

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MITIGATING CONFOUNDING EFFECTS IN CAUSAL DIS- COVERY VIA TIME-LAGGED BACKDOOR PATHWAYS

Anonymous authors

Paper under double-blind review

ABSTRACT

Mitigating confounding effects is one of the fundamental challenges in causal discovery. This difficulty is amplified in more complex causal structures: where interactions involve colliders, mediators, and their hybrids, methods tailored for handling confounders may incur substantial errors, especially in the presence of latent factors. In this paper, we propose a novel causality discovery algorithm of Conditional Independence Test on Time-Lagged Backdoor Pathways (**CIT-TBP**). This approach intelligently leverages backdoor pathways induced by time-lagged causation to indirectly infer causal relationships, effectively eliminating the influence of various forms of complex interactions. Furthermore, by incorporating causal information flow, our method significantly reduces the impact of latent variables. We theoretically prove the rationality and effectiveness of the algorithm and experimentally validate it on several synthetic and real datasets. The experiment results demonstrate the superiority of our CIT-TBP against state-of-the-art methods. Compared with contemporary optimization-based methods, our causal discovery framework does not involve any black-box optimization process, and thus the causality derived are more direct and have a wide range of potential applications. The code is available at <https://anonymous.4open.science/r/CIT-TBP-F0E8>.

1 INTRODUCTION

Causal discovery (Bareinboim & Pearl, 2016; Arif & MacNeil, 2023) aims to uncover the underlying causal relationships from observational data, providing a foundation for reliable decision-making across diverse fields such as healthcare (Shi et al., 2019), economics (Pearl, 2009a), and social sciences (Sugihara et al., 2012; Arif & MacNeil, 2023). A central difficulty in causal discovery is addressing confounding variables that jointly affect treatment and outcome. The difficulty becomes even more pronounced when causal relationships exhibit time delays (Ye et al., 2015). For instance, in clinical medicine, there are temporal lags between medication administration and pathological indicator changes. Focusing solely on contemporaneous relationships between drug levels and pathological metrics may lead to erroneous conclusions. Therefore, mitigating confounding effects in the presence of time-delayed causal relationships remains a critical challenge.

Most existing methods are able to mitigate confounding effects in relatively simple time-series settings. However, their effectiveness deteriorates in more complex causal structures, where interactions involve colliders, mediators, and their hybrids (see Figure (1b) and Figure (1c)), and the presence of latent factors further exacerbates the problem. Constraint-based methods, such as PC-based algorithms, their temporal variant PCMCI (Gerhardus & Runge, 2020), and the latent-factor variant FCI (Entner & Hoyer, 2010; Malinsky & Spirtes, 2018), typically rely on the standard backdoor criterion to uncover causal structures. However, they often face challenges related to Markov equivalence classes, which make it hard to distinguish between confounders and mediators; that is to say, they prevent unique identification of complete directed acyclic graphs (DAGs). Time-series-based algorithms, such as Granger Causality (GC) (Barnett & Seth, 2014) and Rhino (Gong et al., 2023), often rely on assumptions about no latent factors and struggle to account for mediators, making it difficult to distinguish direct causal effects from indirect ones. Optimization-based approaches (Rolland et al., 2022; Bello et al., 2022; Gong et al., 2023) constrain the construction of causal graphs based on fundamental assumptions and inference rules. These methods typically target specific structural patterns guided by deep domain knowledge, rather than providing a comprehensive

treatment of causal architectures (Pearl, 2009a; Kampa & Castanas, 2008; Hartford et al., 2017). Moreover, temporal delays in causation frequently lead to erroneous inferences in such approaches (Castro et al., 2023; Biswas et al., 2023).

To address these challenges, we propose a novel two-stage causal discovery method (**CIT-TBP**) featuring an innovative time-lagged causal backdoor pathway concept. In the first stage, unlike traditional Backdoor Criterion (Pearl, 2009a; Xu et al., 2024) limited to contemporaneous data and vulnerable to V-structures (Geng et al., 2005), our temporal approach fully exploits backdoor pathways induced by time-lagged causal relationships; By effectively blocking time-lagged backdoor pathways that are unrelated to causality, we successfully achieve causal discovery across diverse causal interactions. Then in the second stage, we introduce the principle of causal information flow, which determines the existence of potential factors by the difference in entropy value. Theoretical proofs demonstrate our algorithm’s effectiveness in eliminating common causes, chain structures, and colliders, even in the presence of latent factors. Without black-box pruning or optimization steps, it achieves more transparent and extensible causal relationships. Our contributions are three-fold:

- a.) We develop a general causal discovery framework based on conditional independence tests, which introduces time-lagged backdoor pathways to eliminate the influence of confounding effects in different causal structures, including confounders, mediators, colliders, and more complex hybrids—thereby significantly improving the accuracy of causal structure learning.
- b.) Combining statistical associations with causal information flow principles, our approach can infer causal graphs under latent confounders. Distinct from most of the optimization-based methods, our algorithm maintains full transparency without black-box operations.
- c.) We evaluate the effectiveness of the algorithm through simulated linear and non-linear datasets and real-world data. We also validate the algorithm’s effectiveness in mitigating the influence of latent factors. Results demonstrate the superiority of our CIT-TBP over baselines in both linear and nonlinear scenarios.

1.1 RELATED WORK

A fundamental way to discover causality is through interventions (Tigas et al., 2022; Zhang et al., 2023; Liu et al., 2023; Pearl, 2009a; Eichler, 2013). However, causality with interventions is costly and intrusive, which is often impractical, especially in cases with time lags. Topology-based sorting approaches (Wu et al., 2024; Rolland et al., 2022; Sanchez et al., 2023) utilize data log-likelihood for iterative node identification, but they may produce non-unique causal orderings and remain vulnerable to confounders. Score-based methods (Tsamardinos et al., 2006; Zhu & Chen, 2019), which optimize causal structures through acyclicity constraints and data fitting, also struggle with confounding factors, lack model interpretability, and perform poorly in the presence of time lags. GC-based methods (Sugihara et al., 2012; Gong et al., 2023), commonly used for time-series data, are highly susceptible to latent factors and struggle to fully eliminate the influence of confounding variables. Other time-series causal discovery algorithms, such as Cuts+ (Cheng et al., 2024a), are sensitive to noise and also rely on the assumption of no latent factors. Although methods (Entner & Hoyer, 2010; Malinsky & Spirtes, 2018; Jin et al., 2024) have been developed to mitigate the effects of latent factors, they often rely on strong assumptions about the underlying causal structures and can yield graphs with undirected edges. Constraint-based methods (Xu et al., 2024; Runge et al., 2019; Gerhardus & Runge, 2020) are hindered by Markov equivalence classes, which, in the presence of different causal interactions, lead to numerous undirected edges and causal equivalence classes during causal discovery, preventing the unique identification of DAGs. Inspired by these works, in this paper, we study causal structures in data with time-lagged causality and combine the principles of conditional independence tests and information entropy for eliminating the latent factors.

2 PROBLEM SETUP

2.1 MODEL DEFINITION

Causal Discovery Model. We focus on a Structural Causal Model (SCM) which consists of two components: causal graph and structural equation. A causal directed acyclic graph \mathcal{G} consists of multiple nodes and directed edges, where each node in \mathcal{G} represents a variable and the direction of

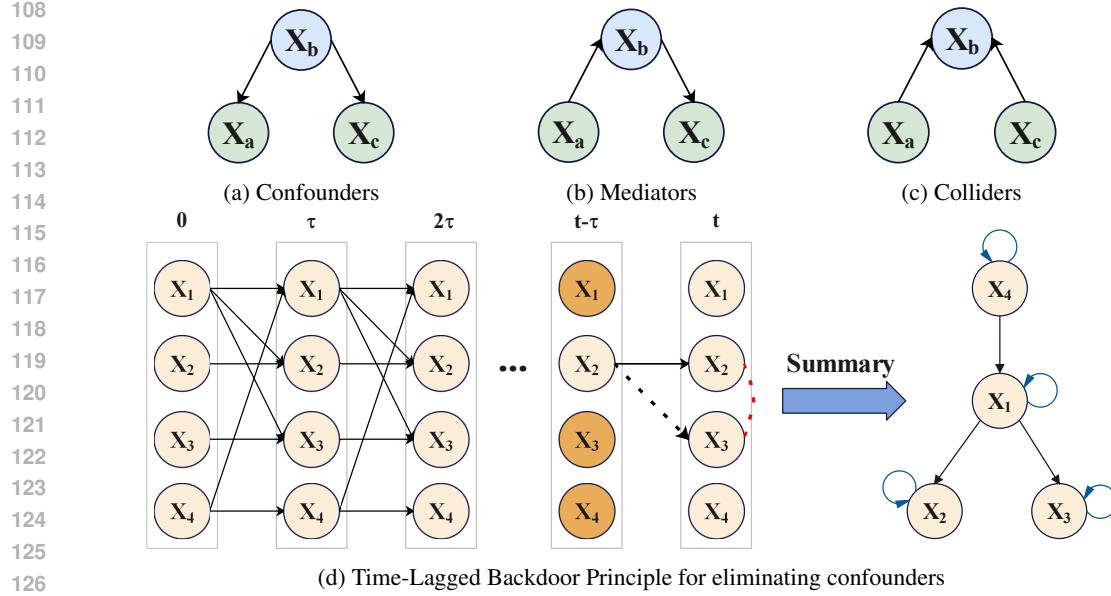


Figure 1: (a,b,c) Three basic building blocks of variable interactions. (d) An example of the Time-Lagged Backdoor Principle on confounding factors: When we try to discover whether X_2 is an ancestor of X_3 , X_1 acts as a confounding factor. There will be a spurious association between X_2^t and X_3^t (marked with a red dotted line) because of the non-causal backdoor pathway $X_2^t \leftarrow X_1^{t-\tau} \rightarrow X_3^t$. If $X_2 \rightarrow X_3$, $X_2^t \leftarrow X_2^{t-\tau} \rightarrow X_3^t$ will be a causal backdoor pathway. Therefore, when we get $X_2^t \perp\!\!\!\perp X_3^t \mid \{X_1^{t-\tau}, X_3^{t-\tau}, X_4^{t-\tau}\}$, we can conclude $X_2 \not\rightarrow X_3$. The right side displays a summary causal graph that abstracts away from the time-slice-specific causal graphs shown on the left.

the edges represents the causal direction. An n -variate time series can be denoted as $X = \{X_i^\tau\}_{n \times t}$, where $i \in \{1, 2, \dots, n\}$ and $\tau \in \{1, 2, \dots, t\}$. For example, $X_k^{t_a}$ represents the variable k at time t_a .

Definition 1 (Summary causal graph). *The summary causal graph (SCG) is a directed graph with an arrow from X_i to X_j ($i \neq j$) whenever there is a directed arrow from $X_i^{t_a}$ to $X_j^{t_b}$ for some $t_a < t_b$, and an optional arrow from X_i to itself for all $i \in \{1, \dots, n\}$, which is also called a self-loop arrow.*

Inspired by the application of acyclic SCG (Peters et al., 2013; Assaad et al., 2022a; Wu et al., 2024), in analyzing DAGs, we adopt a holistic perspective by abstracting away from time-slice-specific causal structures and characterizing the unified causal representation (see Definition 1 and Figure (1d)) across the entire temporal sequence. For clarity in the subsequent discussion, variables with a superscript t (e.g., X_i^t) denote nodes within a specific time slice, while variables without a superscript (e.g., X_i) represent their counterparts in the SCG. Our models are discussed under some constraints, including Acyclic graph, Markov property, Time-consistency, and Faithfulness.

Assumption 1 (Acyclic summary causal graph (Assaad et al., 2022b; Wu et al., 2024)). *We assume the SCG to be acyclic, only allowing for the presence of self-loops. That is, there exists no cycle involving distinct nodes in which a node can be both an ancestor and a descendant of another.*

Assumption 2 (Markov property (Wu et al., 2024)). *This property assumes that the future slice depends only on the current state but does not depend on its history. For example, if we assume $X_i \rightarrow X_j$, and the time lag is 1. At a random time-slice t , X_j^t only has direct cause from X_i^{t-1} , there can not be any edges from $X_i^{t-\tau}$ to X_j^t , where $\tau > 1$.*

We assume that there are no instantaneous effects in our model; the time delay represents the minimum interval between the occurrence of causal effects. For simplicity of notation, we will not discuss the high-order lagged effects in our current model, but some analysis on that is deferred to Appendix A.1. Also, in the main text, we focus primarily on scenarios with a uniform mini-

162 minimum time-lag τ for all causal relationships, while scenarios with heterogeneous time lags will be
 163 discussed in the Appendix A.8.

164 **Assumption 3** (Time-consistency (Assaad et al., 2022b; Wu et al., 2024)). *As discussed previously, the causal relationships between variables are said to be constant throughout time, which means that the causal graph has consistency on each time slice and the SCG \mathcal{G} .*

165 **Assumption 4** (Causal faithfulness (Pearl, 2009b)). *All conditional independencies in the observed data are implied by the causal graph via d-separation.*

170 2.2 CAUSAL INTERACTION STRUCTURES AND BACKDOOR PATHWAYS

172 **Causal Interactions.** One of the main challenges for eliminating confoundings in causal discovery
 173 is the interaction between variables, which may lead to confusion of causal effects. Three building
 174 blocks are considered to be the foundations of causal interactions: confounder, mediator and col-
 175 linder effects (see Definition 2 and Figure (1a), (1b), (1c)). These interactions may be manifested
 176 individually or intertwined at the same time, leading to more complex causal graphs.

177 **Definition 2** (Three building blocks). *Confounder effects ($A \leftarrow B \rightarrow C$): Confounder effects are also called common cause effects: $B \rightarrow A$ and $B \rightarrow C$. This structure may cause the creation of a statistical correlation between A and C even if there is no arrow between them.*

178 *Mediator effects ($A \rightarrow B \rightarrow C$): This structure emerges in the causal chain between the variable A and the variable C , with the variable B acting as a bridge. A direct arrow from A to C may be created mistakenly due to the causal chain.*

179 *Collider effects ($A \rightarrow B \leftarrow C$): This means multiple factors acting on the same variable: $A \rightarrow B$ and $C \rightarrow B$. In this case, the variable A and the variable C will not be correlated unless conditioned on B .*

180 More discussion and examples of these blocks are provided in Appendix A.2.

181 **Backdoor Pathways.** When studying the causal relationship of T to Y , we call a path l from T to
 182 Y a backdoor pathway iff l satisfies two conditions:

- 183 (a) It contains an incoming edge to T .
- 184 (b) It is not blocked (There is no collider).

185 Although the standard Backdoor Criterion (Pearl, 2009b) effectively eliminates confounders in non-
 186 time series data, it may fail when additional interactions (see Definition 2) exist. To address this, we
 187 propose an efficient algorithm that uses the backdoor pathways generated from time-lagged causa-
 188 tion to identify true causal graphs in complex structures on time-series data.

190 3 ALGORITHM

191 In section 3.1, we will first introduce the Time-Lagged Backdoor Pathway Principle and show how
 192 the backdoor pathway is generated from the variables in time lags and how causality is discovered.
 193 Then, in section 3.2, based on the Time-Lagged Backdoor Pathway Principle and causal information
 194 flow, we propose a two-stage algorithm for causality discovery with time lags, which is applicable to
 195 different types of noise. At the last part in section 3.2, how the effects of different causal interactions
 196 are excluded will be discussed in detail.

207 3.1 TIME-LAGGED BACKDOOR PATHWAY PRINCIPLE

208 **Definition 3** (Causal backdoor pathway & Non-causal backdoor pathway). *Given the time-series
 209 data $X = \{X^{t-\tau}, \dots, X^t\}$ satisfying the definitions and assumptions before, where τ is the mini-
 210 mum interval between the occurrence of causal effects, if $X_i^{t-\tau} \rightarrow X_j^t$, then $X_i^t \leftarrow X_i^{t-\tau} \rightarrow X_j^t$ is
 211 a causal backdoor pathway on X_i^t and X_j^t since the backdoor pathway contains both self-causation
 212 from $X_i^{t-\tau} \rightarrow X_i^t$ and causation from $X_i^{t-\tau} \rightarrow X_j^t$. While if $X_k^{t-\tau} \rightarrow X_i^t$ and $X_k^{t-\tau} \rightarrow X_j^t$, where
 213 k is a variable distinct from i and j , then $X_i^t \leftarrow X_k^{t-\tau} \rightarrow X_j^t$ is a non-causal backdoor pathway on
 214 X_i^t and X_j^t , which will lead to a confounding.*

216 **Theorem 1** (Time-Lagged Backdoor Pathway Principle for CIT). *For variables X_i and X_j in time-
217 series data X , we can conclude that $X_i^{t-\tau}$ is an ancestor of X_j^t iff $X_i^t \not\perp\!\!\!\perp X_j^t \mid \mathbf{C}_{X_i}^{t-\tau}$, where $\mathbf{C}_{X_i}^{t-\tau}$
218 is the conditioning set for X_i on time-slice $t - \tau$.*

220 *Proof.* From the definitions and the assumptions, we can infer that:

- 222 (a) There is a directed arrow from $X_i^{t-\tau}$ to X_i^t .
- 223 (b) There is no arrow between X_i^t and X_j^t .
- 224 (c) Under the Markov property, $X_i^{t_a} \not\rightarrow X_i^t$ for $t_a < t - \tau < t$.
- 225 (d) Under the acyclic assumption, $X_i^t \not\rightarrow X^{t-\tau}$.
- 226 (e) Under the Time-consistency assumption, if $X_i \rightarrow X_j$, then $X_i^{t-\tau} \rightarrow X_j^t$ for any $t \geq \tau$.

227 Based on these conditions, we can infer that the correlation between X_i^t and X_j^t is generated from
228 the backdoor pathways. Only causal backdoor pathway (see Definition 3) implies the existence of
229 a causal relationship. Hence, if we cut off all the non-causal backdoor pathways (see Definition
230 3) by controlling the $\mathbf{C}_{X_i}^{t-\tau}$, the confounding effects on X_i^t and X_j^t will be eliminated. Under this
231 circumstance, $X_i^t \perp\!\!\!\perp X_j^t \mid \mathbf{C}_{X_i}^{t-\tau}$ if $X_i^{t-\tau} \not\rightarrow X_j^t$. In turn, given the condition that $X_i^{t-\tau} \rightarrow X_j^t$,
232 then $X_i^t \not\perp\!\!\!\perp X_j^t \mid \mathbf{C}_{X_i}^{t-\tau}$. \square

233 Having Theorem 1, the main problem turns to how to find the conditioning set $\mathbf{C}_{X_i}^{t-\tau}$. Actually, all
234 variables at time $t - \tau$ except for $X_i^{t-\tau}$ and variables that are independent of $X_i^{t-\tau}$ can be selected
235 into the conditioning set (Wu et al., 2024). The proof of the reasonableness for the selection of
236 conditioning sets will be shown in Appendix B.1. We denote the conditioning set as $X_{i^*}^{t-\tau}$. Thus
237 we can reformulate our Theorem 1 using the conditioning set $X_{i^*}^{t-\tau}$.

238 **Corollary 1.** *Given the time-series data $X = \{X^{t-\tau}, \dots, X^t\}$, for variables X_i and X_j , we can
239 conclude that X_i is an ancestor of X_j iff $X_i^t \not\perp\!\!\!\perp X_j^t \mid X_{i^*}^{t-\tau}$.*

240 We can use Corollary 1 to discover causality by performing a CIT on each pair of variables. Figure
241 (1d) shows an example for the calculation process. The differences between the corollary and the
242 traditional CIT will be analyzed in Appendix A.3. Additionally, a more detailed discussion of the
243 comparison between Time-Lagged Backdoor Pathway Principle and the standard Backdoor Crite-
244 rion is provided in the Appendix A.9. If there are enough data for interventions, we can extend our
245 method to intervention situations (see Appendix A.4).

251 3.2 CIT-TBP ALGORITHM

253 3.2.1 TIME-LAGGED BACKDOOR PATHWAY PRINCIPLE FOR PRELIMINARY CAUSAL 254 DISCOVERY

255 Based on the Time-Lagged Backdoor Pathway Principle in Corollary 1, we can discover the
256 time-lagged causal relationships by conducting CITs on given variables. For a given dataset
257 $X = \{X_1, \dots, X_n\}$, we apply Hilbert-Schmidt Independence Criterion (HSIC) test (Zhang et al.,
258 2012) with Gaussian kernel on $X_i^{t-\tau}$ and X_j^t , and then calculate the conditional independence
259 significance p -value. If the p -value is less than or equal to the threshold, X_i is regarded as an ancestor
260 of X_j , which means $X_i^{t-\tau} \not\perp\!\!\!\perp X_j^t \mid X_{i^*}^{t-\tau}$. Thus we can obtain the adjacency matrix which implies
261 the causal graph via

$$262 \quad P = \begin{bmatrix} p_{1,1} & p_{1,2} & \cdots & p_{1,n} \\ p_{2,1} & p_{2,2} & \cdots & p_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n,1} & p_{n,2} & \cdots & p_{n,n} \end{bmatrix}, \quad (1)$$

263 where $p_{i,j} = HSIC(X_i^{t-\tau}, X_j^t \mid X_{i^*}^{t-\tau})$. τ is the minimum time lag between the occurrence of
264 causal effects, which depends on the granularity of the observations and can be set to any reasonable
265 positive integer. For simplicity, we set τ to 1 as the default. For each $p_{i,j}$ in P , if the value is less
266 than threshold α , the result is considered significant and the value of the corresponding position of

270 the adjacency matrix will be set to 1, which means there is a directed edge from node i to node j
 271 in the causal graph. While values of other positions in the adjacency matrix will be set to 0. α is
 272 typically set to 0.05, 0.01, or 0.001 in statistical hypothesis testing. In this work, we set $\alpha = 0.05$ in
 273 the main experiments. More discussion on the settings of hyperparameters is in Appendix A.5.
 274

275 3.2.2 INFORMATION ENTROPY FOR LATENT FACTOR EXCLUSION

277 The results of CITs may be affected by some latent variables (Chen et al., 2024; Kivva et al., 2021).
 278 In this paper, we incorporate the concept of information entropy (Lozano-Durán & Arranz, 2022)
 279 to impose stronger constraints, thus excluding the influence of possible latent factors. Specifically,
 280 we calculate the conditional transfer entropy (CTE) between variables on different time slices and
 281 determine whether there are additional backdoor pathways in the independence test process based
 282 on the change in entropy value, so as to exclude the effects from the latent variables.
 283

284 If $X_i \rightarrow X_j$, the transfer entropy (TE) (Vicente et al., 2011; Montalto et al., 2014) from X_i to
 285 X_j will be significantly larger than zero. Similarly, to avoid the effects of latent factors, here we
 286 introduce ΔCTE . If X_i and X_j represent two stochastic processes, the equation for ΔCTE can
 287 be expressed as:

$$288 \Delta CTE_{X_i \rightarrow X_j | X_{i^*}^{t-\tau}} = CTE_{X_i^{t-\tau} \rightarrow X_j^t | X_{i^*}^{t-\tau}} - CTE_{X_j^t \rightarrow X_i^{t-\tau} | X_{i^*}^{t-\tau}} \quad (2)$$

289 The detailed calculation process for CTE is in Appendix A.6. For every $i, j \in \{1, 2, \dots, n\}$, we
 290 iteratively calculate ΔCTE for each pair of variables, if $\Delta CTE_{X_i \rightarrow X_j | X_{i^*}^{t-\tau}}$ is significantly greater
 291 than 0, then we can infer that there is transfer of information from X_i to X_j .
 292

Theorem 2 (CTE for the exclusion of latent factors). *Given the time-series data $X = \{X^{t-\tau}, \dots, X^t\}$ satisfying the Definitions and Assumptions before, where τ is the minimum interval between the occurrence of causal effects, for variables X_i and X_j , if $X_i \not\perp\!\!\!\perp X_j^t | X_{i^*}^{t-\tau}$ but $\Delta CTE_{X_i \rightarrow X_j | X_{i^*}^{t-\tau}}$ is not significantly greater than zero, then there is a latent factor which has effects on both X_i and X_j .*

298 Proof for Theorem 2 will be presented in Appendix B.2. More discussion on the choice of significance level and the statistical robustness will be showed in Appendix A.5. Based on Theorem 2,
 299 we prune the causal graph obtained from CITs. Then, we update the values in the adjacency matrix
 300 accordingly to obtain the new matrix A :

$$302 A = \begin{bmatrix} \mathbb{I}(p_{1,1} \leq \alpha) & \dots & \mathbb{I}(p_{1,n} \leq \alpha \ \& \ \Delta CTE_{1,n} > 0) \\ \vdots & \ddots & \vdots \\ \mathbb{I}(p_{n,1} \leq \alpha \ \& \ \Delta CTE_{n,1} > 0) & \dots & \mathbb{I}(p_{n,n} \leq \alpha) \end{bmatrix}, \quad (3)$$

306 where $\mathbb{I}(\cdot)$ is an indicator function. Since the variables have no transfer entropy to themselves, the
 307 main diagonal of the adjacency matrix is slightly different. Moreover, we discuss causal discovery
 308 in the context of other CIT and CTE cases in Appendix A.7. The detailed pseudo-code for CIT-TBP
 309 is provided in Appendix C.1.
 310

311 3.2.3 THE IDENTIFICATION OF THREE STRUCTURES.

313 Based on Theorem 1 and Theorem 2, we show here how our algorithm effectively excludes bias of
 314 three building blocks.

315 **Confounder Effects.** As shown in Figure (1a), if $X_a \leftarrow X_b \rightarrow X_c$, X_b acts as a confounder
 316 when testing the causal relationship between X_a and X_c . Through CITs on time-lagged backdoor
 317 pathways, $X_b^{t-\tau} \in (X_{a^*}^{t-\tau} \cap X_{c^*}^{t-\tau})$, thus $X_a \rightarrow X_c$ if $X_a^{t-\tau} \not\perp\!\!\!\perp X_c^t | X_{a^*}^{t-\tau}$, and vice versa.
 318

319 **Mediator Effects.** See Figure (1b). X_b is a mediator variable between X_a and X_c . $X_a^{t-\tau} \rightarrow X_b^t$
 320 and $X_b^t \rightarrow X_c^t$ connect the backdoor pathway between X_a^t and X_c^t . Similarly, if we conduct an
 321 HSIC test on X_a^t and X_c^t , the backdoor pathway will be blocked.

322 **Collider Effects.** See Figure (1c). Our treatment variables are at time-slice t , while the conditioning
 323 sets are conducted at time-slice $t-\tau$. When we conduct an HSIC test, there will be no collider effects
 324 generated at time-slice t and thus no spurious correlation.

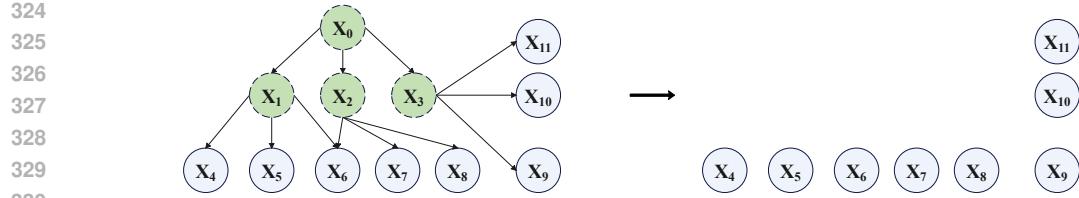


Figure 2: Causal graphs with latent factors. Green dashed nodes: latent factors. Blue solid nodes: observed variables.

Table 1: Results on different cases.

(a) Linear results.

Algorithm	Case1			Case2			Case3			Case4		
	SHD (↓)	F1 (↑)	FDR (↓)	SHD (↓)	F1 (↑)	FDR (↓)	SHD (↓)	F1 (↑)	FDR (↓)	SHD (↓)	F1 (↑)	FDR (↓)
GSP	<u>5.0</u>	0.810	0.227	9.0	0.684	0.316	10.0	0.667	0.385	<u>18.0</u>	<u>0.524</u>	0.476
GC	13.0	0.727	0.429	14.0	0.667	0.448	22.0	0.638	0.532	26.0	0.448	0.649
CUTS+	<u>5.0</u>	<u>0.869</u>	<u>0.200</u>	7.0	0.791	0.292	<u>5.0</u>	0.898	0.185	<u>18.0</u>	0.500	0.556
GOLEM	10.0	0.750	0.357	18.0	0.596	0.500	10.0	0.720	0.357	24.0	0.408	0.643
RHINO	<u>5.0</u>	<u>0.869</u>	<u>0.200</u>	8.0	<u>0.769</u>	0.250	6.0	0.880	0.214	28.0	0.441	0.658
DAGMA	6.0	0.800	<u>0.200</u>	8.0	<u>0.769</u>	0.250	8.0	0.714	0.250	<u>18.0</u>	0.488	0.500
SCORE	13.5	0.653	0.391	<u>7.3</u>	0.645	0.390	8.0	0.711	0.304	19.0	0.489	0.542
PO-LINGAM	10.0	0.737	0.222	12.0	0.632	0.368	<u>5.0</u>	0.878	<u>0.053</u>	16.0	0.550	0.421
LPCMCI+	8.0	0.833	0.286	10.0	0.732	0.318	4.0	0.917	0.154	19.0	0.512	0.500
Ours	4.0	0.872	0.105	10.0	0.703	<u>0.278</u>	4.0	<u>0.905</u>	0.050	16.0	0.550	0.421

(b) Non-linear results.

Algorithm	Case1			Case2			Case3			Case4		
	SHD (↓)	F1 (↑)	FDR (↓)	SHD (↓)	F1 (↑)	FDR (↓)	SHD (↓)	F1 (↑)	FDR (↓)	SHD (↓)	F1 (↑)	FDR (↓)
GSP	18.0	0.593	0.529	14.0	0.694	0.433	35.0	0.418	0.689	32.0	0.444	0.667
GC	21.0	0.588	0.583	15.0	0.667	0.449	38.0	0.376	0.746	33.0	0.410	0.726
CUTS+	31.0	0.414	0.684	31.0	0.386	0.711	27.0	0.456	0.629	26.0	0.464	0.629
GOLEM	20.0	0.500	0.571	19.0	0.511	0.571	22.0	0.480	0.571	20.0	0.490	0.571
RHINO	21.0	0.528	0.576	26.0	0.462	0.674	28.0	0.424	0.682	26.0	0.452	0.659
DAGMA	21.0	0.500	0.542	17.0	0.558	0.500	22.0	0.511	0.520	21.0	0.489	0.542
SCORE	13.2	0.594	0.353	13.6	0.611	0.353	16.5	<u>0.564</u>	0.353	13.4	0.629	0.214
PO-LINGAM	18.0	0.550	0.450	14.0	0.600	0.429	18.0	0.537	0.421	16.0	0.636	0.391
LPCMCI+	1.0	0.976	<u>0.047</u>	8.0	0.780	<u>0.272</u>	23.0	0.480	0.571	24.0	0.480	0.586
Ours	10.0	<u>0.667</u>	0.000	9.0	0.690	0.000	12.0	0.625	0.000	11.0	0.645	0.000

Bold indicates the best performance, underline indicates the second-best.

4 EXPERIMENTS

4.1 BASELINES AND EVALUATION.

In these experiments, we provide various kinds of causal discovery baseline methods, using their time series variants in our tasks. We test the proposed CIT-TBP to both synthetic and real-world data and compare its performance to the following baselines: time-series method, GC (Barnett & Seth, 2014), CUTS+ (Cheng et al., 2024a), RHINO (Gong et al., 2023); constraint-based methods, FCI+ (Entner & Hoyer, 2010; Malinsky & Spirtes, 2018), GSP (Solus et al., 2021), LPCMCI+ (Günther et al., 2023), PO-LINGAM (Jin et al., 2024); score-based Methods, GOLEM (Ng et al., 2020), DAGMA (Bello et al., 2022); topology-based method, SCORE (Rolland et al., 2022).

To evaluate the performance of our proposed CIT-TBP method, we employ three standard metrics: the Structural Hamming Distance (**SHD**) to measure overall structural differences, the **F1-Score** to

378 assess edge identification accuracy, and the False Discovery Rate (**FDR**) to quantify the proportion
 379 of falsely discovered edges, which is also important as false causal claims often have more serious
 380 practical consequences than missed discoveries. Discussions on the evaluation metrics and imple-
 381 mentation specifics are provided in Appendix C.5. Details of computations are in Appendix C.2.
 382

383 **4.2 EXPERIMENTS ON SYNTHETIC DATA**
 384

385 **Synthetic Data.** We tested our CIT-TBP on synthetic data generated from SCMs under Assumptions
 386 1, 2 and 3. In three-block exclusion experiments and latent factor exclusion experiments, we man-
 387 ually set up causal graphs for different cases. In other experiments, we generated causal graphs using
 388 the Erdos-Renyi model (Erdős & Rényi, 2006). In our main experiments, we generated the data with
 389 Gaussian Noise for every variable X_i^h , where variables $i = 1, 2, \dots, n$ and time $h = 1, 2, \dots, 1000$.
 390 We evaluated our algorithms on both linear and non-linear structural equations:

$$391 \quad X_j^t = \frac{3}{5} \times X_j^{t-\tau} + \sum_{X_i^{t-\tau} \in Pa(X_j^t) \setminus X_j^{t-\tau}} \left(\frac{1}{5} \times X_i^{t-\tau} \right) + \epsilon_j^t, \quad (4)$$

$$395 \quad X_j^t = \frac{5}{1 + \exp(-X_j^{t-\tau})} + \sum_{X_i^{t-\tau} \in Pa(X_j^t) \setminus X_j^{t-\tau}} \left(\frac{1}{1 + \exp(-X_i^{t-\tau})} \right) + \epsilon_j^t, \\ 396 \quad X^0 \sim \mathcal{N}(0, 1), \epsilon^t \sim \mathcal{N}(0, 0.4), \quad (5)$$

400 **Experiments Setup.** We evaluated the performance of our CIT-TBP on three building blocks (See
 401 Figure 1). Then, we varied the number of nodes and edges to see the performance on causal graphs
 402 of different sizes and different densities. For robustness tests, we generated data with different kinds
 403 of noise for experiments. In addition, we constructed causal graphs containing latent factors and
 404 tested the ability of our CIT-TBP to exclude latent factors. The details of the experiment setup are
 405 provided in Appendix C.3.

406
 407 Table 2: Robustness tests under different noise types.

408
 409 (a) Linear causality.

410 411 Algorithm	412 Gaussian			413 Laplace			414 Uniform		
	415 SHD(\downarrow)	416 F1(\uparrow)	417 FDR(\downarrow)	418 SHD(\downarrow)	419 F1(\uparrow)	420 FDR(\downarrow)	421 SHD(\downarrow)	422 F1(\uparrow)	423 FDR(\downarrow)
RHINO	8.0	0.640	0.333	8.0	0.615	0.333	8.0	0.640	0.333
DAGMA	8.0	0.733	<u>0.267</u>	8.0	0.733	<u>0.267</u>	8.0	0.733	0.267
SCORE	8.0	0.733	<u>0.267</u>	10.4	0.645	0.375	8.0	0.733	0.267
PO-LINGAM	9.0	0.710	0.313	8.0	0.710	0.313	6.0	0.800	0.200
Ours	6.0	0.786	0.154	7.0	0.759	0.214	7.0	0.759	0.214

424 (b) Non-linear causality.

425 Algorithm	426 Gaussian			427 Laplace			428 Uniform		
	429 SHD(\downarrow)	430 F1(\uparrow)	431 FDR(\downarrow)	432 SHD(\downarrow)	433 F1(\uparrow)	434 FDR(\downarrow)	435 SHD(\downarrow)	436 F1(\uparrow)	437 FDR(\downarrow)
RHINO	8.0	0.640	0.333	<u>7.0</u>	<u>0.720</u>	<u>0.250</u>	11.0	0.552	0.333
DAGMA	<u>10.0</u>	0.688	0.353	12.0	0.647	0.421	15.0	0.595	0.500
SCORE	11.2	0.667	0.389	13.4	0.629	0.450	13.3	0.588	0.474
PO-LINGAM	8.0	0.750	<u>0.294</u>	10.0	0.645	0.375	<u>9.0</u>	<u>0.710</u>	<u>0.313</u>
Ours	8.0	0.714	0.231	6.0	0.786	0.154	7.0	0.759	0.214

438 **Bold** indicates the best performance, underline indicates the second-best.

439 **Experiments on Different Structures.** We tested our CIT-TBP on three building blocks and their
 440 hybrid structure: i) confounders, ii) Colliders, iii) Mediators, iv) Hybrids. From the results in Table
 441 1, our approach shows excellent performance in most cases, especially in the hybrids. We also
 442 designed two additional functions to test our algorithm. The causal graphs of the four cases and the
 443 additional experiments are deferred to Appendix D.1.

432
433
434 Table 3: The results on latent factor exclusion.
435
436

437 Methods	438 Linear		439 Non-linear	
	440 SHD (↓)	441 Error-Score (↓)	442 SHD (↓)	443 Error-Score (↓)
FCI	1.0	1.0	4.0	4.0
LPCMCI+	5.0	5.0	17.0	17.0
PO-LINGAM	7.0	7.0	8.0	8.0
Ours	0.0	0.0	0.0	0.0

444 **Bold** indicates the best performance.
445
446
447448 **Robustness Experiments.** We additionally generated data with Laplace and Uniform noise. Here
449 we chose excellent methods in each kind of causal algorithms in the former experiments for compar-
450 ision. The results are presented in Table 2, which demonstrate the robust and superior performance
451 of our algorithms against different types of noise. What’s more, experiments on varying different
452 numbers of nodes and edges are deferred to Appendix D.2.
453454 **Experiments on Latent Variables Exclusion.** We constructed the causal graph manually and re-
455 moved key nodes in the data input process (see Figure 2) to simulate the presence of latent factors.
456 Methods that do not rely on the assumption of no latent factors are selected for comparison. We
457 evaluate the performance through SHD and Error-Score (ES), where ES is used to calculate how
458 many wrong edges caused by latent factors are identified. We found that our approach accurately
459 excludes the influence of the latent factors (see Table 3). To enhance generalizability, we further
460 validated our findings on two additional causal graphs under different settings (Appendix D.3).
461462 4.3 EXPERIMENTS ON REAL-WORLD DATA.
463464 **CausalTime** (Cheng et al., 2024b) is a novel pipeline capable of generating realistic time-series data.
465 We used three types of benchmark time series with time-lagged causality from weather, traffic, and
466 healthcare backgrounds. There are 20 nodes in the Traffic and Medical Dataset, and 36 nodes in the
467 AQI Dataset. We compared the ability of our method with baseline methods in recovering the true
468 causal graph. From the results in Table 4, our algorithm identifies the most accurate causal graph
469 under all realistic datasets. More discussions will be shown in Appendix C.4.
470471 Table 4: Causal discovery on CausalTime dataset.
472

473 Methods	474 SHD (↓)		
	475 Traffic	476 Medical	477 AQI
478 RHINO	479 63.248 ± 1.732	480 80.202 ± 2.236	481 165.945 ± 6.016
482 DAGMA	483 59.790 ± 3.213	484 91.456 ± 4.115	485 244.713 ± 9.980
486 SCORE	487 66.298 ± 7.980	488 100.350 ± 8.419	489 280.823 ± 32.564
490 PO-LINGAM	491 49.498 ± 1.835	492 88.085 ± 3.128	493 179.327 ± 3.515
494 Ours	495 31.346 ± 1.033	496 75.192 ± 0.893	497 160.062 ± 2.597

498 **Bold** indicates the best performance.
499
500
501502 5 CONCLUSIONS AND FUTURE WORKS
503504 In this paper, we propose a causal discovery algorithm CIT-TBP to exclude different kinds of con-
505 founding effects in time-lagged causal relationships, without prior knowledge regarding the pres-
506 ence of latent variables. Furthermore, we theoretically demonstrated the effectiveness of CIT-TBP.
507 We have reduced the search space of the conditioning sets compared to traditional constraint-based
508 methods, but CITs still have limitations when dealing with large-scale graphs. One future research
509 is towards reducing the number of CITs on large and dense graphs. Another direction for future
510 research is the discovery of causal graphs in high-dimensional data.
511

486 **6 ETHICS STATEMENT**
487488 This paper presents work whose goal is to advance the field of Machine Learning and Causal
489 Discovery. The research conducted in the paper conform, in every respect, with the ICLR Code of
490 Ethics.
491492 **7 REPRODUCIBILITY STATEMENT**
493494 All experiments in this paper is reproducible, experimental setup and complete experimental re-
495 sults are depicted in Section 4 and Appendix D. Our code is available at <https://anonymous.4open.science/r/CIT-TBP-F0E8>.
496
497498 **REFERENCES**
499500 Suchinta Arif and M. Aaron MacNeil. Applying the structural causal model framework for ob-
501 servational causal inference in ecology. *Ecological Monographs*, 93(1):e1554, 2023. doi:
502 <https://doi.org/10.1002/ecm.1554>.503 Charles K Assaad, Emilie Devijver, and Eric Gaussier. Entropy-based discovery of summary causal
504 graphs in time series. *Entropy*, 24(8):1156, 2022a.
505506 Charles K. Assaad, Emilie Devijver, and Eric Gaussier. Survey and Evaluation of Causal Discov-
507 ery Methods for Time Series. *Journal of Artificial Intelligence Research*, 73:767–819, February
508 2022b. ISSN 1076-9757. doi: 10.1613/jair.1.13428.509 Elias Bareinboim and Judea Pearl. Causal inference and the data-fusion problem. *Proceedings of*
510 *the National Academy of Sciences*, 113(27):7345–7352, 2016. doi: 10.1073/pnas.1510507113.511 Lionel Barnett and Anil K. Seth. The MVGC multivariate Granger causality toolbox: A new ap-
512 proach to Granger-causal inference. *Journal of Neuroscience Methods*, 223:50–68, February
513 2014. ISSN 01650270. doi: 10.1016/j.jneumeth.2013.10.018.515 Kevin Bello, Bryon Aragam, and Pradeep Ravikumar. Dagma: Learning dags via m-matrices and
516 a log-determinant acyclicity characterization. *Thirty-sixth Conference on Neural Information
517 Processing Systems*, abs/2209.08037, 2022.518 Rahul Biswas, Surya Narayana Sripada, and Somabha Mukherjee. Inferring causality from time
519 series data based on structural causal model and its application to neural connectomics. *arXiv
520 preprint arXiv:2312.09604*, 2023.521 Manuel Castro, Pedro Ribeiro Mendes Júnior, Aurea Sorianio-Vargas, Rafael de Oliveira Werneck,
522 Maiara Moreira Gonçalves, Leopoldo Lusquino Filho, Renato Moura, Marcelo Zampieri, Oscar
523 Linares, Vitor Ferreira, Alexandre Ferreira, Alessandra Davólio, Denis Schiozer, and Anderson
524 Rocha. Time series causal relationships discovery through feature importance and ensemble mod-
525 els. *Scientific Reports*, 13(1), July 2023. ISSN 2045-2322. doi: 10.1038/s41598-023-37929-w.
526527 Wei Chen, Zhiyi Huang, Ruichu Cai, Zhifeng Hao, and Kun Zhang. Identification of causal structure
528 with latent variables based on higher order cumulants. *Proceedings of the AAAI Conference on
529 Artificial Intelligence*, 38(18):20353–20361, Mar. 2024. doi: 10.1609/aaai.v38i18.30017.530 Yuxiao Cheng, Lianglong Li, Tingxiong Xiao, Zongren Li, Jinli Suo, Kunlun He, and Qionghai
531 Dai. Cuts+: High-dimensional causal discovery from irregular time-series. *Proceedings of the
532 AAAI Conference on Artificial Intelligence*, 38(10):11525–11533, Mar. 2024a. doi: 10.1609/aaai.
533 v38i10.29034.534 Yuxiao Cheng, Ziqian Wang, Tingxiong Xiao, Qin Zhong, Jinli Suo, and Kunlun He. Causaltime:
535 Realistically generated time-series for benchmarking of causal discovery. In *The Twelfth Interna-
536 tional Conference on Learning Representations*, 2024b.538 Michael Eichler. Causal inference with multiple time series: principles and problems. *Philosophi-
539 cal Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 371
(1997):20110613, 2013.

540 Doris Entner and Patrik O Hoyer. On causal discovery from time series data using fci. *Probabilistic*
 541 *graphical models*, 16, 2010.

542

543 P. Erdős and A. Rényi. On the evolution of random graphs. In *The Structure and Dynamics of*
 544 *Networks*, pp. 38–82. Princeton University Press, Princeton, 2006. ISBN 978-1-4008-4135-6.
 545 doi: doi:10.1515/9781400841356.38.

546

547 Claudia Foroni and Massimiliano Marcellino. Mixed Frequency Structural Vector Auto-Regressive
 548 Models. *Journal of the Royal Statistical Society Series A: Statistics in Society*, 179(2):403–425,
 549 May 2015. ISSN 0964-1998. doi: 10.1111/rssa.12120.

550

551 Zhi Geng, Chi Wang, and Qiang Zhao. Decomposition of search for v-structures in DAGs. *Journal of*
 552 *Multivariate Analysis*, 96(2):282–294, 2005. ISSN 0047-259X. doi: 10.1016/j.jmva.2004.10.012.

553

554 Andreas Gerhardus and Jakob Runge. High-recall causal discovery for autocorrelated time series
 555 with latent confounders. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin
 556 (eds.), *Advances in Neural Information Processing Systems*, volume 33, pp. 12615–12625. Curran
 557 Associates, Inc., 2020.

558

559 Wenbo Gong, Joel Jennings, Cheng Zhang, and Nick Pawlowski. Rhino: Deep causal temporal
 560 relationship learning with history-dependent noise. *The Eleventh International Conference on*
 561 *Learning Representations*, abs/2210.14706, 2023.

562

563 Wiebke Günther, Urmila Ninad, and Jakob Runge. Causal Discovery for time series from multiple
 564 datasets with latent contexts. In *Proceedings of the Thirty-Ninth Conference on Uncertainty in*
 565 *Artificial Intelligence*, pp. 766–776. PMLR, July 2023.

566

567 Jason S. Hartford, Greg Lewis, Kevin Leyton-Brown, and Matt Taddy. Deep iv: A flexible ap-
 568 proach for counterfactual prediction. In *The Thirty-Fourth International Conference on Machine*
 569 *Learning*, pp. 1414–1423, 2017.

570

571 Olivier Jeunen, Ciarán Gilligan-Lee, Rishabh Mehrotra, and Mounia Lalmas. Disentangling Causal
 572 Effects from Sets of Interventions in the Presence of Unobserved Confounders. In S. Koyejo,
 573 S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural Information*
 574 *Processing Systems*, volume 35, pp. 27850–27861. Curran Associates, Inc., 2022.

575

576 Songyao Jin, Feng Xie, Guangyi Chen, Biwei Huang, Zhengming Chen, Xinshuai Dong, and Kun
 577 Zhang. Structural estimation of partially observed linear non-gaussian acyclic model: A practical
 578 approach with identifiability. In *The Twelfth International Conference on Learning Representa-*
 579 *tions*, 2024.

580

581 David Kaltenpoth and Jilles Vreeken. Nonlinear causal discovery with latent confounders. In *Pro-*
 582 *ceedings of the 40th International Conference on Machine Learning*, ICML’23. JMLR.org, 2023.

583

584 Marilena Kampa and Elias Castanas. Human health effects of air pollution. *Environmental Pollution*,
 585 151(2):362–367, 2008. ISSN 0269-7491. doi: <https://doi.org/10.1016/j.envpol.2007.06.012>.

586

587 Bohdan Kivva, Goutham Rajendran, Pradeep Ravikumar, and Bryon Aragam. Learning latent causal
 588 graphs via mixture oracles. In *Advances in Neural Information Processing Systems*, volume 34,
 589 pp. 18087–18101. Curran Associates, Inc., 2021.

590

591 Yi Li, Jiangmeng Li, Fei Song, Qingmeng Zhu, Changwen Zheng, and Wenwen Qiang. Interventional
 592 Imbalanced Multi-Modal Representation Learning via -Generalization Front-Door Crite-
 593 rion. *Thirty-eighth Conference on Neural Information Processing Systems*, January 2024.

594

595 Mingzhou Liu, Xiangyu Zheng, Xinwei Sun, Fang Fang, and Yizhou Wang. Which Invariance
 596 Should We Transfer? A Causal Minimax Learning Approach. In *Proceedings of the 40th Interna-*
 597 *tional Conference on Machine Learning*, pp. 22488–22527. PMLR, July 2023.

598

599 Adrián Lozano-Durán and Gonzalo Arranz. Information-theoretic formulation of dynamical sys-
 600 tems: Causality, modeling, and control. *Physical Review Research*, 4(2):023195, June 2022.
 601 ISSN 2643-1564. doi: 10.1103/PhysRevResearch.4.023195.

594 Daniel Malinsky and Peter Spirtes. Causal structure learning from multivariate time series in set-
 595 tings with unmeasured confounding. In *Proceedings of 2018 ACM SIGKDD workshop on causal*
 596 *discovery*, pp. 23–47. PMLR, 2018.

597 Alessandro Montalto, Luca Faes, and Daniele Marinazzo. MuTE: A MATLAB Toolbox to Compare
 598 Established and Novel Estimators of the Multivariate Transfer Entropy. *PLOS ONE*, 9(10):1–13,
 599 October 2014. doi: 10.1371/journal.pone.0109462.

600 Ignavier Ng, AmirEmad Ghassami, and Kun Zhang. On the Role of Sparsity and DAG Constraints
 601 for Learning Linear DAGs. In *Advances in Neural Information Processing Systems*, volume 33,
 602 pp. 17943–17954. Curran Associates, Inc., 2020.

603 Bradley P Owens and David R Hekman. How does leader humility influence team performance?
 604 exploring the mechanisms of contagion and collective promotion focus. *Academy of Management*
 605 *journal*, 59(3):1088–1111, 2016.

606 Judea Pearl. *Causality: Models, Reasoning and Inference*. Cambridge University Press, USA, 2nd
 607 edition, 2009a. ISBN 052189560X.

608 Judea Pearl. Causal inference in statistics: An overview. 2009b.

609 Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Causal inference on time series using
 610 restricted structural equation models. *Advances in neural information processing systems*, 26,
 611 2013.

612 Jonas Peters, Dominik Janzing, and Bernhard Schlkopf. *Elements of Causal Inference: Foundations*
 613 *and Learning Algorithms*. The MIT Press, 2017. ISBN 0262037319.

614 Paul Rolland, Volkan Cevher, Matthäus Kleindessner, Chris Russell, Dominik Janzing, Bernhard
 615 Schölkopf, and Francesco Locatello. Score Matching Enables Causal Discovery of Nonlinear Ad-
 616 ditive Noise Models. In *Proceedings of the 39th International Conference on Machine Learning*,
 617 pp. 18741–18753. PMLR, June 2022.

618 Jakob Runge, Peer Nowack, Marlene Kretschmer, Seth Flaxman, and Dino Sejdinovic. Detecting
 619 and quantifying causal associations in large nonlinear time series datasets. *Science Advances*, 5
 620 (11):eaau4996, 2019.

621 Pedro Sanchez, Xiao Liu, Alison Q O’Neil, and Sotirios A. Tsaftaris. Diffusion models for causal
 622 discovery via topological ordering. In *The Eleventh International Conference on Learning Repre-*
 623 *sentations*, 2023.

624 Claudia Shi, David Blei, and Victor Veitch. Adapting Neural Networks for the Estimation of Treat-
 625 *ment Effects*. In *Advances in Neural Information Processing Systems*, volume 32. Curran Asso-
 626 ciates, Inc., 2019.

627 Kirankumar Shiragur, Jiaqi Zhang, and Caroline Uhler. Causal discovery with fewer conditional
 628 independence tests. In *Forty-first International Conference on Machine Learning*, 2024.

629 L Solus, Y Wang, and C Uhler. Consistency guarantees for greedy permutation-based causal infer-
 630 ence algorithms. *Biometrika*, 108(4):795–814, November 2021. ISSN 0006-3444, 1464-3510.
 631 doi: 10.1093/biomet/asaa104.

632 George Sugihara, Robert May, Hao Ye, Chih-hao Hsieh, Ethan Deyle, Michael Fogarty, and Stephan
 633 Munch. Detecting causality in complex ecosystems. *Science*, 338(6106):496–500, 2012.

634 Panagiotis Tigas, Yashas Annadani, Andrew Jesson, Bernhard Schölkopf, Yarin Gal, and Stefan
 635 Bauer. Interventions, where and how? experimental design for causal models at scale. In
 636 S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural*
 637 *Information Processing Systems*, volume 35, pp. 24130–24143. Curran Associates, Inc., 2022.

638 Ioannis Tsamardinos, Laura E. Brown, and Constantin F. Aliferis. The max-min hill-climbing
 639 Bayesian network structure learning algorithm. *Machine Learning*, 65(1):31–78, October 2006.
 640 ISSN 1573-0565. doi: 10.1007/s10994-006-6889-7.

648 Raul Vicente, Michael Wibral, Michael Lindner, and Gordon Pipa. Transfer entropya model-free
649 measure of effective connectivity for the neurosciences. *Journal of Computational Neuroscience*,
650 30(1):45–67, February 2011. ISSN 1573-6873. doi: 10.1007/s10827-010-0262-3.
651

652 Anpeng Wu, Haoxuan Li, Kun Kuang, Keli Zhang, and Fei Wu. Learning causal relations from
653 subsampled time series with two time-slices. In *Proceedings of the 41st International Conference*
654 *on Machine Learning*, ICML’24. JMLR.org, 2024.

655 Zhi Xu, Dingkang Yang, Mingcheng Li, Yuzheng Wang, Zhaoyu Chen, Jiawei Chen, Jinjie Wei,
656 and Lihua Zhang. Debiased multimodal understanding for human language sequences. In *AAAI*
657 *Conference on Artificial Intelligence*, 2024.

658 Hao Ye, Ethan R. Deyle, Luis J. Gilarranz, and George Sugihara. Distinguishing time-delayed causal
659 interactions using convergent cross mapping. *Scientific Reports*, 5(1):14750, October 2015. ISSN
660 2045-2322. doi: 10.1038/srep14750.

661 Jiaqi Zhang, Louis Cammarata, Chandler Squires, Themistoklis P. Sapsis, and Caroline Uhler. Ac-
662 tive learning for optimal intervention design in causal models. *Nature Machine Intelligence*, 5
663 (10):1066–1075, October 2023. ISSN 2522-5839. doi: 10.1038/s42256-023-00719-0.

664 Kun Zhang, Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Kernel-based conditional
665 independence test and application in causal discovery. *arXiv preprint arXiv:1202.3775*, 2012.

666 Shengyu Zhu and Zhitang Chen. Causal discovery with reinforcement learning. *International Con-
667 ference on Learning Representations*, abs/1906.04477, 2019.

668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 **A ADDITIONAL DISCUSSIONS**
703704 **A.1 DISCUSSIONS ON HIGH-ORDER LAGGED EFFECTS**
705706 We can also relax the Markov Assumption to a high-order Markov Assumption (Wu et al., 2024;
707 Peters et al., 2017). In high-order Markovian hypothesis, the causal effects are on multiple time
708 delays. In this case, X^t depends on states $X^{t-a, \dots, t-\tau}$, where a is an integer greater than 0. The
709 conditioning set is not set on a single time slice $t - \tau$, but on multiple time slices $t - a, \dots, t - \tau$.
710 Then, the conditioning sets can be replaced from $X_{i^*}^{t-\tau}$ to $X_{i^*}^{t-a, \dots, t-\tau}$. For example, if $a = 3$
711 and $\tau = 1$, when we explore the causal relationships between X_i^t and X_j^t , the conditioning set is
712 $\{X_{i^*}^{t-3}, X_{i^*}^{t-2}, X_{i^*}^{t-1}\}$.
713714 **A.2 DIFFERENT STRUCTURES AND EXAMPLES**
715716 **Confounders.** Confounding factors are the most common interactions between nodes. One of the
717 examples is the relationship between education level and income. While education level (A) and
718 income (C) show a strong correlation, the apparent causal relationship $A \rightarrow C$ may be spurious. The
719 underlying driver is actually family socioeconomic status (B), which influences both educational
720 opportunities and career advantages.721 **Mediators.** When examining neighborhood security (A), residents' trust (B), and community en-
722 gagement (C), researchers may overlook critical causal pathways. Improved security enhances
723 trust in the community, which in turn increases participation in local activities. However, if ana-
724 lysts observe only the surface correlation between A and C , they might incorrectly conclude that
725 "better security directly boosts engagement", neglecting trust's essential mediating role. This over-
726 simplification leads to flawed policy interventions, like allocating resources solely to policing while
727 ignoring trust-building programs, that fail to address the actual mechanism through which security
728 improvements ultimately affect community participation.729 **Colliders.** Collider bias can induce spurious associations when conditioning on a common effect.
730 Consider the relationship between single-parent households (A), mental health issues (B), and aca-
731 demic performance (C). Here, (B) is a collider: $(A \rightarrow B \leftarrow C)$. Single-parent households may
732 increase psychological stress, while poor academic performance can worsen mental health. If re-
733 searchers condition on B . (e.g., studying only individuals with mental health issues), a spurious cor-
734 relation emerges between A and C . This may lead to erroneous conclusions like "single-parenthood
735 directly harms academic performance," even though no such causal link exists.736 **A.3 THE DIFFERENCE BETWEEN TRADITIONAL CONDITIONAL INDEPENDENCE TESTS AND
737 OURS**
738739 We compare our method with the traditional constraints-based method PC Algorithm in the selection
740 of the conditioning sets. The PC algorithm is shown in Algorithm 1.741

- 742 In PC algorithm, the conditioning sets are dynamically constructed, depending on the neigh-
743 bor relationships of the graph and the current structure during iteration. However, the condi-
744 tioning sets are statically constructed without iteration, which can reduce time complexity.
- 745 2. PC algorithm is only suitable for data without a temporal order. Runge et al. (Runge
746 et al., 2019) proposed an improved version of the PC algorithm, PCMC, which adapts it
747 for time-series data. However, the conditional independence tests used in these methods
748 do not adequately account for time-lagged causal relationships between variables, leaving
749 them vulnerable to confounding structures and still requiring the assumption of no latent
750 variables. Our algorithm use time-lagged backdoor paths to eliminate the effects of dif-
751 ferent structures. Unlike traditional methods, we control conditioning sets and treatment
752 variables in different time-slice layers, which can remove the effects of V-structure.
- 753 3. We also introduce the concept of CTE and evaluate the difference in entropy between dif-
754 ferent layers to determine the presence of potential factors, thereby relaxing the constraints
755 imposed by traditional algorithms on latent variables.

756 **Algorithm 1:** The PC-pop Algorithm
757 **Data:** Vertex Set V ; Condition Independence Information
758 **Result:** Causal Graph C ; separation sets S

760 1 Form the complete undirected graph \tilde{C} on the vertex set V .
761 2 $\ell = -1; C = \tilde{C}$
762 3 **repeat**
763 4 $\ell = \ell + 1$
764 5 **repeat**
765 6 Select a (new) ordered pair of nodes i, j that are adjacent in C such that
766 7 $|\text{adj}(C, i) \setminus \{j\}| \geq \ell$;
767 8 **repeat**
768 9 Choose (new) $k \subseteq \text{adj}(C, i) \setminus \{j\}$ with $|k| = \ell$;
769 10 **if** i and j are conditionally independent given k , **then**
770 11 Delete edge i, j ;
771 12 Denote this new graph by C ;
772 13 Save k in $S(i, j)$ and $S(j, i)$;
773 14 **until** edge i, j is deleted or all $k \subseteq \text{adj}(C, i) \setminus \{j\}$ with $|k| = \ell$ have been chosen;
774 15 **until** all ordered pairs of adjacent variables i and j such that $|\text{adj}(C, i) \setminus \{j\}| \geq \ell$ and
775 16 $k \subseteq \text{adj}(C, i) \setminus \{j\}$ with $|k| = \ell$ have been tested for conditional independence;
776 16 **until** for each ordered pair of adjacent nodes i, j : $|\text{adj}(C, i) \setminus \{j\}| < \ell$.

777
778 Our CIT-TBP offers a significant improvement over the PC algorithm by optimizing the selection
779 of conditioning sets. Unlike the PC algorithm, which dynamically explores and stores multiple
780 combinations of conditioning sets, our approach uses a pre-determined conditioning set based on
781 time layers. This eliminates the need for extensive exploration and reduces the time requirements,
782 making it more efficient. The search space for the conditioning sets is smaller than that in the
783 traditional constraint-based approaches (Wu et al., 2024; Solus et al., 2021; Shiragur et al., 2024).
784 We provide *Big-O* analysis in A.10.

786 A.4 DISCUSSIONS ON INTERVENTIONS

788 In structural causal models (SCMs), interventions are represented by the $do(\cdot)$ operator (Pearl,
789 2009a; Xu et al., 2024). When a variable is intervened on, it is no longer influenced by its parent
790 variables. As a result, the causal graph of the intervened system will no longer contain any
791 directed edges into that variable. In our CIT-TBP, the conditioning set will be replaced by an empty
792 set since the intervention operation makes the treatment variable independent of others. The formula
793 of interventions is shown in Corollary 2.

794 **Corollary 2.** *Let $do(X_i^{t-\tau})$ be an intervention. For variables X_i and X_j , we can conclude that X_i
795 is an ancestor of X_j iff $do(X_i^{t-\tau}) \not\perp\!\!\!\perp X_j^t$.*

797 However, interventions are often challenging to implement in practice, as they typically require prior
798 knowledge of the system (Li et al., 2024; Jeunen et al., 2022). One key direction for future research
799 will be to develop more effective methods for generating high-quality intervention data.

801 A.5 SETTINGS OF HYPERPARAMETER

802 **Hyperparameters for CIT.** The hyperparameter configuration for CIT includes time delay τ , sig-
803 nificance level α , and transfer entropy bandwidth k . For time delay, we set $\tau = 1$ as default. (Alter-
804 native values are discussed in Appendix A.1.) The significance level can be adjusted contextually:
805 0.05 for linear/sparse cases to capture more causal relationships, and 0.01, even 0.001, for complex
806 nonlinear scenarios to ensure precise causal relationships. For the transfer entropy bandwidth, it can
807 be discretionary according to the distribution of the data, we use 2.0 as default.

808 **Significance Level and Statistical Robustness for CTE.** To quantify the uncertainty of our esti-
809 mates, we computed 95% confidence intervals using the nonparametric bootstrap method (Owens

& Hekman, 2016). A standard number of $B = 5000$ replicates was used. For the setting of significance level, different significance level indeed have an impact on the results. A higher significance level means that our causal restrictions are looser, while a lower significance level means that we set more strict causal rules. We use $\alpha = 0.05$ as the default setting (95% confidence interval), which is also a value commonly used in the significance tests (Liu et al., 2023; Wu et al., 2024). Those hyperparameters of our method can be flexibly adjusted according to usage conditions.

A.6 CALCULATION OF THE CTE

The shannon entropy is calculated as:

$$H(X) = \sum_i p(x) \cdot \log_2 \frac{1}{p(x)} = -\sum_i p(x) \cdot \log_2 p(x) \quad (6)$$

TE is a model-free, information-theoretic measure of directed, dynamic information flow between two processes. It quantifies how much the historical states of a source process X reduce uncertainty about the current state of a target process Y , beyond what is already contained in the history of Y . The formula is shown below:

$$\begin{aligned} TE_{X_t \rightarrow Y_t} &= H(Y_t | Y_{t-\Delta w}) - H(Y_t | Y_{t-\Delta w}, X_{t-\Delta \tau}) \\ &= H(Y_t, Y_{t-\Delta w}) - H(Y_{t-\Delta w}) - H(Y_t, Y_{t-\Delta w}, X_{t-\Delta \tau}) + H(Y_{t-\Delta w}, X_{t-\Delta \tau}) \\ &= H(Y_t, Y_{t-\Delta w}) + H(Y_{t-\Delta w}, X_{t-\Delta \tau}) - H(Y_{t-\Delta w}) - H(Y_t, Y_{t-\Delta w}, X_{t-\Delta \tau}) \quad (7) \\ &= \sum_{x_\tau, y, y_w} p(x_\tau, y, y_w) \log_2 \frac{p(x_\tau, y, y_w)p(y_w)}{p(x_\tau, y_w)p(y, y_w)} \end{aligned}$$

CTE is a generalization of transfer entropy that quantifies the direct information transfer from a source process X to a target process Y , conditional on one or more additional processes Z . It isolates the unique causal influence of X on Y by accounting for:

- 1) Confounding effects ($X \leftarrow Z \rightarrow Y$).
- 2) Mediated effects ($X \rightarrow Z \rightarrow Y$).

Thus, the formula for CTE can be derived from the TE:

$$\begin{aligned} CTE_{X_t \rightarrow Y_t | Z_t} &= H(Y_t | Y_{t-\Delta w}, Z_{t-\Delta w}) - H(Y_t | Y_{t-\Delta w}, Z_{t-\Delta w}, X_{t-\Delta \tau}) \\ &= \sum_{x_\tau, y, y_w, z_w} p(x_\tau, y, y_w, z_w) \log_2 \frac{p(x_\tau, y, y_w, z_w)p(y_w, z_w)}{p(x_\tau, y_w, z_w)p(y, y_w, z_w)} \quad (8) \end{aligned}$$

A.7 DISCUSSION ON DIFFERENT CONDITIONS ON CITS AND CTE

In the main text, we determine causal relationships between variables based on two criteria: the p -value being less than or equal to the threshold α , and the difference of CTE being significantly greater than 0. We demonstrate that when the p -value is below α but the CTE difference is not significantly greater than 0, latent factors may exist in the system, leading to spurious correlations. Here, we further examine the remaining two scenarios.

- 1) p -value $\geq \alpha$ and $\Delta CTE > 0$: There are two possible reasons for this phenomenon. a.) First, there may exist a strongly nonlinear causal relationship between the two variables, which makes it difficult to detect the dependency using simple correlation measures. For example, in certain dynamic systems, some signal pathways may exhibit no significant correlation but still carry causal influence. b.) It may result from the issue of causal granularity (Foroni & Marcellino, 2015). The data we observe may be at a relatively coarse temporal resolution, which makes it hard to accurately capture the causal transmission. The actual

864 causal effect may have occurred between two observable time points, leading to observable
 865 changes in information entropy, while the correlation remains low due to the temporal
 866 mismatch.

867 2) p -value $\geq \alpha$ and $\Delta CTE = 0$: In this case, we consider that there is no causal relationship
 868 at all between the two variables.

870 Our discussion builds on the ideal case where there is no complex noise interference.

871

872 A.8 CAUSAL RELATIONSHIPS WITH HETEROGENEOUS TIME LAGS

873

874 Here, we extend the algorithms to a scenario with heterogeneous lags, where for instance $X_1 \rightarrow X_2$
 875 has a lag of $\tau_1 = 5$ and $X_3 \rightarrow X_4$ has a lag of $\tau_2 = 1$. In this case, we manually set the maximum
 876 time delay τ_{max} and then choose all variables that are correlated with the treatment variable from
 877 $t - \tau_{max}$ to $t - \tau$ into the conditioning set. In this way, the non-causal backdoor paths with the highest
 878 time delay in a heterogeneous lags structure can be directly blocked, and the non-causal backdoor
 879 paths of each time slice between variables with lower time delays can also be blocked, thereby
 880 achieving reliable causal identification. For example, if $\tau_{max} = 5$ and $\tau = 1$, we will choose all
 881 variables that are correlated with the treatment variable from $t - 5$ to $t - 1$ into the conditioning set
 882 and block them.

883

884 A.9 THE COMPARISON BETWEEN TIME-LAGGED BACKDOOR PATHWAY PRINCIPLE AND 885 THE STANDARD BACKDOOR CRITERION

886

887 The standard Backdoor Criterion only proposes how to establish a valid conditioning set. We make
 888 sufficient use of the concept of backdoor pathways introduced in the backdoor criterion, retain the
 889 causal backdoor pathways, and exclude non-causal backdoor pathways to perform causal discovery
 890 on time-series data (see Definition3). Therefore, in Theorem 1, we provide a novel calculation
 891 method called "Time-Lagged Backdoor Pathway Principle".

892 More importantly, The standard Backdoor Criterion only handle confounders and it is mainly used in
 893 non-temporal data. Our Time-Lagged Backdoor Pathway Principle is designed for various complex
 894 causal structures (including colliders, mediators, and their hybrids) on time-series data.

895

896 A.10 Big- O ANALYSIS BETWEEN CIT-TBP AND PC-BASED METHODS

897

898 **PC-based methods:** For a pair (i, j) , the PC-algorithm needs to enumerate all possible conditional
 899 set sizes $s = 0, 1, \dots, d_{max}$, and select $\binom{d_{max}}{s}$ subsets from the neighbor set for conditional
 900 independence tests, where d_{max} represents the maximum number of neighbors (degree). If the
 901 number of node is p , the worst case for CIT is: $T_{CIT_{PC}} = \sum_{i < j} \sum_{s=0}^{d_{max}} \binom{d_{max}}{s} = O(p^2 2^{d_{max}})$.

902 For HSIC tests, if the sample size is n , $O(n^2)$ is usually required, so the overall time complexity is:
 903 $T_{PC} = O(p^2 2^{d_{max}} n^2)$.

904 **CIT-TBP:** For adjacency relationship (i, j) , only two HSIC tests are performed. If the number of
 905 edges is E , the time complexity is: $T_{CIT} \approx 2En^2 = O(En^2)$. In the second stage, we assume
 906 the number of edges that pass the screening is E_p , and calculate CTE twice for each edge, with B
 907 bootstrap times, for total of $2(1+B)$. The complexity of each CTE calculation is about $O(n \log n)$,
 908 and the time complexity is $T_{CTE} = O(E_p(1+B)n \log n)$. The overall complexity is: $T_{total} =$
 909 $O(En^2 + E_p(1+B)n \log n)$.

910 In comparison, the time complexity of CIT-TBP is obviously lower.

911

912 B PROOFS

913

914

915 B.1 PROOF OF THE RATIONALITY OF CONDITIONING SETS SELECTION

916

917 *Proof.* For time-series data with time-lagged causality, the conditioning sets $X_{i^*}^{t-\tau}$ are at the $t - \tau$
 918 time-slice, while the treatment variables X_i^t and outcome variables X_j^t are at the t time-slice. The

set of variables can be divided into three categories, *a*) variables that are not related to $X_i^{t-\tau}$, *b*) variables that are affected by $X_i^{t-2\tau}$, *c*) and variables that affect $X_i^{t-\tau}$ at time-slice $t - 2\tau$. For variables that are not related to $X_i^{t-\tau}$, we do not need to consider them. For variables $X_k^{t-\tau}$ in *b*), they may lead to Mediators at time t if $X_k \rightarrow X_j$, and if $X_k \not\rightarrow X_j$, the conditioning sets do not introduce additional backdoor pathways at time-slice t . The proof of variables in case *c*) is similar. Therefore, the variables associated with $X_i^{t-\tau}$ are chosen as the conditioning sets. \square

B.2 PROOF OF THE EXCLUSION OF LATENT FACTORS

Proof. We assume that X_i doesn't cause X_j , but there is a latent factor U which affects both X_i and X_j . When we calculate the conditional independence test on $X_i^{t-\tau}$ and X_j^t , the result will be significant. Actually, there is no directed edge from $X_i^{t-\tau}$ to X_j^t and only the backdoor pathway $X_i^{t-\tau} \leftarrow U \rightarrow X_j^t$ contributes to the spurious association. In this case, if $\Delta CTE_{X_i \rightarrow X_j | X_{i^*}^{t-\tau}}$ is not significantly greater than zero, that means there are no information transfers from $X_i^{t-\tau}$ to X_j^t , then the edge from $X_i^{t-\tau} \rightarrow X_j^t$ can be inferred as a mistake. A detailed mathematical proof is shown below.

We calculate the conditional transfer entropy on $X_i^{t-\tau}$ and X_j^t , and we use $X_z^{t-\tau}$ to represent the condition variables $X_{i^*}^{t-\tau}$. The formula is like:

$$\begin{aligned} & \Delta CTE_{X_i^{t-\tau} \rightarrow X_j^t | X_z^{t-\tau}} \\ &= CTE_{X_i^{t-\tau} \rightarrow Y_j^t | X_z^{t-\tau}} - CTE_{Y_j^t \rightarrow X_i^{t-\tau} | X_z^{t-\tau}} \\ &= H(X_j^t | X_j^{t-\Delta w}, X_z^{t-\Delta w}) - H(X_j^t | X_j^{t-\Delta w}, X_z^{t-\Delta w}, X_i^{t-\Delta \tau}) \\ & \quad - H(X_i^{t-\tau} | X_i^{t-\Delta \tau}, X_z^{t-\Delta w}) + H(X_i^{t-\tau} | X_i^{t-\Delta \tau}, X_z^{t-\Delta w}, X_j^{t-\Delta w}) \end{aligned} \tag{9}$$

When there is a causal relationship between $X_i^{t-\tau}$ and X_j^t , we can get,

$$H(X_j^t | X_j^{t-\Delta w}, X_z^{t-\Delta w}) - H(X_j^t | X_j^{t-\Delta w}, X_z^{t-\Delta w}, X_i^{t-\Delta \tau}) > 0 \tag{10}$$

At the same time, it can be known based on established knowledge that, $X_j^{t-\Delta w} \not\rightarrow X_i^{t-\Delta \tau}$, so we conclude that,

$$H(X_i^{t-\tau} | X_i^{t-\Delta \tau}, X_z^{t-\Delta w}) = H(X_i^{t-\tau} | X_i^{t-\Delta \tau}, X_z^{t-\Delta w}, X_j^{t-\Delta w}) \tag{11}$$

Combining Equation (11) and Equation (12), it is easily to know that the formula in Equation (10) should be significantly greater than 0.

On the other hand, if there is no causal relationship between them, The spurious correlation caused by common factors lacks directionality-it injects the same amount of information into both sequences simultaneously. Therefore, when measured by mutual information, the amount of information flowing from X_i to X_j is equal to that from X_j to X_i , and the difference cancels out. Under rigorous statistical tests, the bidirectional CTE is not significantly greater than zero, that is to say,

$$\begin{aligned} & H(X_j^t | X_j^{t-\Delta w}, X_z^{t-\Delta w}) - H(X_j^t | X_j^{t-\Delta w}, X_z^{t-\Delta w}, X_i^{t-\Delta \tau}) \\ & \approx H(X_i^{t-\tau} | X_i^{t-\Delta \tau}, X_z^{t-\Delta w}) - H(X_i^{t-\tau} | X_i^{t-\Delta \tau}, X_z^{t-\Delta w}, X_j^{t-\Delta w}) \end{aligned} \tag{12}$$

Thus, we can conclude that under this circumstance, Equation (10) equals to 0. \square

A zero difference in conditional transfer entropy is a sufficient but not necessary condition for the presence of a common latent factor. However, using this condition as a constraint for pruning a preliminary causal graph can significantly reduce confounding caused by latent factors. Consequently, our method relaxes the assumption of causal sufficiency (Pearl, 2009b).

972 C CIT-TBP ALGORITHM AND DETAILED EXPERIMENTAL SETUP
973974 C.1 PSEUDO-CODE OF OUR CIT-TBP
975976 Using Definitions 1 and 2, Assumptions 1, 2 and 3, we propose CIT-TBP, a novel algorithm using
977 time-lagged causal backdoor pathways to infer causality in different complex confounding structures
978 without the constraints on latent variables. The pseudo-code of CIT-TBP is shown in Algorithm 2.
979980 **Algorithm 2:** Our CIT-TBP Algorithm
981

 1 **Input:** Time-series data $X = \{X^0, \dots, X^t\}$ with time-lags causation; Vertex Set V with n
nodes.
 2 **Output:** One adjacency matrix A .
 3 **Components:** $HSIC(\cdot)$; $CTE(\cdot)$.
 4 **for** $i=1$ **to** n **do**
 5 Set the conditioning set as $X_{i^*}^{t-\tau} = \{X_k^{t-\tau} \mid X_k^{t-\tau} \not\perp\!\!\!\perp X_i^{t-\tau}, k \neq i\}$
 6 **for** $j=1$ **to** n **do**
 7 **if** $X_i = X_j$, **then**
 8 $p_{i,j} = HSIC(X_i^{t-\tau}, X_j^t \mid X_{i^*}^{t-\tau})$
 9 $a_{i,j} = \mathbb{I}(p_{i,j} \leq \alpha)$
 10 **elif** $X_i \neq X_j$, **then**
 11 $p_{i,j} = HSIC(X_i^{t-\tau}, X_j^t \mid X_{i^*}^{t-\tau})$
 12 $\Delta CTE_{X_i \rightarrow X_j \mid X_{i^*}^{t-\tau}} = CTE_{X_i^{t-\tau} \rightarrow X_j^t \mid X_{i^*}^{t-\tau}} - CTE_{X_j^t \rightarrow X_i^{t-\tau} \mid X_{i^*}^{t-\tau}}$
 13 $a_{i,j} = \mathbb{I}(p_{i,j} \leq \alpha \ \& \ \Delta CTE_{i,j} > 0)$
 14 **end for**
 15 **end for**
 16 We obtain $P = \{p_{i,j}\}_{n \times n}$ and $A = \{a_{i,j}\}_{n \times n}$.

1000
1001 C.2 HARDWARE AND SOFTWARE USED1002 **Hardware used:** Ubuntu 22.04.4 LTS with 2 GE Intel(R) Xeon(R) Platinum 8336C CPU @ 2.30GHz
1003 (64 cores, 32 cores per socket, 1 thread per core), 251 GB RAM.
10041005 **Software used:** Python 3.8, scikit-learn 1.3.2, networkx 3.1, numpy 1.23.5.
10061007 C.3 SYNTHETIC DATA EXPERIMENTS SETUP
10081009 **Experiments on Different Noise.** To test the robustness of our CIT-TBP, we use synthetic data with
1010 different types of noise. The settings are:
1011

1012
$$\text{Gaussian Noise} : X^0 \sim \mathcal{N}(0, 1), \epsilon^t \sim \mathcal{N}(0, 0.4) \quad (13)$$

1013
$$\text{Laplace Noise} : X^0 \sim \mathcal{N}(0, 1), \epsilon^t \sim \text{Laplace}(0, \frac{\sqrt{2}}{5}) \quad (14)$$

1014
$$\text{Uniform Noise} : X^0 \sim \mathcal{N}(0, 1), \epsilon^t \sim U(-\frac{2\sqrt{3}}{5}, \frac{2\sqrt{3}}{5}) \quad (15)$$

1018 **Experiments on Latent Factors.** In these experiments, we constructed the causal graph manually.
1019 The causal graph is displayed in Figure 2. The causal graph consists of 12 nodes, from X_0 to X_{11} .
1020 In the data input phase, we hide X_0, X_1, X_2 and X_3 as latent variables. In this case, the true causal
1021 graph changes, and no directed edge is preserved. However, the latent variables may lead to spurious
1022 associations. For example, $X_4 \rightarrow X_5$ because of X_1 (Confounder). In the latent factors exclusion
1023 experiment, our goal is to ignore these spurious correlations and find the true causal relationships.
1024 We use SHD and ES to evaluate the performance of the methods. ES is incremented by 1 per
1025 spurious correlation-induced edge. The results are shown in Table 3. Besides, we also conducted
experiments on more complex cases. Those results are shown in Appendix D.3.

1026
1027

C.4 REAL-WORLD DATA EXPERIMENTS SETUP

1028
1029
1030
1031
1032
1033

CausalTime (Cheng et al., 2024b) is a novel pipeline to generate realistic time series with ground truth causal graphs. In our experiments, we use 3 types of benchmark time-series from weather, traffic, and healthcare scenarios generated from the pipeline. Each dataset contains two files, *gen_data.npy* and *graph.npy*. Each dataset has 480 samples. We inferred causal graphs for all 480 samples, compared them with the true graph in *graph.npy*. The mean and the standard deviation of error were reported. (See Table 4).

1034
1035

C.5 EXPERIMENT DETAILS

1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048

Discussion on the Evaluation Metrics. To test the performance of our CIT-TBP, we compute the Structural Hamming Distance (**SHD**) between the predicted graphs and the true graphs, which measures the differences in terms of node, edge, and connection count in two graphs. The accuracy of the identified edges can also be evaluated by **F1-Score** between two graphs. In real scenarios, the downstream task of causal discovery is often interventions. If no causal edge is found, the worst case is no intervention, which will not affect the current states. If the wrong edge is inferred, it may lead to wrong intervention, which may bring worse effects and potential ethical issues. For example, in clinical medicine, if the effect of the drug on the patient is not found, it will not lead to worse results. If the causal edge is misjudged, such as using the wrong drug for intervention, it may cause the patient’s condition to worsen. Therefore, we introduce an additional metric **FDR** to measure how many of the edges identified are false. However, it doesn’t mean that we can remove a edge more easily when we use this indicator. FDR is just another perspective on understanding the effectiveness of algorithms, if focusing only on SHD and F1-score, our method still performs good.

1049
1050
1051
1052

Implementation Details. In experiments with synthetic data, algorithms without guaranteed unique topological ordering were executed 10 times with averaged results. For the fairness of the experiments comparison, we have already blacklisted the anti-causal edges derived from those algorithms that are not designed to work on time series data.

1053

D SUPPLEMENTARY EXPERIMENTS

1054

D.1 EXPERIMENTS ON DIFFERENT CAUSAL STRUCTURES

1057
1058
1059

In the experiments, we constructed causal structures of different interactions, including: i) confounders, ii) Colliders, iii) Mediators, iv) Hybrids. The causal graphs are shown in Figure 3.

1060
1061
1062

In addition to the two structural equations mentioned in the main text, we have also constructed another set of structural equations, consisting of one linear equation and one non-linear equation. The structural equations are as follows:

1063
1064
1065
1066

$$X_j^t = \frac{1}{2} \times X_j^{t-\tau} + \sum_{X_i^{t-\tau} \in Pa(X_j^t) \setminus X_j^{t-\tau}} \left(\frac{2}{5} \times X_i^{t-\tau} \right) + \epsilon_j^t, \quad (16)$$

1067
1068
1069
1070
1071

$$X_j^t = \sin(X_j^{t-\tau}) + \sum_{X_i^{t-\tau} \in Pa(X_j^t) \setminus X_j^{t-\tau}} \left[\frac{1}{5} \times \sin(X_i^{t-\tau}) \right] + \epsilon_j^t, \\ X^0 \sim \mathcal{N}(0, 1), \epsilon^t \sim \mathcal{N}(0, 0.4), \quad (17)$$

Results of the experiments on additional structural equations are presented in Table 5.

1073
1074
1075
1076

As the results shown in Table 5, our CIT-TBP achieves excellent performance in both linear and non-linear cases. Combined with the previous results in Table 1, we can deduce that our method is applicable to a wide range of different linear and nonlinear scenarios.

1077

D.2 EXPERIMENTS ON DIFFERENT NUMBERS OF NODES AND EDGES

1078
1079

To verify the scalability of our algorithm, CIT-TBP, we fixed the number of nodes to 10 and varied the probability of generating edges between every two nodes, set $p=0.1, 0.3$, and 0.5 . The results

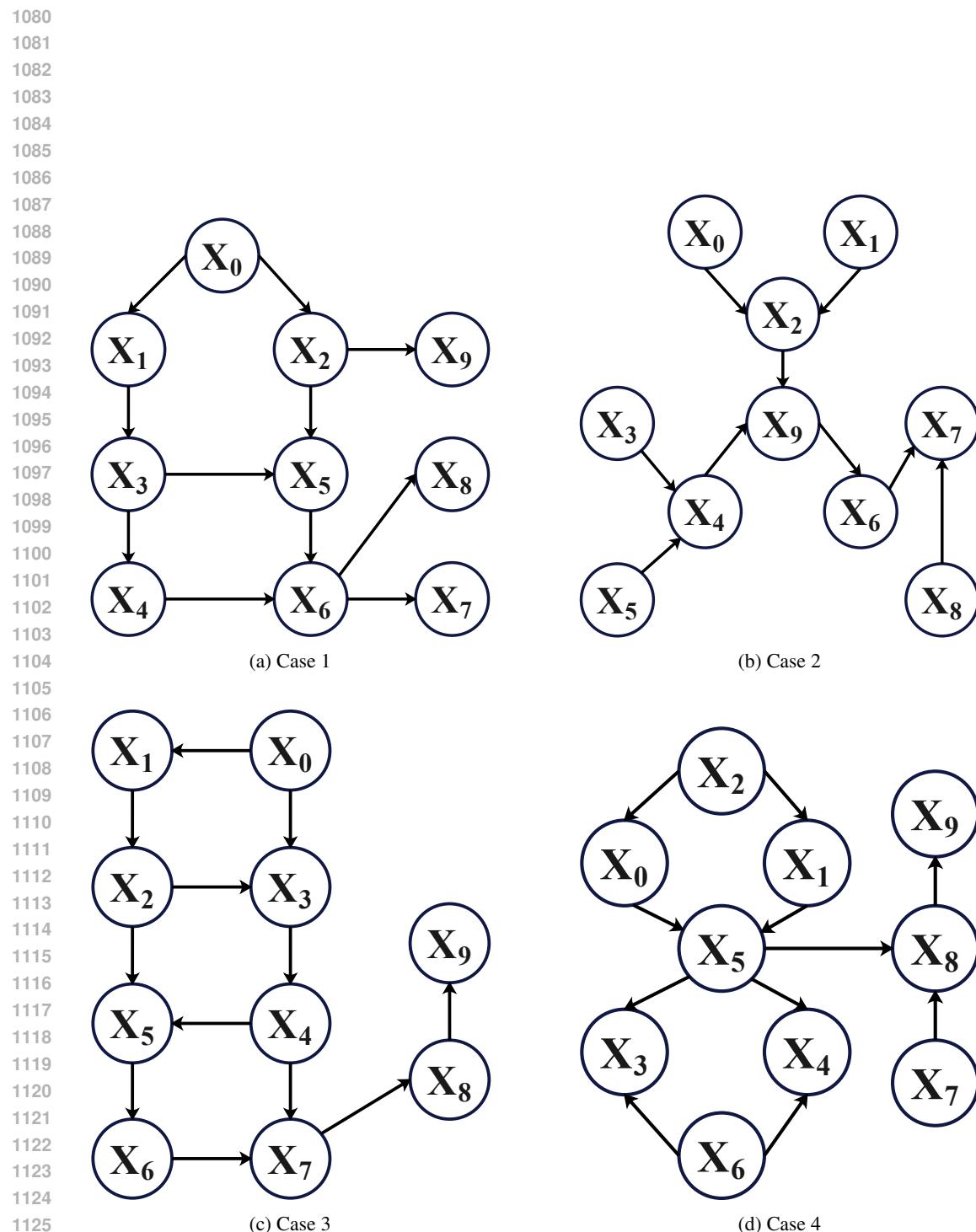


Figure 3: Causal graphs of different cases

1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145

1146 Table 5: Results on different causal structures. (Additional equations.)
 1147

(a) Linear results.

Algorithm	Case1			Case2			Case3			Case4		
	SHD (↓)	F1 (↑)	FDR (↓)	SHD (↓)	F1 (↑)	FDR (↓)	SHD (↓)	F1 (↑)	FDR (↓)	SHD (↓)	F1 (↑)	FDR (↓)
GSP	11.0	0.652	0.423	<u>9.0</u>	0.667	0.350	11.0	0.625	0.423	25.0	0.444	0.636
CUTS+	5.0	0.851	0.259	8.0	<u>0.762</u>	<u>0.304</u>	12.0	0.772	0.371	20.0	0.458	0.593
GC	29.0	0.541	0.630	16.0	0.667	0.469	27.0	0.603	0.569	34.0	0.358	0.739
GOLEM	8.0	0.833	0.286	11.0	0.681	0.429	<u>4.0</u>	0.880	0.214	20.0	0.449	0.607
RHINO	8.0	0.833	0.286	12.0	0.708	0.414	13.0	0.772	0.371	26.0	0.436	0.647
DAGMA	8.0	0.800	0.200	8.0	0.769	0.250	8.0	0.810	0.150	20.0	0.488	0.500
SCORE	2.0	0.900	<u>0.100</u>	<u>9.0</u>	0.769	0.250	7.1	0.810	0.150	20.0	0.488	0.500
PO-LINGAM	10.0	0.737	0.222	11.0	0.667	0.350	6.0	0.857	0.100	15.0	0.585	0.400
LPCMCI+	<u>3.0</u>	<u>0.930</u>	0.130	<u>9.0</u>	<u>0.762</u>	0.304	0.0	1.000	0.000	<u>17.0</u>	0.558	0.455
Ours	2.0	0.952	0.091	8.0	0.769	0.250	4.0	0.909	0.100	<u>17.0</u>	0.558	0.455

(b) Non-linear results.

Algorithm	Case1			Case2			Case3			Case4		
	SHD (↓)	F1 (↑)	FDR (↓)	SHD (↓)	F1 (↑)	FDR (↓)	SHD (↓)	F1 (↑)	FDR (↓)	SHD (↓)	F1 (↑)	FDR (↓)
GSP	18.0	0.593	0.529	14.0	0.694	0.433	21.0	0.542	0.568	29.0	0.436	0.647
CUTS+	14.0	0.702	0.460	11.0	0.708	0.414	14.0	0.746	0.405	21.0	0.453	0.625
GC	21.0	0.588	0.583	15.0	0.667	0.448	30.0	0.564	0.607	28.0	0.441	0.658
GOLEM	8.0	<u>0.833</u>	0.286	12.0	0.681	0.429	8.0	0.800	0.286	18.0	0.571	0.500
RHINO	8.0	0.833	0.286	<u>8.0</u>	0.773	0.320	<u>5.0</u>	<u>0.898</u>	0.185	17.0	0.511	0.538
DAGMA	<u>7.0</u>	0.762	0.273	7.0	<u>0.757</u>	<u>0.222</u>	10.0	0.667	0.385	<u>17.0</u>	0.537	0.450
SCORE	11.4	0.708	0.393	13.2	0.636	0.440	13.7	0.654	0.433	23.0	0.500	0.581
PO-LINGAM	13.0	0.682	0.375	10.0	0.700	0.333	14.0	0.651	0.333	18.0	0.524	0.476
LPCMCI+	6.0	0.870	0.231	14.0	0.681	0.429	4.0	0.917	0.154	22.0	0.478	0.560
Ours	<u>7.0</u>	0.800	0.067	8.0	0.706	0.200	7.0	0.811	0.000	16.0	<u>0.541</u>	0.375

1175 **Bold** indicates the best performance, underline indicates the second-best.
 1176

1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

1188
 1189 are shown in Table 6, respectively. From the results, we can know our method performs the best on
 1190 average across the number of nodes and sparsity, but there is still some room for improvement in
 1191 performance on large and dense graphs.

1192
 1193 Table 6: Results on different graph densities.1194
 1195 (a) Linear causality

1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208	1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208			1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208			1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208		
	Algorithm	$p = 0.1$ SHD (\downarrow)	$p = 0.1$ F1 (\uparrow)	$p = 0.1$ FDR (\downarrow)	$p = 0.3$ SHD (\downarrow)	$p = 0.3$ F1 (\uparrow)	$p = 0.3$ FDR (\downarrow)	$p = 0.5$ SHD (\downarrow)	$p = 0.5$ F1 (\uparrow)
GSP	9.0	0.710	0.313	22.0	0.560	0.440	28.0	0.484	0.464
CUTS+	12.0	0.571	0.333	26.0	0.481	0.480	24.0	<u>0.630</u>	0.324
GC	6.0	<u>0.750</u>	0.294	25.0	0.542	0.529	27.0	0.652	0.473
GOLEM	12.0	0.647	0.421	26.0	0.491	0.536	24.0	0.548	0.393
RHINO	6.0	0.727	0.333	22.0	0.489	0.560	23.0	0.571	0.529
DAGMA	8.0	0.733	<u>0.267</u>	24.0	0.444	0.500	26.0	0.444	0.400
SCORE	8.0	0.733	<u>0.267</u>	26.4	0.440	0.560	27.7	0.522	0.486
PO-LINGAM	9.0	0.710	0.313	19.0	<u>0.558</u>	0.333	21.0	0.618	<u>0.190</u>
LPCMCI+	12.0	0.595	0.500	25.0	0.480	0.520	24.0	0.609	0.400
Ours	6.0	0.786	0.154	18.0	0.524	<u>0.353</u>	20.0	<u>0.630</u>	0.150

1209
 1210 (b) Non-linear causality

1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223	1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223			1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223			1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223		
	Algorithm	$p = 0.1$ SHD (\downarrow)	$p = 0.1$ F1 (\uparrow)	$p = 0.1$ FDR (\downarrow)	$p = 0.3$ SHD (\downarrow)	$p = 0.3$ F1 (\uparrow)	$p = 0.3$ FDR (\downarrow)	$p = 0.5$ SHD (\downarrow)	$p = 0.5$ F1 (\uparrow)
GSP	12.0	0.667	0.429	28.0	0.523	0.575	31.0	0.453	0.585
CUTS+	5.0	<u>0.737</u>	0.417	15.0	0.571	0.600	24.0	0.455	0.706
GC	13.0	0.600	0.520	33.0	0.450	0.673	34.0	0.581	0.590
GOLEM	12.0	0.647	0.421	28.0	0.453	0.571	<u>23.0</u>	0.581	0.357
RHINO	5.0	<u>0.737</u>	0.417	15.0	<u>0.571</u>	0.600	24.0	0.455	0.706
DAGMA	<u>10.0</u>	0.688	0.353	27.0	0.453	<u>0.571</u>	22.0	0.667	<u>0.313</u>
SCORE	11.2	0.667	0.389	27.0	0.464	0.581	29.4	0.493	0.514
PO-LINGAM	<u>8.0</u>	0.750	<u>0.294</u>	25.0	0.490	<u>0.500</u>	26.0	0.517	0.375
LPCMCI+	<u>8.0</u>	0.750	<u>0.294</u>	<u>25.0</u>	0.480	0.520	25.0	<u>0.606</u>	0.375
Ours	<u>8.0</u>	0.714	0.231	15.0	0.579	0.154	22.0	0.549	0.176

1224
 1225 **Bold** indicates the best performance, underline indicates the second-best.1226
 1227 Then we set the probability of generating edges to $p=0.1$, and gradually increased the number of
 1228 nodes N in the causal graphs. Specifically, we tested the causal discovery performance on graphs
 1229 with 5, 10, 20, 30, and 50 nodes. The results are shown in Table 7 and Table 9.
1230
 1231 In addition, we calculated the average ranking of the performance of these metrics in terms of the
 1232 number of nodes, and subsequently calculated the overall average ranking of several metrics under
 1233 each method. The results are shown in Table 8 and Table 10.
1234
 1235 D.3 EXPERIMENTS ON LATENT FACTOR EXCLUSION1236
 1237 We consider three cases in the experiments (Jin et al., 2024; Kaltenpoth & Vreeken, 2023): Case A)
 1238 latent root nodes, Case B) latent mediators between measured variables, and Case C) complex latent
 1239 structures in the general case. In the main text, we showed the causal graphs and results in Case A.
 Here we showed the causal graphs and experiment results of Case B and Case C.
1240
 1241 The causal graphs for Case B are shown in Figure (4a), and Case C are shown in Figure (4b). We
 conducted our experiments on both linear and non-linear structural equations and evaluated the
 performance through SHD and ES. Experimental results in Table 11 and Table 12 show that our

1242 Table 7: Performance comparison of different methods at varying node scales (Linear)
1243

(a) N = 5				(b) N = 10			
Method	SHD (↓)	F1 (↑)	FDR (↓)	Method	SHD (↓)	F1 (↑)	FDR (↓)
CUTS+	0.0	1.000	0.000	CUTS+	5.0	<u>0.762</u>	0.333
RHINO	4.0	0.778	0.000	RHINO	12.0	0.533	0.333
DAGMA	<u>1.0</u>	<u>0.933</u>	0.000	DAGMA	8.0	0.733	<u>0.267</u>
SCORE	2.0	0.750	0.250	SCORE	8.0	0.733	<u>0.267</u>
PO-LINGAM	2.0	0.875	<u>0.125</u>	PO-LINGAM	9.0	0.710	0.313
Ours	3.0	0.769	0.000	Ours	<u>6.0</u>	0.786	0.154

(c) N = 20				(d) N = 30			
Method	SHD (↓)	F1 (↑)	FDR (↓)	Method	SHD (↓)	F1 (↑)	FDR (↓)
CUTS+	18.0	0.667	0.500	CUTS+	185.0	0.297	0.427
RHINO	45.0	0.505	<u>0.333</u>	RHINO	199.0	0.295	0.366
DAGMA	44.0	0.500	<u>0.551</u>	DAGMA	128.0	0.313	0.730
SCORE	37.1	0.537	0.488	SCORE	116.6	0.346	0.686
PO-LINGAM	33.0	<u>0.560</u>	0.417	PO-LINGAM	68.0	0.521	<u>0.373</u>
Ours	<u>24.0</u>	0.667	0.273	Ours	<u>83.0</u>	0.440	0.507

(e) N = 50			
Method	SHD (↓)	F1 (↑)	FDR (↓)
CUTS+	427.0	0.237	0.570
RHINO	391.0	0.239	0.618
DAGMA	353.0	0.255	0.793
SCORE	295.2	0.295	0.739
PO-LINGAM	<u>180.0</u>	0.384	<u>0.472</u>
Ours	173.0	<u>0.370</u>	0.433

1263 **Bold** indicates the best performance, underline indicates the second-best.
12641273 Table 8: Performance rankings of different methods. (Linear)
1274

Method	SHD Rank	F1 Rank	FDR Rank	Avg. Rank
Ours	1	1	1	1
PO-LINGAM	2	2	3	2
CUTS+	2	3	4	3
SCORE	4	4	5	4
DAGMA	5	4	6	5
RHINO	6	6	2	6

1283
1284 algorithm performs best in different scenarios, which also further illustrates the effectiveness of our
1285 algorithm in eliminating the influence of latent factors.
12861287 E THE USE OF LARGE LANGUAGE MODELS (LLMs)
12881290 The authors used a large language model (LLM) solely for writing assistance, including text polishing-
1291 ing and formatting. The LLM did not contribute to the research methodology, analysis, or scientific
1292 conclusions.
1293
1294
1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

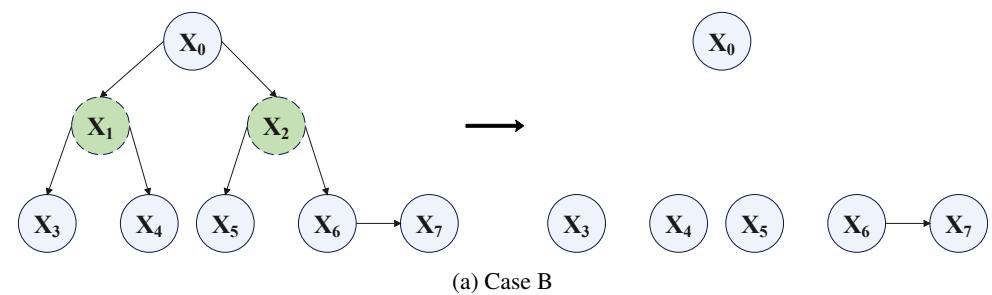
1345

1346

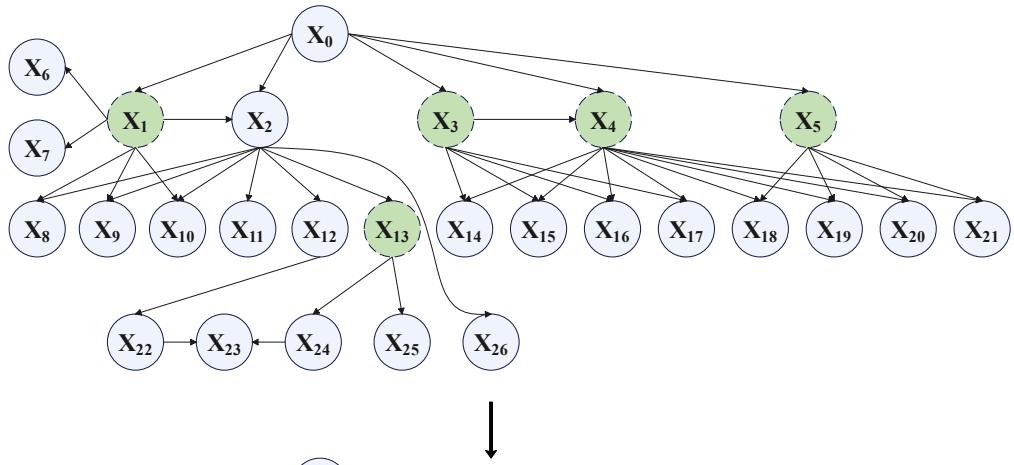
1347

1348

1349



(a) Case B



(b) Case C

Figure 4: Green dashed nodes: latent factors. Blue solid nodes: observed variables. (a) Causal graphs for Case B. The left section represents the true underlying causal mechanisms, including unmeasured confounding. The right section depicts the observable variables and their relationships as available in the data. (b) Causal graphs for Case C. The upper section represents the true underlying causal mechanisms, including unmeasured confounding. The lower section depicts the observable variables and their relationships as available in the data.

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

Table 9: Performance comparison of different methods at varying node scales (Non-linear)

(a) N = 5				(b) N = 10			
Method	SHD (↓)	F1 (↑)	FDR (↓)	Method	SHD (↓)	F1 (↑)	FDR (↓)
CUTS+	<u>2.0</u>	<u>0.857</u>	0.143	CUTS+	13.0	0.514	0.250
RHINO	6.0	0.600	0.143	RHINO	17.0	0.512	0.083
DAGMA	6.0	0.588	0.444	DAGMA	<u>12.0</u>	0.625	0.412
SCORE	4.3	0.667	0.400	SCORE	13.0	0.629	0.450
PO-LINGAM	1.0	0.941	<u>0.111</u>	PO-LINGAM	8.0	0.750	0.294
Ours	<u>2.0</u>	<u>0.857</u>	0.000	Ours	8.0	<u>0.714</u>	<u>0.231</u>

(c) N = 20				(d) N = 30			
Method	SHD (↓)	F1 (↑)	FDR (↓)	Method	SHD (↓)	F1 (↑)	FDR (↓)
CUTS+	107.0	0.260	<u>0.306</u>	CUTS+	260.0	0.247	0.341
RHINO	51.0	0.418	0.472	RHINO	197.0	0.288	0.451
DAGMA	<u>35.0</u>	<u>0.539</u>	0.462	DAGMA	<u>73.0</u>	0.490	0.417
SCORE	58.0	0.444	0.652	SCORE	140.7	0.321	0.741
PO-LINGAM	39.0	0.519	0.500	PO-LINGAM	86.0	0.449	0.521
Ours	25.0	0.606	0.259	Ours	70.0	<u>0.471</u>	<u>0.396</u>

(e) N = 50			
Method	SHD (↓)	F1 (↑)	FDR (↓)
CUTS+	<u>175.0</u>	<u>0.367</u>	0.720
RHINO	271.0	0.303	0.661
DAGMA	166.0	0.384	0.388
SCORE	386.5	0.232	0.821
PO-LINGAM	198.0	0.384	<u>0.547</u>
Ours	224.0	0.332	0.644

Bold indicates the best performance, underline indicates the second-best.

Table 10: Performance rankings of different methods. (Non-linear)

Method	SHD Rank	F1 Rank	FDR Rank	Avg Rank
Ours	1	2	1	1
PO-LINGAM	2	1	4	2
DAGMA	3	3	4	3
CUTS+	4	5	2	4
RHINO	6	6	3	5
SCORE	5	4	6	6

Table 11: The results on latent factor exclusion. (Case B)

Methods	Linear		Non-linear	
	SHD (↓)	Error-Score (↓)	SHD (↓)	Error-Score (↓)
FCI	1.0	0.0	1.0	0.0
LPCMCI+	5.0	4.0	8.0	7.0
PO-LINGAM	4.0	4.0	4.0	3.0
Ours	1.0	0.0	0.0	0.0

Bold indicates the best performance.

1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426

Table 12: The results on latent factor exclusion. (Case C)

Methods	Linear		Non-linear	
	SHD (↓)	Error-Score (↓)	SHD (↓)	Error-Score (↓)
FCI	23.0	16.0	77.0	72.0
LPCMCI+	34.0	28.0	71.0	65.0
PO-LINGAM	28.0	18.0	34.0	25.0
Ours	13.0	4.0	32.0	25.0

1435 **Bold** indicates the best performance.
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457