual learning (CL), where a subset of past data is stored and
generally replayed together with new data in current task learning. While seem-
ingly natural, it is questionable, though rarely questioned, if such a concurrent
replay strategy is always the right way for replay in CL. Inspired by the fact in
human learning that revisiting very different courses sequentially before final ex-
ams is more effective for students, an interesting open question to ask is whether a
sequential replay can benefit CL more compared to a standard concurrent replay.
However, answering this question is highly nontrivial considering a major lack of
theoretical understanding in replay-based CL methods. To this end, we investigate
CL in overparameterized linear models and provide a comprehensive theoretical
analysis to compare two replay schemes: 1) Concurrent Replay, where the model
is trained on replay data and new data concurrently; 2) Sequential Replay, where
the model is trained first on new data and then sequentially on replay data for
each old task. By characterizing the explicit form of forgetting and generalization
error, we show in theory that sequential replay tends to outperform concurrent re-
play when tasks are less similar, which is corroborated by our simulations in linear
models. More importantly, our results inspire a novel design of a hybrid replay
method, where only replay data of similar tasks are used concurrently with the
current data and dissimilar tasks are sequentially revisited using their replay data.
As depicted in our experiments on real datasets using deep neural networks, such
a hybrid replay method improves the performance of standard concurrent replay
by leveraging sequential replay for dissimilar tasks. By providing the first com-
prehensive theoretical analysis on replay, our work has great potentials to open up
more principled designs for replay-based CL.

1 INTRODUCTION

Continual learning (CL) (Parisi et al., 2019) seeks to build an agent that can learn a sequence of
tasks continuously without access to old task data, resembling human’s capability of lifelong learn-
ing. One of the major challenges therein is the so-called catastrophic forgetting (Kirkpatrick et al.,
2017), i.e., the agent can easily forget the knowledge of old tasks when learning new tasks. A large
amount of studies have been proposed to address this issue, among which replay-based approaches
(Rolnick et al., 2019) have demonstrated the state-of-the-art performance. The main idea behind is
to store a subset of old task data in the memory and replay them when learning new tasks, where a
widely adopted strategy for training is concurrent replay (Evron et al., 2024), i.e., train the model
concurrently on new task data and the replay data.

While the concurrent replay strategy seems very natural and has shown successful performance to
address catastrophic forgetting, it is indeed questionable whether this strategy is always the right
way for replay in CL as we consider the following aspects. 1) From the perspective of human
learning. In daily life, a common strategy to prevent forgetting is to review old knowledge. For
example, suppose a student needs to learn a series of topics over a semester before taking an exam,
and each topic corresponds to one task in CL. Intuitively, if these topics are highly related to each
other, incorporating the knowledge of old topics into learning a new topic can be an effective strategy
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to strengthen the new learning and simultaneously reduce the forgetting of old knowledge, which is
analogous to concurrent replay. However, if the topics are very different from each other, a common
practice that a student often takes is to learn new topics first and then go over old topics to mitigate
the forgetting. Here, such a sequential replay may lead to better outcome in the exam. 2) From the
perspective of multi-task learning. Learning multiple tasks all at once may lead to poor learning
performance due to the potential interference among gradients of different tasks Yu et al. (2020),
whereas standard CL without regularization and replay may even achieve less forgetting for more
dissimilar tasks Lin et al. (2023). Thus motivated, an interesting and open question to ask is:

Question: Whether sequential replay will serve as an appealing replay strategy to complement the
standard concurrent replay, and when will it be advantageous over concurrent replay for CL?

To answer this question from a theoretical perspective, we study replay-based CL through the lens of
overparameterized linear models to gain useful insights, by following a recent series of theoretical
studies in CL (Lin et al., 2023; Evron et al., 2022; Ding et al., 2024; Li et al., 2024). However, none
of those previous studies analyzed the replay-based methods. The only theoretical work that studied
the replay-based methods is the recent concurrent work (Banayeeanzade et al., 2024). But this work
considered only the standard concurrent replay method, not from the new perspective of sequential
replay.

In this work, to capture the idea and advantage of sequential replay, we propose a novel replay
strategy, in which the agent sequentially revisits each old task and trains the model with the corre-
sponding replay data after the current task is well learned.

Main Contributions. We summarize our main contributions as follows.

• First of all, we provide the first explicit closed-form expressions for the expected value of
forgetting and generalization error for both concurrent replay strategy and sequential replay
strategy under an overparameterized linear regression setting. Note that the blending of samples
from old tasks in concurrent replay introduces significant intricacies related to task correlation
in theoretical analysis. To address this challenge, we partition training data into blocks based on
different tasks, which enables us to further calculate the task interference using the properties of
block matrix. In particular, our theoretical results demonstrate how the performance of replay-
based CL is affected by various factors, including task similarity and memory size.

• Secondly, we propose a novel replay strategy, i.e., sequential replay, to sequentially revisit old
tasks after the current task is fully learned. By characterizing the explicit closed-form expres-
sions for the expected forgetting and generalization error for sequential replay and comparing
with the concurrent replay, we give an affirmative answer to the open question above. More
importantly, we rigorously characterize the conditions when sequential replay can benefit CL
more than concurrent replay, in terms of both forgetting and generalization error, which is also
consistent with our motivations above: Sequential replay outperforms concurrent replay if tasks
in CL are dissimilar, and the performance improvement is larger when the tasks are more dis-
similar. Numerical simulations on linear models further corroborate our theoretical results.

• Last but not least, our theoretical insights can indeed go beyond the linear models and guide
the practical algorithm design for replay-based CL with deep neural networks (DNNs). More
specifically, we merge the idea of sequential replay into standard replay-based CL with concur-
rent replay, leading to a hybrid replay approach where 1) old tasks dissimilar to the current task
will be revisited by using sequential replay (guided by our theory that suggests more benefit
if dissimilar tasks are revisited sequentially) and 2) the replay data for the remaining old tasks
(that are sufficiently similar to the current task) will still be used concurrently with current task
data. Our experiments on real datasets with DNNs verify that our hybrid approach can perform
better than concurrent replay and the advantage is more apparent when tasks are less similar.

2 RELATED WORK

Empirical studies in CL. CL has drawn significant attention in recent years, with numerous em-
pirical approaches developed to mitigate the issue of catastrophic forgetting. Architecture-based ap-
proaches combat catastrophic forgetting by dynamically adjusting network parameters (Rusu et al.,
2016) or introducing architectural adaptations such as an ensemble of experts (Rypeść et al., 2024).
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Regularization-based methods constrain model parameter updates to preserve the knowledge of pre-
vious tasks (Kirkpatrick et al., 2017; Magistri et al., 2024). Memory-based methods address forget-
ting by storing some information of old tasks in the memory and leveraging the information during
current task learning, which can be further divided into orthogonal projection based methods and
replay-based methods. The former stores gradient information of old tasks and uses this to mod-
ify the optimization space for the current task (Saha et al., 2021; Lin et al., 2022), while the latter
stores and reuses a tiny subset of representative data, known as exemplars. Critical design consider-
ations in empirical replay-based methods mainly include varying exemplar sampling and utilization
schemes. Exemplar sampling methods involve reservoir sampling (Chrysakis & Moens, 2020) and
an information-theoretic evaluation of exemplar candidates (Sun et al., 2022). Some other work
such as Shin et al. (2017) retains past knowledge by replaying ”pseudo-data” constructed from input
data instead of storing raw input. Replay methods mostly assume a concurrent training scheme that
trains the model using a mix of input data and sampled exemplars (Dokania et al., 2019; Rebuffi
et al., 2017; Garg et al., 2024). Other exemplar utilization methods include Lopez-Paz & Ranzato
(2017) and Chaudhry et al. (2018), which use exemplar to impose constraints in the gradient space.

Theoretical studies in CL. Compared to the vast amount of empirical studies in CL, the theoretical
understanding of CL is very limited but has started to attract much attention very recently. Bennani
et al. (2020); Doan et al. (2021) investigated CL performance for the orthogonal gradient descent
approach in NTK models theoretically. Yin et al. (2020) focused on regularization-based methods
and proposed a framework, which requires second-order information to approximate loss function.
Cao et al. (2022); Li et al. (2022) characterized the benefits of continual representation learning from
a theoretical perspective. Evron et al. (2023) connected regularization-based methods with Projec-
tion Onto Convex Sets. Recently, a series of theoretical studies proposed to leverage the tools of
overparameterized linear models to facilitate better understanding of CL. Evron et al. (2022) studied
the performance of forgetting under such a setup. After that, Lin et al. (2023) characterized the
performance of CL in a more comprehensive way, where they discuss the impact of task similarities
and the task order. Goldfarb & Hand (2023) illustrated the joint effect of task similarity and over-
parameterization. Zhao et al. (2024) provided a statistical analysis of regularization-based methods.
More recently, Li et al. (2024) further theoretically investigated the impact of mixture-of-experts on
the performance of CL in linear models.

Different from all the previous studies, we seek to fill up the theoretical understanding for replay-
based CL. Note that one concurrent study Banayeeanzade et al. (2024) also investigates replay-based
CL in overparameterized linear models with concurrent replay. However, one key difference here is
that we propose a novel replay strategy, i.e., the sequential replay, and theoretically show its benefit
over concurrent replay for dissimilar tasks. Our theoretical results further motivate a new algorithm
design for CL in practice, which demonstrates promising performance on DNNs.

3 PROBLEM SETTING

We consider a common CL setup consisting of T tasks where each task arrives sequentially in time
t ∈ [T ] and is learned sequentially by one model. Here [T ] := {1, 2, ..., T} for any positive integer
T . Let Ip denote the p× p identity matrix and let ∥·∥ denote the ℓ2-norm.

Data Model. We adopt the setting of linear ground truth which is commonly used in the theoretical
analysis of various machine learning methods including CL (e.g., Lin et al. (2023)). Specifically,
For each task t ∈ [T ], a sample (x̂t, yt) is generated by a linear ground truth model:

yt = x̂⊤
t ŵ

∗
t + zt, (1)

where x̂t ∈ Rst denotes st true features, yt ∈ R denotes the output, ŵ∗ ∈ Rst denotes the ground
truth parameters, and zt ∈ R denotes the noise. Notice that in practice, true features are unknown,
and typically more features are selected to ensure that all relevant features are included. Mathe-
matically, letting St denote the set of true features of task t and lettingW denote the set of chosen
features in our model. We assume

⋃
t∈[T ] St ⊆ W . We use p to denote the number of chosen

features, i.e., |W| = p. (Of course,
⋃

t∈[T ] St ⊆ W implies that p ≥ maxt∈[T ] st.) With this as-
sumption, we expand ŵ∗

t ∈ Rst to a sparse p-dimensional vector w∗
t ∈ Rp by filling zeros in the

positions corresponding toW\St. Thus, eq. (1) can be written as:

yt = x⊤
t w

∗
t + zt, (2)
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where xt,w
∗
t ∈ Rp. In other words, (xt, yt) is the sample used in the training process.

Dataset. For each task t ∈ [T ], there are nt training samples (xt,i, yt,i)i∈[nt]. We stack those
samples into matrices/vectors to obtain the dataset Dt = {(Xt,Yt) ∈ Rp×nt × Rnt}, By eq. (2),
we have

Yt = X⊤
t w∗

t + zt, (3)
where Xt := [xt,1 xt,2 · · · xt,nt ], Yt := [yt,1 yt,2 · · · yt,nt ]

⊤, and zt := [zt,1 zt,2 · · · zt,nt ]
⊤. To

simplify our theoretical analysis, we consider i.i.d. Gaussian features and noise, i.e., each element
of Xt follows i.i.d. standard Gaussian distribution, and zt ∼ N (0, σ2

t Int
) where σt ≥ 0 denotes

the noise level. To make our result easier to interpret, we let σt = σ and nt = n for all t ∈ [T ].

Memory. For any task t ≥ 2, besides Dt, the agent has an overall memory datasetMt that contains
separate memory datasetsMt,i for each of the previous tasks i ∈ [t − 1], i.e., Mt =

⋃t−1
i=1Mt,i

whereMt,i = (X̃t,i, Ỹt,i) ∈ Rp×Mt,i × RMt,i denotes the samples from previous task i and we
define Mt,i as the number of samples inMt,i. In most CL applications, the memory space is fully
utilized and the memory size does not change over time. We denote this memory size by M that
does not change with t. In this case, we have

∑t−1
i=1 Mt,i = M for any t ≥ 2. In this work, we focus

on the situation in which the memory data are all fresh and have not been used in previous training.
We equally allocate the memory to all previous tasks at each time t, i.e., Mt,i =

M
t−1 for i ∈ [t− 1].

For simplicity, we assume M
t−1 is an integer1 for any t ∈ {2, 3, · · · , T}.

Performance metrics. We first introduce the model error of parameter w over task i’s ground truth
as:

Li(w) = ∥w −w∗
i ∥

2
. (4)

The performance of CL is measured by two key metrics, which are forgetting and generalization
error. To define these metrics, we let wt be the parameters of the training result at task t.

1. Forgetting: It measures the average forgetting of old tasks after learning the new task. In our
setup, forgetting at task T w.r.t. previous tasks [T − 1] is defined as follows.

FT =
1

T − 1

T−1∑
i=1

(Li(wt)− Li(wi)). (5)

2. Generalization error: It measures the overall model generalization after the final task is learned.
In our setup, generalization error is defined as follow.

GT =
1

T

T∑
i=1

Li(wT ). (6)

The definitions are consistent with the standard CL performance measures in experimental studies,
e.g., (Saha et al., 2021).

4 A NOVEL SEQUENTIAL REPLAY VS. POPULAR CONCURRENT REPLAY

In this section, we first introduce the popular concurrent replay strategy that is widely used in current
CL applications to mitigate catastrophic forgetting. We will then propose a novel sequential replay
strategy, which may have appealing advantage compared to concurrent replay.

To describe these replay strategies, recall we denote wt as the parameters of the training result at
task t, which will be used as the initial point for the next task t + 1 at each time t + 1. The initial
model parameter of task 1 is set to be 0, i.e., w0 = 0. The training loss for task t is defined by mean-
squared-error (MSE). We focus on the over-parameterized case, i.e., p > nt +Mt. It is known that
the convergence point of stochastic gradient descent (SGD) for MSE is the feasible point closest to
the initial point with respect to the ℓ2-norm, i.e., the minimum-norm solution.

Concurrent replay. We first introduce the popular concurrent replay strategy as follows. At each
task t ≥ 2, we apply SGD on the current data set and the memory dataset jointly to update the

1We note that without the assumption of M
t−1

∈ Z, memory can still be allocated as equally as possible,
resulting in only a minor error. Our theoretical results remain of referential significance.
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Figure 1: An illustration of concurrent replay and sequential replay.

model parameter. Specifically, as illustrated in Figure 1, at time t, we minimize the MSE loss via
SGD on the combined dataset Dt

⋃
Mt with the initial point wt−1 and obtain the convergent point

wt, which can be written as

wt = argmin
w
∥w −wt−1∥2 s.t. X⊤

t w = Yt, X̃⊤
t,iw = Ỹt,i, for all i ∈ [t− 1]. (7)

Novel sequential replay. In scenarios where previous tasks are very different from the current task,
concurrent replay may result in contradicting gradient update directions, and can hurt the knowledge
transfer among tasks. Consequently, concurrent replay may not always perform well. This motivate
us to propose a replay strategy that sequentially replay history tasks one by one after training the cur-
rent task, analogously to the way how a student reviews previously learned topics to avoid forgetting
before exams.

To formally describe the training (see Figure 1 for an illustration), at each task t ≥ 2, we first train on
the current datasetDt to learn the new task and converge to the initial stopping point w(0)

t . Then, for
i = 1, 2, ..., t− 1, we start from the previous stopping point w(i−1)

t and train on the memory dataset
Mt,i to converge to the next stopping point. Eventually, wt is obtained after revisiting all memory
sets, i.e., wt = w

(t−1)
t . We define X̃t,0 := Xt, Ỹt,0 := Yt and w

(−1)
t := wt−1. Then, the training

process is equivalent to solve the following optimization problems recursively for k = 0, 1, ..., t−1:

w
(k)
t = argmin

w

∥∥∥w −w
(k−1)
t

∥∥∥2 s.t. X̃⊤
t,iw = Ỹt,i. (8)

5 MAIN RESULTS

The main theoretical results in this work consist of two parts. First, we derive closed forms of
the expected value of forgetting and generalization error for both concurrent and sequential replay
methods. Second, based on those closed forms, we compare the performance of these two replay-
based schemes, concluding that sequential replay outperforms concurrent replay when tasks are
more dissimilar.

5.1 CHARACTERIZATION OF FORGETTING AND GENERALIZATION ERROR

In replay-based CL methods, the interference among tasks throughout the entire training process is
highly intricate, primarily due to the presence of the memory dataset. This introduces an unavoidable
challenge in understanding the impact of memory on the performance of replay-based methods. In
the following theorem, we first present a common performance structure shared by both concurrent
replay and sequential replay methods. The specific forms of the coefficients in the performance
expressions will be provided later.
Theorem 1. Under the problem setups considered in this work, the expected value of the forgetting
and the generalization error at time T ≥ 2 in both replay-based methods take the following forms.

FT =
1

T − 1

T−1∑
i=1

ci ∥w∗
i ∥

2
+

T−1∑
i=1

∑
j,k≤T−1

cijk
∥∥w∗

j −w∗
k

∥∥2 + T−1∑
i=1

(noiseT (σ)− noisei(σ))

 ,

5
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GT =
1

T

d0T T∑
i=1

∥w∗
i ∥

2
+

T∑
i=1

∑
j,k≤T

dijkT
∥∥w∗

j −w∗
k

∥∥2+ noiseT (σ), (9)

where the coefficients are provided in Propositions 1 and 2, respectively, for concurrent and sequen-
tial replay methods.

Theorem 1 indicates that since both concurrent and sequential methods are replay-based, they share
the same high-level performance dependence on the system parameters. It can be seen that both
of their forgetting and generalization error consist of the following three components. The first
component exhibits the form of C∥w∗

i ∥2 for some constant C. This component arises from the
error associated with linear regression and is independent of the influence of other tasks. The second
component captures the impact of task dissimilarities, representing the interference among different
tasks during the training process. Extracting central information from this component is particularly
useful for understanding how task dissimilarity affects the comparison between the two replay-based
methods, which is the focus of Section 5.2. The third part captures the impact of the noise level.

In order to facilitate the comparison between the two replay-based methods, in the following two
propositions, we provide the exact expressions for the coefficients in Theorem 1. We first provide the
coefficients determining the generalization error as follows. To clarify, we note that the following
proposition holds for all t ∈ [T ].

Proposition 1. Under the problem setups considered in this work, the coefficients that express the
expected value of generalization error Gt take the following forms.

d(concurrent)
0t = r0r

t−1
M , d(sequential)

0t = r0∆(t− 1)

d(concurrent)
ijkt =



(1− r0)r
t−j−1
M +

∑t−j−1
l=0 rlMBl

+
∑t−2

l=0
prlMB2

l

p−n−M−1 +
rt−k
M nBl

p−n−M−1 if j ∈ [t− 1], k = i

(1− r0) +
rt−k
M nBl

p−n−M−1 if j = t, k = i∑t−2
l=0

prlMB2
l

p−n−M−1 if j < k and j, k ̸= i, t
rt−k
M nBl

p−n−M−1 if j < k and j, k ̸= i

d(sequential)
ijkt =


(1− r0)∆(t− 1) +

∑t−2
l=0 ∆(l)(1−Bl)

t−l−2Bl if j = 1, k = i
(1− r0)(1−Bt−j)

j−1∆(t− j) if j = 2, 3, ..., t− 1,

+
∑t−j−1

l=0 ∆(l)(1−Bl)
t−l−2Bl and k = i

(1− r0)(1−B0)
t−1 if j = t, k = i

noise(concurrent)
t (σ) = r0r

t−1
M Λ(n, σ) +

t−2∑
l=0

rlMΛ(n+M,σ),

noise(sequential)
t (σ) =

t−2∑
l=0

∆(l)

[
t−1∑
l=1

(1−B0)
t−l−1Λ(

M

t− 1
, σ) + (1−B0)

t−1Λ(n, σ)

]
.

where ra :=
(
1− n+a

p

)
, Bl :=

M
(t−l−1)p , ∆(a) =

∏a−1
l=0

[
(1−Bl)

t−l−1
r0

]
, Λ(a, σ) = aσ2

p−a−1 .

By substituting t = T , we obtain the expressions of coefficients in Theorem 1. We provide the
coefficients determining the forgetting in the following proposition.

Proposition 2. Under the problem setups considered in this work, the coefficients that express the
expected value of forgetting in Theorem 1 take the following forms:

ci = d0T − d0i and cijk = dijkT − dijki,

where d0t and dijkt are defined in Proposition 1.

The above two propositions will be useful in Section 5.2 to compare between concurrent and se-
quential replay methods. Here, we first draw some basic insights from these expressions. (i) It is
straightforward to verify that by letting M = 0, both training methods yield the same result, which
is consistent with the memoryless case shown by Lin et al. (2023). (ii) We can also observe that low

6
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task similarity negatively impacts model generalization, as dijkT are non-negative. (iii) We observe
that the expected value of both forgetting and generalization error approach to 0 when p → ∞.
This implies that a model with substantial capacity (i.e., when p is sufficiently large) will facilitate
effective learning for each task, which can also alleviate the negative impact of task dissimilarity.

5.2 COMPARISON BETWEEN CONCURRENT REPLAY AND SEQUENTIAL REPLAY

The main challenge to compare the performance between the two replay-based methods lies in the
complexity of the second term, which captures how the task similarity as well as memory data
affect the performance. Here the task similarity is characterized by the distance between the true
parameters for two tasks. In this section, we will first study a simple case with two tasks, i.e., when
T = 2, to build our intuition, and then extend to the case with general T based on the central insight
obtained in the simple case.

Two-task Case (T = 2): Following Theorem 1, the performance of both replay methods shares the
following common form:

F2 = ĉ1 ∥w∗
1∥

2
+ ĉ2 ∥w∗

1 −w∗
2∥

2
+ noise2(σ)− noise1(σ),

G2 =
1

2
d̂1(∥w∗

1∥
2
+ ∥w∗

2∥
2
) +

1

2
d̂2 ∥w∗

1 −w∗
2∥

2
+ noise2(σ),

where ĉ1, ĉ2, d̂1, d̂2 are some constants. The specific forms of the coefficients in the above equation
are provided in Appendix C. We take the forgetting as an example to analyze the comparison be-
tween the two methods. Based on the expressions, it can be observed that ĉ(concurrent)

1 < ĉ(sequential)
1

and ĉ(concurrent)
2 > ĉ(sequential)

2 . Thus, at the high level, the task dissimilarity is sufficiently large (i.e.,
tasks are very different), then c2 will dominant the forgetting performance, and hence sequential
replay will have less forgetting than concurrent replay (because ĉ(concurrent)

2 > ĉ(sequential)
2 ). Alterna-

tively, if the tasks are very similar and the noise is small, then c1 will dominate the performance, and
concurrent replay will yield less forgetting. Similar observations can be made for the generalization
error by noting that d̂(concurrent)

1 < d̂(sequential)
1 and d̂(concurrent)

2 > d̂(sequential)
2 . The following theorem

formally establishes our high-level observations.
Theorem 2. Under the problems setups considered in the work, under the positive constants
ξ1, ξ2, µ1, µ2 with detailed forms given in Appendix C, we have

F (concurrent)
2 > F (sequential)

2 if and only if ξ1 ∥w∗
1 −w∗

2∥
2
+ ξ2σ

2 > ∥w∗
1∥

2
,

G(concurrent)
2 > G(sequential)

2 if and only if µ1 ∥w∗
1 −w∗

2∥
2
+ µ2σ

2 > ∥w∗
1∥

2
.

Theorem 2 provably establishes an intriguing fact that the widely used concurrent replay may not
always perform better, and sequential replay can perform better when tasks are more different from
each other. We further elaborate our comparison between the two methods for the case with T = 2
in Appendix C (where the impact of noise is also considered) and with T = 3 in Appendix D). The
insights obtained from Theorem 2 can also be extended to the general case as follows.

General Case (T ≥ 2): Comparing the performance in two replay methods provided in Theorem 1
under general T is significantly more challenging, because the mathematical expression of the co-
efficients become highly complex. However, our insights obtained from the two-task case can still
be useful, i.e., sequential replay tends to performance better when tasks are very different. To see
this, we consider the expected value of the forgetting and the generalization error on an individual
prior task i, which is E[Li(wt)] − E[Li(wi)] and E[Li(wt)] respectively. We observe the facts
similar to the case with T = 2. Specifically, it can be shown that the coefficients presented in The-
orem 1 satisfy c(concurrent)

ijk > c(sequential)
ijk and d(concurrent)

ijkT > d(sequential)
ijkT , whereas c(concurrent)

i < c(sequential)
i

and d(concurrent)
0T < d(sequential)

0T for general T under certain conditions. These observations suggest
that if the tasks are all very different from each other, then sequential replay will have smaller
forgetting and generalization error than concurrent replay because c(concurrent)

ijk > c(sequential)
ijk and

d(concurrent)
ijkT > d(sequential)

ijkT will dominate the comparison. While it is challenging to provide an exact
closed-form characterization of the conditions under which sequential replay outperforms concur-
rent replay, the following theorem presents an example setting where sequential replay outperforms
concurrent replay, based on the understanding outlined above.

7
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Theorem 3. Under the problem setups in this work, suppose the ground truth w∗
i is orthonormal to

each other for i ∈ [T ], M ≥ 2, and p = O(T 4n2M2). Then we have:

F (concurrent)
T > F (sequential)

T and G(concurrent)
T > G(sequential)

T .

In Theorem 3, orthonormal w∗
i is an extreme case to have very different tasks. Typically, since the

forgetting and generalization error are continuous functions of the task dissimilarity, we expect that
in the regime that the tasks are highly different, sequential replay will still be advantageous to enjoy
less forgetting and smaller generalization error, and such an advantage should be more apparent as
tasks become more dissimilar. To explain this, we consider the generalization error as an example.
Assuming that the norm of ground truth is fixed, a higher level of task dissimilarities exacerbates
the generalization error since each coefficient dijkT is positive for both training methods. However,
a weaker dependence on task similarities indicates that the generalization error of sequential replay
grows slower than concurrent replay as tasks become more dissimilar, resulting advantage for se-
quential replay to enjoy smaller generalization error. A similar reason is applicable to the forgetting
performance, although it is important to note that cijk is not always positive. These facts are further
verified by our numerical simulation in Section 6.1.

Remark. It is clear that the order in which old tasks are replayed after current task learning is very
important under the framework of sequential replay, which affects both forgetting and generalization
errors. Needless to say, the sequential order considered in this work, where tasks are reviewed from
the oldest to the newest, is not necessarily the optimal strategy for sequential replay, where however
has already demonstrated exciting advantages over concurrent replay. How to design an effective
replay order to achieve better performance is a very interesting yet challenging future direction.

6 EXPERIMENTAL STUDIES AND IMPLICATIONS ON PRACTICAL CL

In this section, we first conduct experiments on linear models to verify our theoretical results. Next,
and also more interestingly, we show that our theoretical results can guide the algorithm design of
CL in practice, where a novel replay-based CL algorithm is proposed and evaluated with DNNs.

6.1 SIMULATION ON LINEAR REGRESSION MODELS

Following our theoretical investigation, we consider the CL setup where each task is a linear regres-
sion problem, and set T = 5, p = 500, n = 24, σ = 0, M = 24. We construct several sets of ground
truth on the unit sphere defined by ||w∗

j ||2 = 1, with consistent task similarity, i.e., ||w∗
j −w∗

i ||2 is
constant and same for any two tasks with j ̸= i. The comparisons between theoretical results and
simulation results are shown in Figure 2 in terms of both forgetting and generalization error. Here
the theoretical results are calculated using eqs. (33) to (36). For the simulation results, we evaluate
the forgetting and generalization error based on the solutions after solving each task, and calculate
the empirical expectation over 103 iterations.

Several important insights can be immediately obtained from Figure 2: 1) Our theoretical results ex-
actly match with our simulation results, which can clearly corroborate the correctness of our theory.
2) When tasks are similar, i.e., the task gap ||w∗

j −w∗
i ||2 is small than some threshold, concurrent

replay is better than sequential replay. However, when tasks become dissimilar, sequential replay
starts to outperform concurrent replay in terms of both forgetting and generalization error. And the
advantage of sequential replay becomes more significant as the task gap increases, which also aligns
with our theoretical results.

6.2 A NEW ALGORITHM DESIGN FOR CL IN PRACTICE

Our theoretical results not only rigorously characterize replay-based CL in overparameterized linear
models, but also shed light on the algorithm design for practical CL with real datasets and DNNs.
As our theory suggests that sequential replay can benefit CL more than concurrent replay when
tasks are dissimilar, an interesting idea and a potential way to improve the performance is to merge
sequential replay into replayed-based CL with concurrent replay. Thus inspired, we propose a novel
hybrid replay framework, which adapts between concurrent replay and sequential replay for each
task based on its similarity with old tasks in the memory. More specifically, before learning a new

8
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Figure 2: Forgetting and Generalization Error vs Task Gap

task Tt , we first characterize its similarity with old tasks in the memory, and divide the old tasks
into two sets, i.e.,Mt

sim that includes old tasks similar to Tt, andMt
dis containing the remaining

old tasks which are deemed as dissimilar tasks to Tt. To learn Tt, we first apply concurrent replay
to train the model jointly with the data of Tt and the replay data of old tasks inMt

sim, and then use
sequential replay to sequentially finetune the learned model using the replay data for each old task
inMt

dis. The general procedure is described in Algorithm 1.

Algorithm 1 Hybrid Replay Training Framework

Require: Training data set D
1: procedure TRAIN(D)
2: M← {} ▷ Initialize empty replay buffer
3: θ ← Initialize DNN model parameters
4: for task Tt = T0, . . . do
5: ifM ≠ ∅ then ▷ If replay buffer is non-empty
6: Msim,Mdis ← DIVIDEBUFFER(M,Dt)
7: end if
8: θ ← CONCURRENTTRAIN(Dt ∪Msim) ▷ Train the new task data and similar

exemplars concurrently
9: for Mi ∈Mdis do

10: θ ← SEQUENTIALTRAIN(Mi) ▷ Train exemplars from dissimilar tasks
sequentially

11: end for
12: M←M∪Mt ▷ Update replay buffer with new exemplarsMt ∼ Dt

13: end for
14: end procedure

To verify the performance of the proposed hybrid replay framework, we consider a task-incremental
CL setup using the real-world dataset CIFAR-100 (Krizhevsky et al., 2009). where each task
a multi-class classification problem. Following recent work (Van de Ven et al., 2022), we ran-
domly split the CIFAR-100 dataset into ten tasks {T0, . . . , T9}, each containing ten distinct classes,
later referred as Split-CIFAR-100. The objective for each task Tt is to classify between its ten
classes {Yt,0, . . . ,Yt,9} with the task label t explicitly provided during training and testing. We use
ResNet18 as our base model to learn each task sequentially, where each task has a unique classi-
fication layer. It is clear that how to determine the task similarity is critical for implementing the
hybrid replay. Since the similarity pattern is not clear and complex among the real-life images in
Split-CIFAR-100, we manually control the task similarity in a heuristic manner by introducing im-
age corruption into the tasks. In particular, to understand the benefit of the hybrid replay in a clean
manner, we consider the following specific training comparison between two schemes: 1) Concur-
rent replay is applied on all ten tasks; 2) Hybrid replay is applied on task T5, while concurrent replay
is applied on the remaining tasks. In this way, concurrent replay on tasks Tt, t ∈ {0, 1, 2, 3, 4} can

9
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Table 1: Accuracy (ACC, the larger the better) and Backward Transfer (BWT , the larger the better)
of different training methods (concurrent replay vs. hybrid replay) on CIFAR-100 with varying
number of corrupted tasks. ”1 Corruption”, for example, indicates that data corruption was applied
to 1 out of 10 tasks, making it more dissimilar than others. ”Improvement” shows the ACC overhead
that Hybrid Replay achieves over Concurrent Replay under the same setup. All results are averaged
over 10 independent runs.

Setting Original Dataset 1 Corruption 2 Corruption 3 Corruption

Metric ACC BWT ACC BWT ACC BWT ACC BWT

Concurrent Replay 69.206 -6.738 64.244 -7.760 60.667 -9.275 58.933 -8.572

Hybrid Replay 69.568 -6.574 64.807 -7.233 61.304 -8.752 59.720 -8.352

Improvement +0.362 +0.164 +0.563 +0.527 +0.637 +0.523 +0.787 +0.220

be thought as a warm-up training strategy for both schemes. For tasks Tt, t ∈ {6, 7, 8, 9}, concurrent
replay is applied to isolate the effect of hybrid replay on Task T5 and for simplicity. More training
details and specifications for image corruption are listed in Appendix G.

To evaluate the performance, following the standard in practical CL and also being consistent with
our theoretical investigation, we consider both average accuracy and forgetting. More specifically,
the model’s average Accuracy across all seen tasks is denoted ACC, which captures the generaliza-
tion error. The forgetting, or backward transfer, is defined as BWT = 2

T (T−1)

∑T
k=2

∑k−1
t=1 (ak,t −

at,t) (Lesort et al., 2020) where ak,t represents the testing accuracy on task t after training task k.

As shown in Table 1, hybrid replay outperforms concurrent replay on Split-CIFAR-100 (i.e., Origi-
nal Dataset), in terms of both average accuracy and forgetting. Moreover, we control the similarity
by using the number of corrupted tasks (i.e., task with corrupted images) in the task sequence. In
particular, we consider three different scenarios, ‘1 Corruption’ with 1 corrupted task, ‘2 Corrup-
tion’ with 2 corrupted tasks, and ‘3 Corruption’ with 3 corrupted tasks. Intuitively, the tasks are
more dissimilar when more tasks are corrupted. It can be seen from Table 1 that hybrid replay
consistently outperforms concurrent replay, and more importantly, the performance improvement
becomes more significant as tasks are more dissimilar. These results further justify the correctness
and usefulness of our theoretical results. It is worth to note that the performance of hybrid replay has
not been optimized in terms of the replay order and selection of similar tasks, which may further im-
prove the effectiveness of sequential replay. This encouraging result highlights the great potentials
of exploiting sequential replay in improving the performance of replay-based CL.

7 CONCLUSION

In this work, we took a closer look at the replay strategy in replay-based CL and questioned the effec-
tiveness of the widely used training technique, i.e., concurrent replay, as inspired by human learning.
In particular, we proposed a novel replay strategy, namely sequential replay, which replays old tasks
in the memory sequentially after current task learning. By leveraging overparameterized linear mod-
els with equal memory allocation, we provided the first explicit expressions of the expected value of
both forgetting and generalization errors under two replay methods, concurrent replay and sequential
replay. Comparisons between their theoretical performance led to the insight that sequential replay
outperforms concurrent replay in terms of forgetting and generalization error when the tasks are less
similar, which is consistent with our motivations from human learning and multitask learning. Our
simulation results on linear models further corroborated the correctness of our theoretical results.
More importantly, based on our theory, we proposed a novel hybrid replay framework for practical
CL and experiments on CIFAR100 with DNNs verified the superior performance of this framework
over concurrent replay. To the best of our knowledge, our work provides the first comprehensive the-
oretical study on replay for replay-based CL, which will hopefully motivate more principled designs
for better replay-based CL.
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Supplementary Materials

A SUPPORTING LEMMAS

Recall that PX = X(X⊤X)−1X⊤ and X† = X(X⊤X)−1. We first provide some useful
lemmas for the derivation of forgetting and generalization error. In the following lemma, we provide
the expression of the SGD convergence point when training on a single task.

Lemma 1. Suppose X ∈ Rp×n and Y ∈ Rn, where Y = X⊤w∗ + z. Consider the optimization
problem:

wout =argmin
w
∥w −win∥22

s.t. X⊤w = Y .

The solution of the above problem can be written as:

wout = win +X†(Y −X⊤win),

or equivalently,
wout = (I − PX)win + PXw∗ +X†z.

Proof. The proof follows from Lemma B.1 in Lin et al. (2023).

Lemma 2. Suppose each element of the random matrix X ∈ Rp×n follows from the standard
distribution N (0, 1) independently and v ∈ Rp is a vector, then we have:

E ∥PXv∥2 =
n

p
∥v∥2 .

Proof. The detailed proof refers to Proposition 3 in Ju et al. (2023).

Lemma 3. Suppose each element of the random matrix X ∈ Rp×n follows from the standard
distribution N (0, 1) independently. Also, z ∈ Rn is a vector and it follows from N (0, σ2In) inde-
pendently. Then, we have:

E
∥∥X†z

∥∥2 =
nσ2

p− n− 1
.

Proof. The proof follows Lemma B.2 in Lin et al. (2023). We apply the ”trace trick” to have:

E
∥∥X†z

∥∥2 = E
[
z⊤ (X⊤X

)−1
z
]

= E
[
tr
[(
X⊤X

)−1
zz⊤

]]
(i)
= tr

[
E
[(
X⊤X

)−1
]
E
[
zz⊤]]

(ii)
= σ2tr

[
E
[(
X⊤X

)−1
]]

(iii)
=

nσ2

p− n− 1
,

where (i) follows from the independence between X and z, (ii) follows from the fact that
E
[
zz⊤] = σ2In and (iii) follows from the fact that

(
X⊤X

)−1 ∼ W−1(In, p).

Lemma 4. For any vector v1,v2 ∈ Rp, we have:

⟨(I − PX)v1,X
†v2⟩ = 0,

⟨(I − PX)v1, PXv2⟩ = 0.

Proof. The proof follows from the definition of PX and X† straightforward.
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Now, we provide useful lemmas in proving the expected model value of model errors in the concur-
rent replay method.
Lemma 5. Suppose P ∈ Rp×p is a projection matrix and v ∈ Rp is a random vector with i.i.d.
standard Gaussian elements, then Pv and (I − P )v are independent. Moreover, if V ∈ Rp×m

is a random matrix with i.i.d. standard Gaussian elements, then we have PV and (I − P )V are
independent

Proof. We prove the vector case in two steps. First, we prove that Pv and (I − P )v are jointly
Gaussian. Next, we prove that they are uncorrelated. By combining these two facts, we can conclude
that Pv and (I − P )v are independent. To prove Pv and (I − P )v are jointly Gaussian, we

concatenate them to form a random vector z =

[
Pv

(I − P )v

]
. For any w =

[
w1

w2

]
, where w1,w2 ∈

Rp, we can see that the linear combination of its elements w⊤z = (w⊤
1 P +w⊤

2 (I − P ))v is still
Gaussian. To prove they are uncorrelated, we have:

Cov(Pv, (I − P )v) = E
[
Pv((I − P )v)⊤

]
= PE(vv⊤)(I − P )

(i)
= P (I − P )

= 0,

where (i) follows from the fact that v has i.i.d. standard Gaussian elements. Now, for the matrix
case, we can equivalently consider the vector v̂ ∈ Rpm which is formed by concatenating all the
columns of V and the projection matrix P̂ = diag([P, P, .., P ]) ∈ Rpm×pm.

Lemma 6. Suppose X ∈ Rp×n is a random matrix with i.i.d. standard Gaussian elements and
v ∈ Rp is a fixed vector, then we have:

E
[
X⊤vv⊤X

]
= ∥v∥2 · I.

Proof. To clarify, we denote X = [x1, ...,xn], where xi is the ith column of X . We also denote
[·]i,j as the element of ith row and jth column of a matrix. Then we have:[

E
[
X⊤vv⊤X

]]
i,j

= cov(v⊤xi,v
⊤xj) =

{
0 if i ̸= j,

∥v∥2 if i = j.

Lemma 7. Suppose X ∈ Rp×n is a random matrix with i.i.d. standard Gaussian elements and
P ∈ Rp×p is any projection matrix from p-dimension to d-dimension, then we have:

tr
(
E
[(
X⊤(I − P )X

)−1
])

=
n

p− d− n− 1
.

Proof. We first note that (I − P ) is a projection matrix with p − d many eigenvalues 1 and d
many eigenvalues 0. With loss of generalization, we write (I − P ) = U⊤ΣU where Σ =
diag([1, 1, ..., 1, 0, ..., 0]) is a diagonal matrix, whose first p − d elements are 1 while others are
0, and U is an orthogonal matrix. Also, we denote X̂ ∈ R(p−d)×n as the first p− d rows of X .

tr
(
E
[(
X⊤(I − P )X

)−1
])

= tr
(
E
[(
X⊤U⊤ΣUX

)−1
])

(i)
= tr

(
E
[(
X⊤ΣX

)−1
])

= tr

(
E
[(

X̂⊤X̂
)−1

])
(ii)
=

n

p− d− n− 1

where (i) follows from the rotational symmetry of standard Gaussian distribution, (ii) follows from

the fact that
(
X̂⊤X̂

)−1

∼ W−1(In, p− d).

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Lemma 8. Suppose V = [X1,X2] where X1 ∈ Rp×n1 , X2 ∈ Rp×n2 are two random matrices
with i.i.d. standard Gaussian elements and v ∈ Rp is a fixed vector. Then we have:

E
∥∥∥∥V †

[
X⊤

1
0

]
v

∥∥∥∥2 =
n1

p
·
(
1 +

n2

p− n1 − n2 − 1

)
∥v∥2

Proof. we consider the block expression of matrix (V ⊤
2 V2)

−1. First, we have:

V ⊤V =

[
X⊤

1

X⊤
2

]
[X1 X2] =

[
X⊤

1 X1 X⊤
1 X2

X⊤
2 X1 X⊤

2 X2

]
.

Now, we partition the matrix (V ⊤V )−1 into four blocks:

(V ⊤
2 V2)

−1 =

[
A1,1 A1,2

A2,1 A2,2

]
,

where

A1,1 = (X⊤
1 X1)

−1 − (X⊤
1 X1)

−1X⊤
1 X2

(
X⊤

2 X2 −X⊤
2 X1(X

⊤
1 X1)

−1X⊤
1 X2

)−1
X⊤

2 X1(X
⊤
1 X1)

−1

= PX1 + PX1X2

(
X⊤

2 (I − PX1)X2

)−1
X⊤

2 PX1 .

Therefore, we have

E
∥∥∥∥V †

[
X⊤

1
0

]
v

∥∥∥∥2 = E
[
v⊤
[
PX1

+ PX1
X2

(
X⊤

2 (I − PX1
)X2

)−1
X⊤

2 PX1

]
v
]

(i)
=

n1

p
∥v∥2 + E

[
v⊤
[
PX1

X2

(
X⊤

2 (I − PX1
)X2

)−1
X⊤

2 PX1

]
v
]
, (10)

where (i) follows from Lemma 2. Now, we consider

E
[
v⊤
[
PX1

X2

(
X⊤

2 (I − PX1
)X2

)−1
X⊤

2 PX1

]
v
]

= E
[
tr
(
X⊤

2 PX1
vv⊤PX1

X2

(
X⊤

2 (I − PX1
)X2

)−1
)]

(i)
= EX1

[
tr
(
EX2

[
X⊤

2 PX1
vv⊤PX1

X2

]
· EX2

[(
X⊤

2 (I − PX1
)X2

)−1
])]

(ii)
= EX1

[
tr

(
∥PX1v∥

2 · I · EX2

[(
X̃⊤

2 (I − PX1)X̃2

)−1
])]

= EX1

[
∥PX1v∥

2 · tr
(
EX2

[(
X⊤

2 (I − PX1)X2

)−1
])]

(iii)
= EX1

[
∥PX1

v∥2 · n2

p− n1 − n2 − 1

]
(iv)
=

n2

p− n1 − n2 − 1
· n1

p
∥v∥2 , (11)

where (i) follows from Lemma 5, (ii) follows from Lemma 6, (iii) follows from the fact that
Lemma 7 actually holds for any X2 and (iv) follows from Lemma 2. By combining eqs. (10)
and (11), we complete the proof.

Lemma 9. Suppose V = [X1,X2,X3] where X1 ∈ Rp×n1 , X2 ∈ Rp×n2 , X3 ∈ Rp×n3 are
random matrices with i.i.d. standard Gaussian elements and v ∈ Rp is a fixed vector. Then we
have:

E

v⊤ [X1 0 0] (V ⊤V )−1

 0
X⊤

2
0

v

 = − n1n2

p(p− n1 − n2 − n3 − 1)
∥v∥2

Proof. First of all, we observe that:

2v⊤ [X1 0 0] (V ⊤V )−1

 0
X⊤

2
0

v =

∥∥∥∥∥∥V †

X⊤
1

X⊤
2
0

v

∥∥∥∥∥∥
2

−

∥∥∥∥∥∥V †

X⊤
1
0
0

v1

∥∥∥∥∥∥
2

−

∥∥∥∥∥∥V †

0⊤

X2

0

v

∥∥∥∥∥∥
2

.
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By taking expectation over both sides of the equation, we have:

2E

v⊤ [X1 0 0] (V ⊤V )−1

 0
X⊤

2
0

v


= E

∥∥∥∥∥∥V †

X⊤
1

X⊤
2
0

v

∥∥∥∥∥∥
2

− E

∥∥∥∥∥∥V †

X⊤
1
0
0

v

∥∥∥∥∥∥
2

− E

∥∥∥∥∥∥V †

0⊤

X2

0

v

∥∥∥∥∥∥
2

(i)
=

n1 + n2

p
·
(
1 +

n3

p− n1 − n2 − n3 − 1

)
∥v∥2 − n1

p
·
(
1 +

n2 + n3

p− n1 − n2 − n3 − 1

)
∥v∥2

− n2

p
·
(
1 +

n1 + n3

p− n1 − n2 − n3 − 1

)
∥v∥2

= − 2n1n2

p(p− n1 − n2 − n3 − 1)
∥v∥2 ,

where (i) follows from Lemma 8. By dividing both sides by 2, we complete the proof.

Corollary 1. Suppose V = [X1,X2,X3] where X1 ∈ Rp×n1 , X2 ∈ Rp×n2 , X3 ∈ Rp×n3 are
random matrices with i.i.d. standard Gaussian elements and v1,v2 ∈ Rp are fixed vectors. Then
we have:

E

v⊤
1 [X1 0 0] (V ⊤V )−1

 0
X⊤

2
0

v2

 =
n1n2

(
∥v1 − v2∥2 − ∥v1∥2 − ∥v2∥2

)
2p(p− n1 − n2 − n3 − 1)

Proof. To simplify the notation, we denote V1 = [X1 0 0] and V2 = [0 X2 0]. Then
according to Lemma 9, we first have:

E
[
(v1 − v2)

⊤V1(V
⊤V )−1V ⊤

2 (v1 − v2)
]
= − n1n2

p(p− n1 − n2 − n3 − 1)
∥v1 − v2∥2 .

On the other hand, we have:

E
[
(v1 − v2)

⊤V1(V
⊤V )−1V ⊤

2 (v1 − v2)
]

= E
[
v⊤
1 V1(V

⊤V )−1V ⊤
2 v1

]
+ E

[
v⊤
2 V1(V

⊤V )−1V ⊤
2 v2

]
− 2E

[
v⊤
1 V1(V

⊤V )−1V ⊤
2 v2

]
(i)
= − n1n2 ∥v1∥2

p(p− n1 − n2 − n3 − 1)
− n1n2 ∥v2∥2

p(p− n1 − n2 − n3 − 1)
− 2E

[
v⊤
1 V1(V

⊤V )−1V ⊤
2 v2

]
,

where (i) follows from Lemma 9. By combining the above two equations, we complete the proof.

Next, we provide our supporting lemmas that help to prove the advantage of sequential replay as
follows.
Lemma 10. Given n, p, t,M, T are fixed positive integers where t ≤ T and n +M < p, then we
have: (

1− M

(t− l − 1)p

)t−l−1(
1− n

p

)
> 1− n+M

p
,

for any non-negative integer l < t

Proof. We first notice the fact that for k = 0, 1, 2, ..., t− l − 2, we have(
1− M

(t− l − 1)p

)(
1−

n+ kM
t−l−1

p

)
> 1−

n+ (k+1)M
t−l−1

p
.

By applying this argument recursively, we will have(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)
> 1−

n+ (t− l − 1) M
t−l−1

p
= 1− n+M

p
.
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Lemma 11. Given n, p, t,M, T are fixed positive integers where t ≤ T and n +M < p, then for
any non-negative integer l < t− 1, we have:(

1− M

(t− l − 1)p

)t−l−1(
1− n

p

)
< 1− n+M

p
+

(n+M)M

p2
,

if p > TM .

Proof. According to the binomial theorem, we have:(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)
=

(
1− M

p
+

t−l−1∑
k=2

(
t− l − 1

k

)(
− M

(t− l − 1)p

)k
)(

1− n

p

)
(12)

If t− l − 1 = 1 or t− l − 1 = 2, the proof is trivial. If t− l − 1 ≥ 3, we have

t−l−1∑
k=2

(
t− l − 1

k

)(
− M

(t− l − 1)p

)k

=

(
t− l − 1

2

)(
M

(t− l − 1)p

)2

+

t−l−1∑
k=3

(
t− l − 1

k

)(
− M

(t− l − 1)p

)k

. (13)

To simplify the notation, we denote m = M
t−l−1 . We first discuss if t− l−1 is even. Then, we have:

t−l−1∑
k=3

(
t− l − 1

k

)(
− M

(t− l − 1)p

)k

=

(t−l+1)/2∑
k=3

[(
t− l − 1

2k − 3

)(
−m

p

)2k−3

+

(
t− l − 1

2k − 2

)(
−m

p

)2k−2
]

=

(t−l+1)/2∑
k=3

[
(t− l − 1)!

(2k − 3)!(t− l − 2k + 2)!

(
−m

p

)2k−3

+
(t− l − 1)!

(2k − 2)!(t− l − 2k + 1)!

(
−m

p

)2k−2
]

= −
(t−l+1)/2∑

k=3

(t− l − 1)!

(2k − 3)!(t− l − 2k + 1)!

(
m

p

)2k−3 [
1

t− l − 2k + 2
− 1

2k − 2
· m
p

]
(i)
< 0 (14)

where (i) follows from the fact that p > TM . We then discuss if t− l − 1 is odd, we have:

t−l−1∑
k=3

(
t− l − 1

k

)(
− M

(t− l − 1)p

)k

=

(t−l)/2∑
k=3

[(
t− l − 1

2k − 3

)(
−m

p

)2k−3

+

(
t− l − 1

2k − 2

)(
−m

p

)2k−2
]
+

(
−m

p

)t−l−1

(i)
<

(t−l)/2∑
k=3

[
(t− l − 1)!

(2k − 3)!(t− l − 2k + 2)!

(
−m

p

)2k−3

+
(t− l − 1)!

(2k − 2)!(t− l − 2k + 1)!

(
−m

p

)2k−2
]

= −
(t−l)/2∑
k=3

(t− l − 1)!

(2k − 3)!(t− l − 2k + 1)!

(
m

p

)2k−3 [
1

t− l − 2k + 2
− 1

2k − 2
· m
p

]
(ii)
< 0 (15)
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where (i) follows from the fact that t− l− 1 is odd and (ii) follows from the fact that p > TM . By
combing eqs. (12) to (15), we conclude:(

1− M

(t− l − 1)p

)t−l−1(
1− n

p

)
<

(
1− M

p
+

(
t− l − 1

2

)
M2

(t− l − 1)2p2

)(
1− n

p

)

= 1− n+M

p
+

nM + (t−l−1)(t−l−2)
2

M2

(t−l−1)2

p2
−
(
t− l − 1

2

)
nM2

(t− l − 1)2p3

< 1− n+M

p
+

(n+M)M

p2
.

which completes the proof.

Lemma 12. Given n, p, t,M, T are fixed positive integers where t ≤ T and n +M < p, then we
have: (

1− n+M

p
+

(n+M)M

p2

)t

<

(
1− n+M

p

)t

+
T 2(n+M)M

p2
.

Proof. We first have:(
1− n+M

p
+

(n+M)M

p2

)t

=

(
1− n+M

p

)t

+

t−1∑
k=0

(
t

k

)(
1− n+M

p

)k (
(n+M)M

p2

)t−k

︸ ︷︷ ︸
αk

(16)

We further notice that for k = 0, 1, .., t− 2:(
t

k

)(
1− n+M

p

)k (
(n+M)M

p2

)t−k

−
(

t

k + 1

)(
1− n+M

p

)k+1(
(n+M)M

p2

)t−k−1

=
t!

k!(t− k − 1)!

(
1− n+M

p

)k (
(n+M)M

p2

)t−k−1 [
(n+M)M

(t− k)p2
− 1

k + 1

(
1− n+M

p

)]
<

t!

k!(t− k − 1)!

(
1− n+M

p

)k (
(n+M)M

p2

)t−k−1 [
(n+M)M

p2
− 1

T

(
1− n+M

p

)]
(i)
< 0, (17)

where (i) follows from the fact that p > (n+M)(T +1). We note that eq. (17) shows that the term
αk achieves the maximum at k = t− 1. Therefore, we can upper bound eq. (16) by(
1− n+M

p
+

(n+M)M

p2

)t

<

(
1− n+M

p

)t

+ t

(
t

t− 1

)(
1− n+M

p

)t−1(
(n+M)M

p2

)
<

(
1− n+M

p

)t

+
T 2(n+M)M

p2

which completes the proof.

Here, we present a tighter version of Lemma 12, which helps us to prove Theorem 3 in Section 5.2.

Lemma 13. Given n, p, t,M, T are fixed positive integers where t ≤ T and n +M < p, then we
have:(

1− n+M

p
+

(n+M)M

p2

)t

<

(
1− n+M

p

)t

+
t(n+M)M

p2
+

T 3(n+M)2M2

2p4
.
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Proof. We first have:(
1− n+M

p
+

(n+M)M

p2

)t

=

(
1− n+M

p

)t

+

(
t

t− 1

)(
1− n+M

p

)t−1(
(n+M)M

p2

)
+

t−2∑
k=0

(
t

k

)(
1− n+M

p

)k (
(n+M)M

p2

)t−k

<

(
1− n+M

p

)t

+
T (n+M)M

p2

+

t−2∑
k=0

(
t

k

)(
1− n+M

p

)k (
(n+M)M

p2

)t−k

︸ ︷︷ ︸
αk

(18)

By the same argument as eq. (17), we know that the term αk achieves the maximum at k = t − 2.
Therefore, we can upper bound eq. (18) by(

1− n+M

p
+

(n+M)M

p2

)t

<

(
1− n+M

p

)t

+
t(n+M)M

p2
+ (t− 1)

(
t

t− 2

)(
1− n+M

p

)t−2(
(n+M)M

p2

)2

<

(
1− n+M

p

)t

+
t(n+M)M

p2
+

T 3(n+M)2M2

2p4
.

Lemma 14. Given n, p, t,M, T are fixed positive integers where M ≥ 2, t ≤ T and n +M < p,
then for any non-negative integer l < t− 1, we have:(

1− n+M

p
+

(n+M)M

p2

)l(
1− M

(t− l − 1)p

)t−l−1

<

(
1− 1

Tp

)(
1− n+M

p

)l

,

if p > T (n+M)M
M−1 + n+M .

Proof. By dividing
(
1− n+M

p

)l
on both sides, it is equivalent to prove(

1 +
(n+M)M

p2 − p(n+M)

)l(
1− M

(t− l − 1)p

)t−l−1

< 1− 1

Tp
.

According to AM-GM inequality, we have:(
1 +

(n+M)M

p2 − p(n+M)

)l(
1− M

(t− l − 1)p

)t−l−1

≤

 l
(
1 + (n+M)M

p2−p(n+M)

)
+ (t− l − 1)

(
1− M

(t−l−1)p

)
t− 1

t−1

=

1 + l(n+M)M
p2−p(n+M) −

M
p

t− 1

t−1

. (19)

When p > T (n+M)M
M−1 + n+M , we have:

l(n+M)M

p2 − p(n+M)
− M

p
<

T (n+M)M

p2 − p(n+M)
− M

p
< −1

p
. (20)
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Therefore, by combining eqs. (19) and (20), we have:(
1 +

(n+M)M

p2 − p(n+M)

)l(
1− M

(t− l − 1)p

)t−l

<

(
1− 1

(t− 1)p

)t−1

< 1− 1

(t− 1)p
< 1− 1

Tp
,

which completes the proof.

Lemma 15. Given n, p, t,M, T are fixed positive integers where M ≥ 2, t ≤ T and n +M < p,
then we have:

t−2∏
l=0

[(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)]
−

i−2∏
l=0

[(
1− M

(i− l − 1)p

)i−l−1(
1− n

p

)]

>

[(
1− n+M

p

)t−1

−
(
1− n+M

p

)i−1
]
,

if p > 2T 3(n+M)2.

Proof. We first have:

t−2∏
l=0

[(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)]
−

i−2∏
l=0

[(
1− M

(i− l − 1)p

)i−l−1(
1− n

p

)]

=

t−i−1∏
l=0

[(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)] t−2∏
l=t−i

[(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)]

−
i−2∏
l=0

[(
1− M

(i− l − 1)p

)i−l−1(
1− n

p

)]

=

t−i−1∏
l=0

[(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)] i−2∏
l=0

[(
1− M

(i− l − 1)p

)i−l−1(
1− n

p

)]

−
i−2∏
l=0

[(
1− M

(i− l − 1)p

)i−l−1(
1− n

p

)]

=

i−2∏
l=0

[(
1− M

(i− l − 1)p

)i−l−1(
1− n

p

)]{t−i−1∏
l=0

[(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)]
− 1

}
︸ ︷︷ ︸

γ1

(i)
>

(
1− n+M

p
+

(n+M)M

p2

)i−1
{[(

1− M

p

)(
1− n

p

)]t−i

− 1

}

=

(
1− n+M

p
+

(n+M)M

p2

)i−1
[(

1− n+M

p
+

nM

p2

)t−i

− 1

]

=

[(
1− n+M

p

)i−1

+

i−1∑
k=1

(
i− 1

k

)(
(n+M)M

p2

)k (
1− n+M

p

)i−k−1
]

[(
1− n+M

p

)t−i

− 1 +

t−i∑
k=1

(
t− i

k

)(
nM

p2

)k (
1− n+M

p

)t−i−k
]

>

(
1− n+M

p

)i−1
[(

1− n+M

p

)t−i

− 1

]
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+

(
1− n+M

p

)i−1 t−i∑
k=1

(
t− i

k

)(
nM

p2

)k (
1− n+M

p

)t−i−k

︸ ︷︷ ︸
γ2

+

[(
1− n+M

p

)t−i

− 1

]
i−1∑
k=1

(
i− 1

k

)(
(n+M)M

p2

)k (
1− n+M

p

)i−k−1

︸ ︷︷ ︸
γ3,k︸ ︷︷ ︸

γ3

(21)

where (i) follows from Lemma 11 together with the fact that term γ1 < 0 and from the fact that(
1− M

(t−l−1)p

)t−l−1

> 1 − M
p for l = 0, 1, .., t − i − 1. Now. we prove γ2 + γ3 < 0. We first

focus on γ2. We have:

γ2 >

(
1− n+M

p

)i−1(
t− i

1

)(
nM

p2

)(
1− n+M

p

)t−i−1

>

(
1− n+M

p

)T
nM

p2

>

(
1− T (n+M)

p

)
nM

p2
(22)

We then focus on term γ3. Consider:(
i− 1

k

)(
(n+M)M

p2

)k (
1− n+M

p

)i−k−1

−
(
i− 1

k + 1

)(
(n+M)M

p2

)k+1(
1− n+M

p

)i−k−2

=
(i− 1)!

k!(i− k − 2)!

(
(n+M)M

p2

)k (
1− n+M

p

)i−k−2

·
[

1

i− k − 1

(
1− n+M

p

)
− 1

k + 1

(n+M)M

p2

]
(i)
>

(i− 1)!

k!(i− k − 2)!

(
(n+M)M

p2

)k (
1− n+M

p

)i−k−2 [
1

T

(
1− n+M

p

)
− (n+M)M

2p2

]
(ii)
> 0, (23)

where (i) follows from k ∈ [i− 1] and (ii) follows from the fact that p > 2(n+M). This indicates

that γ3,k achieves maximum at k = 1. We recall that
[(

1− n+M
p

)t−i

− 1

]
< 0. Therefore, we

have:

γ3 >

[(
1− n+M

p

)t−i

− 1

]
(i− 1)

(
i− 1

1

)(
(n+M)M

p2

)(
1− n+M

p

)i−2

>

[(
1− n+M

p

)t−i

− 1

]
T 2(n+M)M

p2

=

[
t−i∑
k=1

(
t− i

k

)(
−n+M

p

)k
]
T 2(n+M)M

p2
. (24)

For k is even and less than or equal to t− i(i.e., k = 2, 4, 6, ..., and k ≥ t− i), we have:(
t− i

k

)(
−n+M

p

)k

+

(
t− i

k + 1

)(
−n+M

p

)k+1

=
(t− i)!

k!(t− i− k − 1)!

(
n+M

p

)k [
1

t− i− k
− n+M

(k + 1)p

]
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>
(t− i)!

k!(t− i− k − 1)!

(
n+M

p

)k [
1

T
− n+M

3p

]
(i)
> 0, (25)

where (i) follows from p > (n+M)T
3 . By combining eqs. (24) and (25) and simply discussing when

t− i is odd or even, we can conclude
t−i∑
k=1

(
t− i

k

)(
−n+M

p

)k

>

(
t− i

1

)(
−n+M

p

)
> −T (n+M)

p
,

which implies:

γ3 > −T 3(n+M)2M

p3
. (26)

Now, by combining eqs. (21), (22) and (26), we have:
t−2∏
l=0

[(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)]
−

i−2∏
l=0

[(
1− M

(i− l − 1)p

)i−l−1(
1− n

p

)]

>

(
1− n+M

p

)i−1
[(

1− n+M

p

)t−i

− 1

]
+

(
1− T (n+M)

p

)
nM

p2
− T 3(n+M)2M

p3

(i)
>

(
1− n+M

p

)i−1
[(

1− n+M

p

)t−i

− 1

]
, (27)

where (i) follows from the fact that p > 2T 3(n+M)2.

Lemma 16. Given n, p, t,M, T are fixed positive integers where M ≥ 2, t ≤ T and n +M < p,
then for any non-negative integer i < t, we have:
t−2∏
l=0

[(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)]
−

i−2∏
l=0

[(
1− M

(i− l − 1)p

)i−l−1(
1− n

p

)]

<

(
1− n+M

p

)i−1
[(

1− n+M

p

)t−i

− 1

]
+

T 2(n+M)M

p2
.

if p > (n+M)T .

Proof. We first consider:
t−2∏
l=0

[(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)]
−

i−2∏
l=0

[(
1− M

(i− l − 1)p

)i−l−1(
1− n

p

)]

=

t−i−1∏
l=0

[(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)] t−2∏
l=t−i

[(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)]

−
i−2∏
l=0

[(
1− M

(i− l − 1)p

)i−l−1(
1− n

p

)]

=

t−i−1∏
l=0

[(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)] i−2∏
l=0

[(
1− M

(i− l − 1)p

)i−l−1(
1− n

p

)]

−
i−2∏
l=0

[(
1− M

(i− l − 1)p

)i−l−1(
1− n

p

)]

=

i−2∏
l=0

[(
1− M

(i− l − 1)p

)i−l−1(
1− n

p

)]{t−i−1∏
l=0

[(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)]
− 1

}
︸ ︷︷ ︸

γ1
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(i)
<

(
1− n+M

p

)i−1
[(

1− n+M

p
+

(n+M)M

p2

)t−i

− 1

]
,

(ii)
<

(
1− n+M

p

)i−1
[(

1− n+M

p

)t−i

− 1 +
T 2(n+M)M

p2

]

<

(
1− n+M

p

)i−1
[(

1− n+M

p

)t−i

− 1

]
+

T 2(n+M)M

p2
(28)

where (i) follows from Lemmas 10 and 11 and the fact that γ1 < 0; (ii) follows from Lemma 12.

Here, we present a tighter version of Lemma 16, which helps to prove Theorem 3 in Section 5.2.
Lemma 17. Given n, p, t,M, T are fixed positive integers where M ≥ 2, t ≤ T and n +M < p,
then for any non-negative integer i < t, we have:

t−2∏
l=0

[(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)]
−

i−2∏
l=0

[(
1− M

(i− l − 1)p

)i−l−1(
1− n

p

)]

<

(
1− n+M

p

)i−1
[(

1− n+M

p

)t−i

− 1

]
+

(t− i)(n+M)M

p2
+

T 3(n+M)2M2

p4
.

if p > (n+M)T .

Proof. The proof follows from the same as Lemma 16 but we use Lemma 13 instead of Lemma 12.

B PROOF OF PROPOSITIONS 1 AND 2 AND THEOREM 1

In this section, we will prove Propositions 1 and 2 by deriving the expected value of model error
E[Li(wt)] for a generic pair t, i with t ≥ i. We omit the tilde notation of the memory data to
simplify notations: Xt,i := X̃t,i, Yt,i := Ỹt,i and zt,i := z̃t,i for i ∈ [t− 1]. Similar to eq. (3), for
the memory data, we have

Yt,i = X⊤
t,iw

∗
i + zt,i. (29)

where zt,i ∼ N (0, σ2
i Ip) is i.i.d. noise. Since there is no memory data involved in both training

methods when t = 1, by combining Lemma 1 and the fact that w0 = 0, we can easily derive the
first parameter as

w1 = PX1
w∗

1 +X†
1z1,

Then, we calculate the expected value of the model error Li(w1) as follows.

E ∥w1 −w∗
i ∥

2 (i)
= E ∥PX1

(w∗
1 −w∗

i )∥
2
+ E ∥(I − PX1

)w∗
i ∥

2
+ E

∥∥∥X†
1z1

∥∥∥2
(ii)
=

n

p
E ∥w∗

1 −w∗
i ∥

2
+

(
1− n

p

)
∥w∗

i ∥
2
+

nσ2

p− n− 1
, (30)

where (i) follows from Lemma 4 and the fact that z1 are independent Gaussian with zero mean and
(ii) follows from Lemma 2 and Lemma 3. For t ≥ 2, the two training methods use memory in
different ways. We present them in the following two subsections.

B.1 PROOF OF CONCURRENT REPLAY IN PROPOSITIONS 1 AND 2

To simplify, we apply the following notations to denote the current data in this subsection: Xt :=
Xt,t, Yt := Yt,t and zt := zt,t. Then, for each task t, the SGD convergent point wt of training loss
Ltr
t (w,Dt

⋃
Mt) is equivalent to the optimization problem:

wt = min
w
∥w −wt−1∥2 s.t. X⊤

t,iw = Yt,i, i ∈ [t].
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Define Vt = [Xt,1,Xt,2, ...,Xt,t] and z⃗t = [zt,1, zt,2, ...,zt,t]
⊤. According to Lemma 1, we have

wt = wt−1 + V †
t


Yt,1

Yt,2

...
Yt,t

− V ⊤
t wt−1



= (I − PVt)wt−1 + V †
t


X⊤

t,1w
∗
1

X⊤
t,2w

∗
2

...
X⊤

t,tw
∗
t

+ V †
t z⃗t.

Now, we fix i. The Coefficients d(concurrent)
0T and d(concurrent)

ijkT are extracted from expected value of model
error E[Li(wt)] as follows.

E ∥wt −w∗
i ∥

2
= E

∥∥∥∥∥∥∥∥(I − PVt)(wt−1 −w∗
i ) + V †

t


X⊤

t,1(w
∗
1 −w∗

i )
X⊤

t,2(w
∗
2 −w∗

i )
...

X⊤
t,t(w

∗
t −w∗

i )

+ V †
t z⃗t

∥∥∥∥∥∥∥∥
2

(i)
= E ∥(I − PVt

)(wt−1 −w∗
i )∥

2
+ E

∥∥∥∥∥∥∥∥V
†
t


X⊤

t,1(w
∗
1 −w∗

i )
X⊤

t,2(w
∗
2 −w∗

i )
...

X⊤
t,t(w

∗
t −w∗

i )


∥∥∥∥∥∥∥∥
2

+ E
∥∥∥V †

t z⃗t

∥∥∥2

(ii)
=

(
1− nt +Mt

p

)
E ∥wt−1 −w∗

i ∥
2
+ E

∥∥∥∥∥∥∥∥V
†
t


X⊤

t,1(w
∗
1 −w∗

i )
X⊤

t,2(w
∗
2 −w∗

i )
...

X⊤
t,t(w

∗
t −w∗

i )


∥∥∥∥∥∥∥∥
2

+
(n+M)σ2

p− n−M − 1
, (31)

where (i) follows from Lemma 4 and the fact that z⃗t are independent Gaussian with zero mean and
(ii) follows from Lemma 2 and Lemma 3. Before we calculate the second term in eq. (31), we make
the following notation simplification. We denote Vt,j as Vt with all zero elements except Xt,j , i.e.,

Vt,j = [0, ...,Xt,j , ...,0] .

Then we have:

E

∥∥∥∥∥∥∥∥V
†
t


X⊤

t,1(w
∗
1 −w∗

i )
X⊤

t,2(w
∗
2 −w∗

i )
...

X⊤
t,t(w

∗
t −w∗

i )


∥∥∥∥∥∥∥∥
2

= E

∥∥∥∥∥∥
t∑

j=1

V †
t V

⊤
t,j(w

∗
j −w∗

i )

∥∥∥∥∥∥
2

=

t−1∑
j=1

E
∥∥∥V †

t V
⊤
t,j(w

∗
j −w∗

i )
∥∥∥2 + t∑

j=1

t∑
k=1,k ̸=j

(w∗
j −w∗

i )
⊤Vt,j(V

⊤
t Vt)

−1V ⊤
t,k(w

∗
k −w∗

i )

(i)
=

t−1∑
j=1

Mt,j

p

(
1 +

nt +Mt −Mt,j

p− nt −Mt − 1

)∥∥w∗
j −w∗

i

∥∥2 + nt

p

(
1 +

Mt

p− nt −Mt − 1

)
∥w∗

t −w∗
i ∥

2

+

t−2∑
j=1

t−1∑
k=j+1

Mt,jMt,k

p(p− nt −Mt − 1)

(∥∥w∗
j −w∗

k

∥∥2 − ∥∥w∗
j −w∗

i

∥∥2 − ∥w∗
k −w∗

i ∥
2
)

+

t−1∑
j=1

ntMt,j

p(p− nt −Mt − 1)

(∥∥w∗
j −w∗

t

∥∥2 − ∥∥w∗
j −w∗

i

∥∥2 − ∥w∗
t −w∗

i ∥
2
)

(32)
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where (i) follows from Lemma 8 and corollary 1. Recall that nt = n, Mt,j =
M
t−1 and the fact that

Mt = M . By combining eqs. (31) and (32), we have:

E ∥wt −w∗
i ∥

2
=

(
1− n+M

p

)
E ∥wt−1 −w∗

i ∥
2

+

t−1∑
j=1

M

(t− 1)p

(
1 +

n+M − M
t−1

p− n−M − 1

)∥∥w∗
j −w∗

i

∥∥2
+

n

p

(
1 +

M

p− n−M − 1

)
∥w∗

t −w∗
i ∥

2

+

t−2∑
j=1

t−1∑
k=j+1

( M
t−1 )

2

p(p− n−M − 1)

(∥∥w∗
j −w∗

k

∥∥2 − ∥∥w∗
j −w∗

i

∥∥2 − ∥w∗
k −w∗

i ∥
2
)

+

t−1∑
j=1

nM
t−1

p(p− n−M − 1)

(∥∥w∗
j −w∗

t

∥∥2 − ∥∥w∗
j −w∗

i

∥∥2 − ∥w∗
t −w∗

i ∥
2
)

+
(n+M)σ2

p− n−M − 1
,

for t ≥ 2. By iterating the above equation and combining it with eq. (30), we can have:

E ∥wt −w∗
i ∥

2

=

(
1− n+M

p

)t−1

E ∥w1 −w∗
i ∥

2

+

t−2∑
l=0

(
1− n+M

p

)l t−l−1∑
j=1

M

(t− l − 1)p

(
1 +

n+M − M
t−l−1

p− n−M − 1

)∥∥w∗
j −w∗

i

∥∥2
+

t−2∑
l=0

(
1− n+M

p

)l
n

p

(
1 +

M

p− n−M − 1

)∥∥w∗
t−l −w∗

i

∥∥2
+

t−2∑
l=0

(
1− n+M

p

)l t−l−2∑
j=1

t−l−1∑
k=j+1

( M
t−l−1 )

2

p(p− n−M − 1)

(∥∥w∗
j −w∗

k

∥∥2 − ∥∥w∗
j −w∗

i

∥∥2 − ∥w∗
k −w∗

i ∥
2
)

+

t−2∑
l=0

(
1− n+M

p

)l t−l−1∑
j=1

nM
t−l−1

p(p− n−M − 1)

(∥∥w∗
j −w∗

t−l

∥∥2 − ∥∥w∗
j −w∗

i

∥∥2 − ∥∥w∗
t−l −w∗

i

∥∥2)

+

t−2∑
l=0

(
1− n+M

p

)l
(n+M)σ2

p− n−M − 1

=

(
1− n

p

)(
1− n+M

p

)t−1

∥w∗
i ∥

2
+

(
1− n+M

p

)t−1
n

p
E ∥w∗

1 −w∗
i ∥

2

+

t−2∑
l=0

(
1− n+M

p

)l t−l−1∑
j=1

M

(t− l − 1)p

(
1 +

n+M − M
t−l−1

p− n−M − 1

)∥∥w∗
j −w∗

i

∥∥2
+

t−2∑
l=0

(
1− n+M

p

)l
n

p

(
1 +

M

p− n−M − 1

)∥∥w∗
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i

∥∥2
+

t−2∑
l=0

(
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p

)l t−l−2∑
j=1

t−l−1∑
k=j+1

( M
t−l−1 )

2

p(p− n−M − 1)

(∥∥w∗
j −w∗

k

∥∥2 − ∥∥w∗
j −w∗

i

∥∥2 − ∥w∗
k −w∗

i ∥
2
)

+

t−2∑
l=0

(
1− n+M

p

)l t−l−1∑
j=1

nM
t−l−1

p(p− n−M − 1)

(∥∥w∗
j −w∗

t−l

∥∥2 − ∥∥w∗
j −w∗

i

∥∥2 − ∥∥w∗
t−l −w∗

i

∥∥2)
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+

(
1− n

p

)(
1− n+M

p

)t−1
nσ2

p− n− 1
+

t−2∑
l=0

(
1− n+M

p

)l
(n+M)σ2

p− n−M − 1

=

(
1− n

p

)(
1− n+M

p

)t−1

∥w∗
i ∥

2

+

{(
1− n+M

p

)t−1
n

p
+

t−2∑
l=0

(
1− n+M

p

)l
[

M

(t− l − 1)p

(
1 +

n+M − M
t−l−1

p− n−M − 1

)

−
nM

(t−l−1) + (t− l − 2)( M
t−l−1 )

2

p(p− n−M − 1)

]}
∥w∗

1 −w∗
i ∥

2

+

t−2∑
l=0

(
1− n+M

p

)l t−l−1∑
j=2

[
M

(t− l − 1)p

(
1 +

n+M − M
t−l−1

p− n−M − 1

)

−
nM

t−l−1 + (t− l − 2)( M
t−l−1 )

2

p(p− n−M − 1)

]∥∥w∗
j −w∗

i

∥∥2
+

t−2∑
l=0

(
1− n+M

p

)l
[
n

p

(
1 +

M

p− n−M − 1

)
−

(t− l − 1) nM
t−l−1

p(p− n−M − 1)

]∥∥w∗
t−l −w∗

i

∥∥2
+

t−2∑
l=0

(
1− n+M

p

)l t−l−2∑
j=1

t−l−1∑
k=j+1

( M
t−l−1 )

2

p(p− n−M − 1)

∥∥w∗
j −w∗

k

∥∥2
+

t−2∑
l=0

(
1− n+M

p

)l t−l−1∑
j=1

nM
t−l−1

p(p− n−M − 1)

∥∥w∗
j −w∗

t−l

∥∥2 + noise(concurrent)
t (σ)

=

(
1− n

p

)(
1− n+M

p

)t−1

∥w∗
i ∥

2

+

{(
1− n+M

p

)t−1
n

p
+

t−2∑
l=0

(
1− n+M

p

)l
M

(t− l − 1)p

}
∥w∗

1 −w∗
i ∥

2

+

t−1∑
j=2

{
t−j−1∑
l=0

(
1− n+M

p

)l
M

(t− l − 1)p
+

(
1− n+M

p

)t−j
n

p

}∥∥w∗
j −w∗

i

∥∥2
+

n

p
∥w∗

t −w∗
i ∥

2

+

t−2∑
l=0

(
1− n+M

p

)l t−l−2∑
j=1

t−l−1∑
k=j+1

( M
t−l−1 )

2

p(p− n−M − 1)

∥∥w∗
j −w∗

k

∥∥2
+

t−2∑
l=0

(
1− n+M

p

)l t−l−1∑
j=1

nM
t−l−1

p(p− n−M − 1)

∥∥w∗
j −w∗

t−l

∥∥2 + noise(concurrent)
t (σ), (33)

where

noise(concurrent)
t (σ) =

(
1− n

p

)(
1− n+M

p

)t−1
nσ2

p− n− 1
+

t−2∑
l=0

(
1− n+M

p

)l
(n+M)σ2

p− n−M − 1
.

By rearranging the terms and substituting t = T , we complete the poof for d(concurrent)
0T and d(concurrent)

ijkT .
Furthermore, the expressions of c(concurrent)

i and c(concurrent)
ijk in Proposition 2 can be extracted from

E[Li(wt)]− E[Li(w)] as follows.[
E ∥wt −w∗

i ∥
2 − E ∥wi −w∗

i ∥
2
](concurrent)

=

(
1− n

p

)[(
1− n+M

p

)t−1

−
(
1− n+M

p

)i−1
]
∥w∗

i ∥
2
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+

{[(
1− n+M

p

)t−1

−
(
1− n+M

p

)i−1
]
n

p
+

t−2∑
l=0

(
1− n+M

p

)l
M

(t− l − 1)p

−
i−2∑
l=0

(
1− n+M

p

)l
M

(i− l − 1)p

}
∥w∗

1 −w∗
i ∥

2

+

t−1∑
j=i

{
t−j−1∑
l=0

(
1− n+M

p

)l
M

(t− l − 1)p
+

(
1− n+M

p

)t−j
n

p

}∥∥w∗
j −w∗

i

∥∥2
+

i−1∑
j=2

{
t−j−1∑
l=0

(
1− n+M

p

)l
M

(t− l − 1)p
+

(
1− n+M

p

)t−j
n

p

−
i−j−1∑
l=0

(
1− n+M

p

)l
M

(i− l − 1)p
−
(
1− n+M

p

)i−j
n

p

}∥∥w∗
j −w∗

i

∥∥2
+

n

p
∥w∗

t −w∗
i ∥

2

+

t−2∑
l=0

(
1− n+M

p

)l t−l−2∑
j=1

t−l−1∑
k=j+1

( M
t−l−1 )

2

p(p− n−M − 1)

∥∥w∗
j −w∗

k

∥∥2
−

i−2∑
l=0

(
1− n+M

p

)l i−l−2∑
j=1

i−l−1∑
k=j+1

( M
i−l−1 )

2

p(p− n−M − 1)

∥∥w∗
j −w∗

k

∥∥2


β1

+

t−2∑
l=0

(
1− n+M

p

)l t−l−1∑
j=1

nM
t−l−1

p(p− n−M − 1)

∥∥w∗
j −w∗

t−l

∥∥2
−

i−2∑
l=0

(
1− n+M

p

)l i−l−1∑
j=1

nM
i−l−1

p(p− n−M − 1)

∥∥w∗
j −w∗

i−l

∥∥2 .


β2

+ noise(concurrent)
t (σ)− noise(concurrent)

i (σ) (34)

Here, we will show that β1 consists of terms δj,k
∥∥w∗

j −w∗
k

∥∥2 with δj,k ≥ −T 2(n+M)M2

p3 and

j, k ̸= t and β2 consists of terms ηj,k
∥∥w∗

j −w∗
k

∥∥2 with ηj,k ≥ −T 2(n+M)nM
p3 in Appendix E.1.

B.2 PROOF OF SEQUENTIAL REPLAY IN PROPOSITIONS 1 AND 2

To simplify, we apply the following notations to denote the current data in this subsection: Xt :=
Xt,0, Yt := Yt,0 and zt := zt,0.

When t ≥ 2, the sequence of SGD convergent points w(j)
t is equivalent the sequential optimization

problems:

ŵ
(j)
t = min

w

∥∥∥w − ŵ
(j−1)
t

∥∥∥2
2

s.t. X⊤
t,jw = Yt,j , j = 0, 1, ..., t− 1,

where ŵ
(−1)
t = wt−1 and wt = ŵ

(t−1)
t . Therefore, according to Lemmas 1 to 4, we have:

E
∥∥∥ŵ(j)

t −w∗
i

∥∥∥2 = E
∥∥∥(I − PXt,j

)(ŵ
(j−1)
t −w∗

i ) + PXt,j
(w∗

j −w∗
i ) +X†

t,jzt,j

∥∥∥2
=

(
1− M

(t− 1)p

)
E
∥∥∥ŵ(j−1)

t −w∗
i

∥∥∥2 + M

(t− 1)p

∥∥w∗
j −w∗

i

∥∥2 + M
(t−1)pσ

2

p− M
(t−1)p − 1

,

for j = 1, 2, ..., t− 1. Also, we have:

E
∥∥∥ŵ(0)

t −w∗
i

∥∥∥2 = E ∥(I − PXt
)(wt−1 −w∗

i ) + PXt
(w∗

t −w∗
i )∥

2

=

(
1− n

p

)
E ∥wt−1 −w∗

i ∥
2
+

n

p
∥w∗

t −w∗
i ∥

2
+

nσ2

p− n− 1
.
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By combining the above two equations, we can derive:

E ∥wt −w∗
i ∥

2

=

(
1− M

(t− 1)p

)t−1(
1− n

p

)
E ∥wt−1 −w∗

i ∥
2

+

t−1∑
j=1

(
1− M

(t− 1)p

)t−j−1
M

(t− 1)p
E
∥∥w∗

j −w∗
i

∥∥2 + (1− M

(t− 1)p

)t−1
n

p
∥w∗

t −w∗
i ∥

2

+

t−1∑
j=1

(
1− M

(t− 1)p

)t−j−1 M
t−1σ

2

p− M
t−1 − 1

+

(
1− M

(t− 1)p

)t−1
nσ2

p− n− 1
.

By applying this process recursively, we obtain the expression of the expected value of the model
error E[Li(wt)] as follows, in we can extract the expressions of d(sequential)

0T and d(sequential)
ijkT :

E ∥wt −w∗
i ∥

2

=

t−2∏
l=0

[(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)]
E ∥w1 −w∗

i ∥
2

+

t−1∑
j=1

{
t−j−1∑
l=0

l−1∏
k=0

[(
1− M

(t− k − 1)p

)t−k−1(
1− n

p

)]

·
(
1− M

(t− l − 1)p

)t−j−l−1
M

(t− l − 1)p

}∥∥w∗
j −w∗

i

∥∥2
+

t−2∑
l=0

l−1∏
k=0

[(
1− M

(t− k − 1)p

)t−k−1(
1− n

p

)](
1− M

(t− l − 1)p

)t−l−1
n

p

∥∥w∗
t−l −w∗

i

∥∥2
+

(
1− M

(t− 1)p

)t−1
n

p
∥w∗

t −w∗
i ∥

2
+ noise(sequential)

t (σ)

=

(
1− n

p

) t−2∏
l=0

[(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)]
∥w∗

i ∥
2

+

{
n

p

t−2∏
l=0

[(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)]
+

t−2∑
l=0

l−1∏
k=0

[(
1− M

(t− k − 1)p

)t−k−1(
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p

)]

·
(
1− M

(t− l − 1)p

)t−l−2
M

(t− l − 1)p

}
] ∥w∗

1 −w∗
i ∥

2

+

t−1∑
j=2

{
t−j−1∑
l=0

l−1∏
k=0

[(
1− M

(t− k − 1)p

)t−k−1(
1− n

p

)](
1− M

(t− l − 1)p

)t−j−l−1
M

(t− l − 1)p

+

t−j−1∏
k=0

[(
1− M

(t− l − 1)p

)t−k−1(
1− n

p

)](
1− M

(j − 1)p

)j−1
n

p

}∥∥w∗
j −w∗

i

∥∥2
+

(
1− M

(t− 1)p

)t−1
n

p
∥w∗

t −w∗
i ∥

2
+ noise(sequential)

t (σ), (35)

where noise(sequential)
t (σ) =

∑t−2
l=0

∏l−1
k=0

[(
1− M

(t−k−1)p

)t−k−1 (
1− n

p

)]
·
[∑t−1

j=1

(
1− M

(t−1)p

)t−j−1 M
t−1σ

2

p− M
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+
(
1− M

(t−1)p
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.
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Furthermore, the expressions of c(sequential)
i and c(sequential)

ijk in Proposition 2 can be extracted from the
derivation of E[Li(wt)]− E[Li(w)] as follows.[
E ∥wt −w∗

i ∥
2
2 − E ∥wi −w∗

i ∥
2
2

](sequential)

=
(
1− n

p

){∏t−2
l=0

[(
1− M

(t−l−1)p
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p
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p
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p
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p
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p
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p
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M
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∏l−1
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p

)](
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M

(i−l−1)p

}
∥w∗

1 −w∗
i ∥

2

+
∑t−1

j=i

{∑t−j−1
l=0

∏l−1
k=0

[(
1− M

(t−k−1)p
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p

)](
1− M

(t−l−1)p

)t−j−l−1
M

(t−l−1)p

+
∏t−j−1

k=0

[(
1− M

(t−k−1)p

)t−k−1 (
1− n

p

)](
1− M

(j−1)p

)j−1
n
p

}∥∥w∗
j −w∗

i

∥∥2
+
∑i−1

j=2
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∏l−1
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[(
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p

)](
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M
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−
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∏l−1
k=0

[(
1− M

(i−k−1)p

)i−k−1 (
1− n

p

)](
1− M

(i−l−1)p
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+
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k=0

[(
1− M

(t−k−1)p

)t−k−1 (
1− n

p

)](
1− M

(j−1)p

)j−1
n
p

−
∏i−j−1

k=0

[(
1− M

(i−k−1)p

)i−k−1 (
1− n

p

)](
1− M

(j−1)p

)j−1
n
p

}∥∥w∗
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i

∥∥2
+
(
1− M

(t−1)p

)t−1
n
p ∥w

∗
t −w∗

i ∥
2
+ noise(sequential)

t (σ)− noise(sequential)
i (σ) (36)

B.3 PROOF OF THEOREM 1

Theorem 1 follows directly from Propositions 1 and 2 and the definitions of FT and GT .

C PROOF OF THEOREM 2

In this section, we prove Theorem 2 and provide details about constants ξ1, ξ2, µ1, µ2. According
to eqs. (33) to (36), we can write forgetting and generalization error when T = 2 as follows. For
concurrent replay method, we have:

F (concurrent)
2 = E ∥w2 −w∗

1∥
2 − E ∥w1 −w∗

1∥
2

=

(
−n+M

p

)(
1− n

p

)
∥w∗

1∥
2
+

n

p

(
1 +

M

p− n−M − 1

)
∥w∗

1 −w∗
2∥

2

+
(n+M)σ2

p− (n+M)− 1
− n+M

p
· nσ2

p− n− 1
. (37)

And also, we have

G(concurrent)
2 =

1

2

(
E ∥w2 −w∗

1∥
2
+ E ∥w2 −w∗

2∥
2
)

=
1

2

(
1− n+M

p

)(
1− n

p

)
(∥w∗

1∥
2
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2
)
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+
1

2

(
2n+M

p
+

2nM

p(p− n−M − 1)
− n(n+M)

p2

)
∥w∗

1 −w∗
2∥

2

+
(n+M)σ2

p− (n+M)− 1
+

(
1− n+M

p

)
nσ2

p− n− 1
. (38)

On the other hand, the performance of sequential replay method is:

F sequential
2 = E ∥w2 −w∗

1∥
2 − E ∥w1 −w∗

1∥
2

=

(
−n+M

p
+

nM

p2

)(
1− n

p

)
∥w∗

1∥
2
+

(
1− M

p

)
n

p
∥w∗

1 −w∗
2∥

2

+

(
1− n+ 2M

p
+

nM

p2

)
nσ2

p− n− 1
+

Mσ2

p−M − 1
. (39)

And also, we have

Gsequential
2 =

1

2
(E ∥w2 −w∗

1∥
2
+ E ∥w2 −w∗

2∥
2
)

=
1

2

(
1− M

p

)(
1− n

p

)2

(∥w∗
1∥

2
+ ∥w∗

2∥
2
)

+
1

2

(
2n+M

p
− n(n+ 2M)

p2
+

n2M

p3

)
∥w∗

1 −w∗
2∥

2

+

(
1− M

p

)(
2− n

p

)
nσ2

p− n− 1
+

Mσ2

p−M − 1
. (40)

C.1 PROOF OF FORGETTING IN THEOREM 2

By observing eq. (37) and eq. (39), we see that the forgetting can be expressed as:

F2 = ĉ1 ∥w∗
1∥

2
+ ĉ2 ∥w∗

1 −w∗
2∥

2
+ ˆnoise(σ).

Before we investigate forgetting, we compare the coefficients ĉ1, ĉ2 and term ˆnoise(σ) as follows,
with concurrent replay on the left and sequential replay on the right.(

−n+M

p

)(
1− n

p

)
<

(
−n+M

p
+

nM

p2

)(
1− n

p

)
n

p

(
1 +

M

p− n−M − 1

)
>

(
1− M

p

)
n

p
,

(n+M)σ2

p− (n+M)− 1
− n+M

p
· nσ2

p− n− 1
>

(
1− n+ 2M

p
+

nM

p2

)
nσ2

p− n− 1
+

Mσ2

p−M − 1
.

The comparison implies that ĉ(concurrent)
1 < ĉ(sequential)

1 , ĉ(concurrent)
2 > ĉ(sequential)

2 and
ˆnoise

(concurrent)
(σ) > ˆnoise

(sequential)
(σ). Based on the calculation, we obtain the following con-

clusion:
F (concurrent)
2 > F (sequential)

2 if and only if ξ1 ∥w∗
1 −w∗

2∥
2
+ ξ2σ

2 > ∥w∗
1∥

2
,

where ξ1 =
nM
p ( 1

p−n−M−1+
1
p )

nM
p2

(1−n
p )

and ξ2 =

(
n+M

p−n−M−1−
(
1−M

p +nM
p2

)
n

p−n−1−
M

p−M−1

)
nM
p2

(1−n
p )

. To make a

clearer illustration, we provide the following two special cases.

• If the noise σ is 0, and the task similarity is low enough (i.e., ∥w∗
1 −w∗

2∥
2 is large enough),

sequential replay achieves a lower forgetting. More specifically, F (concurrent)
2 ≥ F (sequential)

2 if and
only if ∥w∗

1 −w∗
2∥

2 ≥ (p−n)(p−n−M−1)
p2+p(p−n−M−1) ∥w

∗
1∥

2,

• If task difference ∥w∗
1 −w∗

2∥
2
= 0 and the noise σ is large enough, sequential replay achieves

a lower forgetting. More specifically, F (concurrent)
2 ≥ F (sequential)

2 if and only if

σ ≥
nM
p2

(
1− n

p

)
n+M

p−n−M−1 −
(
1− M

p + nM
p2

)
n

p−n−1 −
M

p−M−1

∥w∗
1∥

2
.
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C.2 PROOF OF GENERALIZATION ERROR IN THEOREM 2

By observing eq. (38) and eq. (40), we see that the generalization error can be expressed as:

G2 = d̂1(∥w∗
1∥

2
+ ∥w∗

2∥
2
) + d̂2 ∥w∗

1 −w∗
2∥

2
+ ˆnoise(σ).

Before we compare generalization error, we first observe the coefficients d̂1, d̂2 and term ˆnoise(σ)
as follows, with concurrent replay on the left and sequential replay on the right.(

1− n+M

p

)(
1− n

p

)
<

(
1− M

p

)(
1− n

p

)2

2n+M

p
+

2nM

p(p− n−M − 1)
− n(n+M)

p2
>

2n+M

p
− n(n+ 2M)

p2
+

n2M

p3
,

(n+M)σ2

p− (n+M)− 1
+

(
1− n+M

p

)
nσ2

p− n− 1
>

(
1− M

p

)(
2− n

p

)
nσ2

p− n− 1
+

Mσ2

p−M − 1
,

which implies that d̂(concurrent)
1 < d̂(sequential)

1 and d̂(concurrent)
2 > d̂(sequential)

2 , ˆnoise
(concurrent)

(σ) >

ˆnoise
(sequential)

(σ). Based on our calculation, we obtain the following conclusion. Furthermore,
we can obtain the following conclusion:

G(concurrent)
2 ≥ G(sequential)

2 if and only if µ1 ∥w∗
1 −w∗

2∥
2
+ µ2σ

2 > ∥w∗
1∥

2
,

where µ1 =
nM
p

(
2

p−n−M−1+
1
p−

n
p2

)
nM
p2

(1−n
p )

and µ2 =
n+M

p−n−M−1−
(
1−M

p +nM
p2

)
n

p−n−1−
M

p−M−1

nM
p2

(1−n
p )

. To provide a

clearer illustration, we provide the following two special cases.

• If the noise σ is 0, and the task similarity is small enough (i.e., ∥w∗
1 −w∗

2∥
2 is big enough),

sequential replay has a smaller generalization error. More specifically, G(concurrent)
2 ≥ G(sequential)

2

if and only if ∥w∗
1 −w∗

2∥
2 ≥ (p−n)(p−n−M−1)

2p2+(p−n)(p−n−M−1)

(
∥w∗

1∥
2
+ ∥w∗

2∥
2
)

.

• If the task difference ∥w∗
1 −w∗

2∥
2
= 0 and the noise σ is big, sequential replay has a smaller

generalization error. More specifically, G(concurrent)
2 ≥ G(sequential)

2 if and only if

σ2 ≥
nM
p2

(
1− n

p

)
n+M

p−n−M−1 −
(
1− M

p + nM
p2

)
n

p−n−1 −
M

p−M−1

(
∥w∗

1∥
2
+ ∥w∗

2∥
2
)

D COMPARISON BETWEEN CONCURRENT AND SEQUENTIAL REPLAY
METHODS WHEN T = 3

We recall that M2,1 = M and M3,1 = M3,2 = M
2 under our equal memory allocation assumption.

We assume that σ = 0. According to eqs. (33) and (34), we write performance of the concurrent
replay method when T = 3 as follows.

F
(concurrent)
3 =

1

2
(E ∥w3 −w∗

1∥
2 − E ∥w1 −w∗

1∥
2
+ E ∥w3 −w∗

2∥
2 − E ∥w2 −w∗

2∥
2
)

=
1

2

(
−2(n+M)

p
+

(n+M)2

p2

)(
1− n

p

)
∥w∗

1∥
2

+
1

2

(
−n+M

p

)(
1− n+M

p

)(
1− n

p

)
∥w∗

2∥
2

+
1

2

[(
1− 2(n+M)

p

)
nM

p(p− n−M − 1)
+

M2

2p(p− n−M − 1)

+
n+M

p

(
1− n

p

)(
1− n+M

p

)]
∥w∗

1 −w∗
2∥

2
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+
1

2

[
n

p
+

nM

p(p− n−M − 1)

]
∥w∗

1 −w∗
3∥

2
+

1

2

[
n

p
+

nM

p(p− n−M − 1)

]
∥w∗

2 −w∗
3∥

2
.

(41)
And also, we have

G
(concurrent)
3 =

1

3
(E ∥w3 −w∗

1∥
2
+ E ∥w3 −w∗

2∥
2
+ E ∥w3 −w∗

3∥
2
)

=
1

3

(
1− n+M

p

)2(
1− n

p

)
(∥w∗

1∥
2
+ ∥w∗

2∥
2
+ ∥w∗

3∥
2
)

+
1

3

[(
3− 3(n+M)

p

)
nM

p(p− n−M − 1)
+

3M2

4p(p− n−M − 1)

+
n+M

p

(
2− 3n

p
− M

p
+

n(n+M)

p2

)]
∥w∗

1 −w∗
2∥

2

+
1

3

[
n

p

(
2− 2(n+M)

p
+

(n+M)2

p2

)
+

M

p

(
1− n+M

p

)
+

M

2p

+
3nM

2p(p− n−M − 1)

]
∥w∗

1 −w∗
3∥

2

+
1

3

[
n

p

(
2− n+M

p

)
+

M

2p
+

3nM

2p(p− n−M − 1)

]
∥w∗

2 −w∗
3∥

2
. (42)

According to eqs. (35) and (36), the performance of sequential replay when T = 3 is provided as
follows.

F (sequential)
3 =

1

2
(E ∥w3 −w∗

1∥
2 − E ∥w1 −w∗

1∥
2
+ E ∥w3 −w∗

2∥
2 − E ∥w2 −w∗

2∥
2
)

=
1

2

[(
1− n

p

)3(
1− M

p

)(
1− M

2p

)2

−
(
1− n

p

)]
∥w∗

1∥
2

+
1

2

[(
1− n

p

)3(
1− M

p

)(
1− M

2p

)2

−
(
1− n

p

)2(
1− M

p

)]
∥w∗

2∥
2

+
1

2

[(
1− n

p

)(
1− M

p

)
n

p

((
1− M

2p

)2(
2− n

p

)
− 1

)

+

(
1− M

2p

)2(
1− n

p

)
M

p
− M2

4p2

]
∥w∗

1 −w∗
2∥

2

+
1

2

(
1− M

2p

)2
n

p
∥w∗

1 −w∗
3∥

2
+

(
1− M

2p

)2
n

p
∥w∗

2 −w∗
3∥

2
. (43)

And also, we have

G
(concurrent)
3 =

1

3
(E ∥w3 −w∗

1∥
2
+ E ∥w3 −w∗

2∥
2
+ E ∥w3 −w∗

3∥
2
)

=
1

3

(
1− n

p

)3(
1− M

p

)(
1− M

2p

)2

(∥w∗
1∥

2
+ ∥w∗

2∥
2
+ ∥w∗

3∥
2
)

+
1

3

{(
1− n

p

)(
1− M

2p

)2 [(
1− M

p

)(
2− n

p

)
n

p
+

M

p

]
+

M

p
− M2

4p2

}
∥w∗

1 −w∗
2∥

2

+
1

3

[(
1− M

2p

)2
n

p
+

(
1− M

2p

)2(
1− n

p

)
M

p
+

(
1− n

p

)2(
1− M

p

)(
1− M

2p

)2
n

p

+

(
1− M

2p

)
M

2p

]
∥w∗

1 −w∗
3∥

2

+
1

3

{(
1− M

2p

)2
n

p

[(
1− M

p

)(
1− n

p

)
+ 1

]
+

M

2p

}
∥w∗

2 −w∗
3∥

2
. (44)
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D.1 COMPARISON OF FORGETTING WHEN T = 3

By observing eq. (41) and eq. (43), we can write forgetting in the same structure for both training
methods:

F3 =
1

2
ĉ1 ∥w∗

1∥
2
+

1

2
ĉ2 ∥w∗

2∥
2
+

1

2
ĉ3 ∥w∗

1 −w∗
2∥

2
+

1

2
ĉ4 ∥w∗

1 −w∗
3∥

2
+

1

2
ĉ5 ∥w∗

2 −w∗
3∥

2
.

By comparing eq. (41) and eq. (43), we have the following conclusions: 1.ĉ(concurrent)
1 < ĉ(sequential)

1 ;
2.ĉ(concurrent)

2 < ĉ(sequential)
2 ; 3.ĉ(concurrent)

3 > ĉ(sequential)
3 , when p > 5n+4M

2 ; 4.ĉ(concurrent)
4 > ĉ(sequential)

4 ;
5.ĉ(concurrent)

5 > ĉ(sequential)
5 . The proof of these conclusions is provided as follows.

Proof. 1. To prove ĉ(concurrent)
1 < ĉ(sequential)

1 :

ĉ(sequential)
1 =

[(
1− n

p

)3(
1− M

p

)(
1− M

2p

)2

−
(
1− n

p

)]

=

[(
1− n

p

)2(
1− M

p

)(
1− M

2p

)2

− 1

](
1− n

p

)

>

[(
1− n

p

)2(
1− M

p

)2

− 1

](
1− n

p

)

>

[(
1− n+M

p

)2

− 1

](
1− n

p

)
= ĉ(concurrent)

1 .

2. To prove ĉ(concurrent)
2 < ĉ(sequential)

2 :

ĉ(sequential)
2 =

[(
1− n

p

)3(
1− M

p

)(
1− M

2p

)2

−
(
1− n

p

)2(
1− M

p

)]

>

[(
1− n

p

)3(
1− M

p

)2

−
(
1− n

p

)2(
1− M

p

)]

=

(
1− n

p

)[(
1− n

p

)(
1− M

p

)
− 1

](
1− n

p

)(
1− M

p

)
=

(
1− n

p

)[
nM

p2
− n+M

p

](
1− n+M

p
+

nM

p2

)

=

(
1− n

p

)[
nM

p2
− n+M

p

](
1− n+M

p
+

nM

p2

)
=

(
1− n

p

)[
−n+M

p

](
1− n+M

p

)
+

(
1− n

p

)
nM

p2

(
1− 2(n+M)

p
+

nM

p2

)
>

(
1− n

p

)[
−n+M

p

](
1− n+M

p

)
= ĉ(concurrent)

2 .

3. To prove ĉ(concurrent)
3 > ĉ(sequential)

3 when p > 5n+4M
2 , we first notice that

ĉ(concurrent)
3 =

(
1− 2(n+M)

p

)
nM

p(p− n−M − 1)
+

M2

2p(p− n−M − 1)

+
n+M

p

(
1− n

p

)(
1− n+M

p

)
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>

(
1− 2(n+M)

p

)
nM

p2
+

M2

2p2
+

n+M

p

(
1− n

p

)(
1− n+M

p

)
=

n+M

p

(
1− n

p

)(
1− M

p

)
− n2

p2
+

n3 − n2M − 2nM2

p3
.

On the other hand, we have:

ĉ(sequential)
3 =

(
1− n

p

)(
1− M

p

)
n

p

((
1− M

2p

)2(
2− n

p

)
− 1

)

+

(
1− M

2p

)2(
1− n

p

)
M

p
− M2

4p2

=

(
1− n

p

)(
1− M

p

)
n

p

((
1− M

p

)(
2− n

p

)
− 1

)
+

(
1− M

p

)(
1− n

p

)
M

p

+
M2

4p2

[(
2− n

p

)(
1− M

p

)(
1− n

p

)
n

p
+

(
1− n

p

)
M

p
− 1

]
<

(
1− n

p

)(
1− M

p

)
n

p

((
1− M

p

)(
2− n

p

)
− 1

)
+

(
1− M

p

)(
1− n

p

)
M

p
+

M2

4p2

[
2n

p
+

M

p
− 1

]
(i)
<

(
1− n

p

)(
1− M

p

)
n

p

((
1− M

p

)(
2− n

p

)
− 1

)
+

(
1− M

p

)(
1− n

p

)
M

p

=

(
1− n

p

)(
1− M

p

)
n

p

(
1− 2M

p
− n

p
+

nM

p2

)
+

(
1− M

p

)(
1− n

p

)
M

p

=

(
1− n

p

)(
1− M

p

)
n+M

p
+

(
1− n

p

)(
1− M

p

)
n

p

(
−n+ 2M

p
+

nM

p2

)
(ii)
<

(
1− n

p

)(
1− M

p

)
n+M

p
+

(
1− n+M

p

)
n

p

(
−n+ 2M

p
+

nM

p2

)
<

(
1− n

p

)(
1− M

p

)
n+M

p
− n2 + 2nM

p2
+

n3 + 4n2M + 2nM2

P 3
,

where (i) follows from the face that p > 5n+4M
2 and (ii) follows from the fact that−n+2M

p + nM
p2 <

0. Furthermore, under the condition p > 5n+4M
2 , we have:

−n2 + 2nM

p2
+

n3 + 4n2M + 2nM2

P 3
< −n2

p2
+

n3 − n2M − 2nM2

p3
,

which completes the proof. 4. To prove ĉ(concurrent)
4 > ĉ(sequential)

4 :

ĉ(concurrent)
4 =

n

p
+

nM

p(p− n−M − 1)
>

n

p
>

(
1− M

2p

)2
n

p
= ĉ(sequential)

4 .

5. The proof of ĉ(concurrent)
5 > ĉ(sequential)

5 is the same as ĉ(concurrent)
4 > ĉ(sequential)

4 .

D.2 COMPARISON OF GENERALIZATION ERROR WHEN T = 3

By observing eq. (42) and eq. (44), we can write generalization error in the same structure for both
training methods:

G3 =
1

3
d̂1(∥w∗

1∥
2
+∥w∗

2∥
2
+∥w∗

3∥
2
)+

1

3
d̂2 ∥w∗

1 −w∗
2∥

2
+
1

3
d̂3 ∥w∗

1 −w∗
3∥

2
+
1

3
d̂4 ∥w∗

2 −w∗
3∥

2
.

By comparing eq. (42) and eq. (44), we have the following conclusions: 1.d̂(concurrent)
1 < d̂(sequential)

1 ;
2.d̂(concurrent)

2 > d̂(sequential)
2 when p > 4n+3M

2 ; 3.d̂(concurrent)
3 > d̂(sequential)

3 ; 4.d̂(concurrent)
4 > d̂(sequential)

4 .
The proof of these relationships is provided as follows.
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1. To prove d̂(concurrent)
1 < d̂(sequential)

1 :

d̂(sequential)
1 =

(
1− n

p

)3(
1− M

p

)(
1− M

2p

)2

>

(
1− n

p

)3(
1− M

p

)2

>

(
1− n+M

p

)2(
1− M

p

)
= d̂(concurrent)

1 .

2. To prove d̂(concurrent)
2 > d̂(sequential)

2 when p > 4n+3M
2 , we first consider:

d̂(concurrent)
2 =

(
3− 3(n+M)

p

)
nM

p(p− n−M − 1)
+

3M2

4p(p− n−M − 1)

+
n+M

p

(
2− 3n

p
− M

p
+

n(n+M)

p2

)
>

(
3− 3(n+M)

p

)
nM

p2
+

3M2

4p2
+

n+M

p

(
2− 3n

p
− M

p
+

n(n+M)

p2

)
> 3

(
1− n+M

p

)
nM

p2
+

2(n+M)

p
+

n+M

p

(
−3n

p
− n

p
+

n(n+M)

p2

)
=

2(n+M)

p
− 3n2 + nM +M2

p2
+

n3 − n2M − 2nM2

p3
.

On the other hand, we have:

d̂(sequential)
2 =

(
1− n

p

)(
1− M

2p

)2 [(
1− M

p

)(
2− n

p

)
n

p
+

M

p

]
+

M

p
− M2

4p2

=

(
1− n

p

)(
1− M

p
+

M2

4p2

)[(
1− M

p

)(
2− n

p

)
n

p
+

M

p

]
+

M

p
− M2

4p2

=

(
1− n

p

)(
1− M

p

)[(
1− M

p

)(
2− n

p

)
n

p
+

M

p

]
+

M

p

+
M2

4p2

[(
1− M

p

)(
2− n

p

)
n

p
+

M

p

]
− M2

4p2

<

(
1− n

p

)(
1− M

p

)[(
1− M

p

)(
2− n

p

)
n

p
+

M

p

]
+

M

p

+
M2

4p2

[
2n

p
+

M

p
− 1

]
<

(
1− n

p

)(
1− M

p

)[(
2− n

p

)
n

p
+

M

p

]
+

M

p

=

(
1− n

p

)(
1− M

p

)
2n

p
−
(
1− n

p

)(
1− M

p

)
n2

p2
+

2M

p

+

(
−n+M

p
+

nM

p2

)
M

p

=
2(n+M)

p
− 3n2 + 3nM +M2

p2
+

n3 + 3n2M + nM2

p3
− n3M

p4

<
2(n+M)

p
− 3n2 + 3nM +M2

p2
+

n3 + 3n2M + nM2

p3
.

Under the condition p > 4n+3M
2 , we have:

−3n2 + 3nM +M2

p2
+
n3 + 3n2M + nM2

p3
< −3n2 + nM +M2

p2
+
n3 − n2M − 2nM2

p3
,
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which completes the proof.

3. To prove d̂(concurrent)
3 > d̂(sequential)

3 , we first have:

d̂(concurrent)
3 =

n

p

(
2− 2(n+M)

p
+

(n+M)2

p2

)
+

M

p

(
1− n+M

p

)
+

M

2p

+
3nM

2p(p− n−M − 1)

>
n

p

(
2− 2(n+M)

p
+

(n+M)2

p2

)
+

M

p

(
1− n+M

p

)
+

M

2p
+

3nM

2p2
.

On the other hand, we have:

d̂(sequential)
3 =

(
1− M

2p

)2
n

p
+

(
1− M

2p

)2(
1− n

p

)
M

p

+

(
1− n

p

)2(
1− M

p

)(
1− M

2p

)2
n

p
+

(
1− M

2p

)
M

2p

<

(
1− M

2p

)2
n

p

[
1 +

(
1− n

p

)2(
1− M

p

)]

+

(
1− n

p

)(
1− M

p

)
M

p
+

M3

4p3
+

M

2p

<
n

p

(
2− 2n+M

p
+

n2 + 2nM

p2

)
+

n

p

(
−M

p
+

M2

4p2

)
+

M

p

(
1− n+M

p

)
+

nM2

p
+

M3

4p3
+

M

2p

=
n

p

(
2− 2n+ 2M

p
+

n2 + 2nM +M2

p2

)
+

M

p

(
1− n+M

p

)
+

nM2 +M3

4p3
+

M

2p

<
n

p

(
2− 2(n+M)

p
+

(n+M)2

p2

)
+

M

p

(
1− n+M

p

)
+

M

2p
+

3nM

2p2
.

By combining the above equations, we complete the proof.

4. To prove d̂(concurrent)
4 > d̂(sequential)

4 , we first have:

d̂(sequential)
4 =

(
1− M

2p

)2
n

p

[(
1− M

p

)(
1− n

p

)
+ 1

]
+

M

2p

<
n

p

[(
1− M

p

)(
1− n

p

)
+ 1

]
+

M

2p

=
n

p

[
2− n+M

p

]
+

M

2p
+

n2M

p3

<
n

p

[
2− n+M

p

]
+

M

2p
+

3nM

2p(p− n−M − 1)

< d̂(concurrent)
4 .

E COMPARISON BETWEEN CONCURRENT AND SEQUENTIAL REPLAY FOR
GENERAL T

In order to develop the comparison between concurrent and sequential replay methods for general
T , we need to compare the coefficients in Theorem 1 between concurrent and sequential replay
methods. In this section, we assume that M ≥ 2.
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E.1 COMPARISON OF COEFFICIENTS OF FORGETTING IN THEOREM 1

We first observe the terms β1 and β2 in eq. (34) before we start to compare the forgetting under
different training methods. We separate the term β1 into two following parts.

β1 =

t−i−1∑
l=0

(
1− n+M

p

)l t−l−2∑
j=1

t−l−1∑
k=j+1

( M
t−l−1 )

2

p(p− n−M − 1)

∥∥w∗
j −w∗

k

∥∥2β+
1

+

t−2∑
l=t−i

(
1− n+M

p

)l t−l−2∑
j=1

t−l−1∑
k=j+1

( M
t−l−1 )

2

p(p− n−M − 1)

∥∥w∗
j −w∗

k

∥∥2
−

i−2∑
l=0

(
1− n+M

p

)l i−l−2∑
j=1

i−l−1∑
k=j+1

( M
i−l−1 )

2

p(p− n−M − 1)

∥∥w∗
j −w∗

k

∥∥2


β−
1 , (45)

where β+
1 consists of terms δ+j,k

∥∥w∗
j −w∗

k

∥∥2 with δ+j,k ≥ 0 for j = [k − 1]; k = i, i + 1, .., t − 1.
Then, we take a closer look at β−

1 .

β−
1 =

i−2∑
l=0

(
1− n+M

p

)t−i+l i−l−2∑
j=1

i−l−1∑
k=j+1

( M
i−l−1 )

2

p(p− n−M − 1)

∥∥w∗
j −w∗

k

∥∥2
−

i−2∑
l=0

(
1− n+M

p

)l i−l−2∑
j=1

i−l−1∑
k=j+1

( M
i−l−1 )

2

p(p− n−M − 1)

∥∥w∗
j −w∗

k

∥∥2
=

i−2∑
l=0

[(
1− n+M

p

)t−i

− 1

](
1− n+M

p

)l i−l−2∑
j=1

i−l−1∑
k=j+1

( M
i−l−1 )

2

p(p− n−M − 1)

∥∥w∗
j −w∗

k

∥∥2
≥− T (n+M)

p

i−2∑
l=0

i−l−2∑
j=1

i−l−1∑
k=j+1

( M
i−l−1 )

2

p(p− n−M − 1)

∥∥w∗
j −w∗

k

∥∥2 . (46)

This shows that β−
1 consists of terms δ−j,k

∥∥w∗
j −w∗

k

∥∥2 with δ−j,k ≥ −
T 2(n+M)M2

p3 for j ∈ [k −
1], k ∈ [i− 1]. Therefore, β1 consists of terms δj,k

∥∥w∗
j −w∗

k

∥∥2 where

δj,k = δ+j,k + δ−j,k ≥ −
T 2(n+M)M2

p3
, (47)

for j, k ̸= t. By the same argument, we have:

β2 =

t−i−1∑
l=0

(
1− n+M

p

)l t−l−1∑
j=1

nM
t−l−1

p(p− n−M − 1)

∥∥w∗
j −w∗

t−l

∥∥2β+
2

+

t−2∑
l=t−i

(
1− n+M

p

)l t−l−1∑
j=1

nM
t−l−1

p(p− n−M − 1)

∥∥w∗
j −w∗

t−l

∥∥2
−

i−2∑
l=0

(
1− n+M

p

)l i−l−1∑
j=1

nM
i−l−1

p(p− n−M − 1)

∥∥w∗
j −w∗

i−l

∥∥2


β−
2 , (48)

where β+
2 consists of terms η+j,k

∥∥w∗
j −w∗

k

∥∥2 with η+j,k ≥ 0 for j ∈ [k − 1], k = i + 1, i + 2, .., t

and β−
2 consists of terms η−j,k

∥∥w∗
j −w∗

k

∥∥2 with η−j,k ≥ −
T 2(n+M)nM

p3 for. Therefore, β2 consists

of terms ηj,k
∥∥w∗

j −w∗
k

∥∥2 for j ∈ [k − 1], k = 2, 3, .., i where

ηj,k = η+j,k + η−j,k ≥ −
T 2(n+M)nM

p3
. (49)

Now, we compare the coefficients in forgetting in Theorem 1. We first fix the index i, meaning that
we consider the generalization error on the task i.. The proof of c(concurrent)

i < c(sequential)
i follows from

Lemma 15 if p > 2T 3(n+M)2 .
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The proof of c(concurrent)
ijk > c(sequential)

ijk are as follows.

1. we prove c(concurrent)
i1i > c(sequential)

i1i if p > 5T 4(n+M)nM . We start from c(sequential)
i1i . We first upper

bound part of the coefficient c(sequential)
i1i :

n

p

{
t−2∏
l=0

[(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)]
−

i−2∏
l=0

[(
1− M

(i− l − 1)p

)i−l−1(
1− n

p

)]}
(i)
<

n

p

[(
1− n+M

p

)t−1

−
(
1− n+M

p

)i−1
]
+

T 2(n+M)nM

p3
(50)

where (i) follows from Lemma 16. We then rewrite the rest part of c(sequential)
1 as follows.

t−2∑
l=0

l−1∏
k=0

[(
1− M

(t− k − 1)p

)t−k−1(
1− n

p

)](
1− M

(t− l − 1)p

)t−l−2
M

(t− l − 1)p

−
i−2∑
l=0

l−1∏
k=0

[(
1− M

(i− k − 1)p

)i−k−1(
1− n

p

)](
1− M

(i− l − 1)p

)i−l−2
M

(i− l − 1)p

=

t−i−1∑
l=0

l−1∏
k=0

[(
1− M

(t− k − 1)p

)t−k−1(
1− n

p

)](
1− M

(t− l − 1)p

)t−l−2
M

(t− l − 1)p

+

t−2∑
l=t−i

l−1∏
k=0

[(
1− M

(t− k − 1)p

)t−k−1(
1− n

p

)](
1− M

(t− l − 1)p

)t−l−2
M

(t− l − 1)p

−
i−2∑
l=0

l−1∏
k=0

[(
1− M

(i− k − 1)p

)i−k−1(
1− n

p

)](
1− M

(i− l − 1)p

)i−l−2
M

(i− l − 1)p

=

t−i−1∑
l=0

l−1∏
k=0

[(
1− M

(t− k − 1)p

)t−k−1(
1− n

p

)](
1− M

(t− l − 1)p

)t−l−2
M

(t− l − 1)p

+

i−2∑
l=0

l−i+t−1∏
k=0

[(
1− M

(t− k − 1)p

)t−k−1(
1− n

p

)](
1− M

(i− l − 1)p

)i−l−2
M

(i− l − 1)p

−
i−2∑
l=0

l−1∏
k=0

[(
1− M

(i− k − 1)p

)i−k−1(
1− n

p

)](
1− M

(i− l − 1)p

)i−l−2
M

(i− l − 1)p

(i)
<

t−i−1∑
l=0

(
1− n+M

p

)l
M

(t− l − 1)p
− M

T 2p2
+

T 2(n+M)M2

p3

+

i−2∑
l=0

[(
1− n+M

p
+

(n+M)M

p2

)l−i+t

−
(
1− n+M

p

)l
]

·
(
1− M

(i− l − 1)p

)i−l−2
M

(i− l − 1)p

(ii)
<

t−i−1∑
l=0

(
1− n+M

p

)l
M

(t− l − 1)p
− M

T 2p2
+

T 2(n+M)M2

p3

+

i−2∑
l=0

[(
1− n+M

p

)l−i+t

+
T 2(n+M)M

p2
−
(
1− n+M

p

)l
]

M

(i− l − 1)p

<

t−1∑
l=0

(
1− n+M

p

)l
M

(t− l − 1)p
−

i−1∑
l=0

(
1− n+M

p

)l
M

(i− l − 1)p

− M

T 2p2
+

2T 2(n+M)M2

p3
, (51)
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where (i) follows from eq. (58) and lemmas 10 and 11, (ii) follows from Lemma 12 By combining
eqs. (50) and (51),

c(sequential)
i1i <

n

p

[(
1− n+M

p

)t−1

−
(
1− n+M

p

)i−1
]
+

t−1∑
l=0

(
1− n+M

p

)l
M

(t− l − 1)p

−
i−1∑
l=0

(
1− n+M

p

)l
M

(i− l − 1)p
+

T 2(n+M)nM

p3
− M

T 2p2
+

2T 2(n+M)M2

p3

(i)
<

n

p

[(
1− n+M

p

)t−1

−
(
1− n+M

p

)i−1
]
+

t−1∑
l=0

(
1− n+M

p

)l
M

(t− l − 1)p

−
i−1∑
l=0

(
1− n+M

p

)l
M

(i− l − 1)p
− T 2(n+M)M2

p3
− T 2(n+M)nM

p3

(ii)

≤ c(concurrent)
i1i (52)

where (i) follows from the fact that p > 5T 4(n + M)nM , (ii) follows from our observation in
eqs. (47) and (49).

2. Next, we prove c(concurrent)
iji > c(sequential)

iji if p > 5T 4(n +M)nM , for j = 2, 3, ..., i − 1. We first
notice that c(sequential)

iji consists of two parts. We bound the first part by

t−j−1∑
l=0

l−1∏
k=0

[(
1− M

(t− k − 1)p

)t−k−1(
1− n

p

)](
1− M

(t− l − 1)p

)t−j−l−1
M

(t− l − 1)p

−
i−j−1∑
l=0

l−1∏
k=0

[(
1− M

(i− k − 1)p

)i−k−1(
1− n

p

)](
1− M

(i− l − 1)p

)i−j−l−1
M

(i− l − 1)p

(i)
<

t−j−1∑
l=0

(
1− n+M

p

)l
M

(t− l − 1)p
−

i−j−1∑
l=0

(
1− n+M

p

)l
M

(i− l − 1)p

− M

T 2p2
+

2T 2(n+M)M2

p3
, (53)

For the rest part of c(sequential)
iji , we have

t−j−1∏
k=0

[(
1− M

(t− k − 1)p

)t−k−1(
1− n

p

)](
1− M

(j − 1)p

)j−1
n

p

−
i−j−1∏
k=0

[(
1− M

(i− k − 1)p

)i−k−1(
1− n

p

)](
1− M

(j − 1)p

)j−1
n

p

(i)
<

{(
1− n+M

p

)i−j−1
[(

1− n+M

p

)t−i

− 1

]
+

T 2(n+M)M

p2

}(
1− M

(j − 1)p

)j−1
n

p

<

{(
1− n+M

p

)i−j−1
[(

1− n+M

p

)t−i

− 1

]}
+

T 2(n+M)nM

p3
, (54)

where (i) follows from Lemma 16. By combining eqs. (53) and (54), we have

c(sequential)
j <

t−j−1∑
l=0

(
1− n+M

p

)l
M

(t− l − 1)p
−

i−j−1∑
l=0

(
1− n+M

p

)l
M

(i− l − 1)p

+

{(
1− n+M

p

)i−1
[(

1− n+M

p

)t−i

− 1

]}
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+
T 2(n+M)nM

p3
− M

T 2p2
+

2T 2(n+M)M2

p3

(i)
<

t−j−1∑
l=0

(
1− n+M

p

)l
M

(t− l − 1)p
−

i−j−1∑
l=0

(
1− n+M

p

)l
M

(i− l − 1)p

+

{(
1− n+M

p

)i−j−1
[(

1− n+M

p

)t−i

− 1

]}

− T 2(n+M)M2

p3
− T 2(n+M)nM

p3

(ii)

≤ c(concurrent)
iji , (55)

where (i) follows from the fact that p > 5T 4(n + M)nM , (ii) follows from our observation in
eqs. (47) and (49).

3. We prove c(concurrent)
iji > c(sequential)

iji for j = i, i + 1, ..., t − 1 if p > T 4(n +M)M . According to
the same derivation as eqs. (60) and (62), we have

c(sequential)
iji <

t−j−1∑
l=0

(
1− n+M

p

)l
M

(t− l − 1)p

(
1− n+M

p

)t−j
n

p

− M

T 2p2
+

T 2(n+M)M2

p3

<

t−j−1∑
l=0

(
1− n+M

p

)l
M

(t− l − 1)p

(
1− n+M

p

)t−j
n

p

− T 2(n+M)M2

p3
− T 2(n+M)nM

p3

(i)

≤ c(concurrent)
iji ,

where (i) follows from our observation in eqs. (47) and (49).

4. Last, we prove c(concurrent)
iT i > c(sequential)

iT i if p > T 2(n+M)M . We have:

c(sequential)
iT i =

(
1− M

(t− 1)p

)t−1
n

p
<

(
1− M

(t− 1)p

)
n

p
<

n

p
− nM

p2

(i)
<

n

p
− T 2(n+M)M2

p3
− T 2(n+M)nM

p3

(ii)

≤ c(concurrent)
iT i , (56)

where (i) follows from the fact that p > T 2(n+M)M , (ii) follows from our observation in eqs. (47)
and (49).

5. As illustrated in eqs. (45) and (48), we obtain the following conclusions. For j = [k−1]; k = i, i+

1, .., t−1, we have c(concurrent)
ijk > c(sequential)

ijk , following the fact that c(concurrent)
ijk > 0 and c(sequential)

ijk = 0.

However, for j = [k − 1]; k ∈ [i − 1], we have c(concurrent)
ijk < c(sequential)

ijk , following the fact that

c(concurrent)
ijk < 0 and c(sequential)

ijk = 0. We note that the impact of these components on forgetting is
significantly small under a large p, following the fact that the disadvantage terms in sequential replay
β−
1 and β−

2 in eqs. (45) and (48) are of order O( 1
p3 ), while the advantage of other coefficients is of

order O( 1
p2 ).

E.2 COMPARISON OF COEFFICIENTS OF GENERALIZATION ERROR IN THEOREM 1

We comparison of coefficients of Generalization error in Theorem 1 as follows. We first fix the
index i, meaning that we consider the generalization error on the task i.
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1. We first prove d(concurrent)
0 < d(sequential)

0 . According to Lemma 10, we have:

d(concurrent)
0T =

(
1− n

p

)(
1− n+M

p

)t−1

<

(
1− n

p

) t−2∏
l=0

[(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)]
= d(sequential)

0T

2. Now, we prove d(concurrent)
i1iT > d(sequential)

i1iT if p > 2T 4(n+M)nM . We first consider:

n

p

t−2∏
l=0

[(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)]
(i)
<

n

p

(
1− n+M

p
+

(n+M)M

p2

)t−1

(ii)
<

n

p

(
1− n+M

p

)t−1

+
T 2(n+M)nM

p3
, (57)

where (i) follows from Lemma 11 and (ii) follows from Lemma 12.

We also notice that:
t−2∑
l=0

l−1∏
k=0

[(
1− M

(t− k − 1)p

)t−k−1(
1− n

p

)](
1− M

(t− l − 1)p

)t−l−2
M

(t− l − 1)p

=

t−3∑
l=0

l−1∏
k=0

[(
1− M

(t− k − 1)p

)t−k−1(
1− n

p

)](
1− M

(t− l − 1)p

)t−l−2
M

(t− l − 1)p

+

t−3∏
k=0

[(
1− M

(t− k − 1)p

)t−k−1(
1− n

p

)](
1− M

p

)
M

p

(i)
<

(
1− 1

Tp

) t−3∑
l=0

(
1− n+M

p

)l
M

(t− l − 1)p

+

(
1− n+M

p
+

(n+M)M

p2

)t−2(
1− M

p

)
M

p

(ii)
<

(
1− 1

Tp

) t−3∑
l=0

(
1− n+M

p

)l
M

(t− l − 1)p

+

[(
1− n+M

p

)t−2

+
T 2(n+M)M

p2

](
1− M

p

)
M

p

<

t−2∑
l=0

(
1− n+M

p

)l
M

(t− l − 1)p
− M

T 2p2
+

T 2(n+M)M2

p3
, (58)

where (i) follows from Lemmas 11 and 14 and (ii) follows from Lemma 12. By combining eqs. (57)
and (58), we can conclude:

d(sequential)
i1iT <

n

p

(
1− n+M

p

)t−1

+

t−2∑
l=0

(
1− n+M

p

)l
M

(t− l − 1)p

+
T 2(n+M)nM

p3
− M

T 2p2
+

T 2(n+M)M2

p3

(i)
<

n+M

p

(
1− n+M

p

)t−1

+

t−2∑
l=0

(
1− n+M

p

)l
M

(t− l − 1)p
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= d(concurrent)
i1iT (59)

where (i) follows from the fact that p > 2T 4(n+M)nM .

3. Next, we prove d(concurrent)
ijiT > d(sequential)

ijiT if p > T 4(n + M)M , for j = 2, 3, ..., t − 1. We first
have:
t−j−1∑
l=0

l−1∏
k=0

[(
1− M

(t− k − 1)p

)t−k−1(
1− n

p

)](
1− M

(t− l − 1)p

)t−j−l−1
M

(t− l − 1)p

=

t−j−2∑
l=0

l−1∏
k=0

[(
1− M

(t− k − 1)p

)t−k−1(
1− n

p

)](
1− M

(t− l − 1)p

)t−j−l−1
M

(t− l − 1)p

+

t−j−2∏
k=0

[(
1− M

(t− k − 1)p

)t−k−1(
1− n

p

)]
M

jp

(i)
<

(
1− 1

Tp

) t−j−2∑
l=0

(
1− n+M

p

)l
M

(t− l − 1)p
+

(
1− n+M

p
+

(n+M)M

p2

)t−j−1
M

jp

(ii)
<

(
1− 1

Tp

) t−j−2∑
l=0

(
1− n+M

p

)l
M

(t− l − 1)p
+

(
1− n+M

p

)t−j−1
M

jp
+

T 2(n+M)M2

jp3

<

t−j−1∑
l=0

(
1− n+M

p

)l
M

(t− l − 1)p
− M

T 2p2
+

T 2(n+M)M2

p3
(60)

where (i) follows from Lemmas 11 and 14, (ii) follows Lemma 12. Therefore, if p > T 4(n+M)M ,
we have:

t−j−1∑
l=0

l−1∏
k=0

[(
1− M

(t− k − 1)p

)t−k−1(
1− n

p

)](
1− M

(t− l − 1)p

)t−j−l−1
M

(t− l − 1)p

<

t−j−1∑
l=0

(
1− n+M

p

)l
M

(t− l − 1)p
. (61)

Furthermore, we have:
t−j−1∏
k=0

[(
1− M

(t− l − 1)p

)t−k−1(
1− n

p

)](
1− M

(j − 1)p

)j−1
n

p

(i)
<

(
1− n+M

p

)t−j
n

p
(62)

where (i) follows from Lemmas 11 and 14. Therefore, by combining eqs. (61) and (62), we have:

d(sequential)
ijiT <

t−j−1∑
l=0

(
1− n+M

p

)l
M

(t− l − 1)p
+

(
1− n+M

p

)t−j
n

p
≤ d(concurrent)

ijiT . (63)

4. Last, we prove d(concurrent)
iT iT > d(sequential)

iT iT . The proof is straightforward:

d(sequential)
iT iT =

(
1− M

(t− 1)p

)t−1
n

p
<

n

p
≤ d(concurrent)

iT iT .

5. Moreover, for the other choices of j, k we have d(concurrent)
iT iT ≥ 0 and d(sequential)

iT iT = 0.

F PROOF OF THEOREM 3

Now, we provide a particular example in which sequential replay has less forgetting than concurrent
replay. Since FT = 1

T−1

∑T−1
i=1 (Li(wT )− Li(wi)), we focus on proving

[Li(wT )− Li(wi)]
(concurrent) > [Li(wT )− Li(wi)]

(sequential)
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if p > 2T 2(n + M)nM for each i ∈ [T − 1], which leads to the final conclusion. Since w∗
i are

orthonormal, we have ∥w∗
i ∥

2
= 1 and

∥∥w∗
i −w∗

j

∥∥2 = 2 for i ̸= j. Now we consider when t = T .
Recall the discussion about β2 in eq. (48). Then, we consider

2β+
2 =

T−i−1∑
l=0

(
1− n+M

p

)l
2nM

p(p− n−M − 1)

=
2nM

p(p− n−M − 1)
·
[1− (1− n+M

p )T−i]

1− (1− n+M
p )

>
2nM

p2
·
−
∑T−i

k=1

(
T−i
k

)
(−n+M

p )k

n+M
p

(64)

We note that for any k ∈ [3, T − i− 1] and k is odd, we have(
T − i

k

)(
−n+M

p

)k

+

(
T − i

k + 1

)(
−n+M

p

)k+1

=
(T − i)!

k!(T − i− k − 1)!

(
−n+M

p

)k [
1

T − i− k
+

1

k + 1

(
−n+M

p

)]
<

(T − i)!

k!(T − i− k − 1)!

(
−n+M

p

)k [
1

T
− n+M

p

]
(i)
< 0,

where (i) follows from the fact that p > T (n + M). By simply discussing when T − i is odd or
even, we can have

−
T−i∑
k=1

(
T − i

k

)(
−n+M

p

)k

> −
(
T − i

1

)(
−n+M

p

)
−
(
T − i

2

)(
−n+M

p

)2

=
(T − i)(n+M)

p
− (T − i)(T − i− 1)(n+M)2

2p2
.

By substituting the above equation into eq. (64), we can have

2β+
2 >

2nM

p(n+M)
·
[
(T − i)(n+M)

p
− (T − i)(T − i− 1)(n+M)2

2p2

]
=

2(T − i)nM

p2
− (T − i)(T − i− 1)(n+M)nM

p3

(i)

≥ (T − i)(n+M)M

p2
+

M

p2
− T 2(n+M)nM

p3
(65)

where (i) follows from the fact that n ≥M + 1. Now, we can conclude:

[Li(wT )− Li(wi)]
(concurrent)

= c(concurrent)
0 + 2

T∑
j=1

c(concurrent)
j

(i)
>

(
1− n

p

)[(
1− n+M

p

)T−1

−
(
1− n+M

p

)i−1
]
+ 2

T∑
j=1

c(sequential)
j + 2β+

1 + 2β+
2

≥
(
1− n

p

)[(
1− n+M

p

)T−1

−
(
1− n+M

p

)i−1
]
+ 2

T∑
j=1

c(sequential)
j + 2β+

2 (66)

where (i) follows from eqs. (52), (55) and (56). On the other hand, we have:

[Li(wT )− Li(wi)]
(sequential)
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(i)
<

(
1− n

p

)[(
1− n+M

p

)T−1

−
(
1− n+M

p

)i−1
]
+ 2

T∑
j=1

c(sequential)
j

+
(T − i)(n+M)M

p2
+

T 3(n+M)2M2

p4
, (67)

where (i) follows from Lemma 17. By combining eqs. (65) to (67) and the fact that p > 2T 2(n +
M)nM , we have

[Li(wT )− Li(wi)]
(concurrent) > [Li(wT )− Li(wi)]

(sequential),

which completes the proof.

Now, we provide a particular example in which sequential replay achieves a lower generaliza-
tion error, as presented in Theorem 3. Since GT = 1

T

∑T
i=1 Li(wT ), we focus on proving

L(concurrent)
i (wT ) > L(sequential)

i (wT ) if p > 2T 4(n + M + 1)2M for each i ∈ [T ], which leads
to the final conclusion. Since w∗

i are orthonormal, we have ∥w∗
i ∥

2
= 1 and

∥∥w∗
i −w∗

j

∥∥2 = 2 for
i ̸= j. We first consider

t−2∑
l=0

(
1− n+M

p

)l t−l−1∑
j=1

nM
t−l−1

p(p− n−M − 1)

∥∥w∗
j −w∗

t−l

∥∥2
=

T−2∑
l=0

(
1− n+M

p

)l T−l−1∑
j=1

2nM
T−l−1

p2

> (T − 1)

(
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p
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2nM

p2
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(
1− T (n+M)

p

)
2(T − 1)nM

p2

(i)

≥
(
1− T (n+M)

p

)
(T − 1)(n+M + 1)M

p2
, (68)

where (i) follows from the fact that n ≥ M + 1. Therefore, by combining eqs. (33) and (68), we
have:

L(concurrent)
i (wT ) >

(
1− n

p

)(
1− n+M

p

)T−1

+ 2

{(
1− n+M

p

)T−1
n

p
+

T−2∑
l=0

(
1− n+M

p

)l
M

(T − l − 1)p

}

+ 2
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{
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(
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p
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(T − l − 1)p
+
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p
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n

p

}
+

2n

p

+

(
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p

)
(T − 1)(n+M + 1)M
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. (69)

On the other hand, we have:

L(sequential)
i (wT )

(i)
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(
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p
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p
+

(n+M)M
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+ 2

{(
1− n+M

p
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+
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1− n+M

p
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M

(T − l − 1)p

}

+ 2
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j=2

{
T−j−1∑
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p
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+
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)T−j
n

p

}
+
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p

+

(
(T − 1)(n+M)M

p2
+

T 3(n+M)2M2

2p4

)
(70)

where (i) follows from Lemma 11 and eqs. (59) and (63), (ii) follows from Lemma 13 and the fact
that 1− n

p < 1. To build the relationship between eqs. (69) and (70), we have:(
1− T (n+M)

p

)
(T − 1)(n+M + 1)M

p2
−
(
(T − 1)(n+M)M

p2
+

T 3(n+M)2M2

2p4

)
=

(T − 1)M

p2
− T (T − 1)(n+M)(n+M + 1)M

p3
− T 3(n+M)2M2

2p4

(i)
> 0 (71)

where (i) follows from the fact that p > 2T 2(n+M + 1)2M . By combining eqs. (69) to (71), we
can conclude: L(concurrent)

i (wT ) > L(sequential)
i (wT ).

G EXPERIMENT DETAILS

Dataset. We evaluate our Hybrid Replay on CIFAR-100 (Krizhevsky et al. (2009)), a real-world
dataset for image classification. It’s composed of a total of 100 different classes, each containing 500
non-overlapping training images and 100 testing images. In line with prior works Guo et al. (2022)
and Sun et al. (2022), we randomly split the original dataset into 10 tasks under a task-incremental
setup, each containing 10 non-overlapping classes.

Implementation Details. For training on CIFAR-100, we employ a non-pretrained ResNet-18 as
our DNN backbone. Following Van de Ven et al. (2022), we adopt a multi-headed output layer such
that each task is assigned its own output layer, consistent with the typical Task Incremental CL setup.
During supervised training, we explicitly provide the task identifier (ranging from 0 to 9) alongside
the image-label pairs as additional input to the model. For simplicity, we use a reservoir sampling
strategy to construct the replay buffer. Our replay buffer size is 50 per class. Other than the image
corruption, we didn’t apply any data augmentation prior to training.

For all experiments on Concurrent Replay, we use the SGD (Stochastic Gradient Descent) optimizer
for 30 epochs per task, with a minibatch size of 128, momentum of 0.9, weight decay of 1e−4, and
an initial learning rate of 0.05 that is reduced by a factor of 0.1 after 20 epochs.

For all experiments on Sequential Replay, we use the SGD optimizer for 30 epochs per task, with a
minibatch size of 64, momentum of 0.9, weight decay of 1e−3, and an initial learning rate of 0.001
that is reduced by a factor of 0.1 after each 12 epochs. We slightly adjust these training parameters
for hybrid training due to the relatively smaller number of trained images which increases the risk
of overfitting.

Task Corruption. For experiments described in Section 6.2, we control the similarity level of the
dataset by applying data corruption to different number of tasks. We provide a list of sample images
under different image corruption schemes in fig. 3. For the scenario ”Original Dataset”, we don’t
apply any image corruption. For the scenario ”1 Corruption”, we apply the Glass corruption on T1.
For the scenario ”2 Corruption”, we apply Glass corruption onT1, and rotational color swaping on
T2. For the scenario ”3 Corruption”, we apply Glass corruption onT1, rotational color swaping on
T3, and elastic pixelation on T5.
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(a) Sample images without corruption.

(b) Glass Corruption: the images are transformed to simulate the effect of viewing through frosted glass,
inducing localized blurring and pixel displacement.

(c) Color-swapping and Rotation Corruption: the images are randomly rotated by arbitrary angles, and a subset
of pixels undergoes random permutation of RGB channels.

(d) Elastic and Pixelate Image Corruption: the images are subjected to smooth, non-linear spatial deformations
followed by pixelation, resulting in a low-resolution appearance.

Figure 3: Sample images for demonstrating the corruption schemes listed.
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