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ABSTRACT

Mitigating confounding effects is one of the fundamental challenges in causal dis-
covery. This difficulty is amplified in more complex causal structures: where
interactions involve colliders, mediators, and their hybrids, methods tailored for
handling confounders may incur substantial errors, especially in the presence of
latent factors. In this paper, we propose a novel causality discovery algorithm of
Conditional Independence Test on Time-Lagged Backdoor Pathways (CIT-TBP).
This approach intelligently leverages backdoor pathways induced by time-lagged
causation to indirectly infer causal relationships, effectively eliminating the in-
fluence of various forms of complex interactions. Furthermore, by incorporating
causal information flow, our method significantly reduces the impact of latent vari-
ables. We theoretically prove the rationality and effectiveness of the algorithm
and experimentally validate it on several synthetic and real datasets. The exper-
iment results demonstrate the superiority of our CIT-TBP against state-of-the-art
methods. Compared with contemporary optimization-based methods, our causal
discovery framework does not involve any black-box optimization process, and
thus the causality derived are more direct and have a wide range of potential appli-
cations. The code is available at https://anonymous.4open.science/
r/CIT-TBP-F0E8.

1 INTRODUCTION

Causal discovery (Bareinboim & Pearl, 2016; Arif & MacNeil, 2023) aims to uncover the underly-
ing causal relationships from observational data, providing a foundation for reliable decision-making
across diverse fields such as healthcare (Shi et al., 2019), economics (Pearl, 2009a), and social sci-
ences (Sugihara et al., 2012; Arif & MacNeil, 2023). A central difficulty in causal discovery is
addressing confounding variables that jointly affect treatment and outcome. The difficulty becomes
even more pronounced when causal relationships exhibit time delays (Ye et al., 2015). For instance,
in clinical medicine, there are temporal lags between medication administration and pathological in-
dicator changes. Focusing solely on contemporaneous relationships between drug levels and patho-
logical metrics may lead to erroneous conclusions. Therefore, mitigating confounding effects in the
presence of time-delayed causal relationships remains a critical challenge.

Most existing methods are able to mitigate confounding effects in relatively simple time-series set-
tings. However, their effectiveness deteriorates in more complex causal structures, where interac-
tions involve colliders, mediators, and their hybrids (see Figure (1b) and Figure (1c)), and the pres-
ence of latent factors further exacerbates the problem. Constraint-based methods, such as PC-based
algorithms, their temporal variant PCMCI (Gerhardus & Runge, 2020), and the latent-factor variant
FCI (Entner & Hoyer, 2010; Malinsky & Spirtes, 2018), typically rely on the standard backdoor
criterion to uncover causal structures. However, they often face challenges related to Markov equiv-
alence classes, which make it hard to distinguish between confounders and mediators; that is to say,
they prevent unique identification of complete directed acyclic graphs (DAGs). Time-series-based
algorithms, such as Granger Causality (GC) (Barnett & Seth, 2014) and Rhino (Gong et al., 2023),
often rely on assumptions about no latent factors and struggle to account for mediators, making
it difficult to distinguish direct causal effects from indirect ones. Optimization-based approaches
(Rolland et al., 2022; Bello et al., 2022; Gong et al., 2023) constrain the construction of causal
graphs based on fundamental assumptions and inference rules. These methods typically target spe-
cific structural patterns guided by deep domain knowledge, rather than providing a comprehensive
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treatment of causal architectures (Pearl, 2009a; Kampa & Castanas, 2008; Hartford et al., 2017).
Moreover, temporal delays in causation frequently lead to erroneous inferences in such approaches
(Castro et al., 2023; Biswas et al., 2023).

To address these challenges, we propose a novel two-stage causal discovery method (CIT-TBP)
featuring an innovative time-lagged causal backdoor pathway concept. In the first stage, unlike tra-
ditional Backdoor Criterion (Pearl, 2009a; Xu et al., 2024) limited to contemporaneous data and
vulnerable to V-structures (Geng et al., 2005), our temporal approach fully exploits backdoor path-
ways induced by time-lagged causal relationships; By effectively blocking time-lagged backdoor
pathways that are unrelated to causality, we successfully achieve causal discovery across diverse
causal interactions. Then in the second stage, we introduce the principle of causal information flow,
which determines the existence of potential factors by the difference in entropy value. Theoretical
proofs demonstrate our algorithm’s effectiveness in eliminating common causes, chain structures,
and colliders, even in the presence of latent factors. Without black-box pruning or optimization
steps, it achieves more transparent and extensible causal relationships. Our contributions are three-
fold:

a.) We develop a general causal discovery framework based on conditional independence tests,
which introduces time-lagged backdoor pathways to eliminate the influence of confounding
effects in different causal structures, including confounders, mediators, colliders, and more
complex hybrids-thereby significantly improving the accuracy of causal structure learning.

b.) Combining statistical associations with causal information flow principles, our approach can
infer causal graphs under latent confounders. Distinct from most of the optimization-based
methods, our algorithm maintains full transparency without black-box operations.

c.) We evaluate the effectiveness of the algorithm through simulated linear and non-linear datasets
and real-world data. We also validate the algorithm’s effectiveness in mitigating the influence
of latent factors. Results demonstrate the superiority of our CIT-TBP over baselines in both
linear and nonlinear scenarios.

1.1 RELATED WORK

A fundamental way to discover causality is through interventions (Tigas et al., 2022; Zhang et al.,
2023; Liu et al., 2023; Pearl, 2009a; Eichler, 2013). However, causality with interventions is costly
and intrusive, which is often impractical, especially in cases with time lags. Topology-based sorting
approaches (Wu et al., 2024; Rolland et al., 2022; Sanchez et al., 2023) utilize data log-likelihood for
iterative node identification, but they may produce non-unique causal orderings and remain vulnera-
ble to confounders. Score-based methods (Tsamardinos et al., 2006; Zhu & Chen, 2019), which opti-
mize causal structures through acyclicity constraints and data fitting, also struggle with confounding
factors, lack model interpretability, and perform poorly in the presence of time lags. GC-based
methods (Sugihara et al., 2012; Gong et al., 2023), commonly used for time-series data , are highly
susceptible to latent factors and struggle to fully eliminate the influence of confounding variables.
Other time-series causal discovery algorithms, such as Cuts+ (Cheng et al., 2024a), are sensitive
to noise and also rely on the assumption of no latent factors. Although methods (Entner & Hoyer,
2010; Malinsky & Spirtes, 2018; Jin et al., 2024) have been developed to mitigate the effects of
latent factors, they often rely on strong assumptions about the underlying causal structures and can
yield graphs with undirected edges. Constraint-based methods (Xu et al., 2024; Runge et al., 2019;
Gerhardus & Runge, 2020) are hindered by Markov equivalence classes, which, in the presence of
different causal interactions, lead to numerous undirected edges and causal equivalence classes dur-
ing causal discovery, preventing the unique identification of DAGs. Inspired by these works, in this
paper, we study causal structures in data with time-lagged causality and combine the principles of
conditional independence tests and information entropy for eliminating the latent factors.

2 PROBLEM SETUP

2.1 MODEL DEFINITION

Causal Discovery Model. We focus on a Structural Causal Model (SCM) which consists of two
components: causal graph and structural equation. A causal directed acyclic graph G consists of
multiple nodes and directed edges, where each node in G represents a variable and the direction of
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(d) Time-Lagged Backdoor Principle for eliminating confounders

Figure 1: (a,b,c) Three basic building blocks of variable interactions. (d) An example of the Time-
Lagged Backdoor Principle on confounding factors: When we try to discover whether X2 is an
ancestor of X3, X1 acts as a confounding factor. There will be a spurious association between Xt

2

and Xt
3 (marked with a red dotted line) because of the non-causal backdoor pathway Xt

2 ← Xt−τ
1 →

Xt
3. If X2 → X3, Xt

2 ← Xt−τ
2 → Xt

3 will be a causal backdoor pathway. Therefore, when we get
Xt

2 ⊥⊥ Xt
3 | {Xt−τ

1 , Xt−τ
3 , Xt−τ

4 }, we can conclude X2 ̸→ X3. The right side displays a summary
causal graph that abstracts away from the time-slice-specific causal graphs shown on the left.

the edges represents the causal direction. An n-variate time series can be denoted as X = {Xτ
i }n×t,

where i ∈ {1, 2, · · · , n} and τ ∈ {1, 2, · · · , t}. For example, Xta
k represents the variable k at time

ta.

Definition 1 (Summary causal graph). The summary causal graph (SCG) is a directed graph with
an arrow from Xi to Xj (i ̸= j) whenever there is a directed arrow from Xta

i to Xtb
j for some

ta < tb, and an optional arrow from Xi to itself for all i ∈ {1, · · · , n}, which is also called a
self-loop arrow.

Inspired by the application of acyclic SCG (Peters et al., 2013; Assaad et al., 2022a; Wu et al.,
2024), in analyzing DAGs, we adopt a holistic perspective by abstracting away from time-slice-
specific causal structures and characterizing the unified causal representation (see Definition 1 and
Figure (1d)) across the entire temporal sequence. For clarity in the subsequent discussion, variables
with a superscript t (e.g., Xt

i ) denote nodes within a specific time slice, while variables without a
superscript (e.g., Xi) represent their counterparts in the SCG. Our models are discussed under some
constraints, including Acyclic graph, Markov property, Time-consistency, and Faithfulness.

Assumption 1 (Acyclic summary causal graph (Assaad et al., 2022b; Wu et al., 2024)). We assume
the SCG to be acyclic, only allowing for the presence of self-loops. That is, there exists no cycle
involving distinct nodes in which a node can be both an ancestor and a descendant of another.

Assumption 2 (Markov property (Wu et al., 2024)). This property assumes that the future slice
depends only on the current state but does not depend on its history. For example, if we assume
Xi → Xj , and the time lag is 1. At a random time-slice t, Xt

j only has direct cause from Xt−1
i ,

there can not be any edges from Xt−τ
i to Xt

j , where τ > 1.

We assume that there are no instantaneous effects in our model; the time delay represents the min-
imum interval between the occurrence of causal effects. For simplicity of notation, we will not
discuss the high-order lagged effects in our current model, but some analysis on that is deferred
to Appendix A.1. Also, in the main text, we focus primarily on scenarios with a uniform mini-
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mum time-lag τ for all causal relationships, while scenarios with heterogeneous time lags will be
discussed in the Appendix A.8.
Assumption 3 (Time-consistency (Assaad et al., 2022b; Wu et al., 2024)). As discussed previously,
the causal relationships between variables are said to be constant throughout time, which means
that the causal graph has consistency on each time slice and the SCG G.
Assumption 4 (Causal faithfulness (Pearl, 2009b)). All conditional independencies in the observed
data are implied by the causal graph via d-separation.

2.2 CAUSAL INTERACTION STRUCTURES AND BACKDOOR PATHWAYS

Causal Interactions. One of the main challenges for eliminating confoundings in causal discovery
is the interaction between variables, which may lead to confusion of causal effects. Three building
blocks are considered to be the foundations of causal interactions: confounder, mediator and col-
lider effects (see Definition 2 and Figure (1a), (1b), (1c)). These interactions may be manifested
individually or intertwined at the same time, leading to more complex causal graphs.
Definition 2 (Three building blocks). Confounder effects (A ← B → C): Confounder effects are
also called common cause effects: B → A and B → C. This structure may cause the creation of a
statistical correlation between A and C even if there is no arrow between them.

Mediator effects (A → B → C): This structure emerges in the causal chain between the variable
A and the variable C, with the variable B acting as a bridge. A direct arrow from A to C may be
created mistakenly due to the causal chain.

Collider effects (A → B ← C): This means multiple factors acting on the same variable: A →
B and C → B. In this case, the variable A and the variable C will not be correlated unless
conditioned on B.

More discussion and examples of these blocks are provided in Appendix A.2.

Backdoor Pathways. When studying the causal relationship of T to Y , we call a path l from T to
Y a backdoor pathway iff l satisfies two conditions:

(a) It contains an incoming edge to T.

(b) It is not blocked (There is no collider).

Although the standard Backdoor Criterion (Pearl, 2009b) effectively eliminates confounders in non-
time series data, it may fail when additional interactions (see Definition 2) exist. To address this, we
propose an efficient algorithm that uses the backdoor pathways generated from time-lagged causa-
tion to identify true causal graphs in complex structures on time-series data.

3 ALGORITHM

In section 3.1, we will first introduce the Time-Lagged Backdoor Pathway Principle and show how
the backdoor pathway is generated from the variables in time lags and how causality is discovered.
Then, in section 3.2, based on the Time-Lagged Backdoor Pathway Principle and causal information
flow, we propose a two-stage algorithm for causality discovery with time lags, which is applicable to
different types of noise. At the last part in section 3.2, how the efects of different causal interactions
are excluded will be discussed in detail.

3.1 TIME-LAGGED BACKDOOR PATHWAY PRINCIPLE

Definition 3 (Causal backdoor pathway & Non-causal backdoor pathway). Given the time-series
data X = {Xt−τ , · · · , Xt} satisfying the definitions and assumptions before, where τ is the mini-
mum interval between the occurrence of causal effects, if Xt−τ

i → Xt
j , then Xt

i ← Xt−τ
i → Xt

j is
a causal backdoor pathway on Xt

i and Xt
j since the backdoor pathway contains both self-causation

from Xt−τ
i → Xt

i and causation from Xt−τ
i → Xt

j . While if Xt−τ
k → Xt

i and Xt−τ
k → Xt

j , where
k is a variable distinct from i and j, then Xt

i ← Xt−τ
k → Xt

j is a non-causal backdoor pathway on
Xt

i and Xt
j , which will lead to a confounding.
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Theorem 1 (Time-Lagged Backdoor Pathway Principle for CIT). For variables Xi and Xj in time-
series data X , we can conclude that Xt−τ

i is an ancestor of Xt
j iff Xt

i ⊥̸⊥ Xt
j | C

t−τ
Xi

, where Ct−τ
Xi

is the conditioning set for Xi on time-slice t− τ .

Proof. From the definitions and the assumptions, we can infer that:

(a) There is a directed arrow from Xt−τ
i to Xt

i .

(b) There is no arrow between Xt
i and Xt

j .

(c) Under the Markov property, Xta
i ̸→ Xt

i for ta < t− τ < t.

(d) Under the acyclic assumption, Xt
i ̸→ Xt−τ .

(e) Under the Time-consistency assumption, if Xi → Xj , then Xt−τ
i → Xt

j for any t ≥ τ .

Based on these conditions, we can infer that the correlation between Xt
i and Xt

j is generated from
the backdoor pathways. Only causal backdoor pathway (see Definition 3) implies the existence of
a causal relationship. Hence, if we cut off all the non-causal backdoor pathways (see Definition
3) by controlling the Ct−τ

Xi
, the confounding effects on Xt

i and Xt
j will be eliminated. Under this

circumstance, Xt
i ⊥⊥ Xt

j | C
t−τ
Xi

if Xt−τ
i ̸→ Xt

j . In turn, given the condition that Xt−τ
i → Xt

j ,
then Xt

i ⊥̸⊥ Xt
j | C

t−τ
Xi

.

Having Theorem 1, the main problem turns to how to find the conditioning set Ct−τ
Xi

. Actually, all
variables at time t− τ except for Xt−τ

i and variables that are independent of Xt−τ
i can be selected

into the conditioning set (Wu et al., 2024). The proof of the reasonableness for the selection of
conditioning sets will be shown in Appendix B.1. We denote the conditioning set as Xt−τ

i∗ . Thus
we can reformulate our Theorem 1 using the conditioning set Xt−τ

i∗ .

Corollary 1. Given the time-series data X = {Xt−τ , · · · , Xt}, for variables Xi and Xj , we can
conclude that Xi is an ancestor of Xj iff Xt

i ⊥̸⊥ Xt
j | X

t−τ
i∗ .

We can use Corollary 1 to discover causality by performing a CIT on each pair of variables. Figure
(1d) shows an example for the calculation process. The differences between the corollary and the
traditional CIT will be analyzed in Appendix A.3. Additionally, a more detailed discussion of the
comparison between Time-Lagged Backdoor Pathway Principle and the standard Backdoor Crite-
rion is provided in the Appendix A.9. If there are enough data for interventions, we can extend our
method to intervention situations (see Appendix A.4).

3.2 CIT-TBP ALGORITHM

3.2.1 TIME-LAGGED BACKDOOR PATHWAY PRINCIPLE FOR PRELIMINARY CAUSAL
DISCOVERY

Based on the Time-Lagged Backdoor Pathway Principle in Corollary 1, we can discover the
time-lagged causal relationships by conducting CITs on given variables. For a given dataset
X = {X1, · · · , Xn}, we apply Hilbert-Schmidt Independence Criterion (HSIC) test (Zhang et al.,
2012) with Gaussian kernel on Xt−τ

i and Xt
j , and then calculate the conditional independence sig-

nificance p-value. If the p-value is less than or equal to the threshold, Xi is regarded as an ancestor
of Xj , which means Xt−τ

i ⊥̸⊥ Xt
j | X

t−τ
i∗ . Thus we can obtain the adjacency matrix which implies

the causal graph via

P =


p1,1 p1,2 · · · p1,n
p2,1 p2,2 · · · p2,n

...
...

. . .
...

pn,1 pn,2 · · · pn,n

 , (1)

where pi,j = HSIC(Xt−τ
i , Xt

j | X
t−τ
i∗ ). τ is the minimum time lag between the occurrence of

causal effects, which depends on the granularity of the observations and can be set to any reasonable
positive integer. For simplicity, we set τ to 1 as the default. For each pi,j in P , if the value is less
than threshold α, the result is considered significant and the value of the corresponding position of

5
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the adjacency matrix will be set to 1, which means there is a directed edge from node i to node j
in the causal graph. While values of other positions in the adjacency matrix will be set to 0. α is
typically set to 0.05, 0.01, or 0.001 in statistical hypothesis testing. In this work, we set α = 0.05 in
the main experiments. More discussion on the settings of hyperparameters is in Appendix A.5.

3.2.2 INFORMATION ENTROPY FOR LATENT FACTOR EXCLUSION

The results of CITs may be affected by some latent variables (Chen et al., 2024; Kivva et al., 2021).
In this paper, we incorporate the concept of information entropy (Lozano-Durán & Arranz, 2022)
to impose stronger constraints, thus excluding the influence of possible latent factors. Specifically,
we calculate the conditional transfer entropy (CTE) between variables on different time slices and
determine whether there are additional backdoor pathways in the independence test process based
on the change in entropy value, so as to exclude the effects from the latent variables.

If Xi → Xj , the transfer entropy (TE) (Vicente et al., 2011; Montalto et al., 2014) from Xi to
Xj will be significantly larger than zero. Similarly, to avoid the effects of latent factors, here we
introduce △CTE. If Xi and Xj represent two stochastic processes, the equation for △CTE can
be expressed as:

△CTEXi→Xj |Xt−τ
i∗

= CTEXt−τ
i →Xt

j |X
t−τ
i∗
− CTEXt

j→Xt−τ
i |Xt−τ

i∗
(2)

The detailed calculation process for CTE is in Appendix A.6. For every i, j ∈ {1, 2, · · · , n}, we
iteratively calculate△CTE for each pair of variables, if△CTEXi→Xj |Xt−τ

i∗
is significantly greater

than 0, then we can infer that there is transfer of information from Xi to Xj .

Theorem 2 (CTE for the exclusion of latent factors). Given the time-series data X =
{Xt−τ , · · · , Xt} satisfying the Definitions and Assumptions before, where τ is the minimum in-
terval between the occurrence of causal effects, for variables Xi and Xj , if Xt

i ⊥̸⊥ Xt
j | X

t−τ
i∗ but

△CTEXi→Xj |Xt−τ
i∗

is not significantly greater than zero, then there is a latent factor which has
effects on both Xi and Xj .

Proof for Theorem 2 will be presented in Appendix B.2. More discussion on the choice of signif-
icance level and the statistical robustness will be showed in Appendix A.5. Based on Theorem 2,
we prune the causal graph obtained from CITs. Then, we update the values in the adjacency matrix
accordingly to obtain the new matrix A:

A =

 I(p1,1 ≤ α) · · · I(p1,n ≤ α & ∆CTE1,n > 0)
...

. . .
...

I(pn,1 ≤ α & ∆CTEn,1 > 0) · · · I(pn,n ≤ α)

 , (3)

where I(·) is an indicator function. Since the variables have no transfer entropy to themselves, the
main diagonal of the adjacency matrix is slightly different. Moreover, we discuss causal discovery
in the context of other CIT and CTE cases in Appendix A.7. The detailed pseudo-code for CIT-TBP
is provided in Appendix C.1.

3.2.3 THE IDENTIFICATION OF THREE STRUCTURES.

Based on Theorem 1 and Theorem 2, we show here how our algorithm effectively excludes bias of
three building blocks.

Confounder Effects. As shown in Figure (1a), if Xa ← Xb → Xc, Xb acts as a confounder
when testing the causal relationship between Xa and Xc. Through CITs on time-lagged backdoor
pathways, Xt−τ

b ∈ (Xt−τ
a∗ ∩Xt−τ

c∗ ), thus Xa → Xc if Xt−τ
a ⊥̸⊥ Xt

c | Xt−τ
a∗ , and vice versa.

Mediator Effects. See Figure (1b). Xb is a mediator variable between Xa and Xc. Xt−τ
a → Xt

b

and Xt−τ
b → Xt

c connect the backdoor pathway between Xt
a and Xt

c. Similarly, if we conduct an
HSIC test on Xt

a and Xt
c, the backdoor pathway will be blocked.

Collider Effects. See Figure (1c). Our treatment variables are at time-slice t, while the conditioning
sets are conducted at time-slice t−τ . When we conduct an HSIC test, there will be no collider effects
generated at time-slice t and thus no spurious correlation.

6
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Figure 2: Causal graphs with latent factors. Green dashed nodes: latent factors. Blue solid nodes:
observed variables.

Table 1: Results on different cases.

(a) Linear results.

Case1 Case2 Case3 Case4

Algorithm SHD
(↓)

F1
(↑)

FDR
(↓)

SHD
(↓)

F1
(↑)

FDR
(↓)

SHD
(↓)

F1
(↑)

FDR
(↓)

SHD
(↓)

F1
(↑)

FDR
(↓)

GSP 5.0 0.810 0.227 9.0 0.684 0.316 10.0 0.667 0.385 18.0 0.524 0.476
GC 13.0 0.727 0.429 14.0 0.667 0.448 22.0 0.638 0.532 26.0 0.448 0.649
CUTS+ 5.0 0.869 0.200 7.0 0.791 0.292 5.0 0.898 0.185 18.0 0.500 0.556
GOLEM 10.0 0.750 0.357 18.0 0.596 0.500 10.0 0.720 0.357 24.0 0.408 0.643
RHINO 5.0 0.869 0.200 8.0 0.769 0.250 6.0 0.880 0.214 28.0 0.441 0.658
DAGMA 6.0 0.800 0.200 8.0 0.769 0.250 8.0 0.714 0.250 18.0 0.488 0.500
SCORE 13.5 0.653 0.391 7.3 0.645 0.390 8.0 0.711 0.304 19.0 0.489 0.542
PO-LINGAM 10.0 0.737 0.222 12.0 0.632 0.368 5.0 0.878 0.053 16.0 0.550 0.421
LPCMCI+ 8.0 0.833 0.286 10.0 0.732 0.318 4.0 0.917 0.154 19.0 0.512 0.500
Ours 4.0 0.872 0.105 10.0 0.703 0.278 4.0 0.905 0.050 16.0 0.550 0.421

(b) Non-linear results.

Case1 Case2 Case3 Case4

Algorithm SHD
(↓)

F1
(↑)

FDR
(↓)

SHD
(↓)

F1
(↑)

FDR
(↓)

SHD
(↓)

F1
(↑)

FDR
(↓)

SHD
(↓)

F1
(↑)

FDR
(↓)

GSP 18.0 0.593 0.529 14.0 0.694 0.433 35.0 0.418 0.689 32.0 0.444 0.667
GC 21.0 0.588 0.583 15.0 0.667 0.449 38.0 0.376 0.746 33.0 0.410 0.726
CUTS+ 31.0 0.414 0.684 31.0 0.386 0.711 27.0 0.456 0.629 26.0 0.464 0.629
GOLEM 20.0 0.500 0.571 19.0 0.511 0.571 22.0 0.480 0.571 20.0 0.490 0.571
RHINO 21.0 0.528 0.576 26.0 0.462 0.674 28.0 0.424 0.682 26.0 0.452 0.659
DAGMA 21.0 0.500 0.542 17.0 0.558 0.500 22.0 0.511 0.520 21.0 0.489 0.542
SCORE 13.2 0.594 0.353 13.6 0.611 0.353 16.5 0.564 0.353 13.4 0.629 0.214
PO-LINGAM 18.0 0.550 0.450 14.0 0.600 0.429 18.0 0.537 0.421 16.0 0.636 0.391
LPCMCI+ 1.0 0.976 0.047 8.0 0.780 0.272 23.0 0.480 0.571 24.0 0.480 0.586
Ours 10.0 0.667 0.000 9.0 0.690 0.000 12.0 0.625 0.000 11.0 0.645 0.000

Bold indicates the best performance, underline indicates the second-best.

4 EXPERIMENTS

4.1 BASELINES AND EVALUATION.

In these experiments, we provide various kinds of causal discovery baseline methods, using their
time series variants in our tasks. We test the proposed CIT-TBP to both synthetic and real-world data
and compare its performance to the following baselines: time-series method, GC (Barnett & Seth,
2014), CUTS+ (Cheng et al., 2024a), RHINO (Gong et al., 2023); constraint-based methods, FCI+
(Entner & Hoyer, 2010; Malinsky & Spirtes, 2018),GSP (Solus et al., 2021), LPCMCI+ (Günther
et al., 2023), PO-LINGAM (Jin et al., 2024); score-based Methods, GOLEM (Ng et al., 2020),
DAGMA (Bello et al., 2022); topology-based method, SCORE (Rolland et al., 2022).

To evaluate the performance of our proposed CIT-TBP method, we employ three standard metrics:
the Structural Hamming Distance (SHD) to measure overall structural differences, the F1-Score to

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

assess edge identification accuracy, and the False Discovery Rate (FDR) to quantify the proportion
of falsely discovered edges, which is also important as false causal claims often have more serious
practical consequences than missed discoveries. Discussions on the evaluation metrics and imple-
mentation specifics are provided in Appendix C.5. Details of computations are in Appendix C.2.

4.2 EXPERIMENTS ON SYNTHETIC DATA

Synthetic Data. We tested our CIT-TBP on synthetic data generated from SCMs under Assumptions
1, 2 and 3. In three-block exclusion experiments and latent factor exclusion experiments, we manu-
ally set up causal graphs for different cases. In other experiments, we generated causal graphs using
the Erdos-Renyi model (Erdös & Rényi, 2006). In our main experiments, we generated the data with
Gaussian Noise for every variable Xh

i , where variables i = 1, 2, · · · , n and time h = 1, 2, · · · , 1000.
We evaluated our algorithms on both linear and non-linear structural equations:

Xt
j =

3

5
×Xt−τ

j +
∑

Xt−τ
i ∈Pa(Xt

j)\X
t−τ
j

(
1

5
×Xt−τ

i ) + ϵtj , (4)

Xt
j =

5

1 + exp(−Xt−τ
j )

+
∑

Xt−τ
i ∈Pa(Xt

j)\X
t−τ
j

(
1

1 + exp(−Xt−τ
i )

) + ϵtj ,

X0 ∼ N (0, 1), ϵt ∼ N (0, 0.4), (5)

Experiments Setup. We evaluated the performance of our CIT-TBP on three building blocks (See
Figure 1). Then, we varied the number of nodes and edges to see the performance on causal graphs
of different sizes and different densities. For robustness tests, we generated data with different kinds
of noise for experiments. In addition, we constructed causal graphs containing latent factors and
tested the ability of our CIT-TBP to exclude latent factors. The details of the experiment setup are
provided in Appendix C.3.

Table 2: Robustness tests under different noise types.

(a) Linear causality.

Gaussian Laplace Uniform

Algorithm SHD(↓) F1(↑) FDR(↓) SHD(↓) F1(↑) FDR(↓) SHD(↓) F1(↑) FDR(↓)

RHINO 8.0 0.640 0.333 8.0 0.615 0.333 8.0 0.640 0.333
DAGMA 8.0 0.733 0.267 8.0 0.733 0.267 8.0 0.733 0.267
SCORE 8.0 0.733 0.267 10.4 0.645 0.375 8.0 0.733 0.267
PO-LINGAM 9.0 0.710 0.313 8.0 0.710 0.313 6.0 0.800 0.200
Ours 6.0 0.786 0.154 7.0 0.759 0.214 7.0 0.759 0.214

(b) Non-linear causality.

Gaussian Laplace Uniform

Algorithm SHD(↓) F1(↑) FDR(↓) SHD(↓) F1(↑) FDR(↓) SHD(↓) F1(↑) FDR(↓)

RHINO 8.0 0.640 0.333 7.0 0.720 0.250 11.0 0.552 0.333
DAGMA 10.0 0.688 0.353 12.0 0.647 0.421 15.0 0.595 0.500
SCORE 11.2 0.667 0.389 13.4 0.629 0.450 13.3 0.588 0.474
PO-LINGAM 8.0 0.750 0.294 10.0 0.645 0.375 9.0 0.710 0.313
Ours 8.0 0.714 0.231 6.0 0.786 0.154 7.0 0.759 0.214

Bold indicates the best performance, underline indicates the second-best.

Experiments on Different Structures. We tested our CIT-TBP on three building blocks and their
hybrid structure: i) confounders, ii) Colliders, iii) Mediators, iv) Hybrids. From the results in Table
1, our approach shows excellent performance in most cases, especially in the hybrids. We also
designed two additional functions to test our algorithm. The causal graphs of the four cases and the
additional experiments are deferred to Appendix D.1.
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Table 3: The results on latent factor exclusion.

Linear Non-linear

Methods SHD (↓) Error-Score (↓) SHD (↓) Error-Score (↓)

FCI 1.0 1.0 4.0 4.0
LPCMCI+ 5.0 5.0 17.0 17.0
PO-LINGAM 7.0 7.0 8.0 8.0
Ours 0.0 0.0 0.0 0.0

Bold indicates the best performance.

Robustness Experiments. We additionally generated data with Laplace and Uniform noise. Here
we chose excellent methods in each kind of causal algorithms in the former experiments for compar-
ison. The results are presented in Table 2, which demonstrate the robust and superior performance
of our algorithms against different types of noise. What’s more, experiments on varying different
numbers of nodes and edges are deferred to Appendix D.2.

Experiments on Latent Variables Exclusion. We constructed the causal graph manually and re-
moved key nodes in the data input process (see Figure 2) to simulate the presence of latent factors.
Methods that do not rely on the assumption of no latent factors are selected for comparison. We
evaluate the performance through SHD and Error-Score (ES), where ES is used to calculate how
many wrong edges caused by latent factors are identified. We found that our approach accurately
excludes the influence of the latent factors (see Table 3). To enhance generalizability, we further
validated our findings on two additional causal graphs under different settings (Appendix D.3).

4.3 EXPERIMENTS ON REAL-WORLD DATA.

CausalTime (Cheng et al., 2024b) is a novel pipeline capable of generating realistic time-series data.
We used three types of benchmark time series with time-lagged causality from weather, traffic, and
healthcare backgrounds. There are 20 nodes in the Traffic and Medical Dataset, and 36 nodes in the
AQI Dataset. We compared the ability of our method with baseline methods in recovering the true
causal graph. From the results in Table 4, our algorithm identifies the most accurate causal graph
under all realistic datasets. More discussions will be shown in Appendix C.4.

Table 4: Causal discovery on CausalTime dataset.

SHD (↓)
Methods Traffic Medical AQI

RHINO 63.248± 1.732 80.202± 2.236 165.945± 6.016
DAGMA 59.790± 3.213 91.456± 4.115 244.713± 9.980
SCORE 66.298± 7.980 100.350± 8.419 280.823± 32.564
PO-LINGAM 49.498± 1.835 88.085± 3.128 179.327± 3.515
Ours 31.346 ± 1.033 75.192 ± 0.893 160.062 ± 2.597

Bold indicates the best performance.

5 CONCLUSIONS AND FUTURE WORKS

In this paper, we propose a causal discovery algorithm CIT-TBP to exclude different kinds of con-
founding effects in time-lagged causal relationships, without prior knowledge regarding the pres-
ence of latent variables. Furthermore, we theoretically demonstrated the effectiveness of CIT-TBP.
We have reduced the search space of the conditioning sets compared to traditional constraint-based
methods, but CITs still have limitations when dealing with large-scale graphs. One future research
is towards reducing the number of CITs on large and dense graphs. Another direction for future
research is the discovery of causal graphs in high-dimensional data.
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6 ETHICS STATEMENT

This paper presents work whose goal is to advance the field of Machine Learning and Causal Dis-
covery. The research conducted in the paper conform, in every respect, with the ICLR Code of
Ethics.

7 REPRODUCIBILITY STATEMENT

All experiments in this paper is reproducible, experimental setup and complete experimental re-
sults are depicted in Section 4 and Appendix D. Our code is available at https://anonymous.
4open.science/r/CIT-TBP-F0E8.
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A ADDITIONAL DISCUSSIONS

A.1 DISCUSSIONS ON HIGH-ORDER LAGGED EFFECTS

We can also relax the Markov Assumption to a high-order Markov Assumption (Wu et al., 2024;
Peters et al., 2017). In high-order Markovian hypothesis, the causal effects are on multiple time
delays. In this case, Xt depends on states Xt−a,··· ,t−τ , where a is an integer greater than 0. The
conditioning set is not set on a single time slice t − τ , but on multiple time slices t − a, · · · , t − τ .
Then, the conditioning sets can be replaced from Xt−τ

i∗ to Xt−a,··· ,t−τ
i∗ . For example, if a = 3

and τ = 1, when we explore the causal relationships between Xt
i and Xt

j , the conditioning set is
{Xt−3

i∗ , Xt−2
i∗ , Xt−1

i∗ }.

A.2 DIFFERENT STRUCTURES AND EXAMPLES

Confounders. Confounding factors are the most common interactions between nodes. One of the
examples is the relationship between education level and income. While education level (A) and
income (C) show a strong correlation, the apparent causal relationship A→ C may be spurious. The
underlying driver is actually family socioeconomic status (B), which influences both educational
opportunities and career advantages.

Mediators. When examining neighborhood security (A), residents’ trust (B), and community en-
gagement (C), researchers may overlook critical causal pathways. Improved security enhances
trust in the community, which in turn increases participation in local activities. However, if ana-
lysts observe only the surface correlation between A and C, they might incorrectly conclude that
"better security directly boosts engagement", neglecting trust’s essential mediating role. This over-
simplification leads to flawed policy interventions, like allocating resources solely to policing while
ignoring trust-building programs, that fail to address the actual mechanism through which security
improvements ultimately affect community participation.

Colliders. Collider bias can induce spurious associations when conditioning on a common effect.
Consider the relationship between single-parent households (A), mental health issues (B), and aca-
demic performance (C). Here, (B) is a collider: (A → B ← C). Single-parent households may
increase psychological stress, while poor academic performance can worsen mental health. If re-
searchers condition on B. (e.g., studying only individuals with mental health issues), a spurious cor-
relation emerges between A and C. This may lead to erroneous conclusions like "single-parenthood
directly harms academic performance," even though no such causal link exists.

A.3 THE DIFFERENCE BETWEEN TRADITIONAL CONDITIONAL INDEPENDENCE TESTS AND
OURS

We compare our method with the traditional constraints-based method PC Algorithm in the selection
of the conditioning sets. The PC algorithm is shown in Algorithm 1.

1. In PC algorithm, the conditioning sets are dynamically constructed, depending on the neigh-
bor relationships of the graph and the current structure during iteration. However, the condi-
tioning sets are statically constructed without iteration, which can reduce time complexity.

2. PC algorithm is only suitable for data without a temporal order. Runge et al. (Runge
et al., 2019) proposed an improved version of the PC algorithm, PCMCI, which adapts it
for time-series data. However, the conditional independence tests used in these methods
do not adequately account for time-lagged causal relationships between variables, leaving
them vulnerable to confounding structures and still requiring the assumption of no latent
variables. Our algorithm use time-lagged backdoor paths to eliminate the effects of dif-
ferent structures. Unlike traditional methods, we control conditioning sets and treatment
variables in different time-slice layers, which can remove the effects of V-structure.

3. We also introduce the concept of CTE and evaluate the difference in entropy between dif-
ferent layers to determine the presence of potential factors, thereby relaxing the constraints
imposed by traditional algorithms on latent variables.
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Algorithm 1: The PC-pop Algorithm
Data: Vertex Set V ; Condition Independence Information
Result: Causal Graph C; separation sets S

1 Form the complete undirected graph C̃ on the vertex set V .
2 ℓ = −1; C = C̃
3 repeat
4 ℓ = ℓ+ 1
5 repeat
6 Select a (new) ordered pair of nodes i, j that are adjacent in C such that
|adj(C, i) \ {j}| ≥ ℓ;

7 repeat
8 Choose (new) k ⊆ adj(C, i) \ {j} with |k| = ℓ;
9 if i and j are conditionally independent given k, then

10 Delete edge i, j;
11 Denote this new graph by C;
12 Save k in S(i, j) and S(j, i);
13 end
14 until edge i, j is deleted or all k ⊆ adj(C, i) \ {j} with |k| = ℓ have been chosen;
15 until all ordered pairs of adjacent variables i and j such that |adj(C, i) \ {j}| ≥ ℓ and

k ⊆ adj(C, i) \ {j} with |k| = ℓ have been tested for conditional independence;
16 until for each ordered pair of adjacent nodes i, j: |adj(C, i) \ {j}| < ℓ.

Our CIT-TBP offers a significant improvement over the PC algorithm by optimizing the selection
of conditioning sets. Unlike the PC algorithm, which dynamically explores and stores multiple
combinations of conditioning sets, our approach uses a pre-determined conditioning set based on
time layers. This eliminates the need for extensive exploration and reduces the time requirements,
making it more efficient. The search space for the conditioning sets is smaller than that in the
traditional constraint-based approaches (Wu et al., 2024; Solus et al., 2021; Shiragur et al., 2024).
We provide Big-O analysis in A.10.

A.4 DISCUSSIONS ON INTERVENTIONS

In structural causal models (SCMs), interventions are represented by the do(·) operator (Pearl,
2009a; Xu et al., 2024). When a variable is intervened on, it is no longer influenced by its par-
ent variables. As a result, the causal graph of the intervened system will no longer contain any
directed edges into that variable. In our CIT-TBP, the conditioning set will be replaced by an empty
set since the intervention operation makes the treatment variable independent of others. The formula
of interventions is shown in Corollary 2.

Corollary 2. Let do(Xt−τ
i ) be an intervention. For variables Xi and Xj , we can conclude that Xi

is an ancestor of Xj iff do(Xt−τ
i )⊥̸⊥ Xt

j .

However, interventions are often challenging to implement in practice, as they typically require prior
knowledge of the system (Li et al., 2024; Jeunen et al., 2022). One key direction for future research
will be to develop more effective methods for generating high-quality intervention data.

A.5 SETTINGS OF HYPERPARAMETER

Hyperparameters for CIT. The hyperparameter configuration for CIT includes time delay τ , sig-
nificance level α, and transfer entropy bandwidth k. For time delay, we set τ = 1 as default. (Alter-
native values are discussed in Appendix A.1.) The significance level can be adjusted contextually:
0.05 for linear/sparse cases to capture more causal relationships, and 0.01, even 0.001, for complex
nonlinear scenarios to ensure precise causal relationships. For the transfer entropy bandwidth, it can
be discretionary according to the distribution of the data, we use 2.0 as default.

Significance Level and Statistical Robustness for CTE. To quantify the uncertainty of our esti-
mates, we computed 95% confidence intervals using the nonparametric bootstrap method (Owens

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

& Hekman, 2016). A standard number of B = 5000 replicates was used. For the setting of signifi-
cance level, different significance level indeed have an impact on the results. A higher significance
level means that our causal restrictions are looser, while a lower significance level means that we set
more strict causal rules. We use α = 0.05 as the default setting (95% confidence interval), which
is also a value commonly used in the significance tests (Liu et al., 2023; Wu et al., 2024).Those
hyperparameters of our method can be flexibly adjusted according to usage conditions.

A.6 CALCULATION OF THE CTE

The shannon entropy is calculated as:

H(X) = Σip(x) · log2
1

p(x)
= −Σip(x) · log2 p(x) (6)

TE is a model-free, information-theoretic measure of directed, dynamic information flow between
two processes. It quantifies how much the historical states of a source process X reduce uncertainty
about the current state of a target process Y , beyond what is already contained in the history of Y .
The formula is shown below:

TEXt→Yt = H(Yt|Yt−∆w)−H(Yt|Yt−∆w, Xt−∆τ )

= H(Yt, Yt−∆w)−H(Yt−∆w)−H(Yt, Yt−∆w, Xt−∆τ ) +H(Yt−∆w, Xt−∆τ )

= H(Yt, Yt−∆w) +H(Yt−∆w, Xt−∆τ )−H(Yt−∆w)−H(Yt, Yt−∆w, Xt−∆τ )

=
∑

xτ ,y,yw

p(xτ , y, yw) log2
p(xτ , y, yw)p(yw)

p(xτ , yw)p(y, yw)

(7)

CTE is a generalization of transfer entropy that quantifies the direct information transfer from a
source process X to a target process Y , conditional on one or more additional processes Z. It
isolates the unique causal influence of X on Y by accounting for:

1) Confounding effects (X ← Z → Y ).
2) Mediated effects (X → Z → Y ).

Thus, the formula for CTE can be derived from the TE:

CTEXt→Yt|Zt
= H(Yt | Yt−∆w, Zt−∆w)−H(Yt | Yt−∆w, Zt−∆w, Xt−∆τ )

=
∑

xτ ,y,yw,zw

p(xτ , y, yw, zw) log2
p(xτ , y, yw, zw)p(yw, zw)

p(xτ , yw, zw)p(y, yw, zw)

(8)

A.7 DISCUSSION ON DIFFERENT CONDITIONS ON CITS AND CTE

In the main text, we determine causal relationships between variables based on two criteria: the
p-value being less than or equal to the threshold α, and the difference of CTE being significantly
greater than 0. We demonstrate that when the p-value is below α but the CTE difference is not
significantly greater than 0, latent factors may exist in the system, leading to spurious correlations.
Here, we further examine the remaining two scenarios.

1) p-value ≥ α and ∆CTE > 0: There are two possible reasons for this phenomenon. a.)
First, there may exist a strongly nonlinear causal relationship between the two variables,
which makes it difficult to detect the dependency using simple correlation measures. For
example, in certain dynamic systems, some signal pathways may exhibit no significant cor-
relation but still carry causal influence. b.) It may result from the issue of causal granularity
(Foroni & Marcellino, 2015). The data we observe may be at a relatively coarse temporal
resolution, which makes it hard to accurately capture the causal transmission. The actual
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causal effect may have occurred between two observable time points, leading to observ-
able changes in information entropy, while the correlation remains low due to the temporal
mismatch.

2) p-value ≥ α and ∆CTE = 0: In this case, we consider that there is no causal relationship
at all between the two variables.

Our discussion builds on the ideal case where there is no complex noise interference.

A.8 CAUSAL RELATIONSHIPS WITH HETEROGENEOUS TIME LAGS

Here, we extend the algorithms to a scenario with heterogeneous lags, where for instance X1 → X2

has a lag of τ1 = 5 and X3 → X4 has a lag of τ2 = 1. In this case, we manually set the maximum
time delay τmax and then choose all variables that are correlated with the treatment variable from
t−τmax to t−τ into the conditioning set. In this way, the non-causal backdoor paths with the highest
time delay in a heterogeneous lags structure can be directly blocked, and the non-causal backdoor
paths of each time slice between variables with lower time delays can also be blocked, thereby
achieving reliable causal identification. For example, if τmax = 5 and τ = 1, we will choose all
variables that are correlated with the treatment variable from t− 5 to t− 1 into the conditioning set
and block them.

A.9 THE COMPARISON BETWEEN TIME-LAGGED BACKDOOR PATHWAY PRINCIPLE AND
THE STANDARD BACKDOOR CRITERION

The standard Backdoor Criterion only proposes how to establish a valid conditioning set. We make
sufficient use of the concept of backdoor pathways introduced in the backdoor criterion, retain the
causal backdoor pathways, and exclude non-causal backdoor pathways to perform causal discovery
on time-series data (see Definition3). Therefore, in Theorem 1, we provide a novel calculation
method called "Time-Lagged Backdoor Pathway Principle".

More importantly, The standard Backdoor Criterion only handle confounders and it is mainly used in
non-temporal data. Our Time-Lagged Backdoor Pathway Principle is designed for various complex
causal structures (including colliders, mediators, and their hybrids) on time-series data.

A.10 Big-O ANALYSIS BETWEEN CIT-TBP AND PC-BASED METHODS

PC-based methods: For a pair (i, j), the PC-algorithm needs to enumerate all possible conditional

set sizes s = 0, 1, . . . , dmax, and select
(

dmax

s

)
subsets from the neighbor set for conditional

independence tests, where dmax represents the maximum number of neighbors (degree). If the

number of node is p, the worst case for CIT is: TCITPC
=

∑
i<j

∑dmax

s=0

(
dmax

s

)
= O(p22dmax).

For HSIC tests, if the sample size is n, O(n2) is usually required, so the overall time complexity is:
TPC = O(p22dmaxn2).

CIT-TBP: For adjacency relationship (i, j), only two HSIC tests are performed. If the number of
edges is E, the time complexity is: TCIT ≈ 2En2 = O(En2). In the second stage, we assume
the number of edges that pass the screening is Ep, and calculate CTE twice for each edge, with B
bootstrap times, for total of 2(1+B). The complexity of each CTE calculation is about O(n log n),
and the time complexity is TCTE = O(Ep(1 + B)n log n). The overall complexity is: Ttotal =
O(En2 + Ep(1 +B)n log n).

In comparison, the time complexity of CIT-TBP is obviously lower.

B PROOFS

B.1 PROOF OF THE RATIONALITY OF CONDITIONING SETS SELECTION

Proof. For time-series data with time-lagged causality, the conditioning sets Xt−τ
i∗ are at the t − τ

time-slice, while the treatment variables Xt
i and outcome variables Xt

j are at the t time-slice. The
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set of variables can be divided into three categories, a) variables that are not related to Xt−τ
i , b)

variables that are affected by Xt−2τ
i , c) and variables that affect Xt−τ

i at time-slice t − 2τ . For
variables that are not related to Xt−τ

i , we do not need to consider them. For variables Xt−τ
k in b),

they may lead to Mediators at time t if Xk → Xj , and if Xk ̸→ Xj , the conditioning sets do not
introduce additional backdoor pathways at time-slice t. The proof of variables in case c) is similar.
Therefore, the variables associated with Xt−τ

i are chosen as the conditioning sets.

B.2 PROOF OF THE EXCLUSION OF LATENT FACTORS

Proof. We assume that Xi doesn’t cause Xj , but there is a latent factor U which affects both Xi

and Xj . When we calculate the conditional independence test on Xt−τ
i and Xt

j , the result will be
significant. Actually, there is no directed edge from Xt−τ

i to Xt
j and only the backdoor pathway

Xt−τ
i ← U → Xt

j contributes to the spurious association. In this case, if△CTEXi→Xj |Xt−τ
i∗

is not

significantly greater than zero, that means there are no information transfers from Xt−τ
i to Xt

j , then
the edge from Xt−τ

i → Xt
j can be inferred as a mistake. A detailed mathematical proof is shown

below.

We calculate the conditional transfer entropy on Xt−τ
i and Xt

j , and we use Xt−τ
z to represent the

condition variables Xt−τ
i∗ . The formula is like:

△ CTEXt−τ
i →Xt

j |X
t−τ
z

= CTEXt−τ
i →Y t

j |Xt−τ
z
− CTEY t

j →Xt−τ
i |Xt−τ

z

= H(Xt
j | Xt−∆w

j , Xt−∆w
z )−H(Xt

j | Xt−∆w
j , Xt−∆w

z , Xt−∆τ
i )

−H(Xt−τ
i | Xt−∆τ

i , Xt−∆w
z ) +H(Xt−τ

i | Xt−∆τ
i , Xt−∆w

z , Xt−∆w
j )

(9)

When there is a causal relationship between Xt−τ
i and Xt

j , we can get,

H(Xt
j | Xt−∆w

j , Xt−∆w
z )−H(Xt

j | Xt−∆w
j , Xt−∆w

z , Xt−∆τ
i ) > 0 (10)

At the same time, it can be known based on established knowledge that, Xt−∆w
j ̸→ Xt−∆τ

i , so we
conclude that,

H(Xt−τ
i | Xt−∆τ

i , Xt−∆w
z ) = H(Xt−τ

i | Xt−∆τ
i , Xt−∆w

z , Xt−∆w
j ) (11)

Combining Equation (11) and Equation (12), it is easily to know that the formula in Equation (10)
should be significantly greater than 0.

On the other hand, if there is no causal relationship between them, The spurious correlation caused
by common factors lacks directionality-it injects the same amount of information into both se-
quences simultaneously. Therefore, when measured by mutual information, the amount of infor-
mation flowing from Xi to Xj is equal to that from Xj to Xi, and the difference cancels out. Under
rigorous statistical tests, the bidirectional CTE is not significantly greater than zero, that is to say,

H(Xt
j | Xt−∆w

j , Xt−∆w
z )−H(Xt

j | Xt−∆w
j , Xt−∆w

z , Xt−∆τ
i )

≈ H(Xt−τ
i | Xt−∆τ

i , Xt−∆w
z )−H(Xt−τ

i | Xt−∆τ
i , Xt−∆w

z , Xt−∆w
j )

(12)

Thus, we can conclude that under this circumstance, Equation (10) equals to 0.

A zero difference in conditional transfer entropy is a sufficient but not necessary condition for the
presence of a common latent factor. However, using this condition as a constraint for pruning a pre-
liminary causal graph can significantly reduce confounding caused by latent factors. Consequently,
our method relaxes the assumption of causal sufficiency (Pearl, 2009b).
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C CIT-TBP ALGORITHM AND DETAILED EXPERIMENTAL SETUP

C.1 PSEUDO-CODE OF OUR CIT-TBP

Using Definitions 1 and 2, Assumptions 1, 2 and 3, we propose CIT-TBP, a novel algorithm using
time-lagged causal backdoor pathways to infer causality in different complex confounding structures
without the constraints on latent variables. The pseudo-code of CIT-TBP is shown in Algorithm 2.

Algorithm 2: Our CIT-TBP Algorithm

1 Input: Time-series data X = {X0, · · · , Xt} with time-lags causation; Vertex Set V with n
nodes.

2 Output: One adjacency matrix A.
3 Components: HSIC(·); CTE(·).
4 for i=1 to n do
5 Set the conditioning set as Xt−τ

i∗ = {Xt−τ
k | Xt−τ

k ⊥̸⊥ Xt−τ
i , k ̸= i}

6 for j=1 to n do
7 if Xi = Xj , then
8 pi,j = HSIC(Xt−τ

i , Xt
j | X

t−τ
i∗ )

9 ai,j = I(pi,j ≤ α)
10 elif Xi ̸= Xj , then
11 pi,j = HSIC(Xt−τ

i , Xt
j | X

t−τ
i∗ )

12 △CTEXi→Xj |Xt−τ
i∗

= CTEXt−τ
i →Xt

j |X
t−τ
i∗
− CTEXt

j→Xt−τ
i |Xt−τ

i∗

13 ai,j = I(pi,j ≤ α & ∆CTEi,j > 0)
14 end for
15 end for
16 We obtain P = {pi,j}n×n and A = {ai,j}n×n.

C.2 HARDWARE AND SOFTWARE USED

Hardware used: Ubuntu 22.04.4 LTS with 2 Œ Intel(R) Xeon(R) Platinum 8336C CPU @ 2.30GHz
(64 cores, 32 cores per socket, 1 thread per core), 251 GB RAM.

Software used: Python 3.8, scikit-learn 1.3.2, networkx 3.1, numpy 1.23.5.

C.3 SYNTHETIC DATA EXPERIMENTS SETUP

Experiments on Different Noise. To test the robustness of our CIT-TBP, we use synthetic data with
different types of noise. The settings are:

Gaussian Noise : X0 ∼ N (0, 1), ϵt ∼ N (0, 0.4) (13)

Laplace Noise : X0 ∼ N (0, 1), ϵt ∼ Laplace(0,

√
2

5
) (14)

Uniform Noise : X0 ∼ N (0, 1), ϵt ∼ U(−2
√
3

5
,
2
√
3

5
) (15)

Experiments on Latent Factors. In these experiments, we constructed the causal graph manually.
The causal graph is displayed in Figure 2. The causal graph consists of 12 nodes, from X0 to X11.
In the data input phase, we hide X0, X1, X2and X3 as latent variables. In this case, the true causal
graph changes, and no directed edge is preserved. However, the latent variables may lead to spurious
associations. For example, X4 → X5 because of X1 (Confounder). In the latent factors exclusion
experiment, our goal is to ignore these spurious correlations and find the true causal relationships.
We use SHD and ES to evaluate the performance of the methods. ES is incremented by 1 per
spurious correlation-induced edge. The results are shown in Table 3. Besides, we also conducted
experiments on more complex cases. Those results are shown in Appendix D.3.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

C.4 REAL-WORLD DATA EXPERIMENTS SETUP

CausalTime (Cheng et al., 2024b) is a novel pipeline to generate realistic time series with ground
truth causal graphs. In our experiments, we use 3 types of benchmark time-series from weather,
traffic, and healthcare scenarios generated from the pipeline. Each dataset contains two files,
gen_data.npy and graph.npy. Each dataset has 480 samples. We inferred causal graphs for all
480 samples, compared them with the true graph in graph.npy. The mean and the standard devia-
tion of error were reported. (See Table 4).

C.5 EXPERIMENT DETAILS

Discussion on the Evaluation Metrics. To test the performance of our CIT-TBP, we compute
the Structural Hamming Distance (SHD) between the predicted graphs and the true graphs, which
measures the differences in terms of node, edge, and connection count in two graphs. The accuracy
of the identified edges can also be evaluated by F1-Score between two graphs. In real scenarios, the
downstream task of causal discovery is often interventions. If no causal edge is found, the worst
case is no intervention, which will not affect the current states. If the wrong edge is inferred, it
may lead to wrong intervention, which may bring worse effects and potential ethical issues. For
example, in clinical medicine, if the effect of the drug on the patient is not found, it will not lead
to worse results. If the causal edge is misjudged, such as using the wrong drug for intervention, it
may cause the patient’s condition to worsen. Therefore, we introduce an additional metric FDR to
measure how many of the edges identified are false. However, it doesn’t mean that we can remove a
edge more easily when we use this indicator. FDR is just another perspective on understanding the
effectiveness of algorithms, if focusing only on SHD and F1-score, our method still performs good.

Implementation Details. In experiments with synthetic data, algorithms without guaranteed unique
topological ordering were executed 10 times with averaged results. For the fairness of the experi-
ments comparison, we have already blacklisted the anti-causal edges derived from those algorithms
that are not designed to work on time series data.

D SUPPLEMENTARY EXPERIMENTS

D.1 EXPERIMENTS ON DIFFERENT CAUSAL STRUCTURES

In the experiments, we constructed causal structures of different interactions, including: i) con-
founders, ii) Colliders, iii) Mediators, iv) Hybrids. The causal graphs are shown in Figure 3.

In addition to the two structural equations mentioned in the main text, we have also constructed
another set of structural equations, consisting of one linear equation and one non-linear equation.
The structural equations are as follows:

Xt
j =

1

2
×Xt−τ

j +
∑

Xt−τ
i ∈Pa(Xt

j)\X
t−τ
j

(
2

5
×Xt−τ

i ) + ϵtj , (16)

Xt
j = sin(Xt−τ

j ) +
∑

Xt−τ
i ∈Pa(Xt

j)\X
t−τ
j

[
1

5
× sin(Xt−τ

i )] + ϵtj ,

X0 ∼ N (0, 1), ϵt ∼ N (0, 0.4), (17)

Results of the experiments on additional structural equations are presented in Table 5.

As the results shown in Table 5, our CIT-TBP achieves excellent performance in both linear and
non-linear cases. Combined with the previous results in Table 1, we can deduce that our method is
applicable to a wide range of different linear and nonlinear scenarios.

D.2 EXPERIMENTS ON DIFFERENT NUMBERS OF NODES AND EDGES

To verify the scalability of our algorithm, CIT-TBP, we fixed the number of nodes to 10 and varied
the probability of generating edges between every two nodes, set p=0.1, 0.3, and 0.5. The results
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Figure 3: Causal graphs of different cases
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Table 5: Results on different causal structures. (Additional equations.)

(a) Linear results.

Case1 Case2 Case3 Case4

Algorithm SHD F1 FDR SHD F1 FDR SHD F1 FDR SHD F1 FDR
(↓) (↑) (↓) (↓) (↑) (↓) (↓) (↑) (↓) (↓) (↑) (↓)

GSP 11.0 0.652 0.423 9.0 0.667 0.350 11.0 0.625 0.423 25.0 0.444 0.636
CUTS+ 5.0 0.851 0.259 8.0 0.762 0.304 12.0 0.772 0.371 20.0 0.458 0.593
GC 29.0 0.541 0.630 16.0 0.667 0.469 27.0 0.603 0.569 34.0 0.358 0.739
GOLEM 8.0 0.833 0.286 11.0 0.681 0.429 4.0 0.880 0.214 20.0 0.449 0.607
RHINO 8.0 0.833 0.286 12.0 0.708 0.414 13.0 0.772 0.371 26.0 0.436 0.647
DAGMA 8.0 0.800 0.200 8.0 0.769 0.250 8.0 0.810 0.150 20.0 0.488 0.500
SCORE 2.0 0.900 0.100 9.0 0.769 0.250 7.1 0.810 0.150 20.0 0.488 0.500
PO-LINGAM 10.0 0.737 0.222 11.0 0.667 0.350 6.0 0.857 0.100 15.0 0.585 0.400
LPCMCI+ 3.0 0.930 0.130 9.0 0.762 0.304 0.0 1.000 0.000 17.0 0.558 0.455
Ours 2.0 0.952 0.091 8.0 0.769 0.250 4.0 0.909 0.100 17.0 0.558 0.455

(b) Non-linear results.

Case1 Case2 Case3 Case4

Algorithm SHD F1 FDR SHD F1 FDR SHD F1 FDR SHD F1 FDR
(↓) (↑) (↓) (↓) (↑) (↓) (↓) (↑) (↓) (↓) (↑) (↓)

GSP 18.0 0.593 0.529 14.0 0.694 0.433 21.0 0.542 0.568 29.0 0.436 0.647
CUTS+ 14.0 0.702 0.460 11.0 0.708 0.414 14.0 0.746 0.405 21.0 0.453 0.625
GC 21.0 0.588 0.583 15.0 0.667 0.448 30.0 0.564 0.607 28.0 0.441 0.658
GOLEM 8.0 0.833 0.286 12.0 0.681 0.429 8.0 0.800 0.286 18.0 0.571 0.500
RHINO 8.0 0.833 0.286 8.0 0.773 0.320 5.0 0.898 0.185 17.0 0.511 0.538
DAGMA 7.0 0.762 0.273 7.0 0.757 0.222 10.0 0.667 0.385 17.0 0.537 0.450
SCORE 11.4 0.708 0.393 13.2 0.636 0.440 13.7 0.654 0.433 23.0 0.500 0.581
PO-LINGAM 13.0 0.682 0.375 10.0 0.700 0.333 14.0 0.651 0.333 18.0 0.524 0.476
LPCMCI+ 6.0 0.870 0.231 14.0 0.681 0.429 4.0 0.917 0.154 22.0 0.478 0.560
Ours 7.0 0.800 0.067 8.0 0.706 0.200 7.0 0.811 0.000 16.0 0.541 0.375

Bold indicates the best performance, underline indicates the second-best.
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are shown in Table 6, respectively. From the results, we can know our method performs the best on
average across the number of nodes and sparsity, but there is still some room for improvement in
performance on large and dense graphs.

Table 6: Results on different graph densities.

(a) Linear causality

p = 0.1 p = 0.3 p = 0.5

Algorithm SHD F1 FDR SHD F1 FDR SHD F1 FDR
(↓) (↑) (↓) (↓) (↑) (↓) (↓) (↑) (↓)

GSP 9.0 0.710 0.313 22.0 0.560 0.440 28.0 0.484 0.464
CUTS+ 12.0 0.571 0.333 26.0 0.481 0.480 24.0 0.630 0.324
GC 6.0 0.750 0.294 25.0 0.542 0.529 27.0 0.652 0.473
GOLEM 12.0 0.647 0.421 26.0 0.491 0.536 24.0 0.548 0.393
RHINO 6.0 0.727 0.333 22.0 0.489 0.560 23.0 0.571 0.529
DAGMA 8.0 0.733 0.267 24.0 0.444 0.500 26.0 0.444 0.400
SCORE 8.0 0.733 0.267 26.4 0.440 0.560 27.7 0.522 0.486
PO-LINGAM 9.0 0.710 0.313 19.0 0.558 0.333 21.0 0.618 0.190
LPCMCI+ 12.0 0.595 0.500 25.0 0.480 0.520 24.0 0.609 0.400
Ours 6.0 0.786 0.154 18.0 0.524 0.353 20.0 0.630 0.150

(b) Non-linear causality

p = 0.1 p = 0.3 p = 0.5

Algorithm SHD F1 FDR SHD F1 FDR SHD F1 FDR
(↓) (↑) (↓) (↓) (↑) (↓) (↓) (↑) (↓)

GSP 12.0 0.667 0.429 28.0 0.523 0.575 31.0 0.453 0.585
CUTS+ 5.0 0.737 0.417 15.0 0.571 0.600 24.0 0.455 0.706
GC 13.0 0.600 0.520 33.0 0.450 0.673 34.0 0.581 0.590
GOLEM 12.0 0.647 0.421 28.0 0.453 0.571 23.0 0.581 0.357
RHINO 5.0 0.737 0.417 15.0 0.571 0.600 24.0 0.455 0.706
DAGMA 10.0 0.688 0.353 27.0 0.453 0.571 22.0 0.667 0.313
SCORE 11.2 0.667 0.389 27.0 0.464 0.581 29.4 0.493 0.514
PO-LINGAM 8.0 0.750 0.294 25.0 0.490 0.500 26.0 0.517 0.375
LPCMCI+ 8.0 0.750 0.294 25.0 0.480 0.520 25.0 0.606 0.375
Ours 8.0 0.714 0.231 15.0 0.579 0.154 22.0 0.549 0.176

Bold indicates the best performance, underline indicates the second-best.

Then we set the probability of generating edges to p=0.1, and gradually increased the number of
nodes N in the causal graphs. Specifically, we tested the causal discovery performance on graphs
with 5, 10, 20, 30, and 50 nodes. The results are shown in Table 7 and Table 9.

In addition, we calculated the average ranking of the performance of these metrics in terms of the
number of nodes, and subsequently calculated the overall average ranking of several metrics under
each method. The results are shown in Table 8 and Table 10.

D.3 EXPERIMENTS ON LATENT FACTOR EXCLUSION

We consider three cases in the experiments (Jin et al., 2024; Kaltenpoth & Vreeken, 2023): Case A)
latent root nodes, Case B) latent mediators between measured variables, and Case C) complex latent
structures in the general case. In the main text, we showed the causal graphs and results in Case A.
Here we showed the causal graphs and experiment results of Case B and Case C.

The causal graphs for Case B are shown in Figure (4a), and Case C are shown in Figure (4b). We
conducted our experiments on both linear and non-linear structural equations and evaluated the
performance through SHD and ES. Experimental results in Table 11 and Table 12 show that our
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Table 7: Performance comparison of different methods at varying node scales (Linear)

(a) N = 5

Method SHD (↓) F1 (↑) FDR (↓)

CUTS+ 0.0 1.000 0.000
RHINO 4.0 0.778 0.000
DAGMA 1.0 0.933 0.000
SCORE 2.0 0.750 0.250
PO-LINGAM 2.0 0.875 0.125

Ours 3.0 0.769 0.000

(b) N = 10

Method SHD (↓) F1 (↑) FDR (↓)

CUTS+ 5.0 0.762 0.333
RHINO 12.0 0.533 0.333
DAGMA 8.0 0.733 0.267
SCORE 8.0 0.733 0.267
PO-LINGAM 9.0 0.710 0.313

Ours 6.0 0.786 0.154

(c) N = 20

Method SHD (↓) F1 (↑) FDR (↓)

CUTS+ 18.0 0.667 0.500
RHINO 45.0 0.505 0.333
DAGMA 44.0 0.500 0.551
SCORE 37.1 0.537 0.488
PO-LINGAM 33.0 0.560 0.417

Ours 24.0 0.667 0.273

(d) N = 30

Method SHD (↓) F1 (↑) FDR (↓)

CUTS+ 185.0 0.297 0.427
RHINO 199.0 0.295 0.366
DAGMA 128.0 0.313 0.730
SCORE 116.6 0.346 0.686
PO-LINGAM 68.0 0.521 0.373

Ours 83.0 0.440 0.507

(e) N = 50

Method SHD (↓) F1 (↑) FDR (↓)

CUTS+ 427.0 0.237 0.570
RHINO 391.0 0.239 0.618
DAGMA 353.0 0.255 0.793
SCORE 295.2 0.295 0.739
PO-LINGAM 180.0 0.384 0.472

Ours 173.0 0.370 0.433

Bold indicates the best performance, underline indicates the second-best.

Table 8: Performance rankings of different methods. (Linear)

Method SHD Rank F1 Rank FDR Rank Avg. Rank

Ours 1 1 1 1
PO-LINGAM 2 2 3 2
CUTS+ 2 3 4 3
SCORE 4 4 5 4
DAGMA 5 4 6 5
RHINO 6 6 2 6

algorithm performs best in different scenarios, which also further illustrates the effectiveness of our
algorithm in eliminating the influence of latent factors.

E THE USE OF LARGE LANGUAGE MODELS (LLMS)

The authors used a large language model (LLM) solely for writing assistance, including text polish-
ing and formatting. The LLM did not contribute to the research methodology, analysis, or scientific
conclusions.
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(a) Case B
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(b) Case C

Figure 4: Green dashed nodes: latent factors. Blue solid nodes: observed variables. (a) Causal
graphs for Case B. The left section represents the true underlying causal mechanisms, including un-
measured confounding. The right section depicts the observable variables and their relationships as
available in the data. (b) Causal graphs for Case C. The upper section represents the true underlying
causal mechanisms, including unmeasured confounding. The lower section depicts the observable
variables and their relationships as available in the data.
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Table 9: Performance comparison of different methods at varying node scales (Non-linear)

(a) N = 5

Method SHD (↓) F1 (↑) FDR (↓)

CUTS+ 2.0 0.857 0.143
RHINO 6.0 0.600 0.143
DAGMA 6.0 0.588 0.444
SCORE 4.3 0.667 0.400
PO-LINGAM 1.0 0.941 0.111

Ours 2.0 0.857 0.000

(b) N = 10

Method SHD (↓) F1 (↑) FDR (↓)

CUTS+ 13.0 0.514 0.250
RHINO 17.0 0.512 0.083
DAGMA 12.0 0.625 0.412
SCORE 13.0 0.629 0.450
PO-LINGAM 8.0 0.750 0.294

Ours 8.0 0.714 0.231

(c) N = 20

Method SHD (↓) F1 (↑) FDR (↓)

CUTS+ 107.0 0.260 0.306
RHINO 51.0 0.418 0.472
DAGMA 35.0 0.539 0.462
SCORE 58.0 0.444 0.652
PO-LINGAM 39.0 0.519 0.500

Ours 25.0 0.606 0.259

(d) N = 30

Method SHD (↓) F1 (↑) FDR (↓)

CUTS+ 260.0 0.247 0.341
RHINO 197.0 0.288 0.451
DAGMA 73.0 0.490 0.417
SCORE 140.7 0.321 0.741
PO-LINGAM 86.0 0.449 0.521

Ours 70.0 0.471 0.396

(e) N = 50

Method SHD (↓) F1 (↑) FDR (↓)

CUTS+ 175.0 0.367 0.720
RHINO 271.0 0.303 0.661
DAGMA 166.0 0.384 0.388
SCORE 386.5 0.232 0.821
PO-LINGAM 198.0 0.384 0.547

Ours 224.0 0.332 0.644

Bold indicates the best performance, underline indicates the second-best.

Table 10: Performance rankings of different methods. (Non-linear)

Method SHD Rank F1 Rank FDR Rank Avg Rank

Ours 1 2 1 1
PO-LINGAM 2 1 4 2
DAGMA 3 3 4 3
CUTS+ 4 5 2 4
RHINO 6 6 3 5
SCORE 5 4 6 6

Table 11: The results on latent factor exclusion. (Case B)

Linear Non-linear
Methods SHD (↓) Error-Score (↓) SHD (↓) Error-Score (↓)
FCI 1.0 0.0 1.0 0.0
LPCMCI+ 5.0 4.0 8.0 7.0
PO-LINGAM 4.0 4.0 4.0 3.0
Ours 1.0 0.0 0.0 0.0

Bold indicates the best performance.
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Table 12: The results on latent factor exclusion. (Case C)

Linear Non-linear
Methods SHD (↓) Error-Score (↓) SHD (↓) Error-Score (↓)
FCI 23.0 16.0 77.0 72.0
LPCMCI+ 34.0 28.0 71.0 65.0
PO-LINGAM 28.0 18.0 34.0 25.0
Ours 13.0 4.0 32.0 25.0

Bold indicates the best performance.
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