
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

REPLAY CONCURRENTLY OR SEQUENTIALLY? A THE-
ORETICAL PERSPECTIVE ON REPLAY IN CONTINUAL
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Replay-based methods have shown superior performance to address catastrophic
forgetting in continual learning (CL), where a subset of past data is stored and
generally replayed together with new data in current task learning. While seem-
ingly natural, it is questionable, though rarely questioned, if such a concurrent
replay strategy is always the right way for replay in CL. Inspired by the fact in
human learning that revisiting very different courses sequentially before final ex-
ams is more effective for students, an interesting open question to ask is whether a
sequential replay can benefit CL more compared to a standard concurrent replay.
However, answering this question is highly nontrivial considering a major lack of
theoretical understanding in replay-based CL methods. To this end, we investigate
CL in overparameterized linear models and provide a comprehensive theoretical
analysis to compare two replay schemes: 1) Concurrent Replay, where the model
is trained on replay data and new data concurrently; 2) Sequential Replay, where
the model is trained first on new data and then sequentially on replay data for
each old task. By characterizing the explicit form of forgetting and generalization
error, we show in theory that sequential replay tends to outperform concurrent re-
play when tasks are less similar, which is corroborated by our simulations in linear
models. More importantly, our results inspire a novel design of a hybrid replay
method, where only replay data of similar tasks are used concurrently with the
current data and dissimilar tasks are sequentially revisited using their replay data.
As depicted in our experiments on real datasets using deep neural networks, such
a hybrid replay method improves the performance of standard concurrent replay
by leveraging sequential replay for dissimilar tasks. By providing the first com-
prehensive theoretical analysis on replay, our work has great potentials to open up
more principled designs for replay-based CL.

1 INTRODUCTION

Continual learning (CL) (Parisi et al., 2019) seeks to build an agent that can learn a sequence of
tasks continuously without access to old task data, resembling human’s capability of lifelong learn-
ing. One of the major challenges therein is the so-called catastrophic forgetting (Kirkpatrick et al.,
2017), i.e., the agent can easily forget the knowledge of old tasks when learning new tasks. A large
amount of studies have been proposed to address this issue, among which replay-based approaches
(Rolnick et al., 2019) have demonstrated the state-of-the-art performance. The main idea behind is
to store a subset of old task data in the memory and replay them when learning new tasks, where a
widely adopted strategy for training is concurrent replay (Evron et al., 2024), i.e., train the model
concurrently on new task data and the replay data.

While the concurrent replay strategy seems very natural and has shown successful performance to
address catastrophic forgetting, it is indeed questionable whether this strategy is always the right
way for replay in CL as we consider the following aspects. 1) From the perspective of human
learning. In daily life, a common strategy to prevent forgetting is to review old knowledge. For
example, suppose a student needs to learn a series of topics over a semester before taking an exam,
and each topic corresponds to one task in CL. Intuitively, if these topics are highly related to each
other, incorporating the knowledge of old topics into learning a new topic can be an effective strategy

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

to strengthen the new learning and simultaneously reduce the forgetting of old knowledge, which is
analogous to concurrent replay. However, if the topics are very different from each other, a common
practice that a student often takes is to learn new topics first and then go over old topics to mitigate
the forgetting. Here, such a sequential replay may lead to better outcome in the exam. 2) From the
perspective of multi-task learning. Learning multiple tasks all at once may lead to poor learning
performance due to the potential interference among gradients of different tasks Yu et al. (2020),
whereas standard CL without regularization and replay may even achieve less forgetting for more
dissimilar tasks Lin et al. (2023). Thus motivated, an interesting and open question to ask is:

Question: Whether sequential replay will serve as an appealing replay strategy to complement the
standard concurrent replay, and when will it be advantageous over concurrent replay for CL?

To answer this question from a theoretical perspective, we study replay-based CL through the lens of
overparameterized linear models to gain useful insights, by following a recent series of theoretical
studies in CL (Lin et al., 2023; Evron et al., 2022; Ding et al., 2024; Li et al., 2024). However, none
of those previous studies analyzed the replay-based methods. The only theoretical work that studied
the replay-based methods is the recent concurrent work (Banayeeanzade et al., 2024). But this work
considered only the standard concurrent replay method, not from the new perspective of sequential
replay.

In this work, to capture the idea and advantage of sequential replay, we propose a novel replay
strategy, in which the agent sequentially revisits each old task and trains the model with the corre-
sponding replay data after the current task is well learned.

Main Contributions. We summarize our main contributions as follows.

• First of all, we provide the first explicit closed-form expressions for the expected value of
forgetting and generalization error for both concurrent replay strategy and sequential replay
strategy under an overparameterized linear regression setting. Note that the blending of samples
from old tasks in concurrent replay introduces significant intricacies related to task correlation
in theoretical analysis. To address this challenge, we partition training data into blocks based on
different tasks, which enables us to further calculate the task interference using the properties of
block matrix. In particular, our theoretical results demonstrate how the performance of replay-
based CL is affected by various factors, including task similarity and memory size.

• Secondly, we propose a novel replay strategy, i.e., sequential replay, to sequentially revisit old
tasks after the current task is fully learned. By characterizing the explicit closed-form expres-
sions for the expected forgetting and generalization error for sequential replay and comparing
with the concurrent replay, we give an affirmative answer to the open question above. More
importantly, we rigorously characterize the conditions when sequential replay can benefit CL
more than concurrent replay, in terms of both forgetting and generalization error, which is also
consistent with our motivations above: Sequential replay outperforms concurrent replay if tasks
in CL are dissimilar, and the performance improvement is larger when the tasks are more dis-
similar. Numerical simulations on linear models further corroborate our theoretical results.

• Last but not least, our theoretical insights can indeed go beyond the linear models and guide
the practical algorithm design for replay-based CL with deep neural networks (DNNs). More
specifically, we merge the idea of sequential replay into standard replay-based CL with concur-
rent replay, leading to a hybrid replay approach where 1) old tasks dissimilar to the current task
will be revisited by using sequential replay (guided by our theory that suggests more benefit
if dissimilar tasks are revisited sequentially) and 2) the replay data for the remaining old tasks
(that are sufficiently similar to the current task) will still be used concurrently with current task
data. Our experiments on real datasets with DNNs verify that our hybrid approach can perform
better than concurrent replay and the advantage is more apparent when tasks are less similar.

2 RELATED WORK

Empirical studies in CL. CL has drawn significant attention in recent years, with numerous em-
pirical approaches developed to mitigate the issue of catastrophic forgetting. Architecture-based ap-
proaches combat catastrophic forgetting by dynamically adjusting network parameters (Rusu et al.,
2016) or introducing architectural adaptations such as an ensemble of experts (Rypeść et al., 2024).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Regularization-based methods constrain model parameter updates to preserve the knowledge of pre-
vious tasks (Kirkpatrick et al., 2017; Magistri et al., 2024). Memory-based methods address forget-
ting by storing some information of old tasks in the memory and leveraging the information during
current task learning, which can be further divided into orthogonal projection based methods and
replay-based methods. The former stores gradient information of old tasks and uses this to mod-
ify the optimization space for the current task (Saha et al., 2021; Lin et al., 2022), while the latter
stores and reuses a tiny subset of representative data, known as exemplars. Critical design consider-
ations in empirical replay-based methods mainly include varying exemplar sampling and utilization
schemes. Exemplar sampling methods involve reservoir sampling (Chrysakis & Moens, 2020) and
an information-theoretic evaluation of exemplar candidates (Sun et al., 2022). Some other work
such as Shin et al. (2017) retains past knowledge by replaying ”pseudo-data” constructed from input
data instead of storing raw input. Replay methods mostly assume a concurrent training scheme that
trains the model using a mix of input data and sampled exemplars (Dokania et al., 2019; Rebuffi
et al., 2017; Garg et al., 2024). Other exemplar utilization methods include Lopez-Paz & Ranzato
(2017) and Chaudhry et al. (2018), which use exemplar to impose constraints in the gradient space.

Theoretical studies in CL. Compared to the vast amount of empirical studies in CL, the theoretical
understanding of CL is very limited but has started to attract much attention very recently. Bennani
et al. (2020); Doan et al. (2021) investigated CL performance for the orthogonal gradient descent
approach in NTK models theoretically. Yin et al. (2020) focused on regularization-based methods
and proposed a framework, which requires second-order information to approximate loss function.
Cao et al. (2022); Li et al. (2022) characterized the benefits of continual representation learning from
a theoretical perspective. Evron et al. (2023) connected regularization-based methods with Projec-
tion Onto Convex Sets. Recently, a series of theoretical studies proposed to leverage the tools of
overparameterized linear models to facilitate better understanding of CL. Evron et al. (2022) studied
the performance of forgetting under such a setup. After that, Lin et al. (2023) characterized the
performance of CL in a more comprehensive way, where they discuss the impact of task similarities
and the task order. Goldfarb & Hand (2023) illustrated the joint effect of task similarity and over-
parameterization. Zhao et al. (2024) provided a statistical analysis of regularization-based methods.
More recently, Li et al. (2024) further theoretically investigated the impact of mixture-of-experts on
the performance of CL in linear models.

Different from all the previous studies, we seek to fill up the theoretical understanding for replay-
based CL. Note that one concurrent study Banayeeanzade et al. (2024) also investigates replay-based
CL in overparameterized linear models with concurrent replay. However, one key difference here is
that we propose a novel replay strategy, i.e., the sequential replay, and theoretically show its benefit
over concurrent replay for dissimilar tasks. Our theoretical results further motivate a new algorithm
design for CL in practice, which demonstrates promising performance on DNNs.

3 PROBLEM SETTING

We consider a common CL setup consisting of T tasks where each task arrives sequentially in time
t ∈ [T] and is learned sequentially by one model. Here [T] := {1, 2, ..., T} for any positive integer
T . Let Ip denote the p× p identity matrix and let ∥·∥ denote the ℓ2-norm.

Data Model. We adopt the setting of linear ground truth which is commonly used in the theoretical
analysis of various machine learning methods including CL (e.g., Lin et al. (2023)). Specifically,
For each task t ∈ [T], a sample (x̂t, yt) is generated by a linear ground truth model:

yt = x̂⊤
t ŵ

∗
t + zt, (1)

where x̂t ∈ Rst denotes st true features, yt ∈ R denotes the output, ŵ∗ ∈ Rst denotes the ground
truth parameters, and zt ∈ R denotes the noise. Notice that in practice, true features are unknown,
and typically more features are selected to ensure that all relevant features are included. Mathe-
matically, letting St denote the set of true features of task t and lettingW denote the set of chosen
features in our model. We assume

⋃
t∈[T] St ⊆ W . We use p to denote the number of chosen

features, i.e., |W| = p. (Of course,
⋃

t∈[T] St ⊆ W implies that p ≥ maxt∈[T] st.) With this as-
sumption, we expand ŵ∗

t ∈ Rst to a sparse p-dimensional vector w∗
t ∈ Rp by filling zeros in the

positions corresponding toW\St. Thus, eq. (1) can be written as:

yt = x⊤
t w

∗
t + zt, (2)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where xt,w
∗
t ∈ Rp. In other words, (xt, yt) is the sample used in the training process.

Dataset. For each task t ∈ [T], there are nt training samples (xt,i, yt,i)i∈[nt]. We stack those
samples into matrices/vectors to obtain the dataset Dt = {(Xt,Yt) ∈ Rp×nt × Rnt}, By eq. (2),
we have

Yt = X⊤
t w∗

t + zt, (3)
where Xt := [xt,1 xt,2 · · · xt,nt], Yt := [yt,1 yt,2 · · · yt,nt]

⊤, and zt := [zt,1 zt,2 · · · zt,nt]
⊤. To

simplify our theoretical analysis, we consider i.i.d. Gaussian features and noise, i.e., each element
of Xt follows i.i.d. standard Gaussian distribution, and zt ∼ N (0, σ2

t Int
) where σt ≥ 0 denotes

the noise level. To make our result easier to interpret, we let σt = σ and nt = n for all t ∈ [T].

Memory. For any task t ≥ 2, besides Dt, the agent has an overall memory datasetMt that contains
separate memory datasetsMt,i for each of the previous tasks i ∈ [t − 1], i.e., Mt =

⋃t−1
i=1Mt,i

whereMt,i = (X̃t,i, Ỹt,i) ∈ Rp×Mt,i × RMt,i denotes the samples from previous task i and we
define Mt,i as the number of samples inMt,i. In most CL applications, the memory space is fully
utilized and the memory size does not change over time. We denote this memory size by M that
does not change with t. In this case, we have

∑t−1
i=1 Mt,i = M for any t ≥ 2. In this work, we focus

on the situation in which the memory data are all fresh and have not been used in previous training.
We equally allocate the memory to all previous tasks at each time t, i.e., Mt,i =

M
t−1 for i ∈ [t− 1].

For simplicity, we assume M
t−1 is an integer1 for any t ∈ {2, 3, · · · , T}.

Performance metrics. We first introduce the model error of parameter w over task i’s ground truth
as:

Li(w) = ∥w −w∗
i ∥

2
. (4)

The performance of CL is measured by two key metrics, which are forgetting and generalization
error. To define these metrics, we let wt be the parameters of the training result at task t.

1. Forgetting: It measures the average forgetting of old tasks after learning the new task. In our
setup, forgetting at task T w.r.t. previous tasks [T − 1] is defined as follows.

FT =
1

T − 1

T−1∑
i=1

(Li(wt)− Li(wi)). (5)

2. Generalization error: It measures the overall model generalization after the final task is learned.
In our setup, generalization error is defined as follow.

GT =
1

T

T∑
i=1

Li(wT). (6)

The definitions are consistent with the standard CL performance measures in experimental studies,
e.g., (Saha et al., 2021).

4 A NOVEL SEQUENTIAL REPLAY VS. POPULAR CONCURRENT REPLAY

In this section, we first introduce the popular concurrent replay strategy that is widely used in current
CL applications to mitigate catastrophic forgetting. We will then propose a novel sequential replay
strategy, which may have appealing advantage compared to concurrent replay.

To describe these replay strategies, recall we denote wt as the parameters of the training result at
task t, which will be used as the initial point for the next task t + 1 at each time t + 1. The initial
model parameter of task 1 is set to be 0, i.e., w0 = 0. The training loss for task t is defined by mean-
squared-error (MSE). We focus on the over-parameterized case, i.e., p > nt +Mt. It is known that
the convergence point of stochastic gradient descent (SGD) for MSE is the feasible point closest to
the initial point with respect to the ℓ2-norm, i.e., the minimum-norm solution.

Concurrent replay. We first introduce the popular concurrent replay strategy as follows. At each
task t ≥ 2, we apply SGD on the current data set and the memory dataset jointly to update the

1We note that without the assumption of M
t−1

∈ Z, memory can still be allocated as equally as possible,
resulting in only a minor error. Our theoretical results remain of referential significance.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 1: An illustration of concurrent replay and sequential replay.

model parameter. Specifically, as illustrated in Figure 1, at time t, we minimize the MSE loss via
SGD on the combined dataset Dt

⋃
Mt with the initial point wt−1 and obtain the convergent point

wt, which can be written as

wt = argmin
w
∥w −wt−1∥2 s.t. X⊤

t w = Yt, X̃⊤
t,iw = Ỹt,i, for all i ∈ [t− 1]. (7)

Novel sequential replay. In scenarios where previous tasks are very different from the current task,
concurrent replay may result in contradicting gradient update directions, and can hurt the knowledge
transfer among tasks. Consequently, concurrent replay may not always perform well. This motivate
us to propose a replay strategy that sequentially replay history tasks one by one after training the cur-
rent task, analogously to the way how a student reviews previously learned topics to avoid forgetting
before exams.

To formally describe the training (see Figure 1 for an illustration), at each task t ≥ 2, we first train on
the current datasetDt to learn the new task and converge to the initial stopping point w(0)

t . Then, for
i = 1, 2, ..., t− 1, we start from the previous stopping point w(i−1)

t and train on the memory dataset
Mt,i to converge to the next stopping point. Eventually, wt is obtained after revisiting all memory
sets, i.e., wt = w

(t−1)
t . We define X̃t,0 := Xt, Ỹt,0 := Yt and w

(−1)
t := wt−1. Then, the training

process is equivalent to solve the following optimization problems recursively for k = 0, 1, ..., t−1:

w
(k)
t = argmin

w

∥∥∥w −w
(k−1)
t

∥∥∥2 s.t. X̃⊤
t,iw = Ỹt,i. (8)

5 MAIN RESULTS

The main theoretical results in this work consist of two parts. First, we derive closed forms of
the expected value of forgetting and generalization error for both concurrent and sequential replay
methods. Second, based on those closed forms, we compare the performance of these two replay-
based schemes, concluding that sequential replay outperforms concurrent replay when tasks are
more dissimilar.

5.1 CHARACTERIZATION OF FORGETTING AND GENERALIZATION ERROR

In replay-based CL methods, the interference among tasks throughout the entire training process is
highly intricate, primarily due to the presence of the memory dataset. This introduces an unavoidable
challenge in understanding the impact of memory on the performance of replay-based methods. In
the following theorem, we first present a common performance structure shared by both concurrent
replay and sequential replay methods. The specific forms of the coefficients in the performance
expressions will be provided later.
Theorem 1. Under the problem setups considered in this work, the expected value of the forgetting
and the generalization error at time T ≥ 2 in both replay-based methods take the following forms.

FT =
1

T − 1

T−1∑
i=1

ci ∥w∗
i ∥

2
+

T−1∑
i=1

∑
j,k≤T−1

cijk
∥∥w∗

j −w∗
k

∥∥2 + T−1∑
i=1

(noiseT (σ)− noisei(σ))

 ,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

GT =
1

T

d0T T∑
i=1

∥w∗
i ∥

2
+

T∑
i=1

∑
j,k≤T

dijkT
∥∥w∗

j −w∗
k

∥∥2+ noiseT (σ), (9)

where the coefficients are provided in Propositions 1 and 2, respectively, for concurrent and sequen-
tial replay methods.

Theorem 1 indicates that since both concurrent and sequential methods are replay-based, they share
the same high-level performance dependence on the system parameters. It can be seen that both
of their forgetting and generalization error consist of the following three components. The first
component exhibits the form of C∥w∗

i ∥2 for some constant C. This component arises from the
error associated with linear regression and is independent of the influence of other tasks. The second
component captures the impact of task dissimilarities, representing the interference among different
tasks during the training process. Extracting central information from this component is particularly
useful for understanding how task dissimilarity affects the comparison between the two replay-based
methods, which is the focus of Section 5.2. The third part captures the impact of the noise level.

In order to facilitate the comparison between the two replay-based methods, in the following two
propositions, we provide the exact expressions for the coefficients in Theorem 1. We first provide the
coefficients determining the generalization error as follows. To clarify, we note that the following
proposition holds for all t ∈ [T].

Proposition 1. Under the problem setups considered in this work, the coefficients that express the
expected value of generalization error Gt take the following forms.

d(concurrent)
0t = r0r

t−1
M , d(sequential)

0t = r0∆(t− 1)

d(concurrent)
ijkt =



(1− r0)r
t−j−1
M +

∑t−j−1
l=0 rlMBl

+
∑t−2

l=0
prlMB2

l

p−n−M−1 +
rt−k
M nBl

p−n−M−1 if j ∈ [t− 1], k = i

(1− r0) +
rt−k
M nBl

p−n−M−1 if j = t, k = i∑t−2
l=0

prlMB2
l

p−n−M−1 if j < k and j, k ̸= i, t
rt−k
M nBl

p−n−M−1 if j < k and j, k ̸= i

d(sequential)
ijkt =


(1− r0)∆(t− 1) +

∑t−2
l=0 ∆(l)(1−Bl)

t−l−2Bl if j = 1, k = i
(1− r0)(1−Bt−j)

j−1∆(t− j) if j = 2, 3, ..., t− 1,

+
∑t−j−1

l=0 ∆(l)(1−Bl)
t−l−2Bl and k = i

(1− r0)(1−B0)
t−1 if j = t, k = i

noise(concurrent)
t (σ) = r0r

t−1
M Λ(n, σ) +

t−2∑
l=0

rlMΛ(n+M,σ),

noise(sequential)
t (σ) =

t−2∑
l=0

∆(l)

[
t−1∑
l=1

(1−B0)
t−l−1Λ(

M

t− 1
, σ) + (1−B0)

t−1Λ(n, σ)

]
.

where ra :=
(
1− n+a

p

)
, Bl :=

M
(t−l−1)p , ∆(a) =

∏a−1
l=0

[
(1−Bl)

t−l−1
r0

]
, Λ(a, σ) = aσ2

p−a−1 .

By substituting t = T , we obtain the expressions of coefficients in Theorem 1. We provide the
coefficients determining the forgetting in the following proposition.

Proposition 2. Under the problem setups considered in this work, the coefficients that express the
expected value of forgetting in Theorem 1 take the following forms:

ci = d0T − d0i and cijk = dijkT − dijki,

where d0t and dijkt are defined in Proposition 1.

The above two propositions will be useful in Section 5.2 to compare between concurrent and se-
quential replay methods. Here, we first draw some basic insights from these expressions. (i) It is
straightforward to verify that by letting M = 0, both training methods yield the same result, which
is consistent with the memoryless case shown by Lin et al. (2023). (ii) We can also observe that low

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

task similarity negatively impacts model generalization, as dijkT are non-negative. (iii) We observe
that the expected value of both forgetting and generalization error approach to 0 when p → ∞.
This implies that a model with substantial capacity (i.e., when p is sufficiently large) will facilitate
effective learning for each task, which can also alleviate the negative impact of task dissimilarity.

5.2 COMPARISON BETWEEN CONCURRENT REPLAY AND SEQUENTIAL REPLAY

The main challenge to compare the performance between the two replay-based methods lies in the
complexity of the second term, which captures how the task similarity as well as memory data
affect the performance. Here the task similarity is characterized by the distance between the true
parameters for two tasks. In this section, we will first study a simple case with two tasks, i.e., when
T = 2, to build our intuition, and then extend to the case with general T based on the central insight
obtained in the simple case.

Two-task Case (T = 2): Following Theorem 1, the performance of both replay methods shares the
following common form:

F2 = ĉ1 ∥w∗
1∥

2
+ ĉ2 ∥w∗

1 −w∗
2∥

2
+ noise2(σ)− noise1(σ),

G2 =
1

2
d̂1(∥w∗

1∥
2
+ ∥w∗

2∥
2
) +

1

2
d̂2 ∥w∗

1 −w∗
2∥

2
+ noise2(σ),

where ĉ1, ĉ2, d̂1, d̂2 are some constants. The specific forms of the coefficients in the above equation
are provided in Appendix C. We take the forgetting as an example to analyze the comparison be-
tween the two methods. Based on the expressions, it can be observed that ĉ(concurrent)

1 < ĉ(sequential)
1

and ĉ(concurrent)
2 > ĉ(sequential)

2 . Thus, at the high level, the task dissimilarity is sufficiently large (i.e.,
tasks are very different), then c2 will dominant the forgetting performance, and hence sequential
replay will have less forgetting than concurrent replay (because ĉ(concurrent)

2 > ĉ(sequential)
2). Alterna-

tively, if the tasks are very similar and the noise is small, then c1 will dominate the performance, and
concurrent replay will yield less forgetting. Similar observations can be made for the generalization
error by noting that d̂(concurrent)

1 < d̂(sequential)
1 and d̂(concurrent)

2 > d̂(sequential)
2 . The following theorem

formally establishes our high-level observations.
Theorem 2. Under the problems setups considered in the work, under the positive constants
ξ1, ξ2, µ1, µ2 with detailed forms given in Appendix C, we have

F (concurrent)
2 > F (sequential)

2 if and only if ξ1 ∥w∗
1 −w∗

2∥
2
+ ξ2σ

2 > ∥w∗
1∥

2
,

G(concurrent)
2 > G(sequential)

2 if and only if µ1 ∥w∗
1 −w∗

2∥
2
+ µ2σ

2 > ∥w∗
1∥

2
.

Theorem 2 provably establishes an intriguing fact that the widely used concurrent replay may not
always perform better, and sequential replay can perform better when tasks are more different from
each other. We further elaborate our comparison between the two methods for the case with T = 2
in Appendix C (where the impact of noise is also considered) and with T = 3 in Appendix D). The
insights obtained from Theorem 2 can also be extended to the general case as follows.

General Case (T ≥ 2): Comparing the performance in two replay methods provided in Theorem 1
under general T is significantly more challenging, because the mathematical expression of the co-
efficients become highly complex. However, our insights obtained from the two-task case can still
be useful, i.e., sequential replay tends to performance better when tasks are very different. To see
this, we consider the expected value of the forgetting and the generalization error on an individual
prior task i, which is E[Li(wt)] − E[Li(wi)] and E[Li(wt)] respectively. We observe the facts
similar to the case with T = 2. Specifically, it can be shown that the coefficients presented in The-
orem 1 satisfy c(concurrent)

ijk > c(sequential)
ijk and d(concurrent)

ijkT > d(sequential)
ijkT , whereas c(concurrent)

i < c(sequential)
i

and d(concurrent)
0T < d(sequential)

0T for general T under certain conditions. These observations suggest
that if the tasks are all very different from each other, then sequential replay will have smaller
forgetting and generalization error than concurrent replay because c(concurrent)

ijk > c(sequential)
ijk and

d(concurrent)
ijkT > d(sequential)

ijkT will dominate the comparison. While it is challenging to provide an exact
closed-form characterization of the conditions under which sequential replay outperforms concur-
rent replay, the following theorem presents an example setting where sequential replay outperforms
concurrent replay, based on the understanding outlined above.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Theorem 3. Under the problem setups in this work, suppose the ground truth w∗
i is orthonormal to

each other for i ∈ [T], M ≥ 2, and p = O(T 4n2M2). Then we have:

F (concurrent)
T > F (sequential)

T and G(concurrent)
T > G(sequential)

T .

In Theorem 3, orthonormal w∗
i is an extreme case to have very different tasks. Typically, since the

forgetting and generalization error are continuous functions of the task dissimilarity, we expect that
in the regime that the tasks are highly different, sequential replay will still be advantageous to enjoy
less forgetting and smaller generalization error, and such an advantage should be more apparent as
tasks become more dissimilar. To explain this, we consider the generalization error as an example.
Assuming that the norm of ground truth is fixed, a higher level of task dissimilarities exacerbates
the generalization error since each coefficient dijkT is positive for both training methods. However,
a weaker dependence on task similarities indicates that the generalization error of sequential replay
grows slower than concurrent replay as tasks become more dissimilar, resulting advantage for se-
quential replay to enjoy smaller generalization error. A similar reason is applicable to the forgetting
performance, although it is important to note that cijk is not always positive. These facts are further
verified by our numerical simulation in Section 6.1.

Remark. It is clear that the order in which old tasks are replayed after current task learning is very
important under the framework of sequential replay, which affects both forgetting and generalization
errors. Needless to say, the sequential order considered in this work, where tasks are reviewed from
the oldest to the newest, is not necessarily the optimal strategy for sequential replay, where however
has already demonstrated exciting advantages over concurrent replay. How to design an effective
replay order to achieve better performance is a very interesting yet challenging future direction.

6 EXPERIMENTAL STUDIES AND IMPLICATIONS ON PRACTICAL CL

In this section, we first conduct experiments on linear models to verify our theoretical results. Next,
and also more interestingly, we show that our theoretical results can guide the algorithm design of
CL in practice, where a novel replay-based CL algorithm is proposed and evaluated with DNNs.

6.1 SIMULATION ON LINEAR REGRESSION MODELS

Following our theoretical investigation, we consider the CL setup where each task is a linear regres-
sion problem, and set T = 5, p = 500, n = 24, σ = 0, M = 24. We construct several sets of ground
truth on the unit sphere defined by ||w∗

j ||2 = 1, with consistent task similarity, i.e., ||w∗
j −w∗

i ||2 is
constant and same for any two tasks with j ̸= i. The comparisons between theoretical results and
simulation results are shown in Figure 2 in terms of both forgetting and generalization error. Here
the theoretical results are calculated using eqs. (33) to (36). For the simulation results, we evaluate
the forgetting and generalization error based on the solutions after solving each task, and calculate
the empirical expectation over 103 iterations.

Several important insights can be immediately obtained from Figure 2: 1) Our theoretical results ex-
actly match with our simulation results, which can clearly corroborate the correctness of our theory.
2) When tasks are similar, i.e., the task gap ||w∗

j −w∗
i ||2 is small than some threshold, concurrent

replay is better than sequential replay. However, when tasks become dissimilar, sequential replay
starts to outperform concurrent replay in terms of both forgetting and generalization error. And the
advantage of sequential replay becomes more significant as the task gap increases, which also aligns
with our theoretical results.

6.2 A NEW ALGORITHM DESIGN FOR CL IN PRACTICE

Our theoretical results not only rigorously characterize replay-based CL in overparameterized linear
models, but also shed light on the algorithm design for practical CL with real datasets and DNNs.
As our theory suggests that sequential replay can benefit CL more than concurrent replay when
tasks are dissimilar, an interesting idea and a potential way to improve the performance is to merge
sequential replay into replayed-based CL with concurrent replay. Thus inspired, we propose a novel
hybrid replay framework, which adapts between concurrent replay and sequential replay for each
task based on its similarity with old tasks in the memory. More specifically, before learning a new

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0 1.5 2.0
Task Gap

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

Fo
rg

et
tin

g

Concurrent (Theory)
Concurrent (Simulated)
Sequential (Theory)
Sequential (Simulated)

(a) Forgetting vs Task Gap

0.0 0.5 1.0 1.5 2.0
Task Gap

0.7

0.8

0.9

1.0

1.1

1.2

1.3

Ge
ne

ra
liz

at
io

n
Er

ro
r

Concurrent (Theory)
Concurrent (Simulated)
Sequential (Theory)
Sequential (Simulated)

(b) Generalization Error vs Task Gap

Figure 2: Forgetting and Generalization Error vs Task Gap

task Tt , we first characterize its similarity with old tasks in the memory, and divide the old tasks
into two sets, i.e.,Mt

sim that includes old tasks similar to Tt, andMt
dis containing the remaining

old tasks which are deemed as dissimilar tasks to Tt. To learn Tt, we first apply concurrent replay
to train the model jointly with the data of Tt and the replay data of old tasks inMt

sim, and then use
sequential replay to sequentially finetune the learned model using the replay data for each old task
inMt

dis. The general procedure is described in Algorithm 1.

Algorithm 1 Hybrid Replay Training Framework

Require: Training data set D
1: procedure TRAIN(D)
2: M← {} ▷ Initialize empty replay buffer
3: θ ← Initialize DNN model parameters
4: for task Tt = T0, . . . do
5: ifM ≠ ∅ then ▷ If replay buffer is non-empty
6: Msim,Mdis ← DIVIDEBUFFER(M,Dt)
7: end if
8: θ ← CONCURRENTTRAIN(Dt ∪Msim) ▷ Train the new task data and similar

exemplars concurrently
9: for Mi ∈Mdis do

10: θ ← SEQUENTIALTRAIN(Mi) ▷ Train exemplars from dissimilar tasks
sequentially

11: end for
12: M←M∪Mt ▷ Update replay buffer with new exemplarsMt ∼ Dt

13: end for
14: end procedure

To verify the performance of the proposed hybrid replay framework, we consider a task-incremental
CL setup using the real-world dataset CIFAR-100 (Krizhevsky et al., 2009). where each task
a multi-class classification problem. Following recent work (Van de Ven et al., 2022), we ran-
domly split the CIFAR-100 dataset into ten tasks {T0, . . . , T9}, each containing ten distinct classes,
later referred as Split-CIFAR-100. The objective for each task Tt is to classify between its ten
classes {Yt,0, . . . ,Yt,9} with the task label t explicitly provided during training and testing. We use
ResNet18 as our base model to learn each task sequentially, where each task has a unique classi-
fication layer. It is clear that how to determine the task similarity is critical for implementing the
hybrid replay. Since the similarity pattern is not clear and complex among the real-life images in
Split-CIFAR-100, we manually control the task similarity in a heuristic manner by introducing im-
age corruption into the tasks. In particular, to understand the benefit of the hybrid replay in a clean
manner, we consider the following specific training comparison between two schemes: 1) Concur-
rent replay is applied on all ten tasks; 2) Hybrid replay is applied on task T5, while concurrent replay
is applied on the remaining tasks. In this way, concurrent replay on tasks Tt, t ∈ {0, 1, 2, 3, 4} can

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 1: Accuracy (ACC, the larger the better) and Backward Transfer (BWT , the larger the better)
of different training methods (concurrent replay vs. hybrid replay) on CIFAR-100 with varying
number of corrupted tasks. ”1 Corruption”, for example, indicates that data corruption was applied
to 1 out of 10 tasks, making it more dissimilar than others. ”Improvement” shows the ACC overhead
that Hybrid Replay achieves over Concurrent Replay under the same setup. All results are averaged
over 10 independent runs.

Setting Original Dataset 1 Corruption 2 Corruption 3 Corruption

Metric ACC BWT ACC BWT ACC BWT ACC BWT

Concurrent Replay 69.206 -6.738 64.244 -7.760 60.667 -9.275 58.933 -8.572

Hybrid Replay 69.568 -6.574 64.807 -7.233 61.304 -8.752 59.720 -8.352

Improvement +0.362 +0.164 +0.563 +0.527 +0.637 +0.523 +0.787 +0.220

be thought as a warm-up training strategy for both schemes. For tasks Tt, t ∈ {6, 7, 8, 9}, concurrent
replay is applied to isolate the effect of hybrid replay on Task T5 and for simplicity. More training
details and specifications for image corruption are listed in Appendix G.

To evaluate the performance, following the standard in practical CL and also being consistent with
our theoretical investigation, we consider both average accuracy and forgetting. More specifically,
the model’s average Accuracy across all seen tasks is denoted ACC, which captures the generaliza-
tion error. The forgetting, or backward transfer, is defined as BWT = 2

T (T−1)

∑T
k=2

∑k−1
t=1 (ak,t −

at,t) (Lesort et al., 2020) where ak,t represents the testing accuracy on task t after training task k.

As shown in Table 1, hybrid replay outperforms concurrent replay on Split-CIFAR-100 (i.e., Origi-
nal Dataset), in terms of both average accuracy and forgetting. Moreover, we control the similarity
by using the number of corrupted tasks (i.e., task with corrupted images) in the task sequence. In
particular, we consider three different scenarios, ‘1 Corruption’ with 1 corrupted task, ‘2 Corrup-
tion’ with 2 corrupted tasks, and ‘3 Corruption’ with 3 corrupted tasks. Intuitively, the tasks are
more dissimilar when more tasks are corrupted. It can be seen from Table 1 that hybrid replay
consistently outperforms concurrent replay, and more importantly, the performance improvement
becomes more significant as tasks are more dissimilar. These results further justify the correctness
and usefulness of our theoretical results. It is worth to note that the performance of hybrid replay has
not been optimized in terms of the replay order and selection of similar tasks, which may further im-
prove the effectiveness of sequential replay. This encouraging result highlights the great potentials
of exploiting sequential replay in improving the performance of replay-based CL.

7 CONCLUSION

In this work, we took a closer look at the replay strategy in replay-based CL and questioned the effec-
tiveness of the widely used training technique, i.e., concurrent replay, as inspired by human learning.
In particular, we proposed a novel replay strategy, namely sequential replay, which replays old tasks
in the memory sequentially after current task learning. By leveraging overparameterized linear mod-
els with equal memory allocation, we provided the first explicit expressions of the expected value of
both forgetting and generalization errors under two replay methods, concurrent replay and sequential
replay. Comparisons between their theoretical performance led to the insight that sequential replay
outperforms concurrent replay in terms of forgetting and generalization error when the tasks are less
similar, which is consistent with our motivations from human learning and multitask learning. Our
simulation results on linear models further corroborated the correctness of our theoretical results.
More importantly, based on our theory, we proposed a novel hybrid replay framework for practical
CL and experiments on CIFAR100 with DNNs verified the superior performance of this framework
over concurrent replay. To the best of our knowledge, our work provides the first comprehensive the-
oretical study on replay for replay-based CL, which will hopefully motivate more principled designs
for better replay-based CL.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Mohammadamin Banayeeanzade, Mahdi Soltanolkotabi, and Mohammad Rostami. Theoretical in-
sights into overparameterized models in multi-task and replay-based continual learning. arXiv
preprint arXiv:2408.16939, 2024.

Mehdi Abbana Bennani, Thang Doan, and Masashi Sugiyama. Generalisation guarantees for con-
tinual learning with orthogonal gradient descent. arXiv preprint arXiv:2006.11942, 2020.

Xinyuan Cao, Weiyang Liu, and Santosh S Vempala. Provable lifelong learning of representations.
In AISTATS, 2022.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
lifelong learning with a-gem. In International Conference on Learning Representations, 2018.

Aristotelis Chrysakis and Marie-Francine Moens. Online continual learning from imbalanced data.
In International Conference on Machine Learning, pp. 1952–1961. PMLR, 2020.

Meng Ding, Kaiyi Ji, Di Wang, and Jinhui Xu. Understanding forgetting in continual learning with
linear regression. arXiv preprint arXiv:2405.17583, 2024.

Thang Doan, Mehdi Abbana Bennani, Bogdan Mazoure, Guillaume Rabusseau, and Pierre Alquier.
A theoretical analysis of catastrophic forgetting through the ntk overlap matrix. In International
Conference on Artificial Intelligence and Statistics, pp. 1072–1080. PMLR, 2021.

P Dokania, P Torr, and M Ranzato. Continual learning with tiny episodic memories. In Workshop
on Multi-Task and Lifelong Reinforcement Learning, 2019.

Itay Evron, Edward Moroshko, Rachel Ward, Nathan Srebro, and Daniel Soudry. How catastrophic
can catastrophic forgetting be in linear regression? In Conference on Learning Theory, pp. 4028–
4079. PMLR, 2022.

Itay Evron, Edward Moroshko, Gon Buzaglo, Maroun Khriesh, Badea Marjieh, Nathan Srebro, and
Daniel Soudry. Continual learning in linear classification on separable data, 2023.

Itay Evron, Daniel Goldfarb, Nir Weinberger, Daniel Soudry, and Paul Hand. The joint effect of
task similarity and overparameterization on catastrophic forgetting–an analytical model. arXiv
preprint arXiv:2401.12617, 2024.

Saurabh Garg, Mehrdad Farajtabar, Hadi Pouransari, Raviteja Vemulapalli, Sachin Mehta, Oncel
Tuzel, Vaishaal Shankar, and Fartash Faghri. Tic-clip: Continual training of clip models. In The
Twelfth International Conference on Learning Representations, 2024.

Daniel Goldfarb and Paul Hand. Analysis of catastrophic forgetting for random orthogonal trans-
formation tasks in the overparameterized regime. In International Conference on Artificial Intel-
ligence and Statistics, pp. 2975–2993. PMLR, 2023.

Yiduo Guo, Bing Liu, and Dongyan Zhao. Online continual learning through mutual information
maximization. In International conference on machine learning, pp. 8109–8126. PMLR, 2022.

Peizhong Ju, Yingbin Liang, and Ness B Shroff. Theoretical characterization of the generalization
performance of overfitted meta-learning. arXiv preprint arXiv:2304.04312, 2023.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521–3526, 2017.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical report, University of Toronto, Toronto, ON, Canada, 2009.

Timothée Lesort, Vincenzo Lomonaco, Andrei Stoian, Davide Maltoni, David Filliat, and Natalia
Dı́az-Rodrı́guez. Continual learning for robotics: Definition, framework, learning strategies, op-
portunities and challenges. Information fusion, 58:52–68, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Hongbo Li, Sen Lin, Lingjie Duan, Yingbin Liang, and Ness B Shroff. Theory on mixture-of-experts
in continual learning. arXiv preprint arXiv:2406.16437, 2024.

Yingcong Li, Mingchen Li, M Salman Asif, and Samet Oymak. Provable and efficient continual
representation learning. arXiv preprint arXiv:2203.02026, 2022.

Sen Lin, Li Yang, Deliang Fan, and Junshan Zhang. Trgp: Trust region gradient projection for
continual learning. Tenth International Conference on Learning Representations, ICLR 2022,
2022.

Sen Lin, Peizhong Ju, Yingbin Liang, and Ness Shroff. Theory on forgetting and generalization of
continual learning. In International Conference on Machine Learning, pp. 21078–21100. PMLR,
2023.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning.
Advances in neural information processing systems, 30, 2017.

Simone Magistri, Tomaso Trinci, Albin Soutif, Joost van de Weijer, and Andrew D Bagdanov. Elas-
tic feature consolidation for cold start exemplar-free incremental learning. In The Twelfth Inter-
national Conference on Learning Representations, 2024.

German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual
lifelong learning with neural networks: A review. Neural networks, 113:54–71, 2019.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pp. 2001–2010, 2017.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experience
replay for continual learning. Advances in neural information processing systems, 32, 2019.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Grzegorz Rypeść, Sebastian Cygert, Valeriya Khan, Tomasz Trzcinski, Bartosz Michał Zieliński,
and Bartłomiej Twardowski. Divide and not forget: Ensemble of selectively trained experts in
continual learning. In The Twelfth International Conference on Learning Representations, 2024.

Gobinda Saha, Isha Garg, and Kaushik Roy. Gradient projection memory for continual learning. In
International Conference on Learning Representations, 2021.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative
replay. Advances in neural information processing systems, 30, 2017.

Shengyang Sun, Daniele Calandriello, Huiyi Hu, Ang Li, and Michalis Titsias. Information-
theoretic online memory selection for continual learning. In International Conference on Learn-
ing Representations, 2022.

Gido M Van de Ven, Tinne Tuytelaars, and Andreas S Tolias. Three types of incremental learning.
Nature Machine Intelligence, 4(12):1185–1197, 2022.

Dong Yin, Mehrdad Farajtabar, Ang Li, Nir Levine, and Alex Mott. Optimization and generaliza-
tion of regularization-based continual learning: a loss approximation viewpoint. arXiv preprint
arXiv:2006.10974, 2020.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. Advances in Neural Information Processing Systems,
33:5824–5836, 2020.

Xuyang Zhao, Huiyuan Wang, Weiran Huang, and Wei Lin. A statistical theory of regularization-
based continual learning. arXiv preprint arXiv:2406.06213, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Supplementary Materials

A SUPPORTING LEMMAS

Recall that PX = X(X⊤X)−1X⊤ and X† = X(X⊤X)−1. We first provide some useful
lemmas for the derivation of forgetting and generalization error. In the following lemma, we provide
the expression of the SGD convergence point when training on a single task.

Lemma 1. Suppose X ∈ Rp×n and Y ∈ Rn, where Y = X⊤w∗ + z. Consider the optimization
problem:

wout =argmin
w
∥w −win∥22

s.t. X⊤w = Y .

The solution of the above problem can be written as:

wout = win +X†(Y −X⊤win),

or equivalently,
wout = (I − PX)win + PXw∗ +X†z.

Proof. The proof follows from Lemma B.1 in Lin et al. (2023).

Lemma 2. Suppose each element of the random matrix X ∈ Rp×n follows from the standard
distribution N (0, 1) independently and v ∈ Rp is a vector, then we have:

E ∥PXv∥2 =
n

p
∥v∥2 .

Proof. The detailed proof refers to Proposition 3 in Ju et al. (2023).

Lemma 3. Suppose each element of the random matrix X ∈ Rp×n follows from the standard
distribution N (0, 1) independently. Also, z ∈ Rn is a vector and it follows from N (0, σ2In) inde-
pendently. Then, we have:

E
∥∥X†z

∥∥2 =
nσ2

p− n− 1
.

Proof. The proof follows Lemma B.2 in Lin et al. (2023). We apply the ”trace trick” to have:

E
∥∥X†z

∥∥2 = E
[
z⊤ (X⊤X

)−1
z
]

= E
[
tr
[(
X⊤X

)−1
zz⊤

]]
(i)
= tr

[
E
[(
X⊤X

)−1
]
E
[
zz⊤]]

(ii)
= σ2tr

[
E
[(
X⊤X

)−1
]]

(iii)
=

nσ2

p− n− 1
,

where (i) follows from the independence between X and z, (ii) follows from the fact that
E
[
zz⊤] = σ2In and (iii) follows from the fact that

(
X⊤X

)−1 ∼ W−1(In, p).

Lemma 4. For any vector v1,v2 ∈ Rp, we have:

⟨(I − PX)v1,X
†v2⟩ = 0,

⟨(I − PX)v1, PXv2⟩ = 0.

Proof. The proof follows from the definition of PX and X† straightforward.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Now, we provide useful lemmas in proving the expected model value of model errors in the concur-
rent replay method.
Lemma 5. Suppose P ∈ Rp×p is a projection matrix and v ∈ Rp is a random vector with i.i.d.
standard Gaussian elements, then Pv and (I − P)v are independent. Moreover, if V ∈ Rp×m

is a random matrix with i.i.d. standard Gaussian elements, then we have PV and (I − P)V are
independent

Proof. We prove the vector case in two steps. First, we prove that Pv and (I − P)v are jointly
Gaussian. Next, we prove that they are uncorrelated. By combining these two facts, we can conclude
that Pv and (I − P)v are independent. To prove Pv and (I − P)v are jointly Gaussian, we

concatenate them to form a random vector z =

[
Pv

(I − P)v

]
. For any w =

[
w1

w2

]
, where w1,w2 ∈

Rp, we can see that the linear combination of its elements w⊤z = (w⊤
1 P +w⊤

2 (I − P))v is still
Gaussian. To prove they are uncorrelated, we have:

Cov(Pv, (I − P)v) = E
[
Pv((I − P)v)⊤

]
= PE(vv⊤)(I − P)

(i)
= P (I − P)

= 0,

where (i) follows from the fact that v has i.i.d. standard Gaussian elements. Now, for the matrix
case, we can equivalently consider the vector v̂ ∈ Rpm which is formed by concatenating all the
columns of V and the projection matrix P̂ = diag([P, P, .., P]) ∈ Rpm×pm.

Lemma 6. Suppose X ∈ Rp×n is a random matrix with i.i.d. standard Gaussian elements and
v ∈ Rp is a fixed vector, then we have:

E
[
X⊤vv⊤X

]
= ∥v∥2 · I.

Proof. To clarify, we denote X = [x1, ...,xn], where xi is the ith column of X . We also denote
[·]i,j as the element of ith row and jth column of a matrix. Then we have:[

E
[
X⊤vv⊤X

]]
i,j

= cov(v⊤xi,v
⊤xj) =

{
0 if i ̸= j,

∥v∥2 if i = j.

Lemma 7. Suppose X ∈ Rp×n is a random matrix with i.i.d. standard Gaussian elements and
P ∈ Rp×p is any projection matrix from p-dimension to d-dimension, then we have:

tr
(
E
[(
X⊤(I − P)X

)−1
])

=
n

p− d− n− 1
.

Proof. We first note that (I − P) is a projection matrix with p − d many eigenvalues 1 and d
many eigenvalues 0. With loss of generalization, we write (I − P) = U⊤ΣU where Σ =
diag([1, 1, ..., 1, 0, ..., 0]) is a diagonal matrix, whose first p − d elements are 1 while others are
0, and U is an orthogonal matrix. Also, we denote X̂ ∈ R(p−d)×n as the first p− d rows of X .

tr
(
E
[(
X⊤(I − P)X

)−1
])

= tr
(
E
[(
X⊤U⊤ΣUX

)−1
])

(i)
= tr

(
E
[(
X⊤ΣX

)−1
])

= tr

(
E
[(

X̂⊤X̂
)−1

])
(ii)
=

n

p− d− n− 1

where (i) follows from the rotational symmetry of standard Gaussian distribution, (ii) follows from

the fact that
(
X̂⊤X̂

)−1

∼ W−1(In, p− d).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Lemma 8. Suppose V = [X1,X2] where X1 ∈ Rp×n1 , X2 ∈ Rp×n2 are two random matrices
with i.i.d. standard Gaussian elements and v ∈ Rp is a fixed vector. Then we have:

E
∥∥∥∥V †

[
X⊤

1
0

]
v

∥∥∥∥2 =
n1

p
·
(
1 +

n2

p− n1 − n2 − 1

)
∥v∥2

Proof. we consider the block expression of matrix (V ⊤
2 V2)

−1. First, we have:

V ⊤V =

[
X⊤

1

X⊤
2

]
[X1 X2] =

[
X⊤

1 X1 X⊤
1 X2

X⊤
2 X1 X⊤

2 X2

]
.

Now, we partition the matrix (V ⊤V)−1 into four blocks:

(V ⊤
2 V2)

−1 =

[
A1,1 A1,2

A2,1 A2,2

]
,

where

A1,1 = (X⊤
1 X1)

−1 − (X⊤
1 X1)

−1X⊤
1 X2

(
X⊤

2 X2 −X⊤
2 X1(X

⊤
1 X1)

−1X⊤
1 X2

)−1
X⊤

2 X1(X
⊤
1 X1)

−1

= PX1 + PX1X2

(
X⊤

2 (I − PX1)X2

)−1
X⊤

2 PX1 .

Therefore, we have

E
∥∥∥∥V †

[
X⊤

1
0

]
v

∥∥∥∥2 = E
[
v⊤
[
PX1

+ PX1
X2

(
X⊤

2 (I − PX1
)X2

)−1
X⊤

2 PX1

]
v
]

(i)
=

n1

p
∥v∥2 + E

[
v⊤
[
PX1

X2

(
X⊤

2 (I − PX1
)X2

)−1
X⊤

2 PX1

]
v
]
, (10)

where (i) follows from Lemma 2. Now, we consider

E
[
v⊤
[
PX1

X2

(
X⊤

2 (I − PX1
)X2

)−1
X⊤

2 PX1

]
v
]

= E
[
tr
(
X⊤

2 PX1
vv⊤PX1

X2

(
X⊤

2 (I − PX1
)X2

)−1
)]

(i)
= EX1

[
tr
(
EX2

[
X⊤

2 PX1
vv⊤PX1

X2

]
· EX2

[(
X⊤

2 (I − PX1
)X2

)−1
])]

(ii)
= EX1

[
tr

(
∥PX1v∥

2 · I · EX2

[(
X̃⊤

2 (I − PX1)X̃2

)−1
])]

= EX1

[
∥PX1v∥

2 · tr
(
EX2

[(
X⊤

2 (I − PX1)X2

)−1
])]

(iii)
= EX1

[
∥PX1

v∥2 · n2

p− n1 − n2 − 1

]
(iv)
=

n2

p− n1 − n2 − 1
· n1

p
∥v∥2 , (11)

where (i) follows from Lemma 5, (ii) follows from Lemma 6, (iii) follows from the fact that
Lemma 7 actually holds for any X2 and (iv) follows from Lemma 2. By combining eqs. (10)
and (11), we complete the proof.

Lemma 9. Suppose V = [X1,X2,X3] where X1 ∈ Rp×n1 , X2 ∈ Rp×n2 , X3 ∈ Rp×n3 are
random matrices with i.i.d. standard Gaussian elements and v ∈ Rp is a fixed vector. Then we
have:

E

v⊤ [X1 0 0] (V ⊤V)−1

 0
X⊤

2
0

v

 = − n1n2

p(p− n1 − n2 − n3 − 1)
∥v∥2

Proof. First of all, we observe that:

2v⊤ [X1 0 0] (V ⊤V)−1

 0
X⊤

2
0

v =

∥∥∥∥∥∥V †

X⊤
1

X⊤
2
0

v

∥∥∥∥∥∥
2

−

∥∥∥∥∥∥V †

X⊤
1
0
0

v1

∥∥∥∥∥∥
2

−

∥∥∥∥∥∥V †

0⊤

X2

0

v

∥∥∥∥∥∥
2

.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

By taking expectation over both sides of the equation, we have:

2E

v⊤ [X1 0 0] (V ⊤V)−1

 0
X⊤

2
0

v


= E

∥∥∥∥∥∥V †

X⊤
1

X⊤
2
0

v

∥∥∥∥∥∥
2

− E

∥∥∥∥∥∥V †

X⊤
1
0
0

v

∥∥∥∥∥∥
2

− E

∥∥∥∥∥∥V †

0⊤

X2

0

v

∥∥∥∥∥∥
2

(i)
=

n1 + n2

p
·
(
1 +

n3

p− n1 − n2 − n3 − 1

)
∥v∥2 − n1

p
·
(
1 +

n2 + n3

p− n1 − n2 − n3 − 1

)
∥v∥2

− n2

p
·
(
1 +

n1 + n3

p− n1 − n2 − n3 − 1

)
∥v∥2

= − 2n1n2

p(p− n1 − n2 − n3 − 1)
∥v∥2 ,

where (i) follows from Lemma 8. By dividing both sides by 2, we complete the proof.

Corollary 1. Suppose V = [X1,X2,X3] where X1 ∈ Rp×n1 , X2 ∈ Rp×n2 , X3 ∈ Rp×n3 are
random matrices with i.i.d. standard Gaussian elements and v1,v2 ∈ Rp are fixed vectors. Then
we have:

E

v⊤
1 [X1 0 0] (V ⊤V)−1

 0
X⊤

2
0

v2

 =
n1n2

(
∥v1 − v2∥2 − ∥v1∥2 − ∥v2∥2

)
2p(p− n1 − n2 − n3 − 1)

Proof. To simplify the notation, we denote V1 = [X1 0 0] and V2 = [0 X2 0]. Then
according to Lemma 9, we first have:

E
[
(v1 − v2)

⊤V1(V
⊤V)−1V ⊤

2 (v1 − v2)
]
= − n1n2

p(p− n1 − n2 − n3 − 1)
∥v1 − v2∥2 .

On the other hand, we have:

E
[
(v1 − v2)

⊤V1(V
⊤V)−1V ⊤

2 (v1 − v2)
]

= E
[
v⊤
1 V1(V

⊤V)−1V ⊤
2 v1

]
+ E

[
v⊤
2 V1(V

⊤V)−1V ⊤
2 v2

]
− 2E

[
v⊤
1 V1(V

⊤V)−1V ⊤
2 v2

]
(i)
= − n1n2 ∥v1∥2

p(p− n1 − n2 − n3 − 1)
− n1n2 ∥v2∥2

p(p− n1 − n2 − n3 − 1)
− 2E

[
v⊤
1 V1(V

⊤V)−1V ⊤
2 v2

]
,

where (i) follows from Lemma 9. By combining the above two equations, we complete the proof.

Next, we provide our supporting lemmas that help to prove the advantage of sequential replay as
follows.
Lemma 10. Given n, p, t,M, T are fixed positive integers where t ≤ T and n +M < p, then we
have: (

1− M

(t− l − 1)p

)t−l−1(
1− n

p

)
> 1− n+M

p
,

for any non-negative integer l < t

Proof. We first notice the fact that for k = 0, 1, 2, ..., t− l − 2, we have(
1− M

(t− l − 1)p

)(
1−

n+ kM
t−l−1

p

)
> 1−

n+ (k+1)M
t−l−1

p
.

By applying this argument recursively, we will have(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)
> 1−

n+ (t− l − 1) M
t−l−1

p
= 1− n+M

p
.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Lemma 11. Given n, p, t,M, T are fixed positive integers where t ≤ T and n +M < p, then for
any non-negative integer l < t− 1, we have:(

1− M

(t− l − 1)p

)t−l−1(
1− n

p

)
< 1− n+M

p
+

(n+M)M

p2
,

if p > TM .

Proof. According to the binomial theorem, we have:(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)
=

(
1− M

p
+

t−l−1∑
k=2

(
t− l − 1

k

)(
− M

(t− l − 1)p

)k
)(

1− n

p

)
(12)

If t− l − 1 = 1 or t− l − 1 = 2, the proof is trivial. If t− l − 1 ≥ 3, we have

t−l−1∑
k=2

(
t− l − 1

k

)(
− M

(t− l − 1)p

)k

=

(
t− l − 1

2

)(
M

(t− l − 1)p

)2

+

t−l−1∑
k=3

(
t− l − 1

k

)(
− M

(t− l − 1)p

)k

. (13)

To simplify the notation, we denote m = M
t−l−1 . We first discuss if t− l−1 is even. Then, we have:

t−l−1∑
k=3

(
t− l − 1

k

)(
− M

(t− l − 1)p

)k

=

(t−l+1)/2∑
k=3

[(
t− l − 1

2k − 3

)(
−m

p

)2k−3

+

(
t− l − 1

2k − 2

)(
−m

p

)2k−2
]

=

(t−l+1)/2∑
k=3

[
(t− l − 1)!

(2k − 3)!(t− l − 2k + 2)!

(
−m

p

)2k−3

+
(t− l − 1)!

(2k − 2)!(t− l − 2k + 1)!

(
−m

p

)2k−2
]

= −
(t−l+1)/2∑

k=3

(t− l − 1)!

(2k − 3)!(t− l − 2k + 1)!

(
m

p

)2k−3 [
1

t− l − 2k + 2
− 1

2k − 2
· m
p

]
(i)
< 0 (14)

where (i) follows from the fact that p > TM . We then discuss if t− l − 1 is odd, we have:

t−l−1∑
k=3

(
t− l − 1

k

)(
− M

(t− l − 1)p

)k

=

(t−l)/2∑
k=3

[(
t− l − 1

2k − 3

)(
−m

p

)2k−3

+

(
t− l − 1

2k − 2

)(
−m

p

)2k−2
]
+

(
−m

p

)t−l−1

(i)
<

(t−l)/2∑
k=3

[
(t− l − 1)!

(2k − 3)!(t− l − 2k + 2)!

(
−m

p

)2k−3

+
(t− l − 1)!

(2k − 2)!(t− l − 2k + 1)!

(
−m

p

)2k−2
]

= −
(t−l)/2∑
k=3

(t− l − 1)!

(2k − 3)!(t− l − 2k + 1)!

(
m

p

)2k−3 [
1

t− l − 2k + 2
− 1

2k − 2
· m
p

]
(ii)
< 0 (15)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

where (i) follows from the fact that t− l− 1 is odd and (ii) follows from the fact that p > TM . By
combing eqs. (12) to (15), we conclude:(

1− M

(t− l − 1)p

)t−l−1(
1− n

p

)
<

(
1− M

p
+

(
t− l − 1

2

)
M2

(t− l − 1)2p2

)(
1− n

p

)

= 1− n+M

p
+

nM + (t−l−1)(t−l−2)
2

M2

(t−l−1)2

p2
−
(
t− l − 1

2

)
nM2

(t− l − 1)2p3

< 1− n+M

p
+

(n+M)M

p2
.

which completes the proof.

Lemma 12. Given n, p, t,M, T are fixed positive integers where t ≤ T and n +M < p, then we
have: (

1− n+M

p
+

(n+M)M

p2

)t

<

(
1− n+M

p

)t

+
T 2(n+M)M

p2
.

Proof. We first have:(
1− n+M

p
+

(n+M)M

p2

)t

=

(
1− n+M

p

)t

+

t−1∑
k=0

(
t

k

)(
1− n+M

p

)k (
(n+M)M

p2

)t−k

︸ ︷︷ ︸
αk

(16)

We further notice that for k = 0, 1, .., t− 2:(
t

k

)(
1− n+M

p

)k (
(n+M)M

p2

)t−k

−
(

t

k + 1

)(
1− n+M

p

)k+1(
(n+M)M

p2

)t−k−1

=
t!

k!(t− k − 1)!

(
1− n+M

p

)k (
(n+M)M

p2

)t−k−1 [
(n+M)M

(t− k)p2
− 1

k + 1

(
1− n+M

p

)]
<

t!

k!(t− k − 1)!

(
1− n+M

p

)k (
(n+M)M

p2

)t−k−1 [
(n+M)M

p2
− 1

T

(
1− n+M

p

)]
(i)
< 0, (17)

where (i) follows from the fact that p > (n+M)(T +1). We note that eq. (17) shows that the term
αk achieves the maximum at k = t− 1. Therefore, we can upper bound eq. (16) by(
1− n+M

p
+

(n+M)M

p2

)t

<

(
1− n+M

p

)t

+ t

(
t

t− 1

)(
1− n+M

p

)t−1(
(n+M)M

p2

)
<

(
1− n+M

p

)t

+
T 2(n+M)M

p2

which completes the proof.

Here, we present a tighter version of Lemma 12, which helps us to prove Theorem 3 in Section 5.2.

Lemma 13. Given n, p, t,M, T are fixed positive integers where t ≤ T and n +M < p, then we
have:(

1− n+M

p
+

(n+M)M

p2

)t

<

(
1− n+M

p

)t

+
t(n+M)M

p2
+

T 3(n+M)2M2

2p4
.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Proof. We first have:(
1− n+M

p
+

(n+M)M

p2

)t

=

(
1− n+M

p

)t

+

(
t

t− 1

)(
1− n+M

p

)t−1(
(n+M)M

p2

)
+

t−2∑
k=0

(
t

k

)(
1− n+M

p

)k (
(n+M)M

p2

)t−k

<

(
1− n+M

p

)t

+
T (n+M)M

p2

+

t−2∑
k=0

(
t

k

)(
1− n+M

p

)k (
(n+M)M

p2

)t−k

︸ ︷︷ ︸
αk

(18)

By the same argument as eq. (17), we know that the term αk achieves the maximum at k = t − 2.
Therefore, we can upper bound eq. (18) by(

1− n+M

p
+

(n+M)M

p2

)t

<

(
1− n+M

p

)t

+
t(n+M)M

p2
+ (t− 1)

(
t

t− 2

)(
1− n+M

p

)t−2(
(n+M)M

p2

)2

<

(
1− n+M

p

)t

+
t(n+M)M

p2
+

T 3(n+M)2M2

2p4
.

Lemma 14. Given n, p, t,M, T are fixed positive integers where M ≥ 2, t ≤ T and n +M < p,
then for any non-negative integer l < t− 1, we have:(

1− n+M

p
+

(n+M)M

p2

)l(
1− M

(t− l − 1)p

)t−l−1

<

(
1− 1

Tp

)(
1− n+M

p

)l

,

if p > T (n+M)M
M−1 + n+M .

Proof. By dividing
(
1− n+M

p

)l
on both sides, it is equivalent to prove(

1 +
(n+M)M

p2 − p(n+M)

)l(
1− M

(t− l − 1)p

)t−l−1

< 1− 1

Tp
.

According to AM-GM inequality, we have:(
1 +

(n+M)M

p2 − p(n+M)

)l(
1− M

(t− l − 1)p

)t−l−1

≤

 l
(
1 + (n+M)M

p2−p(n+M)

)
+ (t− l − 1)

(
1− M

(t−l−1)p

)
t− 1

t−1

=

1 + l(n+M)M
p2−p(n+M) −

M
p

t− 1

t−1

. (19)

When p > T (n+M)M
M−1 + n+M , we have:

l(n+M)M

p2 − p(n+M)
− M

p
<

T (n+M)M

p2 − p(n+M)
− M

p
< −1

p
. (20)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Therefore, by combining eqs. (19) and (20), we have:(
1 +

(n+M)M

p2 − p(n+M)

)l(
1− M

(t− l − 1)p

)t−l

<

(
1− 1

(t− 1)p

)t−1

< 1− 1

(t− 1)p
< 1− 1

Tp
,

which completes the proof.

Lemma 15. Given n, p, t,M, T are fixed positive integers where M ≥ 2, t ≤ T and n +M < p,
then we have:

t−2∏
l=0

[(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)]
−

i−2∏
l=0

[(
1− M

(i− l − 1)p

)i−l−1(
1− n

p

)]

>

[(
1− n+M

p

)t−1

−
(
1− n+M

p

)i−1
]
,

if p > 2T 3(n+M)2.

Proof. We first have:

t−2∏
l=0

[(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)]
−

i−2∏
l=0

[(
1− M

(i− l − 1)p

)i−l−1(
1− n

p

)]

=

t−i−1∏
l=0

[(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)] t−2∏
l=t−i

[(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)]

−
i−2∏
l=0

[(
1− M

(i− l − 1)p

)i−l−1(
1− n

p

)]

=

t−i−1∏
l=0

[(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)] i−2∏
l=0

[(
1− M

(i− l − 1)p

)i−l−1(
1− n

p

)]

−
i−2∏
l=0

[(
1− M

(i− l − 1)p

)i−l−1(
1− n

p

)]

=

i−2∏
l=0

[(
1− M

(i− l − 1)p

)i−l−1(
1− n

p

)]{t−i−1∏
l=0

[(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)]
− 1

}
︸ ︷︷ ︸

γ1

(i)
>

(
1− n+M

p
+

(n+M)M

p2

)i−1
{[(

1− M

p

)(
1− n

p

)]t−i

− 1

}

=

(
1− n+M

p
+

(n+M)M

p2

)i−1
[(

1− n+M

p
+

nM

p2

)t−i

− 1

]

=

[(
1− n+M

p

)i−1

+

i−1∑
k=1

(
i− 1

k

)(
(n+M)M

p2

)k (
1− n+M

p

)i−k−1
]

[(
1− n+M

p

)t−i

− 1 +

t−i∑
k=1

(
t− i

k

)(
nM

p2

)k (
1− n+M

p

)t−i−k
]

>

(
1− n+M

p

)i−1
[(

1− n+M

p

)t−i

− 1

]

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

+

(
1− n+M

p

)i−1 t−i∑
k=1

(
t− i

k

)(
nM

p2

)k (
1− n+M

p

)t−i−k

︸ ︷︷ ︸
γ2

+

[(
1− n+M

p

)t−i

− 1

]
i−1∑
k=1

(
i− 1

k

)(
(n+M)M

p2

)k (
1− n+M

p

)i−k−1

︸ ︷︷ ︸
γ3,k︸ ︷︷ ︸

γ3

(21)

where (i) follows from Lemma 11 together with the fact that term γ1 < 0 and from the fact that(
1− M

(t−l−1)p

)t−l−1

> 1 − M
p for l = 0, 1, .., t − i − 1. Now. we prove γ2 + γ3 < 0. We first

focus on γ2. We have:

γ2 >

(
1− n+M

p

)i−1(
t− i

1

)(
nM

p2

)(
1− n+M

p

)t−i−1

>

(
1− n+M

p

)T
nM

p2

>

(
1− T (n+M)

p

)
nM

p2
(22)

We then focus on term γ3. Consider:(
i− 1

k

)(
(n+M)M

p2

)k (
1− n+M

p

)i−k−1

−
(
i− 1

k + 1

)(
(n+M)M

p2

)k+1(
1− n+M

p

)i−k−2

=
(i− 1)!

k!(i− k − 2)!

(
(n+M)M

p2

)k (
1− n+M

p

)i−k−2

·
[

1

i− k − 1

(
1− n+M

p

)
− 1

k + 1

(n+M)M

p2

]
(i)
>

(i− 1)!

k!(i− k − 2)!

(
(n+M)M

p2

)k (
1− n+M

p

)i−k−2 [
1

T

(
1− n+M

p

)
− (n+M)M

2p2

]
(ii)
> 0, (23)

where (i) follows from k ∈ [i− 1] and (ii) follows from the fact that p > 2(n+M). This indicates

that γ3,k achieves maximum at k = 1. We recall that
[(

1− n+M
p

)t−i

− 1

]
< 0. Therefore, we

have:

γ3 >

[(
1− n+M

p

)t−i

− 1

]
(i− 1)

(
i− 1

1

)(
(n+M)M

p2

)(
1− n+M

p

)i−2

>

[(
1− n+M

p

)t−i

− 1

]
T 2(n+M)M

p2

=

[
t−i∑
k=1

(
t− i

k

)(
−n+M

p

)k
]
T 2(n+M)M

p2
. (24)

For k is even and less than or equal to t− i(i.e., k = 2, 4, 6, ..., and k ≥ t− i), we have:(
t− i

k

)(
−n+M

p

)k

+

(
t− i

k + 1

)(
−n+M

p

)k+1

=
(t− i)!

k!(t− i− k − 1)!

(
n+M

p

)k [
1

t− i− k
− n+M

(k + 1)p

]

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

>
(t− i)!

k!(t− i− k − 1)!

(
n+M

p

)k [
1

T
− n+M

3p

]
(i)
> 0, (25)

where (i) follows from p > (n+M)T
3 . By combining eqs. (24) and (25) and simply discussing when

t− i is odd or even, we can conclude
t−i∑
k=1

(
t− i

k

)(
−n+M

p

)k

>

(
t− i

1

)(
−n+M

p

)
> −T (n+M)

p
,

which implies:

γ3 > −T 3(n+M)2M

p3
. (26)

Now, by combining eqs. (21), (22) and (26), we have:
t−2∏
l=0

[(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)]
−

i−2∏
l=0

[(
1− M

(i− l − 1)p

)i−l−1(
1− n

p

)]

>

(
1− n+M

p

)i−1
[(

1− n+M

p

)t−i

− 1

]
+

(
1− T (n+M)

p

)
nM

p2
− T 3(n+M)2M

p3

(i)
>

(
1− n+M

p

)i−1
[(

1− n+M

p

)t−i

− 1

]
, (27)

where (i) follows from the fact that p > 2T 3(n+M)2.

Lemma 16. Given n, p, t,M, T are fixed positive integers where M ≥ 2, t ≤ T and n +M < p,
then for any non-negative integer i < t, we have:
t−2∏
l=0

[(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)]
−

i−2∏
l=0

[(
1− M

(i− l − 1)p

)i−l−1(
1− n

p

)]

<

(
1− n+M

p

)i−1
[(

1− n+M

p

)t−i

− 1

]
+

T 2(n+M)M

p2
.

if p > (n+M)T .

Proof. We first consider:
t−2∏
l=0

[(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)]
−

i−2∏
l=0

[(
1− M

(i− l − 1)p

)i−l−1(
1− n

p

)]

=

t−i−1∏
l=0

[(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)] t−2∏
l=t−i

[(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)]

−
i−2∏
l=0

[(
1− M

(i− l − 1)p

)i−l−1(
1− n

p

)]

=

t−i−1∏
l=0

[(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)] i−2∏
l=0

[(
1− M

(i− l − 1)p

)i−l−1(
1− n

p

)]

−
i−2∏
l=0

[(
1− M

(i− l − 1)p

)i−l−1(
1− n

p

)]

=

i−2∏
l=0

[(
1− M

(i− l − 1)p

)i−l−1(
1− n

p

)]{t−i−1∏
l=0

[(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)]
− 1

}
︸ ︷︷ ︸

γ1

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

(i)
<

(
1− n+M

p

)i−1
[(

1− n+M

p
+

(n+M)M

p2

)t−i

− 1

]
,

(ii)
<

(
1− n+M

p

)i−1
[(

1− n+M

p

)t−i

− 1 +
T 2(n+M)M

p2

]

<

(
1− n+M

p

)i−1
[(

1− n+M

p

)t−i

− 1

]
+

T 2(n+M)M

p2
(28)

where (i) follows from Lemmas 10 and 11 and the fact that γ1 < 0; (ii) follows from Lemma 12.

Here, we present a tighter version of Lemma 16, which helps to prove Theorem 3 in Section 5.2.
Lemma 17. Given n, p, t,M, T are fixed positive integers where M ≥ 2, t ≤ T and n +M < p,
then for any non-negative integer i < t, we have:

t−2∏
l=0

[(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)]
−

i−2∏
l=0

[(
1− M

(i− l − 1)p

)i−l−1(
1− n

p

)]

<

(
1− n+M

p

)i−1
[(

1− n+M

p

)t−i

− 1

]
+

(t− i)(n+M)M

p2
+

T 3(n+M)2M2

p4
.

if p > (n+M)T .

Proof. The proof follows from the same as Lemma 16 but we use Lemma 13 instead of Lemma 12.

B PROOF OF PROPOSITIONS 1 AND 2 AND THEOREM 1

In this section, we will prove Propositions 1 and 2 by deriving the expected value of model error
E[Li(wt)] for a generic pair t, i with t ≥ i. We omit the tilde notation of the memory data to
simplify notations: Xt,i := X̃t,i, Yt,i := Ỹt,i and zt,i := z̃t,i for i ∈ [t− 1]. Similar to eq. (3), for
the memory data, we have

Yt,i = X⊤
t,iw

∗
i + zt,i. (29)

where zt,i ∼ N (0, σ2
i Ip) is i.i.d. noise. Since there is no memory data involved in both training

methods when t = 1, by combining Lemma 1 and the fact that w0 = 0, we can easily derive the
first parameter as

w1 = PX1
w∗

1 +X†
1z1,

Then, we calculate the expected value of the model error Li(w1) as follows.

E ∥w1 −w∗
i ∥

2 (i)
= E ∥PX1

(w∗
1 −w∗

i)∥
2
+ E ∥(I − PX1

)w∗
i ∥

2
+ E

∥∥∥X†
1z1

∥∥∥2
(ii)
=

n

p
E ∥w∗

1 −w∗
i ∥

2
+

(
1− n

p

)
∥w∗

i ∥
2
+

nσ2

p− n− 1
, (30)

where (i) follows from Lemma 4 and the fact that z1 are independent Gaussian with zero mean and
(ii) follows from Lemma 2 and Lemma 3. For t ≥ 2, the two training methods use memory in
different ways. We present them in the following two subsections.

B.1 PROOF OF CONCURRENT REPLAY IN PROPOSITIONS 1 AND 2

To simplify, we apply the following notations to denote the current data in this subsection: Xt :=
Xt,t, Yt := Yt,t and zt := zt,t. Then, for each task t, the SGD convergent point wt of training loss
Ltr
t (w,Dt

⋃
Mt) is equivalent to the optimization problem:

wt = min
w
∥w −wt−1∥2 s.t. X⊤

t,iw = Yt,i, i ∈ [t].

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Define Vt = [Xt,1,Xt,2, ...,Xt,t] and z⃗t = [zt,1, zt,2, ...,zt,t]
⊤. According to Lemma 1, we have

wt = wt−1 + V †
t


Yt,1

Yt,2

...
Yt,t

− V ⊤
t wt−1



= (I − PVt)wt−1 + V †
t


X⊤

t,1w
∗
1

X⊤
t,2w

∗
2

...
X⊤

t,tw
∗
t

+ V †
t z⃗t.

Now, we fix i. The Coefficients d(concurrent)
0T and d(concurrent)

ijkT are extracted from expected value of model
error E[Li(wt)] as follows.

E ∥wt −w∗
i ∥

2
= E

∥∥∥∥∥∥∥∥(I − PVt)(wt−1 −w∗
i) + V †

t


X⊤

t,1(w
∗
1 −w∗

i)
X⊤

t,2(w
∗
2 −w∗

i)
...

X⊤
t,t(w

∗
t −w∗

i)

+ V †
t z⃗t

∥∥∥∥∥∥∥∥
2

(i)
= E ∥(I − PVt

)(wt−1 −w∗
i)∥

2
+ E

∥∥∥∥∥∥∥∥V
†
t


X⊤

t,1(w
∗
1 −w∗

i)
X⊤

t,2(w
∗
2 −w∗

i)
...

X⊤
t,t(w

∗
t −w∗

i)


∥∥∥∥∥∥∥∥
2

+ E
∥∥∥V †

t z⃗t

∥∥∥2

(ii)
=

(
1− nt +Mt

p

)
E ∥wt−1 −w∗

i ∥
2
+ E

∥∥∥∥∥∥∥∥V
†
t


X⊤

t,1(w
∗
1 −w∗

i)
X⊤

t,2(w
∗
2 −w∗

i)
...

X⊤
t,t(w

∗
t −w∗

i)


∥∥∥∥∥∥∥∥
2

+
(n+M)σ2

p− n−M − 1
, (31)

where (i) follows from Lemma 4 and the fact that z⃗t are independent Gaussian with zero mean and
(ii) follows from Lemma 2 and Lemma 3. Before we calculate the second term in eq. (31), we make
the following notation simplification. We denote Vt,j as Vt with all zero elements except Xt,j , i.e.,

Vt,j = [0, ...,Xt,j , ...,0] .

Then we have:

E

∥∥∥∥∥∥∥∥V
†
t


X⊤

t,1(w
∗
1 −w∗

i)
X⊤

t,2(w
∗
2 −w∗

i)
...

X⊤
t,t(w

∗
t −w∗

i)


∥∥∥∥∥∥∥∥
2

= E

∥∥∥∥∥∥
t∑

j=1

V †
t V

⊤
t,j(w

∗
j −w∗

i)

∥∥∥∥∥∥
2

=

t−1∑
j=1

E
∥∥∥V †

t V
⊤
t,j(w

∗
j −w∗

i)
∥∥∥2 + t∑

j=1

t∑
k=1,k ̸=j

(w∗
j −w∗

i)
⊤Vt,j(V

⊤
t Vt)

−1V ⊤
t,k(w

∗
k −w∗

i)

(i)
=

t−1∑
j=1

Mt,j

p

(
1 +

nt +Mt −Mt,j

p− nt −Mt − 1

)∥∥w∗
j −w∗

i

∥∥2 + nt

p

(
1 +

Mt

p− nt −Mt − 1

)
∥w∗

t −w∗
i ∥

2

+

t−2∑
j=1

t−1∑
k=j+1

Mt,jMt,k

p(p− nt −Mt − 1)

(∥∥w∗
j −w∗

k

∥∥2 − ∥∥w∗
j −w∗

i

∥∥2 − ∥w∗
k −w∗

i ∥
2
)

+

t−1∑
j=1

ntMt,j

p(p− nt −Mt − 1)

(∥∥w∗
j −w∗

t

∥∥2 − ∥∥w∗
j −w∗

i

∥∥2 − ∥w∗
t −w∗

i ∥
2
)

(32)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

where (i) follows from Lemma 8 and corollary 1. Recall that nt = n, Mt,j =
M
t−1 and the fact that

Mt = M . By combining eqs. (31) and (32), we have:

E ∥wt −w∗
i ∥

2
=

(
1− n+M

p

)
E ∥wt−1 −w∗

i ∥
2

+

t−1∑
j=1

M

(t− 1)p

(
1 +

n+M − M
t−1

p− n−M − 1

)∥∥w∗
j −w∗

i

∥∥2
+

n

p

(
1 +

M

p− n−M − 1

)
∥w∗

t −w∗
i ∥

2

+

t−2∑
j=1

t−1∑
k=j+1

(M
t−1)

2

p(p− n−M − 1)

(∥∥w∗
j −w∗

k

∥∥2 − ∥∥w∗
j −w∗

i

∥∥2 − ∥w∗
k −w∗

i ∥
2
)

+

t−1∑
j=1

nM
t−1

p(p− n−M − 1)

(∥∥w∗
j −w∗

t

∥∥2 − ∥∥w∗
j −w∗

i

∥∥2 − ∥w∗
t −w∗

i ∥
2
)

+
(n+M)σ2

p− n−M − 1
,

for t ≥ 2. By iterating the above equation and combining it with eq. (30), we can have:

E ∥wt −w∗
i ∥

2

=

(
1− n+M

p

)t−1

E ∥w1 −w∗
i ∥

2

+

t−2∑
l=0

(
1− n+M

p

)l t−l−1∑
j=1

M

(t− l − 1)p

(
1 +

n+M − M
t−l−1

p− n−M − 1

)∥∥w∗
j −w∗

i

∥∥2
+

t−2∑
l=0

(
1− n+M

p

)l
n

p

(
1 +

M

p− n−M − 1

)∥∥w∗
t−l −w∗

i

∥∥2
+

t−2∑
l=0

(
1− n+M

p

)l t−l−2∑
j=1

t−l−1∑
k=j+1

(M
t−l−1)

2

p(p− n−M − 1)

(∥∥w∗
j −w∗

k

∥∥2 − ∥∥w∗
j −w∗

i

∥∥2 − ∥w∗
k −w∗

i ∥
2
)

+

t−2∑
l=0

(
1− n+M

p

)l t−l−1∑
j=1

nM
t−l−1

p(p− n−M − 1)

(∥∥w∗
j −w∗

t−l

∥∥2 − ∥∥w∗
j −w∗

i

∥∥2 − ∥∥w∗
t−l −w∗

i

∥∥2)

+

t−2∑
l=0

(
1− n+M

p

)l
(n+M)σ2

p− n−M − 1

=

(
1− n

p

)(
1− n+M

p

)t−1

∥w∗
i ∥

2
+

(
1− n+M

p

)t−1
n

p
E ∥w∗

1 −w∗
i ∥

2

+

t−2∑
l=0

(
1− n+M

p

)l t−l−1∑
j=1

M

(t− l − 1)p

(
1 +

n+M − M
t−l−1

p− n−M − 1

)∥∥w∗
j −w∗

i

∥∥2
+

t−2∑
l=0

(
1− n+M

p

)l
n

p

(
1 +

M

p− n−M − 1

)∥∥w∗
t−l −w∗

i

∥∥2
+

t−2∑
l=0

(
1− n+M

p

)l t−l−2∑
j=1

t−l−1∑
k=j+1

(M
t−l−1)

2

p(p− n−M − 1)

(∥∥w∗
j −w∗

k

∥∥2 − ∥∥w∗
j −w∗

i

∥∥2 − ∥w∗
k −w∗

i ∥
2
)

+

t−2∑
l=0

(
1− n+M

p

)l t−l−1∑
j=1

nM
t−l−1

p(p− n−M − 1)

(∥∥w∗
j −w∗

t−l

∥∥2 − ∥∥w∗
j −w∗

i

∥∥2 − ∥∥w∗
t−l −w∗

i

∥∥2)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

+

(
1− n

p

)(
1− n+M

p

)t−1
nσ2

p− n− 1
+

t−2∑
l=0

(
1− n+M

p

)l
(n+M)σ2

p− n−M − 1

=

(
1− n

p

)(
1− n+M

p

)t−1

∥w∗
i ∥

2

+

{(
1− n+M

p

)t−1
n

p
+

t−2∑
l=0

(
1− n+M

p

)l
[

M

(t− l − 1)p

(
1 +

n+M − M
t−l−1

p− n−M − 1

)

−
nM

(t−l−1) + (t− l − 2)(M
t−l−1)

2

p(p− n−M − 1)

]}
∥w∗

1 −w∗
i ∥

2

+

t−2∑
l=0

(
1− n+M

p

)l t−l−1∑
j=2

[
M

(t− l − 1)p

(
1 +

n+M − M
t−l−1

p− n−M − 1

)

−
nM

t−l−1 + (t− l − 2)(M
t−l−1)

2

p(p− n−M − 1)

]∥∥w∗
j −w∗

i

∥∥2
+

t−2∑
l=0

(
1− n+M

p

)l
[
n

p

(
1 +

M

p− n−M − 1

)
−

(t− l − 1) nM
t−l−1

p(p− n−M − 1)

]∥∥w∗
t−l −w∗

i

∥∥2
+

t−2∑
l=0

(
1− n+M

p

)l t−l−2∑
j=1

t−l−1∑
k=j+1

(M
t−l−1)

2

p(p− n−M − 1)

∥∥w∗
j −w∗

k

∥∥2
+

t−2∑
l=0

(
1− n+M

p

)l t−l−1∑
j=1

nM
t−l−1

p(p− n−M − 1)

∥∥w∗
j −w∗

t−l

∥∥2 + noise(concurrent)
t (σ)

=

(
1− n

p

)(
1− n+M

p

)t−1

∥w∗
i ∥

2

+

{(
1− n+M

p

)t−1
n

p
+

t−2∑
l=0

(
1− n+M

p

)l
M

(t− l − 1)p

}
∥w∗

1 −w∗
i ∥

2

+

t−1∑
j=2

{
t−j−1∑
l=0

(
1− n+M

p

)l
M

(t− l − 1)p
+

(
1− n+M

p

)t−j
n

p

}∥∥w∗
j −w∗

i

∥∥2
+

n

p
∥w∗

t −w∗
i ∥

2

+

t−2∑
l=0

(
1− n+M

p

)l t−l−2∑
j=1

t−l−1∑
k=j+1

(M
t−l−1)

2

p(p− n−M − 1)

∥∥w∗
j −w∗

k

∥∥2
+

t−2∑
l=0

(
1− n+M

p

)l t−l−1∑
j=1

nM
t−l−1

p(p− n−M − 1)

∥∥w∗
j −w∗

t−l

∥∥2 + noise(concurrent)
t (σ), (33)

where

noise(concurrent)
t (σ) =

(
1− n

p

)(
1− n+M

p

)t−1
nσ2

p− n− 1
+

t−2∑
l=0

(
1− n+M

p

)l
(n+M)σ2

p− n−M − 1
.

By rearranging the terms and substituting t = T , we complete the poof for d(concurrent)
0T and d(concurrent)

ijkT .
Furthermore, the expressions of c(concurrent)

i and c(concurrent)
ijk in Proposition 2 can be extracted from

E[Li(wt)]− E[Li(w)] as follows.[
E ∥wt −w∗

i ∥
2 − E ∥wi −w∗

i ∥
2
](concurrent)

=

(
1− n

p

)[(
1− n+M

p

)t−1

−
(
1− n+M

p

)i−1
]
∥w∗

i ∥
2

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

+

{[(
1− n+M

p

)t−1

−
(
1− n+M

p

)i−1
]
n

p
+

t−2∑
l=0

(
1− n+M

p

)l
M

(t− l − 1)p

−
i−2∑
l=0

(
1− n+M

p

)l
M

(i− l − 1)p

}
∥w∗

1 −w∗
i ∥

2

+

t−1∑
j=i

{
t−j−1∑
l=0

(
1− n+M

p

)l
M

(t− l − 1)p
+

(
1− n+M

p

)t−j
n

p

}∥∥w∗
j −w∗

i

∥∥2
+

i−1∑
j=2

{
t−j−1∑
l=0

(
1− n+M

p

)l
M

(t− l − 1)p
+

(
1− n+M

p

)t−j
n

p

−
i−j−1∑
l=0

(
1− n+M

p

)l
M

(i− l − 1)p
−
(
1− n+M

p

)i−j
n

p

}∥∥w∗
j −w∗

i

∥∥2
+

n

p
∥w∗

t −w∗
i ∥

2

+

t−2∑
l=0

(
1− n+M

p

)l t−l−2∑
j=1

t−l−1∑
k=j+1

(M
t−l−1)

2

p(p− n−M − 1)

∥∥w∗
j −w∗

k

∥∥2
−

i−2∑
l=0

(
1− n+M

p

)l i−l−2∑
j=1

i−l−1∑
k=j+1

(M
i−l−1)

2

p(p− n−M − 1)

∥∥w∗
j −w∗

k

∥∥2


β1

+

t−2∑
l=0

(
1− n+M

p

)l t−l−1∑
j=1

nM
t−l−1

p(p− n−M − 1)

∥∥w∗
j −w∗

t−l

∥∥2
−

i−2∑
l=0

(
1− n+M

p

)l i−l−1∑
j=1

nM
i−l−1

p(p− n−M − 1)

∥∥w∗
j −w∗

i−l

∥∥2 .


β2

+ noise(concurrent)
t (σ)− noise(concurrent)

i (σ) (34)

Here, we will show that β1 consists of terms δj,k
∥∥w∗

j −w∗
k

∥∥2 with δj,k ≥ −T 2(n+M)M2

p3 and

j, k ̸= t and β2 consists of terms ηj,k
∥∥w∗

j −w∗
k

∥∥2 with ηj,k ≥ −T 2(n+M)nM
p3 in Appendix E.1.

B.2 PROOF OF SEQUENTIAL REPLAY IN PROPOSITIONS 1 AND 2

To simplify, we apply the following notations to denote the current data in this subsection: Xt :=
Xt,0, Yt := Yt,0 and zt := zt,0.

When t ≥ 2, the sequence of SGD convergent points w(j)
t is equivalent the sequential optimization

problems:

ŵ
(j)
t = min

w

∥∥∥w − ŵ
(j−1)
t

∥∥∥2
2

s.t. X⊤
t,jw = Yt,j , j = 0, 1, ..., t− 1,

where ŵ
(−1)
t = wt−1 and wt = ŵ

(t−1)
t . Therefore, according to Lemmas 1 to 4, we have:

E
∥∥∥ŵ(j)

t −w∗
i

∥∥∥2 = E
∥∥∥(I − PXt,j

)(ŵ
(j−1)
t −w∗

i) + PXt,j
(w∗

j −w∗
i) +X†

t,jzt,j

∥∥∥2
=

(
1− M

(t− 1)p

)
E
∥∥∥ŵ(j−1)

t −w∗
i

∥∥∥2 + M

(t− 1)p

∥∥w∗
j −w∗

i

∥∥2 + M
(t−1)pσ

2

p− M
(t−1)p − 1

,

for j = 1, 2, ..., t− 1. Also, we have:

E
∥∥∥ŵ(0)

t −w∗
i

∥∥∥2 = E ∥(I − PXt
)(wt−1 −w∗

i) + PXt
(w∗

t −w∗
i)∥

2

=

(
1− n

p

)
E ∥wt−1 −w∗

i ∥
2
+

n

p
∥w∗

t −w∗
i ∥

2
+

nσ2

p− n− 1
.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

By combining the above two equations, we can derive:

E ∥wt −w∗
i ∥

2

=

(
1− M

(t− 1)p

)t−1(
1− n

p

)
E ∥wt−1 −w∗

i ∥
2

+

t−1∑
j=1

(
1− M

(t− 1)p

)t−j−1
M

(t− 1)p
E
∥∥w∗

j −w∗
i

∥∥2 + (1− M

(t− 1)p

)t−1
n

p
∥w∗

t −w∗
i ∥

2

+

t−1∑
j=1

(
1− M

(t− 1)p

)t−j−1 M
t−1σ

2

p− M
t−1 − 1

+

(
1− M

(t− 1)p

)t−1
nσ2

p− n− 1
.

By applying this process recursively, we obtain the expression of the expected value of the model
error E[Li(wt)] as follows, in we can extract the expressions of d(sequential)

0T and d(sequential)
ijkT :

E ∥wt −w∗
i ∥

2

=

t−2∏
l=0

[(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)]
E ∥w1 −w∗

i ∥
2

+

t−1∑
j=1

{
t−j−1∑
l=0

l−1∏
k=0

[(
1− M

(t− k − 1)p

)t−k−1(
1− n

p

)]

·
(
1− M

(t− l − 1)p

)t−j−l−1
M

(t− l − 1)p

}∥∥w∗
j −w∗

i

∥∥2
+

t−2∑
l=0

l−1∏
k=0

[(
1− M

(t− k − 1)p

)t−k−1(
1− n

p

)](
1− M

(t− l − 1)p

)t−l−1
n

p

∥∥w∗
t−l −w∗

i

∥∥2
+

(
1− M

(t− 1)p

)t−1
n

p
∥w∗

t −w∗
i ∥

2
+ noise(sequential)

t (σ)

=

(
1− n

p

) t−2∏
l=0

[(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)]
∥w∗

i ∥
2

+

{
n

p

t−2∏
l=0

[(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)]
+

t−2∑
l=0

l−1∏
k=0

[(
1− M

(t− k − 1)p

)t−k−1(
1− n

p

)]

·
(
1− M

(t− l − 1)p

)t−l−2
M

(t− l − 1)p

}
] ∥w∗

1 −w∗
i ∥

2

+

t−1∑
j=2

{
t−j−1∑
l=0

l−1∏
k=0

[(
1− M

(t− k − 1)p

)t−k−1(
1− n

p

)](
1− M

(t− l − 1)p

)t−j−l−1
M

(t− l − 1)p

+

t−j−1∏
k=0

[(
1− M

(t− l − 1)p

)t−k−1(
1− n

p

)](
1− M

(j − 1)p

)j−1
n

p

}∥∥w∗
j −w∗

i

∥∥2
+

(
1− M

(t− 1)p

)t−1
n

p
∥w∗

t −w∗
i ∥

2
+ noise(sequential)

t (σ), (35)

where noise(sequential)
t (σ) =

∑t−2
l=0

∏l−1
k=0

[(
1− M

(t−k−1)p

)t−k−1 (
1− n

p

)]
·
[∑t−1

j=1

(
1− M

(t−1)p

)t−j−1 M
t−1σ

2

p− M
t−1−1

+
(
1− M

(t−1)p

)t−1
nσ2

p−n−1

]
.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Furthermore, the expressions of c(sequential)
i and c(sequential)

ijk in Proposition 2 can be extracted from the
derivation of E[Li(wt)]− E[Li(w)] as follows.[
E ∥wt −w∗

i ∥
2
2 − E ∥wi −w∗

i ∥
2
2

](sequential)

=
(
1− n

p

){∏t−2
l=0

[(
1− M

(t−l−1)p

)t−l−1 (
1− n

p

)]
−
∏i−2

l=0

[(
1− M

(i−l−1)p

)i−l−1 (
1− n

p

)]}
∥w∗

i ∥
2

+

{
n
p

{∏t−2
l=0

[(
1− M

(t−l−1)p

)t−l−1 (
1− n

p

)]
−
∏i−2

l=0

[(
1− M

(i−l−1)p

)i−l−1 (
1− n

p

)]}
+
∑t−2

l=0

∏l−1
k=0

[(
1− M

(t−k−1)p

)t−k−1 (
1− n

p

)](
1− M

(t−l−1)p

)t−l−2
M

(t−l−1)p

−
∑i−2

l=0

∏l−1
k=0

[(
1− M

(i−k−1)p

)i−k−1 (
1− n

p

)](
1− M

(i−l−1)p

)i−l−2
M

(i−l−1)p

}
∥w∗

1 −w∗
i ∥

2

+
∑t−1

j=i

{∑t−j−1
l=0

∏l−1
k=0

[(
1− M

(t−k−1)p

)t−k−1 (
1− n

p

)](
1− M

(t−l−1)p

)t−j−l−1
M

(t−l−1)p

+
∏t−j−1

k=0

[(
1− M

(t−k−1)p

)t−k−1 (
1− n

p

)](
1− M

(j−1)p

)j−1
n
p

}∥∥w∗
j −w∗

i

∥∥2
+
∑i−1

j=2

{∑t−j−1
l=0

∏l−1
k=0

[(
1− M

(t−k−1)p

)t−k−1 (
1− n

p

)](
1− M

(t−l−1)p

)t−j−l−1
M

(t−l−1)p

−
∑i−j−1

l=0

∏l−1
k=0

[(
1− M

(i−k−1)p

)i−k−1 (
1− n

p

)](
1− M

(i−l−1)p

)i−j−l−1
M

(i−l−1)p

+
∏t−j−1

k=0

[(
1− M

(t−k−1)p

)t−k−1 (
1− n

p

)](
1− M

(j−1)p

)j−1
n
p

−
∏i−j−1

k=0

[(
1− M

(i−k−1)p

)i−k−1 (
1− n

p

)](
1− M

(j−1)p

)j−1
n
p

}∥∥w∗
j −w∗

i

∥∥2
+
(
1− M

(t−1)p

)t−1
n
p ∥w

∗
t −w∗

i ∥
2
+ noise(sequential)

t (σ)− noise(sequential)
i (σ) (36)

B.3 PROOF OF THEOREM 1

Theorem 1 follows directly from Propositions 1 and 2 and the definitions of FT and GT .

C PROOF OF THEOREM 2

In this section, we prove Theorem 2 and provide details about constants ξ1, ξ2, µ1, µ2. According
to eqs. (33) to (36), we can write forgetting and generalization error when T = 2 as follows. For
concurrent replay method, we have:

F (concurrent)
2 = E ∥w2 −w∗

1∥
2 − E ∥w1 −w∗

1∥
2

=

(
−n+M

p

)(
1− n

p

)
∥w∗

1∥
2
+

n

p

(
1 +

M

p− n−M − 1

)
∥w∗

1 −w∗
2∥

2

+
(n+M)σ2

p− (n+M)− 1
− n+M

p
· nσ2

p− n− 1
. (37)

And also, we have

G(concurrent)
2 =

1

2

(
E ∥w2 −w∗

1∥
2
+ E ∥w2 −w∗

2∥
2
)

=
1

2

(
1− n+M

p

)(
1− n

p

)
(∥w∗

1∥
2
+ ∥w∗

2∥
2
)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

+
1

2

(
2n+M

p
+

2nM

p(p− n−M − 1)
− n(n+M)

p2

)
∥w∗

1 −w∗
2∥

2

+
(n+M)σ2

p− (n+M)− 1
+

(
1− n+M

p

)
nσ2

p− n− 1
. (38)

On the other hand, the performance of sequential replay method is:

F sequential
2 = E ∥w2 −w∗

1∥
2 − E ∥w1 −w∗

1∥
2

=

(
−n+M

p
+

nM

p2

)(
1− n

p

)
∥w∗

1∥
2
+

(
1− M

p

)
n

p
∥w∗

1 −w∗
2∥

2

+

(
1− n+ 2M

p
+

nM

p2

)
nσ2

p− n− 1
+

Mσ2

p−M − 1
. (39)

And also, we have

Gsequential
2 =

1

2
(E ∥w2 −w∗

1∥
2
+ E ∥w2 −w∗

2∥
2
)

=
1

2

(
1− M

p

)(
1− n

p

)2

(∥w∗
1∥

2
+ ∥w∗

2∥
2
)

+
1

2

(
2n+M

p
− n(n+ 2M)

p2
+

n2M

p3

)
∥w∗

1 −w∗
2∥

2

+

(
1− M

p

)(
2− n

p

)
nσ2

p− n− 1
+

Mσ2

p−M − 1
. (40)

C.1 PROOF OF FORGETTING IN THEOREM 2

By observing eq. (37) and eq. (39), we see that the forgetting can be expressed as:

F2 = ĉ1 ∥w∗
1∥

2
+ ĉ2 ∥w∗

1 −w∗
2∥

2
+ ˆnoise(σ).

Before we investigate forgetting, we compare the coefficients ĉ1, ĉ2 and term ˆnoise(σ) as follows,
with concurrent replay on the left and sequential replay on the right.(

−n+M

p

)(
1− n

p

)
<

(
−n+M

p
+

nM

p2

)(
1− n

p

)
n

p

(
1 +

M

p− n−M − 1

)
>

(
1− M

p

)
n

p
,

(n+M)σ2

p− (n+M)− 1
− n+M

p
· nσ2

p− n− 1
>

(
1− n+ 2M

p
+

nM

p2

)
nσ2

p− n− 1
+

Mσ2

p−M − 1
.

The comparison implies that ĉ(concurrent)
1 < ĉ(sequential)

1 , ĉ(concurrent)
2 > ĉ(sequential)

2 and
ˆnoise

(concurrent)
(σ) > ˆnoise

(sequential)
(σ). Based on the calculation, we obtain the following con-

clusion:
F (concurrent)
2 > F (sequential)

2 if and only if ξ1 ∥w∗
1 −w∗

2∥
2
+ ξ2σ

2 > ∥w∗
1∥

2
,

where ξ1 =
nM
p (1

p−n−M−1+
1
p)

nM
p2

(1−n
p)

and ξ2 =

(
n+M

p−n−M−1−
(
1−M

p +nM
p2

)
n

p−n−1−
M

p−M−1

)
nM
p2

(1−n
p)

. To make a

clearer illustration, we provide the following two special cases.

• If the noise σ is 0, and the task similarity is low enough (i.e., ∥w∗
1 −w∗

2∥
2 is large enough),

sequential replay achieves a lower forgetting. More specifically, F (concurrent)
2 ≥ F (sequential)

2 if and
only if ∥w∗

1 −w∗
2∥

2 ≥ (p−n)(p−n−M−1)
p2+p(p−n−M−1) ∥w

∗
1∥

2,

• If task difference ∥w∗
1 −w∗

2∥
2
= 0 and the noise σ is large enough, sequential replay achieves

a lower forgetting. More specifically, F (concurrent)
2 ≥ F (sequential)

2 if and only if

σ ≥
nM
p2

(
1− n

p

)
n+M

p−n−M−1 −
(
1− M

p + nM
p2

)
n

p−n−1 −
M

p−M−1

∥w∗
1∥

2
.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

C.2 PROOF OF GENERALIZATION ERROR IN THEOREM 2

By observing eq. (38) and eq. (40), we see that the generalization error can be expressed as:

G2 = d̂1(∥w∗
1∥

2
+ ∥w∗

2∥
2
) + d̂2 ∥w∗

1 −w∗
2∥

2
+ ˆnoise(σ).

Before we compare generalization error, we first observe the coefficients d̂1, d̂2 and term ˆnoise(σ)
as follows, with concurrent replay on the left and sequential replay on the right.(

1− n+M

p

)(
1− n

p

)
<

(
1− M

p

)(
1− n

p

)2

2n+M

p
+

2nM

p(p− n−M − 1)
− n(n+M)

p2
>

2n+M

p
− n(n+ 2M)

p2
+

n2M

p3
,

(n+M)σ2

p− (n+M)− 1
+

(
1− n+M

p

)
nσ2

p− n− 1
>

(
1− M

p

)(
2− n

p

)
nσ2

p− n− 1
+

Mσ2

p−M − 1
,

which implies that d̂(concurrent)
1 < d̂(sequential)

1 and d̂(concurrent)
2 > d̂(sequential)

2 , ˆnoise
(concurrent)

(σ) >

ˆnoise
(sequential)

(σ). Based on our calculation, we obtain the following conclusion. Furthermore,
we can obtain the following conclusion:

G(concurrent)
2 ≥ G(sequential)

2 if and only if µ1 ∥w∗
1 −w∗

2∥
2
+ µ2σ

2 > ∥w∗
1∥

2
,

where µ1 =
nM
p

(
2

p−n−M−1+
1
p−

n
p2

)
nM
p2

(1−n
p)

and µ2 =
n+M

p−n−M−1−
(
1−M

p +nM
p2

)
n

p−n−1−
M

p−M−1

nM
p2

(1−n
p)

. To provide a

clearer illustration, we provide the following two special cases.

• If the noise σ is 0, and the task similarity is small enough (i.e., ∥w∗
1 −w∗

2∥
2 is big enough),

sequential replay has a smaller generalization error. More specifically, G(concurrent)
2 ≥ G(sequential)

2

if and only if ∥w∗
1 −w∗

2∥
2 ≥ (p−n)(p−n−M−1)

2p2+(p−n)(p−n−M−1)

(
∥w∗

1∥
2
+ ∥w∗

2∥
2
)

.

• If the task difference ∥w∗
1 −w∗

2∥
2
= 0 and the noise σ is big, sequential replay has a smaller

generalization error. More specifically, G(concurrent)
2 ≥ G(sequential)

2 if and only if

σ2 ≥
nM
p2

(
1− n

p

)
n+M

p−n−M−1 −
(
1− M

p + nM
p2

)
n

p−n−1 −
M

p−M−1

(
∥w∗

1∥
2
+ ∥w∗

2∥
2
)

D COMPARISON BETWEEN CONCURRENT AND SEQUENTIAL REPLAY
METHODS WHEN T = 3

We recall that M2,1 = M and M3,1 = M3,2 = M
2 under our equal memory allocation assumption.

We assume that σ = 0. According to eqs. (33) and (34), we write performance of the concurrent
replay method when T = 3 as follows.

F
(concurrent)
3 =

1

2
(E ∥w3 −w∗

1∥
2 − E ∥w1 −w∗

1∥
2
+ E ∥w3 −w∗

2∥
2 − E ∥w2 −w∗

2∥
2
)

=
1

2

(
−2(n+M)

p
+

(n+M)2

p2

)(
1− n

p

)
∥w∗

1∥
2

+
1

2

(
−n+M

p

)(
1− n+M

p

)(
1− n

p

)
∥w∗

2∥
2

+
1

2

[(
1− 2(n+M)

p

)
nM

p(p− n−M − 1)
+

M2

2p(p− n−M − 1)

+
n+M

p

(
1− n

p

)(
1− n+M

p

)]
∥w∗

1 −w∗
2∥

2

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

+
1

2

[
n

p
+

nM

p(p− n−M − 1)

]
∥w∗

1 −w∗
3∥

2
+

1

2

[
n

p
+

nM

p(p− n−M − 1)

]
∥w∗

2 −w∗
3∥

2
.

(41)
And also, we have

G
(concurrent)
3 =

1

3
(E ∥w3 −w∗

1∥
2
+ E ∥w3 −w∗

2∥
2
+ E ∥w3 −w∗

3∥
2
)

=
1

3

(
1− n+M

p

)2(
1− n

p

)
(∥w∗

1∥
2
+ ∥w∗

2∥
2
+ ∥w∗

3∥
2
)

+
1

3

[(
3− 3(n+M)

p

)
nM

p(p− n−M − 1)
+

3M2

4p(p− n−M − 1)

+
n+M

p

(
2− 3n

p
− M

p
+

n(n+M)

p2

)]
∥w∗

1 −w∗
2∥

2

+
1

3

[
n

p

(
2− 2(n+M)

p
+

(n+M)2

p2

)
+

M

p

(
1− n+M

p

)
+

M

2p

+
3nM

2p(p− n−M − 1)

]
∥w∗

1 −w∗
3∥

2

+
1

3

[
n

p

(
2− n+M

p

)
+

M

2p
+

3nM

2p(p− n−M − 1)

]
∥w∗

2 −w∗
3∥

2
. (42)

According to eqs. (35) and (36), the performance of sequential replay when T = 3 is provided as
follows.

F (sequential)
3 =

1

2
(E ∥w3 −w∗

1∥
2 − E ∥w1 −w∗

1∥
2
+ E ∥w3 −w∗

2∥
2 − E ∥w2 −w∗

2∥
2
)

=
1

2

[(
1− n

p

)3(
1− M

p

)(
1− M

2p

)2

−
(
1− n

p

)]
∥w∗

1∥
2

+
1

2

[(
1− n

p

)3(
1− M

p

)(
1− M

2p

)2

−
(
1− n

p

)2(
1− M

p

)]
∥w∗

2∥
2

+
1

2

[(
1− n

p

)(
1− M

p

)
n

p

((
1− M

2p

)2(
2− n

p

)
− 1

)

+

(
1− M

2p

)2(
1− n

p

)
M

p
− M2

4p2

]
∥w∗

1 −w∗
2∥

2

+
1

2

(
1− M

2p

)2
n

p
∥w∗

1 −w∗
3∥

2
+

(
1− M

2p

)2
n

p
∥w∗

2 −w∗
3∥

2
. (43)

And also, we have

G
(concurrent)
3 =

1

3
(E ∥w3 −w∗

1∥
2
+ E ∥w3 −w∗

2∥
2
+ E ∥w3 −w∗

3∥
2
)

=
1

3

(
1− n

p

)3(
1− M

p

)(
1− M

2p

)2

(∥w∗
1∥

2
+ ∥w∗

2∥
2
+ ∥w∗

3∥
2
)

+
1

3

{(
1− n

p

)(
1− M

2p

)2 [(
1− M

p

)(
2− n

p

)
n

p
+

M

p

]
+

M

p
− M2

4p2

}
∥w∗

1 −w∗
2∥

2

+
1

3

[(
1− M

2p

)2
n

p
+

(
1− M

2p

)2(
1− n

p

)
M

p
+

(
1− n

p

)2(
1− M

p

)(
1− M

2p

)2
n

p

+

(
1− M

2p

)
M

2p

]
∥w∗

1 −w∗
3∥

2

+
1

3

{(
1− M

2p

)2
n

p

[(
1− M

p

)(
1− n

p

)
+ 1

]
+

M

2p

}
∥w∗

2 −w∗
3∥

2
. (44)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

D.1 COMPARISON OF FORGETTING WHEN T = 3

By observing eq. (41) and eq. (43), we can write forgetting in the same structure for both training
methods:

F3 =
1

2
ĉ1 ∥w∗

1∥
2
+

1

2
ĉ2 ∥w∗

2∥
2
+

1

2
ĉ3 ∥w∗

1 −w∗
2∥

2
+

1

2
ĉ4 ∥w∗

1 −w∗
3∥

2
+

1

2
ĉ5 ∥w∗

2 −w∗
3∥

2
.

By comparing eq. (41) and eq. (43), we have the following conclusions: 1.ĉ(concurrent)
1 < ĉ(sequential)

1 ;
2.ĉ(concurrent)

2 < ĉ(sequential)
2 ; 3.ĉ(concurrent)

3 > ĉ(sequential)
3 , when p > 5n+4M

2 ; 4.ĉ(concurrent)
4 > ĉ(sequential)

4 ;
5.ĉ(concurrent)

5 > ĉ(sequential)
5 . The proof of these conclusions is provided as follows.

Proof. 1. To prove ĉ(concurrent)
1 < ĉ(sequential)

1 :

ĉ(sequential)
1 =

[(
1− n

p

)3(
1− M

p

)(
1− M

2p

)2

−
(
1− n

p

)]

=

[(
1− n

p

)2(
1− M

p

)(
1− M

2p

)2

− 1

](
1− n

p

)

>

[(
1− n

p

)2(
1− M

p

)2

− 1

](
1− n

p

)

>

[(
1− n+M

p

)2

− 1

](
1− n

p

)
= ĉ(concurrent)

1 .

2. To prove ĉ(concurrent)
2 < ĉ(sequential)

2 :

ĉ(sequential)
2 =

[(
1− n

p

)3(
1− M

p

)(
1− M

2p

)2

−
(
1− n

p

)2(
1− M

p

)]

>

[(
1− n

p

)3(
1− M

p

)2

−
(
1− n

p

)2(
1− M

p

)]

=

(
1− n

p

)[(
1− n

p

)(
1− M

p

)
− 1

](
1− n

p

)(
1− M

p

)
=

(
1− n

p

)[
nM

p2
− n+M

p

](
1− n+M

p
+

nM

p2

)

=

(
1− n

p

)[
nM

p2
− n+M

p

](
1− n+M

p
+

nM

p2

)
=

(
1− n

p

)[
−n+M

p

](
1− n+M

p

)
+

(
1− n

p

)
nM

p2

(
1− 2(n+M)

p
+

nM

p2

)
>

(
1− n

p

)[
−n+M

p

](
1− n+M

p

)
= ĉ(concurrent)

2 .

3. To prove ĉ(concurrent)
3 > ĉ(sequential)

3 when p > 5n+4M
2 , we first notice that

ĉ(concurrent)
3 =

(
1− 2(n+M)

p

)
nM

p(p− n−M − 1)
+

M2

2p(p− n−M − 1)

+
n+M

p

(
1− n

p

)(
1− n+M

p

)

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

>

(
1− 2(n+M)

p

)
nM

p2
+

M2

2p2
+

n+M

p

(
1− n

p

)(
1− n+M

p

)
=

n+M

p

(
1− n

p

)(
1− M

p

)
− n2

p2
+

n3 − n2M − 2nM2

p3
.

On the other hand, we have:

ĉ(sequential)
3 =

(
1− n

p

)(
1− M

p

)
n

p

((
1− M

2p

)2(
2− n

p

)
− 1

)

+

(
1− M

2p

)2(
1− n

p

)
M

p
− M2

4p2

=

(
1− n

p

)(
1− M

p

)
n

p

((
1− M

p

)(
2− n

p

)
− 1

)
+

(
1− M

p

)(
1− n

p

)
M

p

+
M2

4p2

[(
2− n

p

)(
1− M

p

)(
1− n

p

)
n

p
+

(
1− n

p

)
M

p
− 1

]
<

(
1− n

p

)(
1− M

p

)
n

p

((
1− M

p

)(
2− n

p

)
− 1

)
+

(
1− M

p

)(
1− n

p

)
M

p
+

M2

4p2

[
2n

p
+

M

p
− 1

]
(i)
<

(
1− n

p

)(
1− M

p

)
n

p

((
1− M

p

)(
2− n

p

)
− 1

)
+

(
1− M

p

)(
1− n

p

)
M

p

=

(
1− n

p

)(
1− M

p

)
n

p

(
1− 2M

p
− n

p
+

nM

p2

)
+

(
1− M

p

)(
1− n

p

)
M

p

=

(
1− n

p

)(
1− M

p

)
n+M

p
+

(
1− n

p

)(
1− M

p

)
n

p

(
−n+ 2M

p
+

nM

p2

)
(ii)
<

(
1− n

p

)(
1− M

p

)
n+M

p
+

(
1− n+M

p

)
n

p

(
−n+ 2M

p
+

nM

p2

)
<

(
1− n

p

)(
1− M

p

)
n+M

p
− n2 + 2nM

p2
+

n3 + 4n2M + 2nM2

P 3
,

where (i) follows from the face that p > 5n+4M
2 and (ii) follows from the fact that−n+2M

p + nM
p2 <

0. Furthermore, under the condition p > 5n+4M
2 , we have:

−n2 + 2nM

p2
+

n3 + 4n2M + 2nM2

P 3
< −n2

p2
+

n3 − n2M − 2nM2

p3
,

which completes the proof. 4. To prove ĉ(concurrent)
4 > ĉ(sequential)

4 :

ĉ(concurrent)
4 =

n

p
+

nM

p(p− n−M − 1)
>

n

p
>

(
1− M

2p

)2
n

p
= ĉ(sequential)

4 .

5. The proof of ĉ(concurrent)
5 > ĉ(sequential)

5 is the same as ĉ(concurrent)
4 > ĉ(sequential)

4 .

D.2 COMPARISON OF GENERALIZATION ERROR WHEN T = 3

By observing eq. (42) and eq. (44), we can write generalization error in the same structure for both
training methods:

G3 =
1

3
d̂1(∥w∗

1∥
2
+∥w∗

2∥
2
+∥w∗

3∥
2
)+

1

3
d̂2 ∥w∗

1 −w∗
2∥

2
+
1

3
d̂3 ∥w∗

1 −w∗
3∥

2
+
1

3
d̂4 ∥w∗

2 −w∗
3∥

2
.

By comparing eq. (42) and eq. (44), we have the following conclusions: 1.d̂(concurrent)
1 < d̂(sequential)

1 ;
2.d̂(concurrent)

2 > d̂(sequential)
2 when p > 4n+3M

2 ; 3.d̂(concurrent)
3 > d̂(sequential)

3 ; 4.d̂(concurrent)
4 > d̂(sequential)

4 .
The proof of these relationships is provided as follows.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

1. To prove d̂(concurrent)
1 < d̂(sequential)

1 :

d̂(sequential)
1 =

(
1− n

p

)3(
1− M

p

)(
1− M

2p

)2

>

(
1− n

p

)3(
1− M

p

)2

>

(
1− n+M

p

)2(
1− M

p

)
= d̂(concurrent)

1 .

2. To prove d̂(concurrent)
2 > d̂(sequential)

2 when p > 4n+3M
2 , we first consider:

d̂(concurrent)
2 =

(
3− 3(n+M)

p

)
nM

p(p− n−M − 1)
+

3M2

4p(p− n−M − 1)

+
n+M

p

(
2− 3n

p
− M

p
+

n(n+M)

p2

)
>

(
3− 3(n+M)

p

)
nM

p2
+

3M2

4p2
+

n+M

p

(
2− 3n

p
− M

p
+

n(n+M)

p2

)
> 3

(
1− n+M

p

)
nM

p2
+

2(n+M)

p
+

n+M

p

(
−3n

p
− n

p
+

n(n+M)

p2

)
=

2(n+M)

p
− 3n2 + nM +M2

p2
+

n3 − n2M − 2nM2

p3
.

On the other hand, we have:

d̂(sequential)
2 =

(
1− n

p

)(
1− M

2p

)2 [(
1− M

p

)(
2− n

p

)
n

p
+

M

p

]
+

M

p
− M2

4p2

=

(
1− n

p

)(
1− M

p
+

M2

4p2

)[(
1− M

p

)(
2− n

p

)
n

p
+

M

p

]
+

M

p
− M2

4p2

=

(
1− n

p

)(
1− M

p

)[(
1− M

p

)(
2− n

p

)
n

p
+

M

p

]
+

M

p

+
M2

4p2

[(
1− M

p

)(
2− n

p

)
n

p
+

M

p

]
− M2

4p2

<

(
1− n

p

)(
1− M

p

)[(
1− M

p

)(
2− n

p

)
n

p
+

M

p

]
+

M

p

+
M2

4p2

[
2n

p
+

M

p
− 1

]
<

(
1− n

p

)(
1− M

p

)[(
2− n

p

)
n

p
+

M

p

]
+

M

p

=

(
1− n

p

)(
1− M

p

)
2n

p
−
(
1− n

p

)(
1− M

p

)
n2

p2
+

2M

p

+

(
−n+M

p
+

nM

p2

)
M

p

=
2(n+M)

p
− 3n2 + 3nM +M2

p2
+

n3 + 3n2M + nM2

p3
− n3M

p4

<
2(n+M)

p
− 3n2 + 3nM +M2

p2
+

n3 + 3n2M + nM2

p3
.

Under the condition p > 4n+3M
2 , we have:

−3n2 + 3nM +M2

p2
+
n3 + 3n2M + nM2

p3
< −3n2 + nM +M2

p2
+
n3 − n2M − 2nM2

p3
,

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

which completes the proof.

3. To prove d̂(concurrent)
3 > d̂(sequential)

3 , we first have:

d̂(concurrent)
3 =

n

p

(
2− 2(n+M)

p
+

(n+M)2

p2

)
+

M

p

(
1− n+M

p

)
+

M

2p

+
3nM

2p(p− n−M − 1)

>
n

p

(
2− 2(n+M)

p
+

(n+M)2

p2

)
+

M

p

(
1− n+M

p

)
+

M

2p
+

3nM

2p2
.

On the other hand, we have:

d̂(sequential)
3 =

(
1− M

2p

)2
n

p
+

(
1− M

2p

)2(
1− n

p

)
M

p

+

(
1− n

p

)2(
1− M

p

)(
1− M

2p

)2
n

p
+

(
1− M

2p

)
M

2p

<

(
1− M

2p

)2
n

p

[
1 +

(
1− n

p

)2(
1− M

p

)]

+

(
1− n

p

)(
1− M

p

)
M

p
+

M3

4p3
+

M

2p

<
n

p

(
2− 2n+M

p
+

n2 + 2nM

p2

)
+

n

p

(
−M

p
+

M2

4p2

)
+

M

p

(
1− n+M

p

)
+

nM2

p
+

M3

4p3
+

M

2p

=
n

p

(
2− 2n+ 2M

p
+

n2 + 2nM +M2

p2

)
+

M

p

(
1− n+M

p

)
+

nM2 +M3

4p3
+

M

2p

<
n

p

(
2− 2(n+M)

p
+

(n+M)2

p2

)
+

M

p

(
1− n+M

p

)
+

M

2p
+

3nM

2p2
.

By combining the above equations, we complete the proof.

4. To prove d̂(concurrent)
4 > d̂(sequential)

4 , we first have:

d̂(sequential)
4 =

(
1− M

2p

)2
n

p

[(
1− M

p

)(
1− n

p

)
+ 1

]
+

M

2p

<
n

p

[(
1− M

p

)(
1− n

p

)
+ 1

]
+

M

2p

=
n

p

[
2− n+M

p

]
+

M

2p
+

n2M

p3

<
n

p

[
2− n+M

p

]
+

M

2p
+

3nM

2p(p− n−M − 1)

< d̂(concurrent)
4 .

E COMPARISON BETWEEN CONCURRENT AND SEQUENTIAL REPLAY FOR
GENERAL T

In order to develop the comparison between concurrent and sequential replay methods for general
T , we need to compare the coefficients in Theorem 1 between concurrent and sequential replay
methods. In this section, we assume that M ≥ 2.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

E.1 COMPARISON OF COEFFICIENTS OF FORGETTING IN THEOREM 1

We first observe the terms β1 and β2 in eq. (34) before we start to compare the forgetting under
different training methods. We separate the term β1 into two following parts.

β1 =

t−i−1∑
l=0

(
1− n+M

p

)l t−l−2∑
j=1

t−l−1∑
k=j+1

(M
t−l−1)

2

p(p− n−M − 1)

∥∥w∗
j −w∗

k

∥∥2β+
1

+

t−2∑
l=t−i

(
1− n+M

p

)l t−l−2∑
j=1

t−l−1∑
k=j+1

(M
t−l−1)

2

p(p− n−M − 1)

∥∥w∗
j −w∗

k

∥∥2
−

i−2∑
l=0

(
1− n+M

p

)l i−l−2∑
j=1

i−l−1∑
k=j+1

(M
i−l−1)

2

p(p− n−M − 1)

∥∥w∗
j −w∗

k

∥∥2


β−
1 , (45)

where β+
1 consists of terms δ+j,k

∥∥w∗
j −w∗

k

∥∥2 with δ+j,k ≥ 0 for j = [k − 1]; k = i, i + 1, .., t − 1.
Then, we take a closer look at β−

1 .

β−
1 =

i−2∑
l=0

(
1− n+M

p

)t−i+l i−l−2∑
j=1

i−l−1∑
k=j+1

(M
i−l−1)

2

p(p− n−M − 1)

∥∥w∗
j −w∗

k

∥∥2
−

i−2∑
l=0

(
1− n+M

p

)l i−l−2∑
j=1

i−l−1∑
k=j+1

(M
i−l−1)

2

p(p− n−M − 1)

∥∥w∗
j −w∗

k

∥∥2
=

i−2∑
l=0

[(
1− n+M

p

)t−i

− 1

](
1− n+M

p

)l i−l−2∑
j=1

i−l−1∑
k=j+1

(M
i−l−1)

2

p(p− n−M − 1)

∥∥w∗
j −w∗

k

∥∥2
≥− T (n+M)

p

i−2∑
l=0

i−l−2∑
j=1

i−l−1∑
k=j+1

(M
i−l−1)

2

p(p− n−M − 1)

∥∥w∗
j −w∗

k

∥∥2 . (46)

This shows that β−
1 consists of terms δ−j,k

∥∥w∗
j −w∗

k

∥∥2 with δ−j,k ≥ −
T 2(n+M)M2

p3 for j ∈ [k −
1], k ∈ [i− 1]. Therefore, β1 consists of terms δj,k

∥∥w∗
j −w∗

k

∥∥2 where

δj,k = δ+j,k + δ−j,k ≥ −
T 2(n+M)M2

p3
, (47)

for j, k ̸= t. By the same argument, we have:

β2 =

t−i−1∑
l=0

(
1− n+M

p

)l t−l−1∑
j=1

nM
t−l−1

p(p− n−M − 1)

∥∥w∗
j −w∗

t−l

∥∥2β+
2

+

t−2∑
l=t−i

(
1− n+M

p

)l t−l−1∑
j=1

nM
t−l−1

p(p− n−M − 1)

∥∥w∗
j −w∗

t−l

∥∥2
−

i−2∑
l=0

(
1− n+M

p

)l i−l−1∑
j=1

nM
i−l−1

p(p− n−M − 1)

∥∥w∗
j −w∗

i−l

∥∥2


β−
2 , (48)

where β+
2 consists of terms η+j,k

∥∥w∗
j −w∗

k

∥∥2 with η+j,k ≥ 0 for j ∈ [k − 1], k = i + 1, i + 2, .., t

and β−
2 consists of terms η−j,k

∥∥w∗
j −w∗

k

∥∥2 with η−j,k ≥ −
T 2(n+M)nM

p3 for. Therefore, β2 consists

of terms ηj,k
∥∥w∗

j −w∗
k

∥∥2 for j ∈ [k − 1], k = 2, 3, .., i where

ηj,k = η+j,k + η−j,k ≥ −
T 2(n+M)nM

p3
. (49)

Now, we compare the coefficients in forgetting in Theorem 1. We first fix the index i, meaning that
we consider the generalization error on the task i.. The proof of c(concurrent)

i < c(sequential)
i follows from

Lemma 15 if p > 2T 3(n+M)2 .

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

The proof of c(concurrent)
ijk > c(sequential)

ijk are as follows.

1. we prove c(concurrent)
i1i > c(sequential)

i1i if p > 5T 4(n+M)nM . We start from c(sequential)
i1i . We first upper

bound part of the coefficient c(sequential)
i1i :

n

p

{
t−2∏
l=0

[(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)]
−

i−2∏
l=0

[(
1− M

(i− l − 1)p

)i−l−1(
1− n

p

)]}
(i)
<

n

p

[(
1− n+M

p

)t−1

−
(
1− n+M

p

)i−1
]
+

T 2(n+M)nM

p3
(50)

where (i) follows from Lemma 16. We then rewrite the rest part of c(sequential)
1 as follows.

t−2∑
l=0

l−1∏
k=0

[(
1− M

(t− k − 1)p

)t−k−1(
1− n

p

)](
1− M

(t− l − 1)p

)t−l−2
M

(t− l − 1)p

−
i−2∑
l=0

l−1∏
k=0

[(
1− M

(i− k − 1)p

)i−k−1(
1− n

p

)](
1− M

(i− l − 1)p

)i−l−2
M

(i− l − 1)p

=

t−i−1∑
l=0

l−1∏
k=0

[(
1− M

(t− k − 1)p

)t−k−1(
1− n

p

)](
1− M

(t− l − 1)p

)t−l−2
M

(t− l − 1)p

+

t−2∑
l=t−i

l−1∏
k=0

[(
1− M

(t− k − 1)p

)t−k−1(
1− n

p

)](
1− M

(t− l − 1)p

)t−l−2
M

(t− l − 1)p

−
i−2∑
l=0

l−1∏
k=0

[(
1− M

(i− k − 1)p

)i−k−1(
1− n

p

)](
1− M

(i− l − 1)p

)i−l−2
M

(i− l − 1)p

=

t−i−1∑
l=0

l−1∏
k=0

[(
1− M

(t− k − 1)p

)t−k−1(
1− n

p

)](
1− M

(t− l − 1)p

)t−l−2
M

(t− l − 1)p

+

i−2∑
l=0

l−i+t−1∏
k=0

[(
1− M

(t− k − 1)p

)t−k−1(
1− n

p

)](
1− M

(i− l − 1)p

)i−l−2
M

(i− l − 1)p

−
i−2∑
l=0

l−1∏
k=0

[(
1− M

(i− k − 1)p

)i−k−1(
1− n

p

)](
1− M

(i− l − 1)p

)i−l−2
M

(i− l − 1)p

(i)
<

t−i−1∑
l=0

(
1− n+M

p

)l
M

(t− l − 1)p
− M

T 2p2
+

T 2(n+M)M2

p3

+

i−2∑
l=0

[(
1− n+M

p
+

(n+M)M

p2

)l−i+t

−
(
1− n+M

p

)l
]

·
(
1− M

(i− l − 1)p

)i−l−2
M

(i− l − 1)p

(ii)
<

t−i−1∑
l=0

(
1− n+M

p

)l
M

(t− l − 1)p
− M

T 2p2
+

T 2(n+M)M2

p3

+

i−2∑
l=0

[(
1− n+M

p

)l−i+t

+
T 2(n+M)M

p2
−
(
1− n+M

p

)l
]

M

(i− l − 1)p

<

t−1∑
l=0

(
1− n+M

p

)l
M

(t− l − 1)p
−

i−1∑
l=0

(
1− n+M

p

)l
M

(i− l − 1)p

− M

T 2p2
+

2T 2(n+M)M2

p3
, (51)

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

where (i) follows from eq. (58) and lemmas 10 and 11, (ii) follows from Lemma 12 By combining
eqs. (50) and (51),

c(sequential)
i1i <

n

p

[(
1− n+M

p

)t−1

−
(
1− n+M

p

)i−1
]
+

t−1∑
l=0

(
1− n+M

p

)l
M

(t− l − 1)p

−
i−1∑
l=0

(
1− n+M

p

)l
M

(i− l − 1)p
+

T 2(n+M)nM

p3
− M

T 2p2
+

2T 2(n+M)M2

p3

(i)
<

n

p

[(
1− n+M

p

)t−1

−
(
1− n+M

p

)i−1
]
+

t−1∑
l=0

(
1− n+M

p

)l
M

(t− l − 1)p

−
i−1∑
l=0

(
1− n+M

p

)l
M

(i− l − 1)p
− T 2(n+M)M2

p3
− T 2(n+M)nM

p3

(ii)

≤ c(concurrent)
i1i (52)

where (i) follows from the fact that p > 5T 4(n + M)nM , (ii) follows from our observation in
eqs. (47) and (49).

2. Next, we prove c(concurrent)
iji > c(sequential)

iji if p > 5T 4(n +M)nM , for j = 2, 3, ..., i − 1. We first
notice that c(sequential)

iji consists of two parts. We bound the first part by

t−j−1∑
l=0

l−1∏
k=0

[(
1− M

(t− k − 1)p

)t−k−1(
1− n

p

)](
1− M

(t− l − 1)p

)t−j−l−1
M

(t− l − 1)p

−
i−j−1∑
l=0

l−1∏
k=0

[(
1− M

(i− k − 1)p

)i−k−1(
1− n

p

)](
1− M

(i− l − 1)p

)i−j−l−1
M

(i− l − 1)p

(i)
<

t−j−1∑
l=0

(
1− n+M

p

)l
M

(t− l − 1)p
−

i−j−1∑
l=0

(
1− n+M

p

)l
M

(i− l − 1)p

− M

T 2p2
+

2T 2(n+M)M2

p3
, (53)

For the rest part of c(sequential)
iji , we have

t−j−1∏
k=0

[(
1− M

(t− k − 1)p

)t−k−1(
1− n

p

)](
1− M

(j − 1)p

)j−1
n

p

−
i−j−1∏
k=0

[(
1− M

(i− k − 1)p

)i−k−1(
1− n

p

)](
1− M

(j − 1)p

)j−1
n

p

(i)
<

{(
1− n+M

p

)i−j−1
[(

1− n+M

p

)t−i

− 1

]
+

T 2(n+M)M

p2

}(
1− M

(j − 1)p

)j−1
n

p

<

{(
1− n+M

p

)i−j−1
[(

1− n+M

p

)t−i

− 1

]}
+

T 2(n+M)nM

p3
, (54)

where (i) follows from Lemma 16. By combining eqs. (53) and (54), we have

c(sequential)
j <

t−j−1∑
l=0

(
1− n+M

p

)l
M

(t− l − 1)p
−

i−j−1∑
l=0

(
1− n+M

p

)l
M

(i− l − 1)p

+

{(
1− n+M

p

)i−1
[(

1− n+M

p

)t−i

− 1

]}

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

+
T 2(n+M)nM

p3
− M

T 2p2
+

2T 2(n+M)M2

p3

(i)
<

t−j−1∑
l=0

(
1− n+M

p

)l
M

(t− l − 1)p
−

i−j−1∑
l=0

(
1− n+M

p

)l
M

(i− l − 1)p

+

{(
1− n+M

p

)i−j−1
[(

1− n+M

p

)t−i

− 1

]}

− T 2(n+M)M2

p3
− T 2(n+M)nM

p3

(ii)

≤ c(concurrent)
iji , (55)

where (i) follows from the fact that p > 5T 4(n + M)nM , (ii) follows from our observation in
eqs. (47) and (49).

3. We prove c(concurrent)
iji > c(sequential)

iji for j = i, i + 1, ..., t − 1 if p > T 4(n +M)M . According to
the same derivation as eqs. (60) and (62), we have

c(sequential)
iji <

t−j−1∑
l=0

(
1− n+M

p

)l
M

(t− l − 1)p

(
1− n+M

p

)t−j
n

p

− M

T 2p2
+

T 2(n+M)M2

p3

<

t−j−1∑
l=0

(
1− n+M

p

)l
M

(t− l − 1)p

(
1− n+M

p

)t−j
n

p

− T 2(n+M)M2

p3
− T 2(n+M)nM

p3

(i)

≤ c(concurrent)
iji ,

where (i) follows from our observation in eqs. (47) and (49).

4. Last, we prove c(concurrent)
iT i > c(sequential)

iT i if p > T 2(n+M)M . We have:

c(sequential)
iT i =

(
1− M

(t− 1)p

)t−1
n

p
<

(
1− M

(t− 1)p

)
n

p
<

n

p
− nM

p2

(i)
<

n

p
− T 2(n+M)M2

p3
− T 2(n+M)nM

p3

(ii)

≤ c(concurrent)
iT i , (56)

where (i) follows from the fact that p > T 2(n+M)M , (ii) follows from our observation in eqs. (47)
and (49).

5. As illustrated in eqs. (45) and (48), we obtain the following conclusions. For j = [k−1]; k = i, i+

1, .., t−1, we have c(concurrent)
ijk > c(sequential)

ijk , following the fact that c(concurrent)
ijk > 0 and c(sequential)

ijk = 0.

However, for j = [k − 1]; k ∈ [i − 1], we have c(concurrent)
ijk < c(sequential)

ijk , following the fact that

c(concurrent)
ijk < 0 and c(sequential)

ijk = 0. We note that the impact of these components on forgetting is
significantly small under a large p, following the fact that the disadvantage terms in sequential replay
β−
1 and β−

2 in eqs. (45) and (48) are of order O(1
p3), while the advantage of other coefficients is of

order O(1
p2).

E.2 COMPARISON OF COEFFICIENTS OF GENERALIZATION ERROR IN THEOREM 1

We comparison of coefficients of Generalization error in Theorem 1 as follows. We first fix the
index i, meaning that we consider the generalization error on the task i.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

1. We first prove d(concurrent)
0 < d(sequential)

0 . According to Lemma 10, we have:

d(concurrent)
0T =

(
1− n

p

)(
1− n+M

p

)t−1

<

(
1− n

p

) t−2∏
l=0

[(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)]
= d(sequential)

0T

2. Now, we prove d(concurrent)
i1iT > d(sequential)

i1iT if p > 2T 4(n+M)nM . We first consider:

n

p

t−2∏
l=0

[(
1− M

(t− l − 1)p

)t−l−1(
1− n

p

)]
(i)
<

n

p

(
1− n+M

p
+

(n+M)M

p2

)t−1

(ii)
<

n

p

(
1− n+M

p

)t−1

+
T 2(n+M)nM

p3
, (57)

where (i) follows from Lemma 11 and (ii) follows from Lemma 12.

We also notice that:
t−2∑
l=0

l−1∏
k=0

[(
1− M

(t− k − 1)p

)t−k−1(
1− n

p

)](
1− M

(t− l − 1)p

)t−l−2
M

(t− l − 1)p

=

t−3∑
l=0

l−1∏
k=0

[(
1− M

(t− k − 1)p

)t−k−1(
1− n

p

)](
1− M

(t− l − 1)p

)t−l−2
M

(t− l − 1)p

+

t−3∏
k=0

[(
1− M

(t− k − 1)p

)t−k−1(
1− n

p

)](
1− M

p

)
M

p

(i)
<

(
1− 1

Tp

) t−3∑
l=0

(
1− n+M

p

)l
M

(t− l − 1)p

+

(
1− n+M

p
+

(n+M)M

p2

)t−2(
1− M

p

)
M

p

(ii)
<

(
1− 1

Tp

) t−3∑
l=0

(
1− n+M

p

)l
M

(t− l − 1)p

+

[(
1− n+M

p

)t−2

+
T 2(n+M)M

p2

](
1− M

p

)
M

p

<

t−2∑
l=0

(
1− n+M

p

)l
M

(t− l − 1)p
− M

T 2p2
+

T 2(n+M)M2

p3
, (58)

where (i) follows from Lemmas 11 and 14 and (ii) follows from Lemma 12. By combining eqs. (57)
and (58), we can conclude:

d(sequential)
i1iT <

n

p

(
1− n+M

p

)t−1

+

t−2∑
l=0

(
1− n+M

p

)l
M

(t− l − 1)p

+
T 2(n+M)nM

p3
− M

T 2p2
+

T 2(n+M)M2

p3

(i)
<

n+M

p

(
1− n+M

p

)t−1

+

t−2∑
l=0

(
1− n+M

p

)l
M

(t− l − 1)p

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

= d(concurrent)
i1iT (59)

where (i) follows from the fact that p > 2T 4(n+M)nM .

3. Next, we prove d(concurrent)
ijiT > d(sequential)

ijiT if p > T 4(n + M)M , for j = 2, 3, ..., t − 1. We first
have:
t−j−1∑
l=0

l−1∏
k=0

[(
1− M

(t− k − 1)p

)t−k−1(
1− n

p

)](
1− M

(t− l − 1)p

)t−j−l−1
M

(t− l − 1)p

=

t−j−2∑
l=0

l−1∏
k=0

[(
1− M

(t− k − 1)p

)t−k−1(
1− n

p

)](
1− M

(t− l − 1)p

)t−j−l−1
M

(t− l − 1)p

+

t−j−2∏
k=0

[(
1− M

(t− k − 1)p

)t−k−1(
1− n

p

)]
M

jp

(i)
<

(
1− 1

Tp

) t−j−2∑
l=0

(
1− n+M

p

)l
M

(t− l − 1)p
+

(
1− n+M

p
+

(n+M)M

p2

)t−j−1
M

jp

(ii)
<

(
1− 1

Tp

) t−j−2∑
l=0

(
1− n+M

p

)l
M

(t− l − 1)p
+

(
1− n+M

p

)t−j−1
M

jp
+

T 2(n+M)M2

jp3

<

t−j−1∑
l=0

(
1− n+M

p

)l
M

(t− l − 1)p
− M

T 2p2
+

T 2(n+M)M2

p3
(60)

where (i) follows from Lemmas 11 and 14, (ii) follows Lemma 12. Therefore, if p > T 4(n+M)M ,
we have:

t−j−1∑
l=0

l−1∏
k=0

[(
1− M

(t− k − 1)p

)t−k−1(
1− n

p

)](
1− M

(t− l − 1)p

)t−j−l−1
M

(t− l − 1)p

<

t−j−1∑
l=0

(
1− n+M

p

)l
M

(t− l − 1)p
. (61)

Furthermore, we have:
t−j−1∏
k=0

[(
1− M

(t− l − 1)p

)t−k−1(
1− n

p

)](
1− M

(j − 1)p

)j−1
n

p

(i)
<

(
1− n+M

p

)t−j
n

p
(62)

where (i) follows from Lemmas 11 and 14. Therefore, by combining eqs. (61) and (62), we have:

d(sequential)
ijiT <

t−j−1∑
l=0

(
1− n+M

p

)l
M

(t− l − 1)p
+

(
1− n+M

p

)t−j
n

p
≤ d(concurrent)

ijiT . (63)

4. Last, we prove d(concurrent)
iT iT > d(sequential)

iT iT . The proof is straightforward:

d(sequential)
iT iT =

(
1− M

(t− 1)p

)t−1
n

p
<

n

p
≤ d(concurrent)

iT iT .

5. Moreover, for the other choices of j, k we have d(concurrent)
iT iT ≥ 0 and d(sequential)

iT iT = 0.

F PROOF OF THEOREM 3

Now, we provide a particular example in which sequential replay has less forgetting than concurrent
replay. Since FT = 1

T−1

∑T−1
i=1 (Li(wT)− Li(wi)), we focus on proving

[Li(wT)− Li(wi)]
(concurrent) > [Li(wT)− Li(wi)]

(sequential)

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

if p > 2T 2(n + M)nM for each i ∈ [T − 1], which leads to the final conclusion. Since w∗
i are

orthonormal, we have ∥w∗
i ∥

2
= 1 and

∥∥w∗
i −w∗

j

∥∥2 = 2 for i ̸= j. Now we consider when t = T .
Recall the discussion about β2 in eq. (48). Then, we consider

2β+
2 =

T−i−1∑
l=0

(
1− n+M

p

)l
2nM

p(p− n−M − 1)

=
2nM

p(p− n−M − 1)
·
[1− (1− n+M

p)T−i]

1− (1− n+M
p)

>
2nM

p2
·
−
∑T−i

k=1

(
T−i
k

)
(−n+M

p)k

n+M
p

(64)

We note that for any k ∈ [3, T − i− 1] and k is odd, we have(
T − i

k

)(
−n+M

p

)k

+

(
T − i

k + 1

)(
−n+M

p

)k+1

=
(T − i)!

k!(T − i− k − 1)!

(
−n+M

p

)k [
1

T − i− k
+

1

k + 1

(
−n+M

p

)]
<

(T − i)!

k!(T − i− k − 1)!

(
−n+M

p

)k [
1

T
− n+M

p

]
(i)
< 0,

where (i) follows from the fact that p > T (n + M). By simply discussing when T − i is odd or
even, we can have

−
T−i∑
k=1

(
T − i

k

)(
−n+M

p

)k

> −
(
T − i

1

)(
−n+M

p

)
−
(
T − i

2

)(
−n+M

p

)2

=
(T − i)(n+M)

p
− (T − i)(T − i− 1)(n+M)2

2p2
.

By substituting the above equation into eq. (64), we can have

2β+
2 >

2nM

p(n+M)
·
[
(T − i)(n+M)

p
− (T − i)(T − i− 1)(n+M)2

2p2

]
=

2(T − i)nM

p2
− (T − i)(T − i− 1)(n+M)nM

p3

(i)

≥ (T − i)(n+M)M

p2
+

M

p2
− T 2(n+M)nM

p3
(65)

where (i) follows from the fact that n ≥M + 1. Now, we can conclude:

[Li(wT)− Li(wi)]
(concurrent)

= c(concurrent)
0 + 2

T∑
j=1

c(concurrent)
j

(i)
>

(
1− n

p

)[(
1− n+M

p

)T−1

−
(
1− n+M

p

)i−1
]
+ 2

T∑
j=1

c(sequential)
j + 2β+

1 + 2β+
2

≥
(
1− n

p

)[(
1− n+M

p

)T−1

−
(
1− n+M

p

)i−1
]
+ 2

T∑
j=1

c(sequential)
j + 2β+

2 (66)

where (i) follows from eqs. (52), (55) and (56). On the other hand, we have:

[Li(wT)− Li(wi)]
(sequential)

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

(i)
<

(
1− n

p

)[(
1− n+M

p

)T−1

−
(
1− n+M

p

)i−1
]
+ 2

T∑
j=1

c(sequential)
j

+
(T − i)(n+M)M

p2
+

T 3(n+M)2M2

p4
, (67)

where (i) follows from Lemma 17. By combining eqs. (65) to (67) and the fact that p > 2T 2(n +
M)nM , we have

[Li(wT)− Li(wi)]
(concurrent) > [Li(wT)− Li(wi)]

(sequential),

which completes the proof.

Now, we provide a particular example in which sequential replay achieves a lower generaliza-
tion error, as presented in Theorem 3. Since GT = 1

T

∑T
i=1 Li(wT), we focus on proving

L(concurrent)
i (wT) > L(sequential)

i (wT) if p > 2T 4(n + M + 1)2M for each i ∈ [T], which leads
to the final conclusion. Since w∗

i are orthonormal, we have ∥w∗
i ∥

2
= 1 and

∥∥w∗
i −w∗

j

∥∥2 = 2 for
i ̸= j. We first consider

t−2∑
l=0

(
1− n+M

p

)l t−l−1∑
j=1

nM
t−l−1

p(p− n−M − 1)

∥∥w∗
j −w∗

t−l

∥∥2
=

T−2∑
l=0

(
1− n+M

p

)l T−l−1∑
j=1

2nM
T−l−1

p2

> (T − 1)

(
1− n+M

p

)T
2nM

p2

>

(
1− T (n+M)

p

)
2(T − 1)nM

p2

(i)

≥
(
1− T (n+M)

p

)
(T − 1)(n+M + 1)M

p2
, (68)

where (i) follows from the fact that n ≥ M + 1. Therefore, by combining eqs. (33) and (68), we
have:

L(concurrent)
i (wT) >

(
1− n

p

)(
1− n+M

p

)T−1

+ 2

{(
1− n+M

p

)T−1
n

p
+

T−2∑
l=0

(
1− n+M

p

)l
M

(T − l − 1)p

}

+ 2

T−1∑
j=2

{
T−j−1∑
l=0

(
1− n+M

p

)l
M

(T − l − 1)p
+

(
1− n+M

p

)T−j
n

p

}
+

2n

p

+

(
1− T (n+M)

p

)
(T − 1)(n+M + 1)M

p2
. (69)

On the other hand, we have:

L(sequential)
i (wT)

(i)
<

(
1− n

p

)(
1− n+M

p
+

(n+M)M

p2

)T−1

+ 2

{(
1− n+M

p

)T−1
n

p
+

T−2∑
l=0

(
1− n+M

p

)l
M

(T − l − 1)p

}

+ 2

T−1∑
j=2

{
T−j−1∑
l=0

(
1− n+M

p

)l
M

(T − l − 1)p
+

(
1− n+M

p

)T−j
n

p

}
+

2n

p

(ii)
<

(
1− n

p

)(
1− n+M

p

)T−1

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

+ 2

{(
1− n+M

p

)T−1
n

p
+

T−2∑
l=0

(
1− n+M

p

)l
M

(T − l − 1)p

}

+ 2

T−1∑
j=2

{
T−j−1∑
l=0

(
1− n+M

p

)l
M

(T − l − 1)p
+

(
1− n+M

p

)T−j
n

p

}
+

2n

p

+

(
(T − 1)(n+M)M

p2
+

T 3(n+M)2M2

2p4

)
(70)

where (i) follows from Lemma 11 and eqs. (59) and (63), (ii) follows from Lemma 13 and the fact
that 1− n

p < 1. To build the relationship between eqs. (69) and (70), we have:(
1− T (n+M)

p

)
(T − 1)(n+M + 1)M

p2
−
(
(T − 1)(n+M)M

p2
+

T 3(n+M)2M2

2p4

)
=

(T − 1)M

p2
− T (T − 1)(n+M)(n+M + 1)M

p3
− T 3(n+M)2M2

2p4

(i)
> 0 (71)

where (i) follows from the fact that p > 2T 2(n+M + 1)2M . By combining eqs. (69) to (71), we
can conclude: L(concurrent)

i (wT) > L(sequential)
i (wT).

G EXPERIMENT DETAILS

Dataset. We evaluate our Hybrid Replay on CIFAR-100 (Krizhevsky et al. (2009)), a real-world
dataset for image classification. It’s composed of a total of 100 different classes, each containing 500
non-overlapping training images and 100 testing images. In line with prior works Guo et al. (2022)
and Sun et al. (2022), we randomly split the original dataset into 10 tasks under a task-incremental
setup, each containing 10 non-overlapping classes.

Implementation Details. For training on CIFAR-100, we employ a non-pretrained ResNet-18 as
our DNN backbone. Following Van de Ven et al. (2022), we adopt a multi-headed output layer such
that each task is assigned its own output layer, consistent with the typical Task Incremental CL setup.
During supervised training, we explicitly provide the task identifier (ranging from 0 to 9) alongside
the image-label pairs as additional input to the model. For simplicity, we use a reservoir sampling
strategy to construct the replay buffer. Our replay buffer size is 50 per class. Other than the image
corruption, we didn’t apply any data augmentation prior to training.

For all experiments on Concurrent Replay, we use the SGD (Stochastic Gradient Descent) optimizer
for 30 epochs per task, with a minibatch size of 128, momentum of 0.9, weight decay of 1e−4, and
an initial learning rate of 0.05 that is reduced by a factor of 0.1 after 20 epochs.

For all experiments on Sequential Replay, we use the SGD optimizer for 30 epochs per task, with a
minibatch size of 64, momentum of 0.9, weight decay of 1e−3, and an initial learning rate of 0.001
that is reduced by a factor of 0.1 after each 12 epochs. We slightly adjust these training parameters
for hybrid training due to the relatively smaller number of trained images which increases the risk
of overfitting.

Task Corruption. For experiments described in Section 6.2, we control the similarity level of the
dataset by applying data corruption to different number of tasks. We provide a list of sample images
under different image corruption schemes in fig. 3. For the scenario ”Original Dataset”, we don’t
apply any image corruption. For the scenario ”1 Corruption”, we apply the Glass corruption on T1.
For the scenario ”2 Corruption”, we apply Glass corruption onT1, and rotational color swaping on
T2. For the scenario ”3 Corruption”, we apply Glass corruption onT1, rotational color swaping on
T3, and elastic pixelation on T5.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

(a) Sample images without corruption.

(b) Glass Corruption: the images are transformed to simulate the effect of viewing through frosted glass,
inducing localized blurring and pixel displacement.

(c) Color-swapping and Rotation Corruption: the images are randomly rotated by arbitrary angles, and a subset
of pixels undergoes random permutation of RGB channels.

(d) Elastic and Pixelate Image Corruption: the images are subjected to smooth, non-linear spatial deformations
followed by pixelation, resulting in a low-resolution appearance.

Figure 3: Sample images for demonstrating the corruption schemes listed.

46

	Introduction
	Related Work
	Problem setting
	A Novel Sequential Replay vs. Popular Concurrent Replay
	Main Results
	Characterization of Forgetting and Generalization Error
	Comparison Between Concurrent Replay and Sequential Replay

	Experimental Studies and Implications on Practical CL
	Simulation on Linear Regression Models
	A New Algorithm Design for CL in Practice

	Conclusion
	Supporting Lemmas
	Proof of Proposition 1,2 and Theorem 1
	proof of concurrent replay in Proposition 1,2
	proof of sequential replay in Proposition 1,2
	Proof of Theorem 1

	Proof of theorem 2
	Proof of forgetting in theorem 2
	Proof of generalization error in theorem 2

	Comparison between Concurrent and Sequential Replay Methods When T=3
	Comparison of Forgetting When T=3
	Comparison of Generalization Error When T=3

	Comparison between Concurrent and Sequential Replay for General T
	Comparison of coefficients of Forgetting in Theorem 1
	Comparison of coefficients of Generalization error in Theorem 1

	Proof of Theorem 3
	Experiment Details

