
Robust Matrix Sensing in the Semi-Random Model

Xing Gao
University of Illinois at Chicago

xgao53@uic.edu

Yu Cheng
Brown University

yu_cheng@brown.edu

Abstract

Low-rank matrix recovery is a fundamental problem in machine learning with
numerous applications. In practice, the problem can be solved by convex opti-
mization namely nuclear norm minimization, or by non-convex optimization as it
is well-known that for low-rank matrix problems like matrix sensing and matrix
completion, all local optima of the natural non-convex objectives are also globally
optimal under certain ideal assumptions.
In this paper, we relax the assumptions and study new approaches for matrix
sensing in a semi-random model where an adversary can add any number of
arbitrary sensing matrices. More precisely, the problem is to recover a low-rank
matrix X∗ from linear measurements bi = ⟨Ai, X

∗⟩, where an unknown subset of
the sensing matrices satisfies the Restricted Isometry Property (RIP) and the rest of
the Ai’s are chosen adversarially.
It is known that in the semi-random model, existing non-convex objectives can have
bad local optima. To fix this, we present a descent-style algorithm that provably
recovers the ground-truth matrix X∗. For the closely-related problem of semi-
random matrix completion, prior work [CG18] showed that all bad local optima
can be eliminated by reweighting the input data. However, the analogous approach
for matrix sensing requires reweighting a set of matrices to satisfy RIP, which is a
condition that is NP-hard to check. Instead, we build on the framework proposed
in [KLL+23] for semi-random sparse linear regression, where the algorithm in
each iteration reweights the input based on the current solution, and then takes
a weighted gradient step that is guaranteed to work well locally. Our analysis
crucially exploits the connection between sparsity in vector problems and low-
rankness in matrix problems, which may have other applications in obtaining robust
algorithms for sparse and low-rank problems.

1 Introduction

Low-rank matrix recovery is a popular inverse problem with many applications in machine learning
such as collaborative filtering, image compression, and robust principal component analysis (PCA)
[RS05, FCRP08, CLMW11]. In this paper, we study one of the most basic low-rank matrix recovery
problems namely matrix sensing [CRT06, RFP10]. In the matrix sensing problem, we want to
reconstruct a low-rank ground-truth matrix X∗ ∈ Rd1×d2 from a collection of sensing matrices
{Ai}ni=1 and the corresponding linear measurements bi = ⟨Ai, X⟩.

For notational convenience, we define a sensing operator A[·] : Rd1×d2 → Rn such that A[X] = b
with bi = ⟨Ai, X⟩ for i = 1 . . . n. The goal is to solve the following rank-constrained optimization
problem:

min
X∈Rd1×d2

∥A[X]− b∥22 subject to rank(X) ≤ r .

As optimizing over low-rank matrices are often computationally hard, one common approach is to
replace the non-convex low-rank constraint with its convex-relaxation, which results in the following

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

nuclear norm minimization problem [RFP10]:
min

X∈Rd1×d2

∥X∥∗ subject to A[X] = b . (1)

Another widely-used approach in practice is to consider the unconstrained non-convex factorized
parametrization [RFP10, GJZ17, BNS16]:

min
U∈Rd1×r,V ∈Rd2×r

∥∥A[UV ⊤]− b
∥∥2
2
. (2)

and solve it with some form of gradient descent or alternating minimization.

Existing convex and non-convex approaches all rely on certain assumptions. A standard assumption
in the literature is that the sensing matrices satisfy the Restricted Isometry Property (RIP), which
means that the sensing matrices approximately preserve the norm of a low-rank matrix. (Formally,
1
L · ∥X∥

2
F ≤

1
n

∑n
i=1 ⟨Ai, X⟩2 ≤ L · ∥X∥2F given rank(X) ≤ r for some parameters r and L .)

In this paper, we relax the RIP condition on the sensing matrices and study a robust version of the
problem, which is often referred to as the semi-random model. More specifically, an adversary “cor-
rupts” the input data by providing any number of additional sensing matrices Ai that are adversarially
chosen, but the corresponding measurements bi = ⟨Ai, X

∗⟩ remain consistent with the ground truth
matrix X∗. Consequently, only a subtset of the sensing matrices satisfy the RIP condition and the
rest of them are arbitrary. This is an intermediate scenario between the average case and the worst
case, which arises more frequently in practice.

To the best of our knowledge, we are the first to study the matrix sensing problem in this semi-random
model. Formally, we consider the following adversary: suppose that originally there was a collection
of RIP sensing matrices {Ai}mi=1 (“good” matrices), then the adversary augmented some arbitrary
{Ai}ni=m+1 (“bad” matrices) and then shuffled all the sensing matrices. The algorithm is then given
the measurements based on the “good” and “bad” matrices together. The combined sensing matrices
are no longer guaranteed to satisfy the RIP condition, but there exists a subset (indicated by an
indicator vector w∗) that does, i.e., 1

L · ∥X∥
2
F ≤

∑n
i=1 w

∗
i ⟨Ai, X⟩2 ≤ L · ∥X∥2F , where w∗

i = 1
m on

the original “good” matrices and w∗
i = 0 on the “bad” matrices added by the adversary. In general,

the subset may be replaced by a convex combination and the indicator vector by a simplex. Inspired
by the adversary for semi-random vector regression in [KLL+23], we refer to this condition as wRIP
(weighted RIP) and formally define it in Definition 2.2.

Since the wRIP condition is a more general assumption than RIP, existing solutions that rely on RIP
might fail under the semi-random model with wRIP condition. As stated in [KLL+23], this type of
adversary does not break the problem from an “information-theoretic perspective", but affects the
problem computationally. In particular, existing non-convex approaches for matrix sensing (e.g., 2)
may get stuck at bad local minima as the RIP condition is necessary for proving landscape results
regarding the non-convex objective (see, e.g., the counter-examples provided in [BNS16]. The convex
relaxation approach (1) does continue to work in the semi-random model, because the augmented
linear measurements are consistent with the ground-truth matrix X∗ which simply provides additional
optimization constraints. However, convex approaches are often less desirable in practice and can
become computationally prohibitive when d1, d2 > 100 as pointed out in [RFP10].

1.1 Our Contributions

The limitations of existing algorithms motivate us to pose and study the problem of semi-random
matrix sensing in this paper. We summarize our main contributions below:

• Pose and study matrix sensing in the semi-random model. We introduce the more general
wRIP condition on matrix sensing as a relaxation of the typical RIP assumption, and provide a
solution that is more robust to input contamination. Our work will serve as a starting point for the
design of more efficient robust algorithms for matrix sensing, as well as other low-rank matrix
problems, in the semi-random model.

• Design an efficient robust algorithm for semi-random matrix sensing. Our algorithm is
guaranteed to converge to a global optimum which improves on the existing non-convex solution
[BNS16] that can get stuck in bad local optima in the semi-random model, while achieving a
comparable running time as existing convex solution [RFP10], informally stated in Theorem 1.1
below. A formal statement can be found in Theorem 3.1.

2

• Adapt a reweighting scheme for semi-random matrix sensing. In contrast to the non-convex
approach that failed and the convex approach that avoided the challenge posed by the adversary
altogether, we study a new approach that directly targets the semi-random adversary instead. We
develop an algorithm using an iterative reweighting approach inspired by [KLL+23]: in each
iteration, the algorithm reweights the sensing matrices to combat the effect of the adversary and
then takes a weighted gradient step that works well based on the current solution.

• Exploit the connection between sparsity and low-rankness. Observing a duality between
sparse vectors and low-rank matrices, we draw a parallel between linear regression and matrix
sensing problems. By exploring the structural similarities and differences between vector and
matrix problems, we are able to extend and generalize the work of [KLL+23] on semi-random
sparse vector recovery to the higher dimensional problem of semi-random matrix sensing. We
emphasize that even though the generalization from vector to matrix problems is natural, the
analysis behind the intuition is often nontrivial and involves different mathematical tools.

We state a simplified version of our main algorithmic result assuming Gaussian design. The more
general result is stated as Theorem 3.1 in Section 3.

Theorem 1.1 (Semi-Random Matrix Sensing). Suppose the ground-truth matrix X∗ ∈ Rd1×d2

satisfies rank(X∗) ≤ r and ∥X∗∥F ≤ poly(d). Let A1, . . . , An be the sensing matrices and let
bi = ⟨Ai, X

∗⟩ be the corresponding measurements. Suppose there exists a (hidden) set of Ω(dr)
sensing matrices with i.i.d. standard Gaussian entries, and the remaining sensing matrices are chosen
adversarially, where d = max(d1, d2).

There exists an algorithm that can output X ∈ Rd1×d2 such that ∥X −X∗∥F ≤ ϵ with high
probability in time Õ(ndω+1r log(1/ϵ)) 1 where ω < 2.373 is the matrix multiplication exponent.

1.2 Overview of Our Techniques

Since there exists a subset (or a convex combination in general) of the sensing matrices that satisfy
the RIP condition, a natural strategy is to reverse the effect from the adversary by reweighting the
sensing matrices so that they satisfy the RIP condition. However, it is NP-hard to verify RIP condition
on all low-rank inputs, so it is unclear how to preprocess and “fix” the input in the beginning and
then apply existing solutions to matrix sensing. Instead, we make a trade-off between the frequency
of reweighting and the requirement on the weights by adopting an iterative reweighting approach:
in each iteration, we only aim to find a set of weights so that the weighted matrices satisfy some
desirable properties (not necessarily RIP) with respect to the current estimate X (as opposed to all
low-rank matrices).

Inspired by the workflow in [KLL+23], our semi-random matrix sensing algorithm (Algorithm 1)
repeatedly calls a halving algorithm to reduce the error of our estimate arbitrarily small. The halving
algorithm (Algorithm 2) contracts the upper bound on ∥X −X∗∥F , which is the error between our
current estimate X and the ground truth X∗, each time it is run. Inside this algorithm is a gradient
descent style loop, where in each iteration we try to minimize a weighted objective function, which
is essentially the weighted ℓ2-norm of A[Xt] − b (the distance to X∗ “measured” by the sensing
matrices), where the weights are provided by an oracle implemented in Algorithm 3. The algorithm
proceeds by taking a step opposite to the gradient direction, and the step is then projected onto a
nuclear-norm-bounded ball which is necessary for the weight oracle to continue working in the next
step. As we mentioned before, the weights from the oracle need to satisfy some nice properties with
respect to the current iteration estimate Xt. Ideally, the property should: firstly, ensure the gradient
step makes enough progress towards X∗; secondly, can be derived from the wRIP condition so that
we know such a requirement is feasible; and lastly, be easily verifiable as opposed to the NP-hard
RIP condition.

With the first requirement in mind, we define the weight oracle as in Definition 2.5. The oracle output
should satisfy two properties, namely the progress and decomposition guarantees, and together they
ensure the gradient step makes good enough progress toward X∗. Intuitively speaking, the progress
guarantee ensures the gradient step is large in the direction parallel to the “actual” deviation X −X∗

(as opposed to only reducing the “measured” deviation A[X] − b) and thus will make significant
progress, while the decomposition guarantee ensures the gradient step has small contribution and

1Throughout the paper, we write Õ(f(n)) for O(f(n) polylog f(n)) and similarly for Ω̃(·).

3

effect in other directions thus will not cancel the progress after the projection. While the progress
guarantee is quantified as an inner product, we introduce a concept called “norm-decomposition”
(Definition 2.4) to capture the decomposition guarantee, and we will provide more details later. For the
second requirement, we can loosely relate the two oracle guarantees to the wRIP condition: the (large)
progress guarantee makes use of the lower bound in wRIP condition

∑n
i=1 w

∗
i ⟨Ai,

X
∥X∥F

⟩2 ≥ 1
L ,

and the (small) decomposition guarantee makes use of the upper bound
∑n

i=1 w
∗
i ⟨Ai,

X
∥X∥F

⟩2 ≤ L .
We introduce a condition called dRIP (decomposable wRIP defined in Definition 2.3) to formally
capture this relation, and we will show that it follows from the wRIP condition thus we can achieve
such an oracle. Lastly, we will show that the oracle properties can be easily verified, meeting our
third requirement.

A formal statement and a road map that leads to our main result can be found in Section 3.

1.3 Related Work

Matrix sensing (RIP): There are two main types of existing solutions. The convex-relaxation
formulation 1 of the problem can be posed as a semidefinite program via the standard form primal-
dual pair [RFP10], where the primal problem has a (d1 + d2)

2 semidefinite constraint and n linear
constraints. State of the art SDP solver [JKL+20] requires running time of Õ(nd2.5) where d =
max(d1, d2). The other approach uses non-convex formulation 2 to reduce the size of the decision
variable from d2 to dr, improving computational efficiency. It is shown in [BNS16] that there are
no spurious local minima given RIP sensing matrices and incoherent linear measurements in the
non-convex approach, however, it is no longer applicable in the semi-random model.

Semi-random model: First introduced by [BS95], the semi-random model has been studied for
various graph problems [FK01, PW17, MS10, MMV12]. Previously the work of [CG18] applied the
semi-random model to the matrix completion problem, and recently [KLL+23] studied sparse vector
recovery in this model.

Semi-random matrix completion: Low-rank matrix problems such as matrix completion and matrix
sensing have similar optimization landscapes [GJZ17], thus development in one often lends insight
to another. Prior work [CG18] on the closely-related problem of matrix completion under the semi-
random model showed that all bad local optima can be eliminated by reweighting the input data via a
preprocessing step. It exploits the connection between the observation data matrix and the Laplacian
matrix of a complete bipartite graph, and gives a reweighting algorithm to preprocess the data in a
black-box manner. However, the analogous approach for matrix sensing requires reweighting a set
of matrices to satisfy RIP, which is a condition that is NP-hard to check, thus is not practical in the
matrix sensing problem.

Semi-random vector regression: In order to overcome the barrier of the reweighting or preprocessing
approach mentioned earlier, we take inspiration from the work of [KLL+23] on sparse vector recovery
under the semi-random model. One of their main contributions is the “short-flat decomposition”,
which is a property that can be efficiently verified for a given vector (locally), instead of verifying
the RIP condition for all sparse vectors (globally). They provide a projected gradient descent style
algorithm, where the rows of the sensing matrix are reweighted differently in each iteration to ensure
a “short-flat decomposition” exists for the gradient. We draw a parallel between the problem of sparse
vector regression and low-rank matrix sensing, and extend their work on linear regression of sparse
vectors to the more generalized problem of sensing low-rank matrices.

2 Preliminaries

2.1 Notations

Throughout the paper, we denote the ground-truth low-rank matrix as X∗. We assume X∗ ∈ Rd1×d2 ,
rank(X∗) = r, and d1, d2 have the same order of magnitude. Let d = max(d1, d2).

We write [n] for the set of integers {1, ..., n}. We use ∆n for the nonnegative probability simplex in
dimension n, and Rn

≥0 for the set of vectors with nonnegative coordinates in Rn. For a vector x, we
denote its ℓ1, ℓ2, and ℓ∞-norms as ∥x∥1, ∥x∥2 and ∥x∥∞ respectively, and write the ith coordinate
in x as xi. For a matrix A, we use ∥A∥∗, ∥A∥2, and ∥A∥F for the nuclear, spectral (operator), and

4

Frobenius norms of A respectively. For a matrix A, we use A(k) = argminrank(A′)≤k∥A−A′∥F to
denote the best rank-k approximation of A; or equivalently, given the SVD of A =

∑r
i=1 σiuiv

⊤
i ,

we have A(k) =
∑k

i=1 σiuiv
⊤
i where σ1, ..., σk are the top k singular values of A.

We write tr(A) for the trace of a square matrix A. For matrices A,B ∈ Rd1×d2 , we write ⟨A,B⟩ for
their entrywise inner product ⟨A,B⟩ = ⟨A,B⟩ = tr(A⊤B) =

∑
j,k AjkBjk. A symmetric matrix

A ∈ Rd×d is positive semidefinite (PSD) if and only if A = U⊤U for some matrix U , and we write
A ≼ B if A and B have the same dimension and B−A is positive semidefinite. We write exp (A) as
the matrix exponential of A; if A is diagonalizable as A = UDU−1 then exp(A) = U exp(D)U−1.

2.2 Definitions

We formally define the matrix sensing operator and observation vector below.
Definition 2.1 (Matrix Sensing Operator). Given a collection of sensing matrices A = {Ai}ni=1 ⊂
Rd1×d2 , we define the sensing operatorA[·] : Rd1×d2 → Rn such thatA[X] = b where bi = ⟨Ai, X⟩
for X ∈ Rd1×d2 .

In other words, we have b :=
∑n

i=1 ⟨Ai, X⟩ei where ei is the ith standard basis vector in Rn.
Throughout the paper, we use either A or {Ai}ni=1 to represent the sensing matrices.

To consistently recover a rank-r matrix in general, the number of measurements n should be at
least (d1 + d2 − r)r [CP11], hence we assume n = Ω̃(dr) where Ω̃ suppresses log factors. In most
matrix sensing literature, it is standard to impose the Restricted Isometry Property (RIP) condition on
the sensing matrices. The RIP condition states that A[·] is approximately an isometry on low-rank
matrices, which means the ℓ2-norm of the observation vector is close to the Frobenius norm of X∗.

In this paper, we consider a semi-random model and relax the RIP condition as follows: we require
that there exist weights {w∗

i }ni=1 (or w∗ ∈ ∆n) so that the weighted sensing matrices {
√
w∗

iAi}ni=1
satisfy the RIP condition. We call this relaxed assumption the wRIP (weighted RIP) condition.

We formally define RIP and wRIP conditions below.
Definition 2.2 (RIP and wRIP Conditions). We say a collection of sensing matrices A = {Ai}ni=1 ⊂
Rd1×d2 satisfies the RIP (Restricted Isometry Property) condition with parameters r, L, and ρ if the
following conditions hold for all X ∈ Rd1×d2 with rank(X) ≤ r:

1. Boundedness: ∥Ai∥2 ≤ ρ ;

2. Isometry: 1
L · ∥X∥

2
F ≤

1
n

∑n
i=1 ⟨Ai, X⟩2 ≤ L · ∥X∥2F .

Further, we say A = {Ai}ni=1 satisfies the wRIP (weighted RIP) condition with parameters r, L, ρ,
if ∃w∗ ∈ ∆n such that the following conditions hold for all X ∈ Rd1×d2 with rank(X) ≤ r:

1. Boundedness: ∥Ai∥2 ≤ ρ ;

2. Isometry: 1
L · ∥X∥

2
F ≤

∑n
i=1 w

∗
i ⟨Ai, X⟩2 ≤ L · ∥X∥2F .

Notice that wRIP is a relaxation of the RIP condition, because we can choose w∗
i = 1/n for all i in

the standard RIP setting. More importantly, wRIP is strictly weaker. For example, wRIP allows a
(possibly majority) fraction of the sensing matrices to be chosen adversarially. We want to emphasize
that the algorithm does not know w∗ — one of the main challenges of semi-random matrix sensing is
that finding w∗ seems computationally hard, because it is NP-Hard to check the RIP condition.

For presenting our algorithm and analysis, we introduce a variant of the wRIP condition called dRIP
(decomposable-wRIP).
Definition 2.3 (dRIP Condition). We say a collection of sensing matrices A = {Ai}ni=1 ⊂ Rd1×d2

satisfies the dRIP (decomposable wRIP) condition if ∃w∗ ∈ ∆n and constants L,K, r, ρ ≥ 1, such
that for all V ∈ Rd1×d2 satisfying ∥V ∥F ∈ [14 , 1], ∥V ∥∗ ≤ 2

√
2r:

1. Boundedness: ∥Ai∥2 ≤ ρ ;

2. Isometry: 1
L ≤

∑n
i=1 w

∗
i ⟨Ai, V ⟩2 ≤ L ;

5

3. Decomposability: ∃(L, 1
K

√
r
)-norm-decomposition of G∗ =

∑n
i=1 w

∗
i ⟨Ai, V ⟩Ai =∑n

i=1 w
∗
i uiAi .

Definition 2.4 (Norm Decomposition). We say a matrix G has a (CF , C2)-norm-decomposition if
∃S and E s.t. G = S + E, and ∥S∥F ≤ CF , ∥E∥2 ≤ C2 .

The main difference with wRIP is that dRIP requires the additional “decomposition” property.
Observe that G∗ is the (weighted) gradient at the point V . At a high level, we would like to
decompose the gradient into two matrices, one with small Frobenius norm and the other one with
small operator norm. Our matrix norm-decomposition is inspired by the “short-flat-decomposition”
for vectors in [KLL+23].

In Section 4, we will explain the motivation behind the norm decomposition as well as how to
efficiently verify such a decomposition exists. We will also show that the dRIP condition is closely
related to wRIP (by choosing parameters within a constant factor of each other) in Appendix C.

A crucial component in our algorithm is a weight oracle that produces a nonnegative weight on
each sensing matrix (the weights are in general different in each iteration), such that the weighted
gradient step moves the current solution closer to X∗. The oracle should output weights that satisfy
certain properties which we term progress and decomposition guarantees. The purpose of these two
guarantees is further explained in the proof of Lemma 4.2 in Appendix A.

Definition 2.5 (Weight Oracle). We say an algorithm O is a (Cprog, CF)-oracle, if given as input n
matricesA = {Ai}ni=1 ⊂ Rd1×d2 and an vector u = A[V] ∈ Rn where V ∈ Rd1×d2 , ∥V ∥F ∈ [14 , 1],
and ∥V ∥∗ ≤ 2

√
2r, the algorithmO(A, u, δ) returns a weight vector w ∈ Rn

≥0 such that the following
conditions hold with probability at least 1− δ:

1. Progress guarantee:
∑n

i=1 wiu
2
i ≥ Cprog ;

2. Decomposition guarantee: ∃(CF ,
Cprog

6
√
r
) norm-decomposition of G =

∑n
i=1 wiuiAi .

Note that the progress guarantee is equivalent to ⟨G,V ⟩ ≥ Cprog.

Finally we define numerical rank which we use in our analysis. Numerical rank serves as a lower
bound for the rank of a matrix based on its nuclear norm and Frobenius norm. That is, we always
have Rankn(A) ≤ rank(A).

Definition 2.6 (Numerical Rank). The numerical rank of A is Rankn(A) =
∥A∥2

∗
∥A∥2

F

.

3 Semi-Random Matrix Sensing

In this section, we present our main algorithm (Algorithm 1) for semi-random matrix sensing.
Algorithm 1 with high probability recovers the ground-truth matrix X∗ to arbitrary accuracy.

Algorithm 1: SemiRandomMatrixSensing(R0, ϵ, δ,A, b)
1: Input: R0 ≥ ∥X∗∥F , b = A[X∗], ϵ > 0, δ ∈ (0, 1) ;
2: Output: Xout s.t. ∥Xout −X∗∥F ≤ ϵ .
3: X0 ← 0, T ← log R0

ϵ , δ′ ← δ
T , R← R0 ;

4: for 0 ≤ t ≤ T do
5: Xt+1 ← HalveError(Xt, R,O, δ′,A, b), R← R

2 ;
6: end for
7: Return Xout ← XT ;

The performance guarantee and runtime of Algorithm 1 are formally stated in the following theorem.

Theorem 3.1 (Matrix Sensing under wRIP). Suppose the ground-truth matrix X∗ ∈ Rd1×d2 satisfies
rank(X∗) ≤ r and ∥X∗∥F ≤ R0. Suppose the sensing matrices A = (Ai ∈ Rd1×d2)ni=1 satisfy
(r, L, ρ)-wRIP (as in Definition 2.2). Let b = A[X∗] ∈ Rn be the corresponding measurements.

6

For any ϵ, δ > 0, Algorithm 1 can output X ∈ Rd1×d2 such that ∥X −X∗∥F ≤ ϵ with probability
at least 1 − δ. Algorithm 1 runs in time O(ndω polylog (d) log (Lδ log R0

ϵ)rρ2L4 log R0

ϵ) where
d = max(d1, d2) and ω < 2.373 is the matrix multiplication exponent.

Theorem 1.1 is a direct corollary of Theorem 3.1 under Gaussian design.

Proof of Theorem 1.1. When there are Ω(dr) sensing matrices with i.i.d. standard Gaussian entries,
the input sensing matrices satisfy (r, L, ρ)-wRIP for L = O(1) and ρ = O(d1/2) with probability
at least 1− 1

poly(d) . This follows from a standard proof for RIP and the fact that we can ignore any

sensing matrices with ∥Ai∥2 ≫ d1/2. We assume that the wRIP condition is satisfied.

By Theorem 3.1, when L = O(1), ρ = O(d1/2), R0 = poly(d) and δ = 1
poly(d) , Algorithm 1 can

output a solution X such that ∥X −X∗∥F ≤ ϵ with high probability. The runtime of Algorithm 1
can be simplified to Õ(ndω+1r log(1/ϵ)).

We first provide a road map for our analysis for proving Theorem 3.1:

• Our main algorithm runs a “halving” subroutine for log R0

ϵ iterations to reduce the error
to ϵ. Each call to this subroutine reduces the upper bound on the distance between the
current solution and the ground truth X∗ by half. This halving subroutine runs in time
O(ndω polylog (d) log (Lδ · log

R0

ϵ)rρ2L4) according to Lemmas 4.2 and 4.3.

• In Section 4, we present the halving algorithm (Algorithm 2). It depends on a (Ω(1), O(1))-
oracle, and Lemma 4.1 shows that the oracle guarantees can be easily verified. The algorithm’s
correctness and running time are analyzed in Lemma 4.2 and Lemma 4.3.

• In Section 5 we present the weight oracle required by the halving algorithm. We first show in
Lemma 5.1 that the wRIP condition implies that the sensing matrices satisfy the dRIP condition
tailored to the design of the oracle. Then we present an implementation of the oracle in Algorithm
3 based on the dRIP condition, and analyze its correctness and running time in Lemma 5.3 and
Lemma 5.4.

4 Algorithm for Halving the Error

In this section, we present Algorithm 2 (HalveError). Algorithm 2 takes an estimate Xin with
∥Xin −X∗∥F ≤ R and outputs Xout such that ∥Xout −X∗∥F ≤

R
2 . This is the matrix version of the

HalfRaidusSparse [KLL+23] algorithm for vectors.

Algorithm 2: HalveError(Xin, R,O, δ,A, b)
1: Input: Rank-r matrix Xin ∈ Rd1×d2 , ∥Xin −X∗∥F ≤ R, O is a (1, 12L2)-oracle for A with

failure probability δ ∈ (0, 1), linear measurements b = A[X∗] .
2: Output: Xout ∈ Rd1×d2 s.t. ∥Xout −X∗∥F ≤

R
2 w.p. ≥ 1− δ and rank(Xout) ≤ r .

3: X0 ← Xin, X = {X ∈ Rd1×d2 | ∥X −Xin∥∗ ≤
√
2rR}, η = 1

288L4 , T = 6
η .

4: for 0 ≤ t ≤ T do
5: ut ← 1

R (A[Xt]− b) ; /* ut = A[Xt−X∗

R] where (ut)i =
1
R ⟨Ai, Xt −X∗⟩ */

6: wt ← O(A, ut,
δ
T) ;

7: Gt ←
∑n

i=1 (wt)i(ut)iAi ;
8: if O output satisfies the progress and decomposition guarantees on ut then
9: Xt+1 ← argminX∈X ∥X − (Xt − ηRGt)∥2F ;

10: else
11: Return Xout ← (Xt)(r) ; /* Rank-r approximation of Xt */
12: end if
13: end for
14: Return Xout ← (XT)(r) ;

7

A crucial requirement of the algorithm is a (Ω(1), O(1))-oracle for A. In each iteration, the oracle
takes a vector ut = A[Xt]−b

R , which is the (normalized) “measured deviation” between current
estimate Xt and X∗, and computes a weight vector wt. The algorithm then tries to minimize the
weighted objective function by gradient descent:

Objective: ft(X) =
1

2

n∑
i=1

(wt)i⟨Ai,
X −X∗

R
⟩
2

, i.e. ft(Xt) =
1

2

n∑
i=1

(wt)i(ut)
2
i ,

Gradient: ∇Xft(X) =

n∑
i=1

(wt)i⟨Ai,
X −X∗

R
⟩Ai , i.e. Gt = ∇Xft(X)|Xt

=

n∑
i=1

(wt)i(ut)iAi .

Ideally in the next iteration, we would like to make a step from Xt in the opposite direction of the
gradient Gt with the goal of minimizing the deviation in the next iteration. However, we cannot
take a step exactly in the direction of Gt, and our movement is constrained within a ball of (nuclear
norm) radius

√
2rR centered at Xin, namely the region X = {X | ∥X −Xin∥∗ ≤

√
2rR}. Nuclear

norm is used as a proxy to control the rank and Frobenius norm of Xt simultaneously throughout the
algorithm: firstly, since ∥Xin −X∗∥F ≤ R, it makes sense that in each iteration ∥Xt −Xin∥F ≤ R
as well; secondly, while trying to minimize the difference between Xt and X∗, we also want to
ensure the rank of Xt is relatively small, i.e. rank(Xt) ≤ O(r). To tie things together, we use the
following relationship between rank and numerical rank:

rank(Xt −Xin) ≥ Rankn(Xt −Xin) =
∥Xt −Xin∥2∗
∥Xt −Xin∥2F

.

Assuming rank(Xt) ≥ rank(Xin) and ∥Xt −Xin∥F ≤ R throughout, then rank(Xt) ≥
∥Xt−Xin∥2

∗
2R2 .

Roughly speaking, in order for rank(Xt) ≤ O(r), it is necessary that ∥Xt −Xin∥∗ ≤ O(
√
rR),

i.e. Xt is inside some nuclear norm ball X of radius O(
√
rR) centered at Xin. We set the radius

of X to be
√
2rR so that X∗ ∈ X , since ∥Xin −X∗∥F ≤ R, rank(Xin − X∗) ≤ 2r therefore

∥X∗ −Xin∥∗ ≤
√
2rR. Thus we confine our movement within this nuclear norm ball of radius√

2rR centered at Xin throughout the algorithm, and take the rank-r approximation of the last Xt to
ensure rank(Xout) ≤ r upon the termination of the algorithm.

To analyze the algorithm, first we show how to check whether the weight oracle output satisfies
the progress and decomposition guarantees. The progress condition

∑n
i=1 wiu

2
i ≥ 1 is trivial to

verify, and we check whether G is (CF , C2)-decomposable using Lemma 4.1, with details and proof
deferred to Appendix A.

Lemma 4.1 (Verify Norm Decomposition). Given a matrix G = UΣV ⊤ =
∑d

i=1 σiuiv
⊤
i and

C2 > 0, suppose σ1 ≥ ... ≥ σk > C2 ≥ σk+1... ≥ σd, then for all ∥E∥2 ≤ C2, we have
∥G− E∥2F ≥

∑k
i=1 (σi − C2)

2.

The following lemmas analyze the algorithm’s correctness and show that it terminates with the desired
distance contraction, as well as its running time. The proof is deferred to Appendix A.

Lemma 4.2 (Algorithm 2: HalveError). Given a (1, 12L2)-oracle for A with failure probability
δ ∈ (0, 1), where A satisfies the dRIP Condition 2.3, and b = A[X∗], Algorithm 2 succeeds with
probability at least 1− δ.

Lemma 4.3 (Algorithm 2 Running Time). Algorithm 2 with failure probability δ runs in time
O(ndω polylog (d) log L

δ rρ
2L4) .

The crucial part of Lemma 4.2 shows that if current estimate Xt is sufficiently far from X∗, i.e.
∥Xt −X∗∥F ≥

1
4R, then according to Lemma 5.3 with high probability the weight oracle produces

an output satisfying the progress and decomposition guarantees, and each iteration of Algorithm 2
decreases the distance to X∗ by a constant factor: ∥Xt+1 −X∗∥2F ≤

(
1− η

2

)
· ∥Xt −X∗∥2F , thus

after sufficient number of iterations the distance to X∗ will be halved. On the other hand, if the
weight oracle fails, with high probability the current estimate Xt is already sufficiently close to X∗,
thus the algorithm can terminate early.

8

5 Oracle for Reweighting the Input

In this section, we present an algorithm (Algorithm 3) that serves as the weight oracle required
by the error-halving algorithm (Algorithm 2). Algorithm 3 is the matrix version of the StepOracle
[KLL+23] algorithm for vectors. We first state that, given proper choices of parameters within a
constant factor, the wRIP Condition 2.2 implies the dRIP Condition 2.3, which is a more suitable
property for our oracle implementation. The proof is deferred to Appendix C.

Lemma 5.1 (wRIP =⇒ dRIP). If A satisfies wRIP Condition 2.2 with parameters r′, L′, ρ, then
A satisfies the dRIP Condition 2.3 with parameters L,K, r, ρ such that L = Θ(L′), r = Θ(r′), and
some constant K ≥ 1.

Now we are ready to present an implementation of the weight oracle in Algorithm 3 based on the
dRIP condition. This algorithm takes as inputs the dRIP sensing matrices A and a vector u. If u
is an applicable input to the oracle, with high probability the algorithm outputs a weight vector w
satisfying the progress and decomposition guarantees as in Definition 2.5.

First we introduce some potential functions used in the algorithm.

Definition 5.2 (Potential Functions in Algorithm 3). For sensing matrices A = {Ai}ni=1 and input
u ∈ Rn to the oracle, we define the following potential functions on weight vector w ∈ Rn:

• Progress potential: Φprog(w) =
∑n

i=1 wiu
2
i .

• Decomposition potential: Φdc(w) = min∥S∥F≤L∥w∥1

(
µ2 log [F (Gw − S)]

)
+

∥w∥1

4CLr ,

where Gw =
∑n

i=1 wiuiAi and F (E) = tr exp
(

E⊤E
µ2

)
.

• Overall potential: Φ(w) = Φprog(w)− CrΦdc(w) .

Note that F (E) =
∑d

j=1 exp
(

σ2
j (E)

µ2

)
where σj(E) is the jth singular value of E, due to properties

of the exponential of a diagonalizable matrix.

The progress and decomposition potential functions control the progress and decomposition guar-
antees respectively, and later we will show that the termination condition is implied by the overall
potential Φ ≥ 0. Consequently, by maximizing the overall potential each round, the algorithm tries
to make as much progress as possible while ensuring G is decomposable.

Algorithm 3: O(A, u, δ)
1: Input: Sensing operator A satisfying dRIP Condition 2.3, u ∈ Rn .
2: Output: w ∈ Rn such that the algorithm is a (1, 12L2)-oracle as in Definition 2.5 with

probability ≥ (1− δ).
3: C ← 108, µ← 1√

Cr log d
, η ← 1

Krρ2 log d , N ′ ← log2
1
δ , N ← 8Ln

η .
4: for 0 ≤ k ≤ N ′ do
5: w0 ← 0;
6: for 0 ≤ t ≤ N do
7: if Φprog(wt) ≥ 1 then
8: Return w ← wt;
9: else

10: Sample i ∈ [n] uniformly random;
11: st ← argmaxs∈[0,η]Φ(wt + sei) ;
12: wt+1 ← wt + stei ;
13: end if
14: end for
15: end for
16: Return w ← 0 ;

Lemma 5.3 (Correctness of Algorithm 3). Suppose A satisfies dRIP Condition 2.3 and u is an appli-
cable input to the weight oracle (that is, u = A[V] ∈ Rn for some V ∈ Rd1×d2 satisfying ∥V ∥F ∈

9

[14 , 1] and ∥V ∥∗ ≤ 2
√
2r). Then, Algorithm 3 is a (1, 12L2)-oracle for A (as in Definition 2.5) with

failure probability at most δ.

We prove this lemma in two steps: first we show in Lemma B.1 that the output is valid; then in
Lemma B.2 we show that the oracle achieves the success probability. Our weight oracle is inspired by
the step oracle in [KLL+23]. It is worth noting that Lemma B.3, a key component used in the proof
of Lemma B.2, is significantly different in the matrix case compared to the vector case. Lemma B.3
upper bounds the increase in Φdc each round, which is then used to provide a lower bound for the
increase in Φ. Combining Lemma B.3 with our earlier remark that the algorithm terminates when
Φ ≥ 0 gives us the number of iterations needed to terminate with high probability.

The running time of Algorithm 3 is stated in the following lemma, and the proof is deferred to
Appendix B.
Lemma 5.4 (Algorithm 3 Running Time). Algorithm 3 with failure probability δ runs in time
O(ndω polylog (d) log 1

δ rρ
2) .

6 Conclusion and Future Work

In this paper, we pose and study the matrix sensing problem in a natural semi-random model. We
relax the standard RIP assumption on the input sensing matrices to a much weaker condition where
an unknown subset of the sensing matrices satisfies RIP while the rest are arbitrary.

For this semi-random matrix sensing problem, existing non-convex objectives can have bad local
optima. In this work, we employ an iterative reweighting approach using a weight oracle to overcome
the influence of the semi-random input. Our solution is inspired by previous work on semi-random
sparse vector recovery, where we exploit the structural similarities between linear regression on
sparse vectors and matrix sensing on low-rank matrices.

Looking forward, we believe our approach can serve as a starting point for designing more efficient
and robust algorithms for matrix sensing, as well as for other low-rank matrix and sparse vector
problems in the semi-random model.

Acknowledgement

We thank Rong Ge for helpful discussions. Xing Gao is supported in part by NSF awards ECCS-
2217023 and CCF-2307106. Yu Cheng is supported in part by NSF Award CCF-2307106.

10

References
[BNS16] Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Srebro. Global optimality of local

search for low rank matrix recovery. Advances in Neural Information Processing
Systems, 29, 2016.

[BS95] Avrim Blum and Joel Spencer. Coloring random and semi-random k-colorable graphs.
Journal of Algorithms, 19(2):204–234, 1995.

[CG18] Yu Cheng and Rong Ge. Non-convex matrix completion against a semi-random adver-
sary. In Conference On Learning Theory, pages 1362–1394. PMLR, 2018.

[CLMW11] Emmanuel J Candès, Xiaodong Li, Yi Ma, and John Wright. Robust principal component
analysis? Journal of the ACM (JACM), 58(3):1–37, 2011.

[CP11] Emmanuel J Candes and Yaniv Plan. Tight oracle inequalities for low-rank matrix
recovery from a minimal number of noisy random measurements. IEEE Transactions
on Information Theory, 57(4):2342–2359, 2011.

[CRT06] Emmanuel J Candes, Justin K Romberg, and Terence Tao. Stable signal recovery
from incomplete and inaccurate measurements. Communications on Pure and Applied
Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences,
59(8):1207–1223, 2006.

[DDH07] J. Demmel, I. Dumitriu, and O. Holtz. Fast linear algebra is stable. Numerische
Mathematik, 108(1):59–91, 2007.

[FCRP08] Maryam Fazel, E Candes, Benjamin Recht, and P Parrilo. Compressed sensing and
robust recovery of low rank matrices. In 2008 42nd Asilomar Conference on Signals,
Systems and Computers, pages 1043–1047. IEEE, 2008.

[FK01] Uriel Feige and Joe Kilian. Heuristics for semirandom graph problems. Journal of
Computer and System Sciences, 63(4):639–671, 2001.

[GJZ17] Rong Ge, Chi Jin, and Yi Zheng. No spurious local minima in nonconvex low rank
problems: A unified geometric analysis. In International Conference on Machine
Learning, pages 1233–1242. PMLR, 2017.

[JKL+20] Haotian Jiang, Tarun Kathuria, Yin Tat Lee, Swati Padmanabhan, and Zhao Song. A
faster interior point method for semidefinite programming. In 2020 IEEE 61st annual
symposium on foundations of computer science (FOCS), pages 910–918. IEEE, 2020.

[KLL+23] Jonathan Kelner, Jerry Li, Allen X Liu, Aaron Sidford, and Kevin Tian. Semi-random
sparse recovery in nearly-linear time. In The Thirty Sixth Annual Conference on
Learning Theory, pages 2352–2398. PMLR, 2023.

[MMV12] Konstantin Makarychev, Yury Makarychev, and Aravindan Vijayaraghavan. Approx-
imation algorithms for semi-random partitioning problems. In Proceedings of the
forty-fourth annual ACM symposium on Theory of computing, pages 367–384, 2012.

[MS10] Claire Mathieu and Warren Schudy. Correlation clustering with noisy input. In Proceed-
ings of the twenty-first annual ACM-SIAM symposium on Discrete Algorithms, pages
712–728. SIAM, 2010.

[PW17] Amelia Perry and Alexander S Wein. A semidefinite program for unbalanced multi-
section in the stochastic block model. In 2017 International Conference on Sampling
Theory and Applications (SampTA), pages 64–67. IEEE, 2017.

[RFP10] Benjamin Recht, Maryam Fazel, and Pablo A Parrilo. Guaranteed minimum-rank
solutions of linear matrix equations via nuclear norm minimization. SIAM review,
52(3):471–501, 2010.

[RS05] Jasson DM Rennie and Nathan Srebro. Fast maximum margin matrix factorization
for collaborative prediction. In Proceedings of the 22nd international conference on
Machine learning, pages 713–719, 2005.

11

[Tho65] Colin J Thompson. Inequality with applications in statistical mechanics. Journal of
Mathematical Physics, 6(11):1812–1813, 1965.

[Wil14] Virginia Vassilevska Williams. Multiplying matrices in o (n2. 373) time. preprint, 2014.

12

A Omitted Proofs from Section 4

To check whether G is (CF , C2)-decomposable using Lemma 4.1, we first consider the following
construction. Suppose the SVD of G is G = UΣV ⊤ =

∑d
i=1 σiuiv

⊤
i . Let S =

∑d
i=1 µiuiv

⊤
i with

µi = max(σi − C2, 0) and let E =
∑d

i=1 λiuiv
⊤
i with λi = min(C2, σi). In other words, suppose

σ1 ≥ ... ≥ σk > C2 ≥ σk+1... ≥ σd. For i ≤ k (i.e., σi > C2), let µi = σi − C2 and λi = C2;
for i > k (i.e., σi ≤ C2), let µi = 0 and λi = σi. We have G = S + E with ∥E∥2 ≤ C2, and

∥S∥F =
√∑k

i=1 (σi − C2)2. Then by Lemma 4.1, G is (CF , C2)-norm-decomposable if and only
if ∥S∥F ≤ CF because:

• if ∥S∥F ≤ CF , we have a valid (CF , C2)-norm-decomposition for G ;
• if ∥S∥F > CF , a valid (CF , C2)-norm-decomposition does not exist for G .

Lemma 4.1 (Verify Norm Decomposition). Given a matrix G = UΣV ⊤ =
∑d

i=1 σiuiv
⊤
i and

C2 > 0, suppose σ1 ≥ ... ≥ σk > C2 ≥ σk+1... ≥ σd, then for all ∥E∥2 ≤ C2, we have
∥G− E∥2F ≥

∑k
i=1 (σi − C2)

2.

Proof. Fix any E with ∥E∥2 ≤ C2. Observe that for all 1 ≤ i ≤ k, we have u⊤
i Gvi = σi and

−C2 ≤ u⊤
i Evi ≤ C2. Consequently, for all i ≤ k, we have σi > C2 and u⊤

i (G−E)vi ≥ σi−C2 >
0.

Let S = G− E, we have

∥S∥2F =
∥∥U⊤SV

∥∥2
F
=
∑
i,j

(
U⊤SV

)2
ij

≥
d∑

i=1

(
U⊤SV

)2
ii
≥

k∑
i=1

(
U⊤SV

)2
ii

=

k∑
i=1

(u⊤
i Svi)

2 ≥
k∑

i=1

(σi − C2)
2 .

Lemma 4.2 (Algorithm 2: HalveError). Given a (1, 12L2)-oracle for A with failure probability
δ ∈ (0, 1), where A satisfies the dRIP Condition 2.3, and b = A[X∗], Algorithm 2 succeeds with
probability at least 1− δ.

Proof. We will first show that the distance to X∗ decreases by a constant factor after each iteration:

∥Xt+1 −X∗∥2F ≤
(
1− η

2

)
· ∥Xt −X∗∥2F .

Consider iteration t in Algorithm 2: Xt+1 = argminX∈X ∥X − (Xt − ηRGt)∥2F . Taking the gradi-
ent of ∥X − (Xt − ηRGt)∥2F at X = Xt+1, we get 2[Xt+1 − (Xt − ηRGt)]. Since X∗ ∈ X and
Xt+1 is the local minimizer in X :

2⟨Xt+1 − (Xt − ηRGt), Xt+1 −X∗⟩ ≤ 0 .

Rearranging the terms gives

2ηR⟨Gt, Xt+1 −X∗⟩ ≤ −2⟨Xt+1 −Xt, Xt+1 −X∗⟩ .

To simplify, let D = Xt+1 −Xt, Dt = Xt −X∗, Dt+1 = Xt+1 −X∗. Note that D+Dt = Dt+1 .

2ηR⟨Gt, Dt+1⟩ ≤ −2⟨D,Dt+1⟩ = ⟨D −Dt+1, D −Dt+1⟩ − ⟨D,D⟩ − ⟨Dt+1, Dt+1⟩
= ⟨Dt, Dt⟩ − ⟨D,D⟩ − ⟨Dt+1, Dt+1⟩ ,

∥Dt∥2F − ∥Dt+1∥2F ≥ 2ηR⟨Gt, Dt+1⟩+ ⟨D,D⟩ = 2ηR⟨Gt, Dt⟩+ 2ηR⟨Gt, D⟩+ ⟨D,D⟩ . (3)

Inequality (3) provides a lower bound on the distance contraction after each iteration. We break the
right-hand side into two parts. The first term 2ηR⟨Gt, Dt⟩ corresponds to the magnitude of the step
Gt in the direction Dt = Xt −X∗, which is the progress made by this step. To lower bound it, we

13

will use the progress guarantee of the (1, 12L2)-oracle. Recall ut =
1
R (A[Xt]− b) and consider

Vt =
1
R (Xt −X∗) = 1

RDt so that ut = A[Vt]. Given that the oracle’s output satisfies the progress
guarantee, which states that

∑n
i=1 (wt)i(ut)

2
i ≥ 1, we have:

2ηR⟨Gt, Dt⟩ = 2ηR2⟨Gt, Vt⟩ = 2ηR2
〈 n∑
i=1

(wt)i(ut)iAi, Vt

〉
= 2ηR2

n∑
i=1

(wt)i(ut)
2
i ≥ 2ηR2 .

(4)

The remaining term 2ηR⟨Gt, D⟩+ ⟨D,D⟩ might be negative and cancel some of our progress. A
natural attempt is to try to bound it using 2ηR⟨Gt, D⟩+ ⟨D,D⟩ ≥ −η2R2⟨Gt, Gt⟩. However, the
wRIP condition ofA does not provide any guarantee on ∥Gt∥2F . (In fact, we can derive that ∥G∥2 ≤ L

from wRIP, but the best we can hope for is ∥G∥2F ≤ rank(G) · ∥G∥22 where rank(G) ≤ d.) This
motivates the decomposition property in the dRIP Condition 2.3 and in the weight oracle. The idea is
that even though we cannot directly bound ∥Gt∥F , we can in fact lower bound 2ηR⟨Gt, D⟩+ ⟨D,D⟩
the term by decomposing Gt into a Frobenius-norm-bounded matrix St, and an operator-norm-
bounded matrix Et. Specifically, we will use the decomposition guarantee of the (1, 12L2)-oracle,
which states that there exists norm-decomposition of Gt = St + Et where ∥St∥F ≤ 12L2 and
∥Et∥2 ≤

1
6
√
r

. As our movement is confined in X , D = Xt+1 −Xt is nuclear-norm-bounded so the
inner product ⟨Et, D⟩ can be bounded by generalized Holder’s inequality. Recall η = 1

288L4 .

2ηR⟨Gt, D⟩+ ⟨D,D⟩ = 2ηR⟨Et, D⟩+ 2ηR⟨St, D⟩+ ⟨D,D⟩
≥ −2ηR ∥Et∥2 · ∥D∥∗ − η2R2⟨St, St⟩

≥ −2ηR · 1

6
√
r
· 2
√
2rR− η2R2 · 144L4

≥ −3

2
ηR2 . (5)

Putting inequalities 3,4 and 5 together:

∥Dt∥2F − ∥Dt+1∥2F ≥ 2ηR2 − 3

2
ηR2 ≥ η

2
· ∥Dt∥2F =⇒ ∥Dt+1∥2F ≤

(
1− η

2

)
· ∥Dt∥2F .

In the case that the algorithm terminates after T = 6
η iterations,

∥XT −X∗∥2F ≤
(
1− η

2

)T
· ∥Xin −X∗∥2F ≤ exp

(
−ηT

2

)
·R2 ≤ 1

16
R2 ,

∥Xout −X∗∥F ≤ ∥Xout −XT ∥F + ∥XT −X∗∥F ≤ 2∥XT −X∗∥F ≤
1

2
R .

The last inequality comes from Xout being the best rank-r approximation of XT .

In the case that the algorithm terminates early at Line 11, we can assume with probability at least
1− δ

T that the weight oracle would have succeeded given applicable input ut. Then failure to satisfy
the progress and decomposition guarantees means that ut is not an applicable input, which means
Vt does not satisfy the norm constraint in the weight oracle. ∥Vt∥∗ ≤ 2

√
2r is guaranteed because

Xt ∈ X , and ∥Vt∥F = 1
R∥Xt −X∗∥F is decreasing in each round, so we must have ∥Vt∥F < 1

4 ,
which means ∥Xt −X∗∥F < 1

4R. By the same argument as above, ∥Xout −X∗∥F ≤
1
2R.

Finally, by a union bound on the failure probability of the weight oracle, the algorithm succeeds with
probability at least 1− δ.

Lemma 4.3 (Algorithm 2 Running Time). Algorithm 2 with failure probability δ runs in time
O(ndω polylog (d) log L

δ rρ
2L4) .

Proof. Algorithm 2 has a for-loop that’s repeated for T = O(L4) times.

Inside the loop, line 5 and 7 takes linear time O(nd2). Computing wt using the oracle (line 6) runs
in time O(ndω polylog (d) log L

δ rρ
2) according to Lemma 5.4. Line 8 through line 12 are all upper

14

bounded by time of SVD, which is on the same order of matrix multiplication O(dω) [DDH07], with
current best of O(d2.373)[Wil14]. In particular, verifying the oracle guarantees (line 8) can be solved
as an eigenvalue problem. Finding Xt+1 (line 9) is equivalent to projecting X ′

t+1 := Xt−ηRGt−Xin√
2rR

onto the unit nuclear norm ball. We first perform SVD on X ′
t+1 then binary search for the largest

truncation from its singular values to reach the nuclear norm sphere in time O(d log d), and the
entire projection step is dominated by SVD. Finally the output step consists of SVD and matrix
multiplication.

The overall running time of the algorithm is dominated by the weight oracle, so the total running time
is O(ndω polylog (d) log L

δ rρ
2L4) .

B Omitted proofs from Section 5

First we state a couple of lower bounds related to the decomposition potential function.

Claim B.1. µ2 log[F (E)] ≥ µ2 log(d) and µ2 log[F (E)] ≥ ∥E∥22 .

Proof. For the first lower bound, exp
(

σ2
j (E)

µ2

)
≥ 1 for all j ∈ [d] so F (E) =

∑d
j=1 exp

(
σ2
j (E)

µ2

)
≥

d .

For the second lower bound, F (E) =
∑d

j=1 exp
(

σ2
j (E)

µ2

)
≥ exp

(
σ2
1(E)
µ2

)
= exp

(
∥E∥2

2

µ2

)
.

Lemma B.1 (Correctness of Algorithm 3). If Algorithm 3 terminates from the inner loop, the output
satisfies the progress and decomposition guarantees as defined in 2.5.

Proof. We start with w0 = 0, which means Φprog(w0) = 0, Φdc(w0) = µ2 log d, and Φ(w0) =
0− Crµ2 log d = −1.

At each round, since st is chosen to maximize Φ(wt + stei), in particular if we choose st = 0
then Φ(wt+1) = Φ(wt), so Φ(wt+1) ≥ Φ(wt) which is non-decreasing. By definition Φprog(wt) is
also non-decreasing, and increases by at most 1 each round, because Φprog(wt+1) − Φprog(wt) =
stu

2
i ≤ η(∥Ai∥2 ∥V ∥∗)2 ≤ 8ηrρ2 ≤ 8

K log d ≤ 1. Φdc(wt) may not be monotone, but we have
Φdc(wt) ≥ µ2 log d.

Suppose the algorithm terminates at round t during one of the inner loops, which means
Φprog(wt−1) < 1 and 1 ≤ Φprog(wt) < 2 .

Progress guarantee: Φprog(wt) =
∑n

i=1 (wt)iu
2
i ≥ 1 is satisfied upon termination.

Decomposition guarantee:

Φ(wt) = Φprog(wt)− CrΦdc(wt) ≥ Φ(w0) = −1 ,

=⇒ min
∥S∥F≤L∥w∥1

(
µ2 log [F (Gw − S)]

)
+
∥wt∥1
4CLr

= Φdc(wt) ≤
Φprog(wt) + 1

Cr
≤ 3

Cr
,

min
∥S∥F≤L∥wt∥1

(
µ2 log [F (Gwt

− S)]
)
≤ 3

Cr
=⇒ ∃ ∥S∥F ≤ L ∥wt∥1 s.t. ∥Gwt

− S∥22 ≤
3

Cr
,

and
∥wt∥1
4CLr

≤ 3

Cr
=⇒ ∥wt∥1 ≤ 12L .

So there exist ∥S∥F ≤ 12L2 and ∥E∥2 = ∥G− S∥2 ≤
√
3√
Cr

= 1
6
√
r

which satisfy the decomposition
guarantee.

Notice that for any round t′ < t, Φprog(wt′) < 1, we also have Φdc(wt′) ≤ Φprog(wt′)+1
Cr ≤ 2

Cr , so
Φdc(wt) ≤ 3

Cr throughout the algorithm, which is a fact we will use later in Lemma B.3.

Lemma B.2 (Success probability of Algorithm 3). GivenA satisfying dRIP Condition and applicable
input u, Algorithm 3 terminates from the inner loop with probability at least 1− δ.

15

Proof. We first show the probability that the algorithm terminates from the inner loop is at least 1
2 ,

i.e., Pr[Φprog(wt) ≥ 1] ≥ 1
2 for some t ≤ N .

Notice that Φ(wt) = Φprog(wt)− CrΦdc(wt) ≥ 0 =⇒ Φprog(wt) ≥ CrΦdc(wt) ≥ CrΦdc(w0) =
1, therefore the algorithm starts with Φ(w0) = −1 and will terminate once Φ(wt) ≥ 0 . Also notice
that throughout the algorithm Φ(wt) < 1 because Φprog(wt) < 2 and CrΦdc(wt) ≥ 1 (from proof of
Lemma B.1).

To prove by contradiction, assume that Pr[Φprog(wt) ≥ 1] < 1
2 for all t ≤ N , i.e., Pr[continue] ≥ 1

2
for all rounds. We will lower bound the expected increase in Φ(wt) each round, and we will show
that with sufficiently large N , E[Φ(wN)] ≥ 1 contradicting Φ(wt) < 1 for all t ≤ N .

Recall that Φ(wt) = Φprog(wt)− CrΦdc(wt), the lower bound for increase in Φprog(wt) is provided
by dRIP condition on A and applicable input u. The upper bound for expected increase in Φdc(wt) is
provided by Lemma B.3.

Given the algorithm continues at round t ≤ N , consider choosing st = ηw∗
i so that w′ = wt+ηw∗

i ei,
then the expected increase in Φ is at least:

E[Φ(wt+1)− Φ(wt) | continue] = E[Φprog(wt+1)− Φprog(wt)]− CrE[Φdc(wt+1)− Φdc(wt)]

≥ E[Φprog(w
′)− Φprog(wt)]− CrE[Φdc(w

′)− Φdc(wt)]

=
1

n

n∑
i=1

ηw∗
i u

2
i − Cr

(
E[Φdc(w

′)]− Φdc(wt)
)

≥ η

Ln
− Cr · η

2CLnr

=
η

2Ln
.

Given the algorithm stops after round t, E[Φ(wt+1)− Φ(wt) | stop] = 0. Overall:

E[Φ(wt+1)− Φ(wt)] = E[Φ(wt+1)− Φ(wt) | continue] · Pr[continue] + 0

≥ η

2Ln
· Pr[continue] .

By choosing a sufficiently large N = 8Ln
η :

E[Φ(wN)] ≥ Φ(w0) +
ηN

2Ln
· Pr[continue] ≥ −1 + ηN

4Ln
≥ 1 ,

contradicting Φ(wt) < 1 . This means each inner loop of the algorithm will terminate with probability
greater than 1

2 . Finally, we boost the success probability to (1 − δ) using the outer loop with
N ′ = log2

1
δ iterations.

Lemma B.3 provides a crucial bound used in the proof. Even though it achieves similar result as
Lemma 13 [KLL+23] on the potential functions defined for vectors, analyzing the potential function
defined for matrices involves very different techniques.

Lemma B.3 (Potential Increase Upper Bound). Given w ∈ Rn s.t. Φdc(w) ≤ 3
Cr , by choosing a

sufficiently large value for K, for w′ = w + ηw∗
i ei , we have:

Ei∈[n][Φdc(w
′)] ≤ Φdc(w) +

η

2CLnr
.

The assumption Φdc(w) ≤ 3
Cr is justified in the proof of Lemma B.1.

Proof. First we introduce some notation:

Denote Φop(w) = min∥S∥F≤L∥w∥1

(
µ2 log [F (Gw − S)]

)
, so that Φdc(w) = Φop(w) +

∥w∥1

4CLr . Let

G∗ =
∑n

i=1 w
∗
i uiAi, and by dRIP Condition 2.3, we know ∃(L, 1

K
√
r
)-norm-decomposition of

G∗ = S∗ + E∗, where ∥S∗∥F ≤ L and ∥E∗∥2 ≤
1

K
√
r

. Let G =
∑n

i=1 wiuiAi, and S =

16

argminΦop(w) so that Φop(w) = µ2 log[F (G − S)], and let E = G − S. Let G′ =
∑n

i=1 w
′
iuiAi.

Using these notation and
∑n

i=1 w
∗
i = 1:

E
i∈[n]

[Φdc(w
′)] = E

i∈[n]

[
Φop(w

′) +
∥w′∥1
4CLr

]
= E

i∈[n]

[
Φop(w

′) +
∥w∥1 + ηw∗

i

4CLr

]
= E

i∈[n]
[Φop(w

′)] +
∥w∥1
4CLr

+
η

4CLnr
.

We need to show Ei∈[n][Φdc(w
′)] ≤ Φdc(w) +

η
2CLnr = Φop(w) +

∥w∥1

4CLr + η
2CLnr , equivalently

Ei∈[n][Φop(w
′)] ≤ Φop(w) +

η

4CLnr
.

Consider S′ = S+ηw∗
i S

∗. We have ∥S′∥F ≤ ∥S∥F+ηw∗
i ∥S∗∥F ≤ L·∥w∥1+ηw∗

iL = L·∥w′∥1, so

S′ is a valid argument for Φop(w
′) = min∥S∥F≤L∥w′∥1

(
µ2 log [F (G′ − S)]

)
, therefore Φop(w

′) ≤
µ2 log[F (G′ − S′)]. Let E′ = G′ − S′ = G + ηw∗

i uiAi − S − ηw∗
i S

∗ = E + Z(i) where
Z(i) = ηw∗

i uiAi − ηw∗
i S

∗. Using these and the concavity of the log function, we have

Ei∈[n][Φop(w
′)] ≤ 1

n

n∑
i=1

µ2 log[F (G′ − S′)] =
1

n

n∑
i=1

µ2 log[F (E + Z(i))]

≤ µ2 log

[
1

n

n∑
i=1

(
F (E + Z(i))

)]
.

It suffices to show

µ2 log

[
1

n

n∑
i=1

(
F (E + Z(i))

)]
≤ Φop(w) +

η

4CLnr
= µ2 log[F (E)] +

1

4CL

η

nr
.

Expanding the left hand side:

µ2 log

[
1

n

n∑
i=1

F (E + Z(i))

]

= µ2 log

[
1

n

n∑
i=1

tr exp

(
E⊤E + Z(i)⊤Z(i) + E⊤Z(i) + Z(i)⊤E

µ2

)]

≤ µ2 log

[
1

n

n∑
i=1

tr

[
exp

(
E⊤E

µ2

)
· exp

(
Z(i)⊤Z(i) + E⊤Z(i) + Z(i)⊤E

µ2

)]]

= µ2 log

[
tr

[
exp

(
E⊤E

µ2

)
· 1
n

n∑
i=1

exp

(
Z(i)⊤Z(i) + E⊤Z(i) + Z(i)⊤E

µ2

)]]

≤ µ2 log

[
tr exp

(
E⊤E

µ2

)
·

∥∥∥∥∥ 1n
n∑

i=1

exp

(
Z(i)⊤Z(i) + E⊤Z(i) + Z(i)⊤E

µ2

)∥∥∥∥∥
2

]

= µ2 log [F (E)] + µ2 log

∥∥∥∥∥ 1n
n∑

i=1

exp

(
Z(i)⊤Z(i) + E⊤Z(i) + Z(i)⊤E

µ2

)∥∥∥∥∥
2

The first inequality uses Golden-Thompson Inequality (stated as Lemma B.6), and the second
inequality follows from Lemma B.4. Finally it suffices to show

µ2 log

∥∥∥∥∥ 1n
n∑

i=1

exp

(
Z(i)⊤Z(i) + E⊤Z(i) + Z(i)⊤E

µ2

)∥∥∥∥∥
2

≤ 1

4CL

η

nr
.

We will use the approximation exp(X) ≼ I + X + X2 for symmetric X with ∥X∥2 ≤ 1. The
argument in the exponential satisfies this condition as justified in Claim B.2. We will also use

17

log (1 + x) ≤ x ∀x ≥ 0.

µ2 log

∥∥∥∥∥ 1n
n∑

i=1

exp

(
Z(i)⊤Z(i) + E⊤Z(i) + Z(i)⊤E

µ2

)∥∥∥∥∥
2

≤ µ2 log

[
1

n

n∑
i=1

∥∥∥∥exp(Z(i)⊤Z(i) + E⊤Z(i) + Z(i)⊤E

µ2

)∥∥∥∥
2

]

≤ µ2 log

[
1

n

n∑
i=1

∥∥∥∥I + Z(i)⊤Z(i) + E⊤Z(i) + Z(i)⊤E

µ2
+

(Z(i)⊤Z(i) + E⊤Z(i) + Z(i)⊤E)2

µ4

∥∥∥∥
2

]

≤ µ2 log

[
∥I∥2 +

∥∥∥∥∥ 1n
n∑

i=1

Z(i)⊤Z(i)

µ2

∥∥∥∥∥
2

+

∥∥∥∥∥ 1n
n∑

i=1

E⊤Z(i) + Z(i)⊤E

µ2

∥∥∥∥∥
2

+

∥∥∥∥∥ 1n
n∑

i=1

(Z(i)⊤Z(i) + E⊤Z(i) + Z(i)⊤E)2

µ4

∥∥∥∥∥
2

]

≤ µ2 log

[
∥I∥2 +

∥∥∥∥∥ 1n
n∑

i=1

Z(i)⊤Z(i)

µ2

∥∥∥∥∥
2

+

∥∥∥∥∥ 1n
n∑

i=1

E⊤Z(i) + Z(i)⊤E

µ2

∥∥∥∥∥
2

+

∥∥∥∥∥ 1n
n∑

i=1

2(Z(i)⊤Z(i))2

µ4

∥∥∥∥∥
2

+

∥∥∥∥∥ 1n
n∑

i=1

2(E⊤Z(i) + Z(i)⊤E)2

µ4

∥∥∥∥∥
2

]

≤ µ2

∥∥∥∥∥ 1n
n∑

i=1

Z(i)⊤Z(i)

µ2

∥∥∥∥∥
2

+ µ2

∥∥∥∥∥ 1n
n∑

i=1

E⊤Z(i) + Z(i)⊤E

µ2

∥∥∥∥∥
2

+ 2µ2

∥∥∥∥∥ 1n
n∑

i=1

(Z(i)⊤Z(i))2

µ4

∥∥∥∥∥
2

+ 2µ2

∥∥∥∥∥ 1n
n∑

i=1

(E⊤Z(i) + Z(i)⊤E)2

µ4

∥∥∥∥∥
2

=

∥∥∥∥∥ 1n
n∑

i=1

Z(i)⊤Z(i)

∥∥∥∥∥
2

+

∥∥∥∥∥ 1n
n∑

i=1

E⊤Z(i) + Z(i)⊤E

∥∥∥∥∥
2

+
2

µ2

∥∥∥∥∥ 1n
n∑

i=1

(Z(i)⊤Z(i))2

∥∥∥∥∥
2

+
2

µ2

∥∥∥∥∥ 1n
n∑

i=1

(E⊤Z(i) + Z(i)⊤E)2

∥∥∥∥∥
2

These four terms are bounded by Claims B.3,B.4, B.5 and B.6 respectively, notice that the second
term dominates the first and the third, and the forth term dominates the second. So finally we have:

µ2 log

∥∥∥∥∥ 1n
n∑

i=1

exp

(
Z(i)⊤Z(i) + E⊤Z(i) + Z(i)⊤E

µ2

)∥∥∥∥∥
2

≤
(

3× 4√
CK

+
96L2

K

)
η

nr

≤ 97L2

K

η

nr

=
1

4CL

η

nr
,with choice of K = 388CL3 = O(L3) .

Lemma B.4. If 0 ≼ A, then tr(AB) ≤ tr(A) · ∥B∥2 .

18

Proof. Since 0 ≼ A, A =
∑

j σjuju
⊤
j with σj ≥ 0 .

tr(AB) = tr

∑
j

σjuju
⊤
j B

 =
∑
j

σj tr(uju
⊤
j B) =

∑
j

σju
⊤
j Buj

≤
∑
j

σj · ∥B∥2

= tr(A) · ∥B∥2 .

Lemma B.5. (A + B)⊤(A + B) ≼ 2A⊤A + 2B⊤B , and
[
(A+B)⊤(A+B)

]2
≼ 8(A⊤A)2 +

8(B⊤B)2 .

Proof.

2A⊤A+ 2B⊤B − (A+B)⊤(A+B) = A⊤A+B⊤B −A⊤B −B⊤A

= (A−B)⊤(A−B)

≽ 0 .

[
(A+B)⊤(A+B)

]2
≼ (2A⊤A+ 2B⊤B)2

≼ 2[2(A⊤A)]2 + 2[2(B⊤B)]2

≼ 8(A⊤A)2 + 8(B⊤B)2 .

The following claims were used in Lemma B.3. Recall that A satisfies dRIP Condition 2.3, u =
A[V] ∈ Rn for some V ∈ Rd1×d2 satisfying ∥V ∥F ∈ [14 , 1], ∥V ∥∗ ≤ 2

√
2r, Z(i) = ηw∗

i (uiAi −
S∗), and Φdc(w) ≤ 3

Cr by assumption of Lemma B.3. We have the following:

∥Ai∥2 ≤ ρ by boundedness property of dRIP Condition 2.3 ,

|ui| = |⟨Ai, V ⟩| ≤ ∥Ai∥2 ∥V ∥∗ ≤ ρ2
√
2r ≤ L

√
rρ assuming 2

√
2 ≤ L ,

∥S∗∥2 ≤ ∥S
∗∥F ≤ L, ∥E∗∥2 ≤

1

K
√
r

by decomposition property of dRIP Condition 2.3 ,

∥E∥22 ≤ Φop(w) ≤ Φdc(w) ≤
3

Cr
by Claim B.1 .

Claim B.2.
∥∥∥Z(i)⊤Z(i)+E⊤Z(i)+Z(i)⊤E

µ2

∥∥∥
2
≤ 1 .

Proof. ∥∥∥Z(i)⊤Z(i)
∥∥∥
2
= η2w∗2

i

∥∥(uiAi − S∗)⊤(uiAi − S∗)
∥∥
2

≤ 2η2w∗2
i

(
u2
i

∥∥A⊤
i Ai

∥∥
2
+
∥∥S∗⊤S∗∥∥

2

)
(Lemma B.5)

≤ 2η2w∗2
i (L2rρ4 + L2)

≤ 4η2w∗2
i L2rρ4∥∥∥E⊤Z(i) + Z(i)⊤E
∥∥∥
2
≤ 2

∥∥∥E⊤Z(i)
∥∥∥
2
≤ 2 ∥E∥2 ·

∥∥∥Z(i)
∥∥∥
2

= 2ηw∗
i ∥E∥2 · ∥uiAi − S∗∥2

≤ 2ηw∗
i ∥E∥2 · (|ui| ∥Ai∥2 + ∥S

∗∥2)

≤ 2ηw∗
i

2√
Cr

(L
√
rρ2 + L)

≤ 8ηw∗
i

Lρ2√
C

19

Putting them together:∥∥∥∥Z(i)⊤Z(i) + E⊤Z(i) + Z(i)⊤E

µ2

∥∥∥∥
2

≤ 1

µ2

(∥∥∥Z(i)⊤Z(i)
∥∥∥
2
+
∥∥∥E⊤Z(i) + Z(i)⊤E

∥∥∥
2

)
≤ Cr log d · (4η2w∗2

i L2rρ4 + 8ηw∗
i

Lρ2√
C
)

≤ 16
√
CL

K
≤ 1 with sufficiently large K .

Claim B.3.
∥∥ 1
n

∑n
i=1 Z

(i)⊤Z(i)
∥∥
2
≤ 4L2

K log d ·
η
nr .

Proof.
n∑

i=1

∥∥∥Z(i)⊤Z(i)
∥∥∥
2
=

n∑
i=1

η2w∗2
i

∥∥(uiAi − S∗)⊤(uiAi − S∗)
∥∥
2

≤ 2

n∑
i=1

η2w∗2
i

(
u2
i

∥∥A⊤
i Ai

∥∥
2
+
∥∥S∗⊤S∗∥∥

2

)
≤ 2η

n∑
i=1

ηw∗
i (w

∗
i u

2
i ρ

2 + w∗
iL

2)

≤ 2η
1

Krρ2 log d
(Lρ2 + L2)

≤ 4L2

K log d

η

r

=⇒

∥∥∥∥∥ 1n
n∑

i=1

Z(i)⊤Z(i)

∥∥∥∥∥
2

≤ 1

n

n∑
i=1

∥∥∥Z(i)⊤Z(i)
∥∥∥
2

≤ 4L2

K log d
· η

nr
.

Claim B.4.
∥∥ 1
n

∑n
i=1 E

⊤Z(i) + Z(i)⊤E
∥∥
2
≤ 4√

CK
· η
nr .

Proof. ∥∥∥∥∥ 1n
n∑

i=1

E⊤Z(i) + Z(i)⊤E

∥∥∥∥∥
2

=
1

n

∥∥∥∥∥E⊤
n∑

i=1

Z(i) +

n∑
i=1

Z(i)⊤E

∥∥∥∥∥
2

≤ 2

n

∥∥∥∥∥E⊤
n∑

i=1

Z(i)

∥∥∥∥∥
2

≤ 2

n
∥E∥2 ·

∥∥∥∥∥
n∑

i=1

Z(i)

∥∥∥∥∥
2

=
2

n
∥E∥2 · ∥ηG

∗ − ηS∗∥2

≤ 2

n
∥E∥2 · η ∥E

∗∥2

≤ 2

n
· 2√

Cr
· η

K
√
r

=
4√
CK

η

nr
.

Claim B.5. 2
µ2

∥∥ 1
n

∑n
i=1(Z

(i)⊤Z(i))2
∥∥
2
≤ O

(
CL4

K3rρ2 log2 d

)
· η
nr .

20

Proof.∥∥∥∥∥
n∑

i=1

(Z(i)⊤Z(i))2

∥∥∥∥∥
2

≤ 8

n∑
i=1

η4w∗4
i

(
u4
i ·
∥∥(A⊤

i Ai)
2
∥∥
2
+
∥∥(S∗⊤S∗)2

∥∥
2

)
(Lemma B.5)

≤ 8η

n∑
i=1

η3w∗2
i (w∗2

i u4
i ρ

4 + w∗2
i L4)

≤ 8η · 1

K3r3ρ6 log3 d

[
n∑

i=1

w∗2
i ρ4u4

i +

n∑
i=1

w∗2
i L4

]

≤ 8η · 1

K3r3ρ6 log3 d

(n∑
i=1

w∗
i ρ

2u2
i

)2

+

(
n∑

i=1

w∗
iL

2

)2


≤ 8η · 1

K3r3ρ6 log3 d
(ρ4L2 + L4)

≤ 16L4

K3r2ρ2 log3 d
· η
r

≤ O

(
L4

K3r2ρ2 log3 d

)
· η
r
.

=⇒ 2

µ2

∥∥∥∥∥ 1n
n∑

i=1

(Z(i)⊤Z(i))2

∥∥∥∥∥
2

≤ O

(
CL4

K3rρ2 log2 d

)
· η

nr
.

Claim B.6. 2
µ2

∥∥ 1
n

∑n
i=1(E

⊤Z(i) + Z(i)⊤E)2
∥∥
2
≤ 96L2

K · η
nr .

Proof.

2

µ2

∥∥∥∥∥ 1n
n∑

i=1

(E⊤Z(i) + Z(i)⊤E)2

∥∥∥∥∥
2

≤ 2

µ2

1

n

n∑
i=1

∥∥∥(E⊤Z(i) + Z(i)⊤E)2
∥∥∥
2

≤ 2

µ2

1

n

n∑
i=1

4
∥∥∥E⊤Z(i)Z(i)⊤E

∥∥∥
2

≤ 2

µ2

1

n

n∑
i=1

4 ∥E∥22
∥∥∥Z(i)⊤Z(i)

∥∥∥
2

≤ 8

µ2
∥E∥22 ·

1

n

n∑
i=1

∥∥∥Z(i)⊤Z(i)
∥∥∥
2

≤ 8

µ2
· 3

Cr
· 4L2

K log d

η

nr
(Claim B.3)

=
96L2

K
· η

nr

Lemma B.6 (Golden–Thompson Inequality [Tho65]). For two n× n Hermitian matrices A and B:

tr
(
exp(A+B)

)
≤ tr

(
exp(A) exp(B)

)
.

Lemma 5.4 (Algorithm 3 Running Time). Algorithm 3 with failure probability δ runs in time
O(ndω polylog (d) log 1

δ rρ
2) .

Proof. Algorithm 3 has a nested for loop that’s repeated for N ′ ×N = O(n log d log 1
δ rρ

2) times.
The major step in the loop is line 11: st ← argmaxs∈[0,η]Φ(wt + sei), which is equivalent to

argmins∈[0,η]CrΦop(w+sei)+
s
4L−su

2
i . Recall that Φop(w) = min

∥S∥F≤L∥w∥1

(
µ2 log [F (Gw − S)]

)
where F (E) = tr exp

(
E⊤E
µ2

)
. Note that µ2 log [F (E)] is convex in E.

21

First we show that Φop(w) is convex in w, i.e., given w1, w2, Φop
(
1
2 (w1 + w2)

)
≤ 1

2

(
Φop(w1) +

Φop(w2)
)
.

Let w3 = 1
2 (w1 + w2), and Gk =

∑n
i=1 (wk)iuiAi for k = 1, 2, 3. Suppose S1, S2 attain the

minimum for Φop(w1), Φop(w2) respectively, i.e., Φop(w1) = µ2 log [F (G1 − S1)] and Φop(w2) =
µ2 log [F (G2 − S2)].
Let S3 = 1

2 (S1 + S2). Notice that G3 = 1
2 (G1 + G2), so G3 − S3 = 1

2 (G1 − S1 +G2 − S2).
Since ∥S3∥F ≤

1
2 (∥S1∥F + ∥S2∥F) ≤

1
2L(∥w1∥1 + ∥w2∥1) = L ∥w3∥1, S3 is a valid argument for

Φop(w3), therefore:

Φop(w3) ≤ µ2 log [F (G3 − S3)] ≤
1

2

(
µ2 log [F (G1 − S1)] + µ2 log [F (G2 − S2)]

)
=

1

2

(
Φop(w1) + Φop(w2)

)
.

Line 11 is equivalent to minimizing CrΦop(w+ sei) +
s
4L − su2

i , which is convex in s for a fixed w,
over a bounded interval [0, η], so the minimization needs to evaluate Φop(w+ sei) for O(polylog(d))
different values of s. Evaluating Φop is also a minimization which can be solved by computing SVD
on Gw and evaluating F (Gw − S) in time O(dω) for polylog(d) various constructions of S. Overall
finding the optimal value of s takes time O(dω · polylog(d)), and the algorithm’s total running time
is O(ndω polylog (d) log 1

δ rρ
2).

C Omitted proofs: From wRIP to dRIP condition

Here we show that the dRIP Condition 2.3 is implied by the wRIP Condition 2.2, given proper
choices of parameters within a constant factor. Notice that in the wRIP condition, we have a low-rank
constraint on the input matrix, i.e., rank(X) ≤ r, and in dRIP we have a norm constraint instead, i.e.,
∥V ∥F ∈ [14 , 1], ∥V ∥∗ ≤ 2

√
2r. To make use of the wRIP condition of A, we will decompose V into

low-rank matrices, so that wRIP condition applies to each of the low-rank matrices. Though the rank
of V is arbitrary, we can still upper bound its numerical rank based on the norm constraint.

First we will introduce a low-rank decomposition, and an upper bound on the sum of their Frobenius
norms. This is the matrix version of the shelling-decomposition in Lemma 15 for vectors in [KLL+23].

Lemma C.1 (Low-rank Decomposition). Given V ∈ Rd1×d2 with Rankn(V) =
∥V ∥2

∗
∥V ∥2

F

= ν, and let

V =
∑

σiuiv
⊤
i be its SVD with σi in descending order. Decompose V into sum of rank-r matrices,

i.e., write V =
∑ℓ=k

ℓ=1 V
(ℓ) where V (ℓ) =

∑i=ℓr
i=(ℓ−1)r+1 σiuiv

⊤
i . Then we have:

∑k
ℓ=2

∥∥V (ℓ)
∥∥
F
≤√

ν
r ∥V ∥F .

Proof. Note that V (1) is the rank-r approximation of V , and V (ℓ)’s are constructed using disjoint
singular values and vectors in groups of size r, and are orthogonal to each other.

Denote σi

(
V (ℓ)

)
as the ith largest singular value of V (ℓ).∥∥∥V (ℓ+1)

∥∥∥
F
≤
√
r · σ1

(
V (ℓ+1)

)
≤
√
r · σr

(
V (ℓ)

)
≤
√
r ·
∥∥V (ℓ)

∥∥
∗

r
,

k∑
ℓ=2

∥∥∥V (ℓ)
∥∥∥
F
≤
√
r

r
·
k−1∑
ℓ=1

∥∥∥V (ℓ)
∥∥∥
∗
≤
√
r

r
·

k∑
ℓ=1

∥∥∥V (ℓ)
∥∥∥
∗
=

√
r

r
· ∥V ∥∗ ,

∥V ∥2∗
∥V ∥2F

≤ ν =⇒
k∑

ℓ=2

∥∥∥V (ℓ)
∥∥∥
F
≤
√

ν

r
∥V ∥F .

Now we are ready to prove Lemma 5.1, which states that wRIP implies dRIP condition. The proof
uses similar techniques as in the second part of Lemma 17 [KLL+23] for vector recovery.
Lemma 5.1 (wRIP =⇒ dRIP). If A satisfies wRIP Condition 2.2 with parameters r′, L′, ρ, then
A satisfies the dRIP Condition 2.3 with parameters L,K, r, ρ such that L = Θ(L′), r = Θ(r′), and
some constant K ≥ 1.

22

Proof. Boundedness property is satisfied by assumption ∥Ai∥2 ≤ ρ ∀i .
Isometry property:
Consider V ∈ Rd1×d2 s.t. ∥V ∥F ∈ [14 , 1], ∥V ∥∗ ≤ 2

√
2r. Need to show 1

L ≤
∑n

i=1 w
∗
i ⟨Ai, V ⟩2 ≤

L .
Let L = 25L′, K ≥ 1 and r = r′

12800L2K2 .

ν = Rankn(V) =
∥V ∥2

∗
∥V ∥2

F

≤ 128r. By Lemma C.1, decompose V into rank-r′ matrices so that we
can apply the (r′, L′)-wRIP property of A.

k∑
ℓ=2

∥∥∥V (ℓ)
∥∥∥
F
≤
√

ν

r′
∥V ∥F ≤

1

10LK
∥V ∥F ≤

1

10
∥V ∥F ,

∥V ∥F ≥
∥∥V(r′)

∥∥
F
=
∥∥∥V (1)

∥∥∥
F
=

∥∥∥∥∥V −
k∑

ℓ=2

V (ℓ)

∥∥∥∥∥
F

≥ ∥V ∥F −
k∑

ℓ=2

∥∥∥V (ℓ)
∥∥∥
F
≥ 9

10
∥V ∥F .

Let Bi =
√
w∗

iAi, so that
∑n

i=1 w
∗
i ⟨Ai, V ⟩2 =

∑n
i=1 ⟨Bi, V ⟩2 = ∥

∑n
i=1 ⟨Bi, V ⟩ei∥

2

2
.

Lower bound: ∥∥∥∥∥
n∑

i=1

⟨Bi, V ⟩ei

∥∥∥∥∥
2

≥

∥∥∥∥∥
n∑

i=1

⟨Bi, V
(1)⟩ei

∥∥∥∥∥
2

−

∥∥∥∥∥
n∑

i=1

⟨Bi,

k∑
ℓ=2

V (ℓ)⟩ei

∥∥∥∥∥
2

≥

∥∥∥∥∥
n∑

i=1

⟨Bi, V
(1)⟩ei

∥∥∥∥∥
2

−
k∑

ℓ=2

∥∥∥∥∥
n∑

i=1

⟨Bi, V
(ℓ)⟩ei

∥∥∥∥∥
2

=

√√√√ n∑
i=1

⟨Bi, V (1)⟩2 −
k∑

ℓ=2

√√√√ n∑
i=1

⟨Bi, V (ℓ)⟩2

≥
√

1

L′ ·
∥∥V (1)

∥∥2
F
−

k∑
ℓ=2

√
L′ ·

∥∥V (ℓ)
∥∥2
F

≥ 0.9√
L′
· ∥V ∥F −

0.1

L

√
L′ · ∥V ∥F

=
4.5√
L
· ∥V ∥F −

0.02√
L
· ∥V ∥F .

Taking the square:
∑n

i=1 w
∗
i ⟨Ai, V ⟩2 ≥ 4.482

L · ∥V ∥2F ≥
4.482

16L ≥
1
L .

Upper bound: ∥∥∥∥∥
n∑

i=1

⟨Bi, V ⟩ei

∥∥∥∥∥
2

≤

∥∥∥∥∥
n∑

i=1

⟨Bi, V
(1)⟩ei

∥∥∥∥∥
2

+

k∑
ℓ=2

∥∥∥∥∥
n∑

i=1

⟨Bi, V
(ℓ)⟩ei

∥∥∥∥∥
2

=

√√√√ n∑
i=1

⟨Bi, V (1)⟩2 +
k∑

ℓ=2

√√√√ n∑
i=1

⟨Bi, V (ℓ)⟩2

≤
√
L′ ·

∥∥∥V (1)
∥∥∥
F
+

k∑
ℓ=2

√
L′ ·

∥∥∥V (ℓ)
∥∥∥
F

≤
√
L′ · ∥V ∥2F +

0.1
√
L′

L
· ∥V ∥F

=

√
L

5
· ∥V ∥F +

0.02√
L
· ∥V ∥F .

Taking the square:
∑n

i=1 w
∗
i ⟨Ai, V ⟩2 ≤ L

25 · ∥V ∥
2
F + 0.022

L · ∥V ∥2F +0.008∥V ∥2F ≤ L · ∥V ∥2F ≤ L .

Combining the lower bound and upper bound: 1
L ≤

∑n
i=1 w

∗
i ⟨Ai, V ⟩2 ≤ L .

23

Decomposition property:

Let S = G(r′), the rank-r′ approximation of G =
∑n

i=1 w
∗
i ⟨Ai, V ⟩Ai. Let E = G− S. Suffices to

show ∥S∥F ≤ L and ∥E∥2 ≤
1

K
√
r

. We have

∥S∥2F = ⟨S, S⟩ = ⟨G,S⟩ = ⟨
n∑

i=1

w∗
i ⟨Ai, V ⟩Ai, S⟩ = ⟨

n∑
i=1

⟨Bi, V ⟩Bi, S⟩ =
n∑

i=1

⟨Bi, V ⟩⟨Bi, S⟩

= ⟨
n∑

i=1

⟨Bi, V ⟩ei,
n∑

j=1

⟨Bj , S⟩ej⟩ ≤

∥∥∥∥∥
n∑

i=1

⟨Bi, V ⟩ei

∥∥∥∥∥
2

·

∥∥∥∥∥
n∑

i=1

⟨Bi, S⟩ei

∥∥∥∥∥
2

=

√√√√ n∑
i=1

⟨Bi, V ⟩2 ·

√√√√ n∑
i=1

⟨Bi, S⟩2 =

√√√√ n∑
i=1

w∗
i ⟨Ai, V ⟩2 ·

√√√√ n∑
i=1

w∗
i ⟨Ai, S⟩2

≤
√
L ·
√
L′ · ∥S∥F ≤

L

5
∥S∥F

which implies ∥S∥F ≤
L
5 ≤ L, and consequently,

∥E∥2 = σr′+1(G) ≤ σr′(G) = σr′(S) ≤

√
∥S∥2F
r′
≤ L

5
√
r′

=
L

400
√
2LK

√
r
≤ 1

K
√
r
.

24

	Introduction
	Our Contributions
	Overview of Our Techniques
	Related Work

	Preliminaries
	Notations
	Definitions

	Semi-Random Matrix Sensing
	Algorithm for Halving the Error
	Oracle for Reweighting the Input
	Conclusion and Future Work
	Omitted Proofs from Section 4
	Omitted proofs from Section 5
	Omitted proofs: From wRIP to dRIP condition

