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Abstract
Polygon-based object representations efficiently
model object boundaries but are limited by high
optimization complexity, which hinders their
adoption compared to more flexible pixel-based
methods. In this paper, we introduce a novel
vertex regression loss grounded in Fourier el-
liptic descriptors, which removes the need for
rasterization or heuristic approximations and re-
solves ambiguities in boundary point assignment
through frequency-domain matching. To advance
polygon-based instance segmentation, we further
propose EFDTR (Elliptical Fourier Descriptor
Transformer), an end-to-end learnable framework
that leverages the expressiveness of Fourier-based
representations. The model achieves precise con-
tour predictions through a two-stage approach:
the first stage predicts elliptical Fourier descrip-
tors for global contour modeling, while the second
stage refines contours for fine-grained accuracy.
Experimental results on the COCO dataset show
that EFDTR outperforms existing polygon-based
methods, offering a promising alternative to pixel-
based approaches. Code is available at https:
//github.com/chrisclear3/EFDTR.

1. Introduction
Instance segmentation is a fundamental task in computer
vision, focusing on the detection and delineation of indi-
vidual objects within an image by assigning unique masks
to each detected instance. This capability is essential for
applications in autonomous driving, medical image process-
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Figure 1. (a) Pixel-wise instance mask from the COCO dataset.
(b) First-order reconstruction (black line) compared with 32nd-
order EFD reconstruction (gray dashed line). (c) Dense contour
sampling with 128 points, initially equidistant, followed by target
snapping, where sampling points are adjusted to the nearest target
points.

ing (Chen et al., 2018; 2023), and robotics (Ma et al., 2024;
Liu et al., 2025; Zhang et al., 2024a), where precise object
boundaries are critical to decision making and interaction.
Most existing instance segmentation methods rely on pixel-
wise masks to delineate objects (He et al., 2017; Kirillov
et al., 2020; Wang et al., 2020; Cheng et al., 2022b;a; Li
et al., 2023a). However, contour-based or polygon-based
approaches have gained attention due to their ability to repre-
sent object shapes with fewer parameters while retaining key
topological properties. Notably, these methods can directly
output contour coordinates or keypoints (Lu et al., 2024; Lu
& Koniusz, 2024; 2022; Lu, 2024; Lu et al., 2023) without
post-processing, making them particularly well suited for
tasks such as remote sensing (Zhang et al., 2024b) and BEV
vector map generation (Liao et al., 2024) in autonomous
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driving. Since contours are typically represented as collec-
tions of polygons, these methods are collectively referred to
as polygon-based approaches in this paper to highlight their
focus on polygon regression.

In recent years, polygon-based methods have significantly
advanced polygon regression accuracy and performance.
Representative approaches include Curve GCN (Ling et al.,
2019), PolyTransform (Liang et al., 2020), Deep Snake
(Peng et al., 2020), PolarMask (Xie et al., 2020), DANCE
(Liu et al., 2021), E2EC (Zhang et al., 2022b), and Bound-
aryFormer (Lazarow et al., 2022). These methods can
be broadly categorized into single-stage and two-stage ap-
proaches.

Single-stage models directly predict contour coordinates in
an end-to-end manner. While efficient, their precision is
often limited, making two-stage methods preferable. Two-
stage methods typically generate a coarse initial contour,
followed by refined polygon regression through displace-
ment or offset learning. However, both approaches depend
on the regression of 2D vertex coordinates, which requires
precise target assignment. Apart from differentiable ras-
terization methods like PolyTransform (Liang et al., 2020)
and BoundaryFormer (Lazarow et al., 2022), which perform
supervised learning via rendered pixel maps, existing target
assignment strategies can be broadly categorized into three
types:

• Polar Target Assignment: This strategy aligns targets
and predictions using the same polar angle. For multi-
polygon instances, it selects the largest polygon and
defines its centroid as the origin for uniform ray sam-
pling (see Figure 2b). While conceptually simple, this
approach is limited to star-convex shapes and struggles
with non-convex structures.

• Cartesian Target Assignment: This strategy mini-
mizes the Euclidean distance between predicted and
ground-truth vertices to determine assignments. How-
ever, it lacks global context, leading to ambiguities in
matching (Figure 2c). Additionally, it disregards the se-
quential topology of contours, often causing structural
inconsistencies in polygon regression.

• Hybrid Strategies: This strategy segment the con-
tour into regions based on polar angles and apply Eu-
clidean distance-based assignment within each sub-
region. While this mitigates certain topological errors,
it does not fundamentally resolve the limitations of
distance-based regression.

Despite their merits, existing methods impose restrictive
geometric assumptions, struggle with topological consis-
tency, or lack a robust global contour representation. To
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Figure 2. Limitations of regression matching between the Polar and
Cartesian coordinate systems. (a) Original polygon segmentation.
(b) Inadequate sampling of target points in the polar coordinate
system. (c) Ambiguous regression in the Cartesian coordinate
system due to minimum Euclidean distance assignment.

address these issues, we introduce Elliptic Fourier Descrip-
tors (EFDs) as a compact, reliable representation for polyg-
onal contours. Any closed 2D contour can be expressed
as a Fourier series with ellipses as basis functions (Kuhl
& Giardina, 1982). As illustrated in Figure 1b, the inverse
transformation of a first-order EFD (solid) captures a rough
global shape represented by an ellipse (Lu et al., 2019;
2017), while a thirty-second-order EFD (dashed) restores
fine-grained details. Furthermore, the phase information
encoded in EFDs establishes a bijective mapping between
contour points and their positions along the shape. This
facilitates precise regression target assignment and resolves
the inherent ambiguity found in Euclidean distance-based
methods. For example, as shown in Figure 1c, points that
are spatially close but topologically distinct are clearly dis-
ambiguated through their EFD phase values. To fully lever-
age the advantages of EFDs, we propose EFDTR (Elliptic
Fourier Descriptor-based Transformer), a two-stage regres-
sion model that addresses the limitations of existing tar-
get assignment strategies through phase-domain sampling.
In the first stage, EFD parameter regression captures the
global coarse topology, while the second stage refines the
regression through phase-based target assignment to achieve
precise boundary localization. The framework effectively
harnesses the Transformer’s capability for sequence model-
ing, with deformable attention facilitating flexible feature
aggregation.

By integrating EFDTR into an end-to-end differentiable
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segmentation pipeline, we achieve superior polygon regres-
sion accuracy, surpassing prior polygon-based approaches.
EFDTR emerges as a promising alternative to pixel-based
approaches, offering a structured and efficient solution for
shape representation in learning-based segmentation.

2. Related Work
2.1. Instance Segmentation with Polygon

Various methods have been proposed for contour prediction
and instance segmentation using deep learning techniques
due to their advantage of capturing object shapes (Shi et al.,
2024). Curve-GCN (Ling et al., 2019) employs a graph con-
volutional network for prediction, fine-tuning the process
with a cyclic matching loss and a differentiable rasterization
loss. PolyTransform (Liang et al., 2020) extracts initial con-
tours via a segmentation network and regresses points using
a deforming network. DeepSnake (Peng et al., 2020) adapts
the ExtremeNet framework (Zhou et al., 2019), initially
detecting an octagonal contour, which is then iteratively
refined via ring convolution. Point-Set Anchors (Wei et al.,
2020) regresses sampled points on anchor points placed on
bounding boxes, facilitating instance segmentation. Dance
(Liu et al., 2021) extracts boundary features using a con-
tour extraction network and applies attentive deformation
to regress the boundaries. These methods typically rely on
predicting target points from object boundaries, but the re-
sulting point allocation tends to be uneven, limiting their
ability to model complex contours effectively.

PolarMask (Xie et al., 2020) represents contours in polar
coordinates through their center, radius, and angle, utiliz-
ing a FOCS-based (Tian et al., 2022) architecture and an
IoU loss function for contour regression. FourierNet (Riaz
et al., 2021) predicts contours by transforming contour pa-
rameters into Fourier space and directly regressing Fourier
coefficients. These representation methods struggle to accu-
rately model general object contours due to their structural
constraints.

E2EC (Zhang et al., 2022b) aligns points within intervals us-
ing multi-directional alignment and supervises point regres-
sion through a dynamic matching loss, effectively combin-
ing the allocation strategies of DANCE and PolarMask. C-
AOI (Zhu et al., 2023), an improvement of E2EC, introduces
a Transformer into the model architecture and enhances
the matching loss with additional constraints, proposing an
adaptive matching loss to reduce allocation ambiguity.

PolyFormer (Liu et al., 2023) is a referring task model
that can also be applied to instance segmentation, treat-
ing polygons as natural language statements, where each
token corresponds to predicting a point on the contour. Fi-
nally, BoundaryFormer (Lazarow et al., 2022), a hybrid
RCNN-Transformer model, utilizes iterative upsampling

and deformable attention to predict point offsets, incorpo-
rating a differentiable rasterization loss into the objective
function for effective supervision.

Recent studies in geometric representation provide addi-
tional insights. PolygonGNN (Yu et al., 2024) introduces a
heterogeneous graph structure for polygon modeling, and
its spanning tree sampling strategy inspires our MST-based
contour merging. PolyhedronNet (Yu et al., 2025), though
focused on 3D polyhedra, offers useful ideas for future ex-
tensions of surface-based contour representation.

2.2. DEtection with TRansformer (DETR)

The decoding mechanism of our model is inspired by key
developments in the DETR series, which has significantly
influenced the field of object detection (Wang et al., 2022a).
Carion et al. (Carion et al., 2020) introduced DETR, an end-
to-end object detection framework powered by Transform-
ers, which surged waves due to its novel approach. Com-
pared to traditional approaches, the standout characteristic
of DETR is eliminating the need for hand-crafted anchor
boxes and the step of Non-Maximum Suppression (NMS)
commonly used in earlier detection paradigms. Since its
inception, several variants of DETR have been proposed to
tackle its limitations and further improve performance. For
example, Deformable-DETR (Zhu et al., 2020) enhances
training efficiency by incorporating multi-scale features and
optimizing the attention mechanism. Conditional DETR
(Meng et al., 2021) and Anchor DETR (Wang et al., 2022b)
address the challenges of query design optimization. DAB-
DETR (Liu et al., 2022) introduces the concept of 4D refer-
ence points and refines the model by optimizing prediction
boxes in successive layers. DINO (Zhang et al., 2022a),
building upon these methods, achieves state-of-the-art per-
formance, establishing a solid foundation for further ad-
vancements in DETR-based detection.

Incorporating insights from DINO (Zhang et al., 2022a), RT-
DETR (Zhao et al., 2024) combines YOLO-inspired tech-
niques to enable real-time performance for DETR-based
detection systems. BoundaryFormer takes it a step further
by incorporating Deformable Attention and applying pro-
gressive upsampling in the decoder to improve the sequen-
tial regression of polygon points. These innovations lay the
groundwork for the two-stage decoder architecture proposed
in this paper, contributing to the evolution of DETR-style
object detectors.

3. Method
3.1. Multiple Polygon Connection

Elliptical Fourier descriptors are designed for single closed
polygons. For instances containing multiple polygonal con-
tours, these must be converted into a single polygon by
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introducing auxiliary edges. Intuitively, the objective is to
minimize the total length of the connecting edges, as shorter
edges help reduce the error in Intersection over Union (IoU)
when predicted auxiliary edges do not perfectly align with
the ground truth.
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Figure 3. The illustration of multiple polygon connection.

Figure 3 illustrates an example of connecting four polygons.
The distance lij between two polygons Pi and Pj , with ver-
tex sets Vi = {vi1, vi2, . . . , vin1

} and Vj = {vj1, v
j
2, . . . , v

j
n2
},

respectively, is given by:

lij = min
vi
p∈Vi,v

j
q∈Vj

∥vip − vjq∥. (1)

Each polygon is treated as a node in a fully connected graph,
with edge weights lij . Finding the optimal auxiliary edges
reduces to solving the minimum spanning tree (MST) of
this graph. We adopt Prim’s algorithm to compute the MST,
efficiently merging multiple polygons into a single closed
contour.

3.2. Elliptic Fourier Phase Assignment

The contour coordinates of a single closed polygon with
m vertices {(v1x, v1y), (v2x, v2y), . . . , (vmx , vmy )} can be de-
scribed by an elliptical Fourier series, as defined by the
following equation:

[
x(t)
y(t)

]
=

[
xc

yc

]
+

∞∑
n=1

[
An Bn

Cn Dn

] [
cos

(
2πnt
T

)
sin

(
2πnt
T

)] , (2)

where (xc, yc) represents the centroid of polygon, and
(x(t), y(t)) denotes the coordinates of a point along the
polygon, parameterized by its cumulative arc-length t. The
arc-length parameterization is defined as follows:

tp =

p∑
i=1

∥vi+1 − vi∥2 , t0 = 0, tm = T, (3)

where T denotes the perimeter of the polygon and vm+1 =
v1. The Fourier coefficients An, Bn, Cn, Dn associated

with the harmonic number n are computed as follows:

An=
T

2n2π2

m∑
p=1

∆xp

∆tp
[cos(

2πntp
T

)−cos(
2πntp−1

T
)], (4)

Bn=
T

2n2π2

m∑
p=1

∆xp

∆tp
[sin(

2πntp
T

)−sin(
2πntp−1

T
)], (5)

Cn=
T

2n2π2

m∑
p=1

∆yp
∆tp

[cos(
2πntp
T

)−cos(
2πntp−1

T
)], (6)

Dn=
T

2n2π2

m∑
p=1

∆yp
∆tp

[sin(
2πntp
T

)−sin(
2πntp−1

T
)]. (7)

∆xp and ∆yp indicate the displacement along the x- and
y-axes, respectively, between points p and p+ 1. ∆tp is the
step length between points p and p+ 1.

As Fourier coefficients are sensitive to the choice of the
initial point, reparameterization strategies are commonly
adopted to maintain consistency across different applica-
tions. To achieve a standardized representation, we enforce
a phase constraint at t = 0, which corresponds to the starting
point of the contour. Specifically, we require that the first-
order elliptical Fourier coefficient aligns with the positive
x-axis relative to the centroid.

Furthermore, we adhere to the right-hand rule, where coun-
terclockwise motion is considered positive in the standard
Cartesian coordinate system, while clockwise motion is pos-
itive in the image coordinate system. Consequently, the
first-order Fourier coefficients must satisfy: A1 > 0

C1 = 0
D1 > 0

(8)

This guarantees that the zero-phase frequency component
in the Fourier domain is properly aligned with the positive
x-axis of the centroid, as depicted in Figure 1d.

The elliptical Fourier series computed for each polygon
should then be multiplied by the following rotation matrix
to satisfy the normalization requirements of the first-order
Fourier series. Here, θ represents the phase shift required to
align the standardized starting point with that of the input
polygon:

θ =

{
arctan2(−C1, D1), A1D1 > B1C1

arctan2(C1,−D1), A1D1 ≤ B1C1
(9)

Then apply the rotation matrix to the original elliptical
Fourier coefficients, yielding:[

an bn
cn dn

]
=

[
An Bn

Cn Dn

] [
cosnθ − sinnθ
sinnθ cosnθ

]
(10)

The phase θp of point p is computed as:

θp =
2πtp
T

. (11)
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Here, θp represents a normalized arc-length parameter, map-
ping each point along the contour to a phase in the Fourier
representation. Consequently, there exists a bijective rela-
tionship between the phase and the contour points of the
closed polygon, ensuring a unique correspondence.

As illustrated in Figure 1c, the cyan and orange points are
spatially close in Cartesian coordinates, making Euclidean
distance an ambiguous matching criterion. However, their
distinct phase values in the frequency domain enable precise
differentiation. Similarly, the green and magenta points,
which originate from overlapping vertices introduced by
auxiliary edges, further highlight the importance of phase
information in resolving under-matching and ambiguity in
polygonal contour regression.

3.3. Model Structure with Leanable Elliptic Fourier

The model architecture proposed in this paper is shown in
Figure 4. It follows the design principles of two-stage ob-
ject detection models and incorporates key elements from
the DETR series in the decoder. Specifically, in the fea-
ture extraction network, we primarily draw inspiration from
RT-DETR (Zhao et al., 2024), which uses an improved
Pyramid Attention Network (PAN) (Li et al., 2018) called
Hybrid Feature Fusion module to obtain multi-scale feature
maps P2, P3, P4, P5. In our case, since we aim to predict
instance contours, we retain feature maps with up to 4×
downsampling P2. This module performs feature fusion
using self-attention on the 32× downsampled feature map
P5, while applying convolutional layers for fusion in the
other feature map paths. The final output consists of feature
vectors with a size of 85WH

1024 , where W and H represent the
width and height of the input image, respectively.

In the EFD decoder, the input comprises multi-scale fea-
tures from P3, P4, and P5, striking a balance between com-
putational efficiency and prediction accuracy. Since the
EFD decoder primarily predicts Fourier parameters to cap-
ture a coarse global topology, utilizingP3, P4, and P5 is
sufficient. Incorporating P2would introduce a significant
computational overhead without a proportional gain in per-
formance.

For the first EFD decoder layer, a Score Encoder ranks
the flattened feature representations and selects the top-k
features based on their assigned scores. These selected fea-
tures are then concatenated with the noised target, forming
the primary input to the decoder. The added noise facili-
tates denoising, aiding in convergence acceleration and im-
proving accuracy. Furthermore, the EFD Encoder extracts
the Fourier parameters corresponding to the top-k features,
which serve as reference information to refine the decoding
process. Consequently, each decoder layer operates with
two key inputs: the concatenated top-k features with the
noised target, and the EFD reference parameters.

The input features are first encoded by the Self-Attention
module, where positional embeddings are incorporated, and
the resulting representations serve as queries to retrieve rele-
vant flattened features. These queries are then processed by
the Deformable Attention module, which adaptively attends
to spatially significant regions to refine the feature represen-
tations. The output features are subsequently passed through
two prediction heads: the Class Head, which predicts the in-
stance class, and the EFD Head, which estimates the Fourier
descriptor parameters. The predicted EFD parameters serve
as reference information for the next layer, enabling iterative
refinement. The total number of parameters at each stage
follows the formulation 4n+ 1, as illustrated in Figure 4.

The Fourier inverse transform is applied to reconstruct the
2D coordinates corresponding to the elliptic Fourier de-
scriptors predicted in the first stage. To facilitate precise
feature extraction, we employ the grid sample function
for feature sampling. Given the need for accurate contour
regression in the subsequent stage, we integrate multi-scale
fusion information from feature maps P2 to P5, where four-
scale normalized coordinate sampling produces four sets of
feature vectors.

To reduce computational overhead, we adopt a group-based
feature sampling strategy, where instead of sampling all 128
predicted points individually, only 128

g points are sampled,
where g denotes the group size, set to 4 in our design. Addi-
tionally, explicit EFD parameters and class information are
leveraged to predict the fusion weights for the four scales,
enabling adaptive weighting across hierarchical features.
The fused single-scale feature representation is then used
as the query input for the Polygon Decoder, refining the
polygonal structure prediction in an iterative manner.

3.4. Loss

We utilize the VFL loss (Zhang et al., 2021) in the classifi-
cation loss function to correlate the target value of positive
samples with the IoU prediction. For the elliptical Fourier
descriptor (EFD) regression, we apply the L1 loss, while the
Smooth-L1 loss is used for polygons under phase alignment.

Based on the information in Section 3.2, the phase set for
the target polygon points is defined as:

Pt =

{
2πt

T

∣∣∣∣ t ∈ {t0, t1, . . . , tm−1}
}
, (12)

where T represents the total perimeter of the contour, and
m is the number of vertices of the target polygon.

In contrast, the initial phase for the predicted polygon sam-
pling points corresponds to uniform sampling in the interval
[0, 2π):

P̃p =

{
2πt

n

∣∣∣∣ t ∈ {0, 1, 2, . . . , n− 1}
}
, (13)

5



EFDTR: Learnable Elliptical Fourier Descriptor Transformer for Instance Segmentation

       Points for 
Feature Sampling

Top-k 
Feature Backbone Neck

Self-
Attention

Deformable
Attention

EFD Decoder Layer
Score

Encoder

+

+

V

K

Q

EFD
Encoder

Ref

Noised
Target

c

……

V

Pos

Pos
+Q

Pos

Class
Head

EFD
Head

Length:

Pred
Class

Feature

Pred
EFD

Input for 
Next Layer 

Polygon Decoder Layer

128
g

4 Scale Weight

Self-
Attention

Deformable
Attention

V

K

Q

Pos

Pos

+

+Polygon
Head

128 Points

grid_sample

Q
Pos

+

V

Ref

Input for 
Next Layer 

Feature

Pred
Polygon g

Last Layer Pred EFD

128 Equidistant Sampling
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where n is the number of vertices of the predicted polygon
and n ≥ m. To better align with the target points, we apply
a snapping operation S, which is defined as follows:

ϕ∗ = argmin
ϕ∈Pt

|θp − ϕ| , (14)

S(θ,Pt) =


ϕ∗ if |θ − ϕ∗| < π

n
,

and |θ − ϕ∗| = min
θ∈P̃

|θ − ϕ∗| ,

θ otherwise.

(15)

After applying the snapping operation, the phase set of the
predicted points is updated as:

Pp =

{
S(2πt

n
,Pt)

∣∣∣∣ t ∈ {0, 1, 2, . . . , n− 1}}. (16)

Let F represent the inverse elliptical Fourier transform. The
polygon vertex regression loss under phase alignment is
defined as follows:

L1(pred, gt) =
1

n

n∑
i=1

smooth l1(Fp(θ),Ft(θ)), θ ∈ Pp (17)

L2(pred, gt) =
1

m

m∑
i=1

smooth l1(Fp(θ),Ft(θ)), θ ∈ Pt (18)

Lpolygon =
L1(pred, gt) + L2(pred, gt)

2
(19)

The overall loss is as follows:

Loverall = Lcls + αLefd + βLpolygon, (20)

where α=6 and β=10.

4. Experiments
4.1. Dataset and Pre-processing

The COCO dataset (Lin et al., 2014) is a widely used bench-
mark in computer vision, supporting tasks like object detec-
tion, segmentation, and captioning. It contains over 330,000
images across 80 categories with detailed annotations re-
flecting complex real-world object interactions.

COCO offers pixel-level annotations in Run-Length En-
coding (RLE) and Polygon formats. This work focuses on
Polygon annotations, for which we adjust the original la-
bels during preprocessing to adhere to the right-hand rule.
This ensures consistency, as our elliptical Fourier series is
sensitive to orientation conventions.

4.2. Implementation Detail

The query number in the EFD decoder is set to 300, with
adjacent 4 points grouped together. The EFDTR model is
trained using the AdamW optimizer, with different learning
rates for each model component and a multi-step learning
rate scheduler. Additionally, Exponential Moving Average
(EMA) is employed during training to stabilize the process.
Data augmentation includes RandomFlip, RandomIoUCrop,
and multi-scale training. During inference, the input image
scale is fixed at 800× 800.

6



EFDTR: Learnable Elliptical Fourier Descriptor Transformer for Instance Segmentation

Table 1. Quantitative Results on MS COCO. We compare our EFDTR with state-of-the-art models on val2017.

Method Epoch Output Supervision AP AP50 AP75 APS APM APL

ResNet-50 backbone

Mask R-CNN(ICCV17) 400 masks masks 42.5 – – 23.8 45.0 60.0
DynaMask(CVPR23) 24 masks edges+masks 38.2 58.1 41.5 20.5 40.8 52.7
Mask DINO(CVPR23) 50 masks masks 46.0 69.0 50.7 26.1 49.3 66.1
MixingMask(PR24) 36 masks polygons+masks 42.2 65.2 45.9 19.8 46.5 65.7
DeepSnake(CVPR20) 160 polygons polygons 30.5 – – – – –
PolarMask(CVPR20) 24 polygons polygons 32.1 53.7 33.1 14.7 33.8 45.3
DANCE(WACV21) 12 polygons edges+polygons 34.5 55.3 36.5 17.2 37.5 48.0
SharpContour(CVPR22) 12 polygons points+masks 37.8 – – 24.3 49.4 59.1
BoundaryFormer(CVPR22) 12 polygons masks 36.1 56.7 – – – –
EFDTR(Ours) 36 polygons polygons 43.6 64.8 47.2 23.4 46.5 64.1

ResNet-101 backbone

Mask2Former(CVPR22) 50 masks masks 44.2 – – 23.8 47.7 66.7
DynaMask (CVPR23) 24 masks edges+masks 39.0 59.1 42.2 20.9 42.1 53.3
BEIS(ECAI24) 36 masks points+masks 42.1 – – 25.0 45.4 55.4
SharpContour(CVPR22) 36 polygons points+masks 40.8 – – – – –
EFDTR(Ours) 36 polygons polygons 45.1 66.6 49.3 24.1 48.2 66.4

4.3. Comparison with State-of-the-Arts

Table 1 compares our EFDTR model with mask-based meth-
ods (e.g., Mask R-CNN (He et al., 2017), Mask DINO (Li
et al., 2023a)) and polygon-based approaches (e.g., Deep-
Snake (Peng et al., 2020), PolarMask (Xie et al., 2020)).
Our model significantly outperforms prior polygon-based
methods, with an AP of 43.6, while remaining competi-
tive with mask-based models like Mask R-CNN (AP 42.5)
and Mask DINO (AP 46.0). EFDTR excels in both small
and large object categories, and, when using a ResNet-101
backbone, further improves performance to 45.1 AP, sur-
passing Mask2Former and DynaMask (Cheng et al., 2022a;
Li et al., 2023b). This highlights EFDTR as a promising
alternative to pixel-based methods, advancing the state of
polygon-based segmentation.

4.4. Ablation Study

In this section, we conduct ablation studies to evaluate the
key components of our proposed EFDTR method and their
impact on performance, validated on the COCO val2017
dataset. For fairness and efficiency, all experiments are
trained for 12 epochs.

Number of Decoder Layers. We investigate the effect of
varying the number of EFD decoders (NE) and polygon
decoders (NP ) on instance segmentation performance. The
experimental results, as shown in Table 2, indicate that the
best performance is achieved with NE = 6 and NP = 3,
yielding an AP of 40.5.

Order of EFD Prediction. To assess the impact of different
orders of elliptical Fourier descriptors (EFDs) on segmenta-
tion, we compare the performance of 1st, 2nd, and 4th order
harmonics. The first-order EFDs, which focus on predicting
the ellipse shape, yield the best performance. In contrast,
higher-order terms introduce noise due to their complexity,
impairing coarse localization and hindering polygon con-
vergence. This suggests that simpler, first-order EFDs are
more effective for our task.

Number of Vertices in Group. We conducted experiments
with different vertex groupings: 2, 4, 8, and 16 vertices
per group. The results, shown in Table 4, indicate that
using 4 vertices per group strikes the best balance between
performance and computational cost. Although using 2

Table 2. Effect of the number of EFD decoders (NE) and polygon
decoders (NP ) on instance segmentaion.

(NE , NP ) (4, 3) (4, 4) (5, 3) (5, 4) (6, 3) (6, 4)

AP 39.4 39.4 40.2 40.0 40.6 40.4
AP50 58.7 58.6 60.2 59.8 60.8 60.5
AP75 42.7 42.7 43.5 43.3 43.7 43.7

Params 49.6M 50.8M 50.8M 51.9M 51.9M 53.0M

Table 3. Effect of the order of EFD on instance segmentaion.

order AP AP50 AP75 APS APM APL

1 40.6 60.8 43.7 20.5 43.5 61.4
2 29.4 46.2 31.0 11.1 33.4 48.7
4 31.2 50.3 32.4 10.7 32.7 53.8
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Figure 5. EFDTR visualization results on COCO val2017. The grey points on contour are predicted vertices of instances.

Table 4. Effect of the number of vertex group size on segmentation
performance.

number AP AP50 AP75 APS APM APL

2 40.8 60.7 44.2 19.8 44.0 61.8
4 40.6 60.8 43.7 20.5 43.5 61.4
8 40.1 60.6 43.3 20.0 43.1 60.8

16 39.1 60.3 42.0 18.8 42.3 59.3

vertices yields the highest accuracy, the improvement in
performance is not justified by the increased computational
cost.

Multi-scale Feature Fusion Module Table 5 shows that
the weighted fusion method outperforms both mean and
”only P2” fusion, achieving the highest AP and improved
performance across all metrics, highlighting its effectiveness
in enhancing multi-scale feature integration.

IoU Type in varifocal loss. In varifocal loss (), the target
value for positive samples depends on IoU. Table 6 shows

Table 5. Effect of Multi-scale Fusion Methods on Segmentation
Performance.

method AP AP50 AP75 APS APM APL

mean 40.3 60.1 43.6 18.9 43.5 61.2
only P2 40.1 60.0 43.2 19.1 43.1 61.0

weighted fusion 40.6 60.8 43.7 20.5 43.5 61.4

Table 6. Impact of the IoU type in varifocal loss function.
IoU type AP AP50 AP75 APS APM APL

axis-aligned box 41.1 62.5 44.1 20.5 44.1 61.4
rotated box 40.6 60.8 43.7 20.5 43.5 61.4

Figure 6. Segmentation of multiple polygon instance based on our
EFDTR.

that using axis-aligned IoU (AP 41.1) outperforms rotated
IoU (AP 40.6). The simpler axis-aligned method provides
higher IoU values, offering better supervisory signals and
improving the overall performance.

4.5. Qualitative Analysis

As shown in Figure 5, our model effectively segments fine-
grained boundaries, such as umbrella handles and suitcase
straps, and also performs well in segmenting internal bound-
aries of objects like bicycles and motorcycles. For relatively
dense objects, EFDTR still demonstrates strong segmenta-

8



EFDTR: Learnable Elliptical Fourier Descriptor Transformer for Instance Segmentation

tion performance.

Additionally, Figure 6 illustrates the segmentation results
for instances containing multiple polygons. The model can
predict and connect contours, merging multiple polygons
into a single output. However, there are still issues with the
auxiliary boundaries not being brought close enough to each
other, which remains a limitation of our current model.

5. Conclusion
In this paper, we propose EFDTR, a novel polygon-based
framework for instance segmentation that leverages learn-
able Elliptic Fourier Descriptors (EFDs) to model object
contours. Our method introduces several key innovations,
including a multi-polygon connection strategy based on
minimum spanning trees, a phase-aligned Fourier repre-
sentation for more accurate contour parameterization, and
a two-stage decoding architecture for polygon refinement.
These contributions enable both precise boundary localiza-
tion and scalable feature encoding. Experimental results on
the COCO dataset demonstrate that EFDTR outperforms
existing polygon-based approaches while remaining com-
petitive with mask-based methods. We hope that the phase
assignment of the Elliptic Fourier Descriptors will inspire
further advancements in polygon contour learning and ap-
plications.

Impact Statement
This work introduces EFDTR, an instance segmentation
framework using learnable Elliptical Fourier Descriptors for
accurate and compact contour representation. By resolving
regression ambiguity in the frequency domain, it improves
both precision and efficiency. EFDTR shows potential in
applications like autonomous driving and medical imaging.
As it relies on public datasets and avoids sensitive data,
societal risks are minimal, though caution is advised in
safety-critical deployments.
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