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Abstract

Second-order optimization approaches like the generalized Gauss-Newton method are consid-
ered more powerful as they utilize the curvature information of the objective function with
preconditioning matrices. Albeit offering tempting theoretical benefits, they are not easily
applicable to modern deep learning. The major reason is due to the quadratic memory and
cubic time complexity to compute the inverse of the matrix. These requirements are infeasible
even with state-of-the-art hardware. In this work, we propose Ginger, an eigendecomposition
for the inverse of the generalized Gauss-Newton matrix. Our method enjoys efficient linear
memory and time complexity for each iteration. Instead of approximating the conditioning
matrix, we directly maintain its inverse to make the approximation more accurate. We
provide the convergence result of Ginger for non-convex objectives. Our experiments on
different tasks with different model architectures verify the effectiveness of our method.

1 Introduction

Second-order optimization methods are usually more powerful by considering the curvature information of
the objective function with preconditioning matrices. However, such methods are impractical due to the
prohibitive memory and time cost. Specifically, for a neural network with d parameters, the full-matrix
preconditioning requires quadratic memory to store and cubic time for inverse at each iteration. Consider a
Transformer (Vaswani et al., 2017) model with 80M parameters, the full-matrix preconditioning requires 3
petabytes memory solely to store the matrix, not to mention the computation time to obtain its inverse.

In practice, deep learning models are usually trained with the diagonal approximation of such matrices, such
as AdaGrad (Duchi et al., 2011) and its variants (Hinton et al., 2012; Kingma & Ba, 2015; Liu et al., 2023).
These methods only require linear memory and linear time complexity by using the element-wise inverse of
the preconditioning matrix. However, the diagonal approximation over-simplifies the curvature information
because it ignores the off-diagonal elements that contain the correlation between parameters.

There are numerous attempts to approximate the full-matrix preconditioning with affordable memory and
time complexity. For instance, K-FAC (Martens & Grosse, 2015; Grosse & Martens, 2016; Martens et al.,
2018) uses the Kronecker-factored approximation to reconstruct the preconditioning matrix. However,
such approximation is limited to specific model architectures like feed-forward neural networks (FFNs) or
convolutional neural networks (CNNs). More importantly, the complexity is super-linear in the model size,
making it impractical to nowadays large models. Recently, He et al. (2022) proposed a quasi-natural gradient
(QNG) method that approximates the full-matrix preconditioning by factorizing it into the product of multiple
simple matrices. This approximation allows the QNG method to achieve linear memory and time complexity.
However, we discuss in Observation 1 that this approximation tends to be inaccurate, leading to a worse
approximation.

In this work, we propose Ginger, a new derivation to approximate the preconditioning matrix without
factorization. Ginger enjoys the same linear memory and time complexity as QNG, but with a more accurate
approximation. We provide the convergence result of Ginger for non-convex objectives. Empirically, we
show the effectiveness of Ginger across different tasks and model architectures.
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2 Approach

2.1 Background: generalized Gauss–Newton and natural gradient methods

In the context of machine learning, we usually model a conditional distribution by defining

pθ(y|x) := r(y|f(θ; x)), (1)

where f is a function on the input x with some model parameter θ, and r(y|z) is a distribution in the
exponential family (e.g., softmax). The parameter θ ∈ Rd is trained by maximum likelihood estimation
(MLE), for a given dataset D = {(xi, yi)}m

i=1. This is equivalent to minimizing the negative log-likelihood:

L(θ) := 1
|D|

∑
(x,y)∈D

L(θ; x, y) = 1
|D|

∑
(x,y)∈D

[− log pθ(y|x)] , (2)

where L(θ) and L(θ; x, y) are the losses for the whole dataset and for a sample, respectively.

Second-order optimization methods Nocedal & Wright (1999) are appealing for solving the optimization
problem above because they often enjoy faster convergence by utilizing the curvature information. Specifically,
Newton’s method, a well-known second-order approach, updates the parameters with the following rule:

θt+1 ← θt − ηt

(
∇2L(θt)

)−1∇L(θt), (3)

where ηt > 0 is the learning rate and ∇2L(θt) is the second-order derivative, known as the Hessian matrix.

The generalized Gauss–Newton method. The standard Newton’s method may not work well for
non-convex optimization, because the preconditioning matrix may not be positive semi-definite. Ortega &
Rheinboldt (2000) show that the Hessian matrix can be decomposed as

∇2L(θ) = 1
|D|

∑
(x,y)∈D

[
∂f(θ; x)

∂θ

⊤
∂2L(θ; x, y)
∂f(θ; x)2

∂f(θ; x)
∂θ

+
c∑

i=1

∂2f (i)(θ; x)
∂θ2

∂L(θ; x, y)
∂f (i)(θ; x)

]
,

where ∂f(θ)
∂θ is the Jacobian matrix of f(θ), and f (i)(θ) refers to the ith element of the function f(θ) in (1).

In practice, the second term inside the summation is found to be less important than the first one (Sankar
et al., 2021). This finding results in the following biased approximation of the Hessian matrix by

G := 1
|D|

∑
(x,y)∈D

∂f(θ; x)
∂θ

⊤
∂2L(θ; x, y)
∂f(θ; x)2

∂f(θ; x)
∂θ

, (4)

where G is named the generalized Gauss–Newton (GGN) matrix (Ortega & Rheinboldt, 2000; Schraudolph,
2002).

The connection to natural gradient. In our settings where r(y|z) is in the exponential family, the
matrix in the middle can be rewritten as

∂2L(θ; x, y)
∂f(θ; x)2 = E

ŷ∼r(·|f(θ;x))

[
∂ log r(ŷ|f(θ; x))

∂f(θ; x)
∂ log r(ŷ|f(θ; x))

∂f(θ; x)

⊤]
, (5)

which is a matrix independent of the target label y. Putting (5) into (4), we have

G = 1
|D|

∑
(x,·)∈D

E
ŷ∼pθ(·|x)

[
∇θ log pθ(ŷ|x)∇θ log pθ(ŷ|x)⊤

]
. (6)

The last equation is commonly named the Fisher information matrix (Fisher, 1920) in the context of machine
learning. This connection has been established in previous literature (Martens, 2020). It reveals a simple
way to approximate the Hessian matrix by solely using the first-order derivatives when r(y|f(θ; x)) is in
the exponential family. This condition actually holds in many important applications, such as language
models (Vaswani et al., 2017), image classifiers (He et al., 2016), and diffusion models (Ho et al., 2020). We
hence leverage the connection and only consider the form of G given by Equation (6) in this paper.
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Stochastic natural gradient descent. The computation of the exact GGN matrix G is usually not
feasible because the dataset may contain an enormous number of data points. A remedy to this is maintaining
an exponential moving average of Gt at iteration step t ∈ N. This can be computed iteratively using the
following rule:

Gt ← αGt−1 + (1− α)dtd
⊤
t , (7)

where for simplicity we define

dt := 1√
|Bt|

∑
(x,·)∈Bt

∇θt log pθt(ŷ|x). (8)

Here, Bt is a mini-batch independently sampled to the training data, and ŷ is a sampled prediction drawn
from pθt for each input x. The decay rate α ∈ (0, 1) controls the strength of the moving average, and G0 is
an initialization usually set as an identity matrix. If θt is fixed, it is easy to verify that this estimation in
expectation converges to the exact G when t→∞.

Although this seems to solve the problem of large datasets, the memory complexity for storing Gt is at least
O(d2). Even worse, the pseudoinverse of Gt takes O(d3) time. Preferably, both time and memory complexities
should not exceed linear to make the GGN method feasible for modern large neural networks.

2.2 Quasi-natural gradient method

Recently, He et al. (2022) proposed a novel method, called quasi-natural gradient (QNG), that constructs the
GGN matrix in linear space and time. The procedure first factorizes Gt = At+1A⊤

t+1, since Gt should always
be positive semi-definite (PSD). The rule for updating At is given by:

At =A1K1K2 . . . Kt−1 = (
√

αI + β1q1q⊤
1 )︸ ︷︷ ︸

=:K1

. . . (
√

αI + βt−1qt−1q⊤
t−1)︸ ︷︷ ︸

=:Kt−1

, (9)

where A1 is again set to identity, and we define qt := A−1
t dt and βt = 1

∥qt∥2 (
√

α + (1− α)∥qt∥2 −
√

α). It is
then easy to show that

Gt =AtKtK
⊤
t A⊤

t = αGt−1 + (1− α)dtd
⊤
t , (10)

which recovers the form of the exponential moving average defined in Equation (7).

However, it is impossible to store all Kt matrices from the beginning. Thus, QNG intuitively maintains the
last τ matrices and estimate each At as

At ≈ Ât := A1K̂t−τ K̂t−τ+1 . . . K̂t−1 = (
√

αI + βt−τ q̂t−τ q̂⊤
t−τ )︸ ︷︷ ︸

=:K̂t−τ

. . . (
√

αI + βt−1q̂t−1q̂⊤
t−1)︸ ︷︷ ︸

=:K̂t−1

, (11)

where K̂t depends on q̂t, which in turn depends on truncated Ât by q̂t := Â−1
t dt.

Given the derivation above, we state our observation as follows.
Observation 1. The QNG in He et al. (2022) essentially approximates the GGN matrix with the form
Gt = αmin(τ,t)I + QtQ

⊤
t for some Qt ∈ Rd×2 min(τ,t).

This can be seen by unrolling the construction of Ât and looking into each multiplication of K̂ matrices:

(
√

αI + βt−1qt−1q⊤
t−1)(

√
αI + βtqtq

⊤
t ) (12)

=αI +
(√

αβtqt + βt−1βt(q⊤
t−1qt)qt−1

)
q⊤

t +
√

αβt−1qt−1q⊤
t−1. (13)

It is obvious that the rank of the sum of the last two terms is at most two. By repeating the multiplication τ
times, we haveAt − ατ/2I at most of rank τ , implying that Gt − ατ I = AtA

⊤
t − ατ I has at most rank 2τ .

We argue that this practice does not capture the most useful information in Gt, as the optimal low-rank
approximation QtQ

⊤
t is given by the spectral decomposition or singular value decomposition. We thus propose

a QNG variant to maintain the significant low-rank approximation in an online fashion while keeping the
space and time complexities linear in the number of model parameters.
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2.3 Our approach: Ginger

Motivated by the above observation, we propose a novel QNG variant, called Ginger, that directly models a
damped GGN matrix in the form of

Gt,γ = γI + Ut diag(σt)U⊤
t , (14)

where t is the update step and γ is the damping strength. The second term Ut diag(σt)U⊤
t is a low-rank

approximation of the GGN matrix (7), where Ut ∈ Rd×τ is a semi-orthogonal matrix,1 and 0 ⪯ σt ∈ Rτ is
the vector of eigenvalues sorted in the descending order, for a rank of τ .

Our approach generalizes He et al. (2022)’s QNG form as we also decompose the GGN matrix in a diagonal
plus low-rank form. However, we directly model the low-rank part by spectral decomposition, whereas the
diagonal is controlled by a damping hyperparameter γ. In this way, we can model the optimal approximation
of the low-rank approximation by the Eckart–Young theorem Eckart & Young (1936).

Querying the update direction. Assuming the matrix Gt,γ is already known, we are interested in the
update direction G−1

t,γg for any vector g ∈ Rd, such as g being the gradient of loss wrt the parameters. This
can be obtained through the Woodbury matrix identity (Lemma 3):

G−1
t,γg =(γI + Ut diag(σt)U⊤

t )−1g

=(γ−1I − Ut (γ2I + γ diag(σt))−1 diag(σt)︸ ︷︷ ︸
Kt,γ

U⊤
t )g, (15)

where Kt,γ is a diagonal matrix that can be computed in O(τ) time (recall σt ∈ Rτ ). Specifically, we have
the following relationship

K
(i,i)
t,γ = σ

(i)
t

γ2 + γσ
(i)
t

(16)

between the ith elements in Kt,γ and σt.

By computing the result from the right to the left, we can obtain the update direction in O(dτ) time.

Update rules. Assuming Gt−1,γ is already constructed and the new gradient is dt, we would like to use
the moving average to update the undamped GGN approximation, i.e., the second term of Equation (14).
Without restricting its rank (indicated by a tilde), we have

G̃−1
t,γ =(γI + αGt−1,0 + (1− α)dtd

⊤
t )−1 (EMA)

=(αGt−1,γ/α + (1− α)dtd
⊤
t )−1

=α−1G−1
t−1,γ/α − βthth

⊤
t

=γ−1I − (Ut−1(α−1Kt−1,γ/α)U⊤
t−1 + βthth

⊤
t ), (17)

where ht := G−1
t,γ/αdt and βt := α−1(1−α)

α+(1−α)h⊤
t dt

are obtained by applying the Woodbury matrix identity again.

To maintain a low-rank approximation with rank τ mimicking the behavior of G̃−1
t,γ , we would like to find a

matrix Utdiag(σt)U⊤
t such that the error

ϵ(Ut, σt) :=∥G̃−1
t,γ − (γI + Utdiag(σt)U⊤

t )−1∥2

=∥Ut−1(α−1Kt−1,γ/α)U⊤
t−1 + βthth

⊤
t − UtKt,γU⊤

t ∥2

is minimized.
1Meaning U⊤

t Ut = I.
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We observe that UtKt,γU⊤
t has a rank of at most τ , so the optimal solution is given by the truncated SVD of

Ut−1(α−1Kt−1,γ/α)U⊤
t−1 + βthth

⊤
t . The efficient computation of the SVD is deferred to the next subsection.

After obtaining Kt, we will find a new σt for our GGN approximation in Equation (14). This can be done by
matching the diagonal of Kt with Equation (16), which yields

σ
(i)
t =

γ2K
(i,i)
t,γ

1− γK
(i,i)
t,γ

(18)

for any i ∈ {1, . . . , τ}.

Note that σt is guaranteed to be non-negative. This can be shown through Equation (17) by noticing that
G̃t,γ is positive definite due to EMA, which implies:

0 ⪯ Ut−1(α−1Kt−1,γ/α)U⊤
t−1 + βthth

⊤
t ≺ γ−1I (19)

for any iteration step t. Here, matrix comparisons A ⪯ B and A ≺ B mean that B−A is positive semi-definite
and positive definite, respectively.
Observation 2. By construction, Ginger finds the matrix UtKt,γU⊤

t that is the closest rank-τ at ap-
proximation to the target inverse term Mt at every step. This means for any other rank-τ matrix Z, we
have

∥Mt − UtKt,γU⊤
t ∥2 ≤ ∥Mt − Z∥2.

By contrast, QNG is not guaranteed to minimize the spectral norm distance.

Efficient SVD. We now turn to the efficient computation of the SVD of Ut−1(α−1Kt−1,γ/α)U⊤
t−1 + βthth

⊤
t .

By Equation (16), we know that α−1Kt−1,γ/α is a sorted diagonal matrix and Ut−1 is semi-orthogonal;
therefore, the first term itself is in the SVD form. Observing βthth

⊤
t is rank-1, we can efficiently compute the

new SVD. Specifically, we use the approach in Brand (2006), but our calculation will be simplified, as our
SVD is essentially eigendecomposition because the matrix is positive semi-definite.

We first rewrite the update in the compact form:

Ut−1(α−1Kt−1,γ/α)U⊤
t−1 + βthth

⊤
t =

(
Ut−1 ht

) (
α−1Kt−1,γ/α 0

0 βt

) (
Ut−1 ht

)⊤
.

We notice that
(

Ut−1 ht

)
can be factorized as

(
Ut−1 pt

) (
I U⊤

t−1ht

0 rt

)
,

where rt = ∥ht−Ut−1U⊤
t−1ht∥ and pt = (ht−Ut−1U⊤

t−1ht)/rt. In this way,
(

Ut−1 pt

)
is a semi-orthogonal

matrix.

Therefore, we have new factorization (
Ut−1 pt

)
Ct

(
Ut−1 pt

)⊤
,

where Ct is defined as (
I U⊤

t−1ht

0 rt

) (
α−1Kt−1,γ/α 0

0 βt

) (
I U⊤

t−1ht

0 rt

)⊤

with a shape of (τ + 1)× (τ + 1).

With O(τ3) time, we can obtain the SVD of Ct = V K ′V ⊤. It is easy to see that

U ′
tK

′U ′
t
⊤ = Ut−1(α−1Kt−1,γ/α)U⊤

t−1 + βhth
⊤
t ,
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Algorithm 1: Our approach: Ginger
Input: Decay rate α, damping factor γ, rank τ
Input: Initial parameters θ0
def r1u(U, K, d):

/* returns the SVD of UKU⊤ + dd⊤ */
U, K ← SVD(UKU⊤ + dd⊤) ▷ fast version
return U (:,1:τ), K(1:τ) ▷ O(τ2(d + τ))

def drt(U, σ, g):
/* calculates the update direction (γI + U diag(σ)U⊤)−1g */
Σ← diag(σ) ▷ O(τ)
Kγ ← (γ2I + γΣ)−1Σ ▷ O(τ)
g′ ← UKγU⊤g ▷ O(dτ)
return γ−1g − g′ ▷ O(d)

def upd(U, σ, d):
/* updates U and σ with d */
h← drt(U, ασ, d) ▷ O(dτ)
Σ← diag(σ) ▷ O(τ)
Kγ/α ← ((γ/α)2I + (γ/α)Σ)−1Σ ▷ O(τ)
β ← α−1(1−α)

α+(1−α)h⊤d
▷ O(d)

U, K ← r1u(U, Kγ/α,
√

βh) ▷ O(τ2(d + τ))
σ ← γ2K(1− γK)† ▷ O(τ)
return U, σ

/* Initialization */
U0 ← random semi-orthogonal matrix
σ0 ← 0
for t← 0 . . . T − 1 do

/* Update the optimizer state first */
Learning rate schedule ηt

dt ← Equation (8)
Ut+1, σt+1 ← upd(Ut, σ, dt) ▷ O(τ2(d + τ))
/* Update parameters */
gt ← drt(Ut+1, σt+1,∇L(θt)), (Ut+1, σt+1)
θt+1 ← θt − ηtgt

t← t + 1
return θT

where U ′
t =

(
Ut−1 pt

)
V is semi-orthogonal and K ′ is a diagonal matrix. We thus conclude that (U ′

t , K ′)
is the SVD of Ut−1(α−1Kt−1,γ/α)U⊤

t−1 + βthth
⊤
t .

Note that U ′
t ∈ Rd×(τ+1) and K ′

t ∈ Rτ+1 now have one more dimension than the previous iteration. We hence
truncate the last column of U ′

t and the last element of K ′
t to obtain Ut ∈ Rd×τ and Kt ∈ Rτ , respectively.

The truncated Ut is still semi-orthogonal and Kt is still diagonal. Finally, we use Equation (18) to translate
Kt back to σt.

The total computation of the process takes O(dτ2 + τ3) time and O(dτ + τ2) space. Under a typical choice
of τ where τ ≪

√
d, we can simplify the complexities as O(dτ2) and O(dτ) for time and space, respectively.

Therefore, we conclude that the algorithm is linear to the number of parameters d when τ ≪
√

d.

The overall algorithm is summarized in Algorithm 1.
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3 Theoretical analyses

We include the convergence proof of our method to show the sanity of our method. Before we present the
theoretical analyses, we first show the following lemma that bounds the eigenvalues of the preconditioning
matrix Gt,γ .

We make the following assumptions to obtain the convergence guarantee, where the first three are standard
in the stochastic optimization analysis Bottou et al. (2018). The last assumption is especially for our method,
which essentially assumes the gradient is finite.
Assumption 1 (Lipschitz gradient). The gradient of the loss function ∇θL is L-Lipschitz continuous with
L > 0. This means that we have ∥∇L(θ1)−∇L(θ2)∥ ≤ L∥θ1 − θ2∥ for all θ1, θ2 ∈ Rd.
Assumption 2 (Bounded gradient variance). There exists a constant Mg > 0 such that for all t ≥ 1,

E
(xi,yi)

[∥∇θL(θt; xi, yi)∥2] ≤M2
g . (20)

Assumption 3 (Learning rate schedule). The learning rate schedule satisfies the following conditions:
∞∑

t=1
ηt =∞ and

∞∑
t=1

η2
t <∞. (21)

Assumption 4 (Bounded Fisher vector variance). The vector dt used for the rank-one Fisher update has a
bounded second moment. There exists a constant Md > 0 such that for all t ≥ 1:

E
t
[∥dt∥2] ≤M2

d .

Under these assumptions, we obtain the following lemmas:
Lemma 1 (Eigenvalue bounds). For all t ≥ 0, the eigenvalues of the inverse preconditioner are bounded.
Specifically, λmax(G−1

t,γ) = γ−1 and there exists a constant λ′
min > 0 such that E[λmin(G−1

t,γ)] ≥ λ′
min.

Proof. See Appendix B.

Lemma 2 (One-step progress). We have

E[L(θt+1)] ≤ E[L(θt)]− ηt E[∇L(θt)⊤G−1
t+1,γ∇L(θt)] +

Lη2
t M2

g

2γ2 .

for all t ≥ 1.

Proof. See Appendix B.

Theorem 1. Under the above assumptions, we have

lim
T →∞

inf
t=0,...,T

∥∇L(θt)∥2 = 0. (22)

Proof. From Lemma 2, summing from t = 0 to T − 1 gives:
T −1∑
t=0

ηt E[∇L(θt)⊤G−1
t+1,γ∇L(θt)] ≤ E[L(θ0)]− E[L(θT )] +

LM2
g

2γ2

T −1∑
t=0

η2
t .

Since L is bounded below by Lmin (Assumption 1) and
∑

η2
t <∞ (Assumption 3), the right-hand side is

bounded above by a finite constant C as T →∞.
∞∑

t=0
ηt E[∇L(θt)⊤G−1

t+1,γ∇L(θt)] ≤ C <∞.
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Table 1: The results on the CIFAR-100 dataset.

Optimizers ResNet-18 ResNet-50

Acc ↑ Lval L̂train
10−6 FLOPs Mem Acc ↑ Lval L̂train

10−6 FLOPs Mem
Momentum 71.89 1.320 10.47 2.21e9 3.15 74.42 1.276 11.47 1.13e10 5.92
Adam 71.61 1.249 9.57 2.36e9 3.16 71.59 1.241 60.65 1.16e10 6.50
DNG 71.04 1.433 12.82 3.02e9 3.19 70.72 1.394 61.01 1.43e10 6.55
QNG (τ=1) 71.74 1.374 23.83 3.56e9 3.20 74.30 1.290 32.29 1.80e10 6.56
QNG (τ=2) 72.30 1.347 23.97 3.70e9 3.25 73.92 1.255 42.12 1.83e10 6.78
QNG (τ=4) 72.32 1.323 27.02 3.97e9 3.41 74.51 1.287 12.53 1.89e10 7.30
QNG (τ=8) 71.98 1.318 15.91 4.51e9 3.59 75.12 1.311 6.98 2.00e10 7.66
QNG (τ=16) 71.76 1.290 13.60 5.59e9 3.92 74.53 1.254 6.35 2.23e10 8.65
QNG (τ=32) 71.95 1.321 18.08 7.74e9 4.60 74.27 1.267 9.37 2.68e10 10.66
Ginger (τ=1) 72.04 1.265 117.8 3.77e9 3.19 74.54 1.269 37.07 1.84e10 6.60
Ginger (τ=2) 72.66 1.270 22.78 3.80e9 3.25 74.99 1.245 11.86 1.85e10 6.66
Ginger (τ=4) 72.90 1.263 13.37 4.08e9 3.33 75.83 1.249 3.90 1.91e10 6.91
Ginger (τ=8) 72.89 1.242 11.18 4.66e9 3.56 75.73 1.255 4.26 2.03e10 7.36
Ginger (τ=16) 73.17 1.236 6.41 5.82e9 3.90 75.53 1.202 3.82 2.28e10 8.20
Ginger (τ=32) 73.15 1.210 9.88 8.16e9 4.61 75.48 1.216 5.27 2.77e10 10.17

We use a probabilistic splitting. Define the "good" event Et := {λmax(σt+1) ≤ κ}, where we set κ = 2M2
d ,

corresponding to the choice ϵ = 1/2 in the proof of Lemma 1. This ensures Pr(Et) ≥ 1/2. When Et occurs,
λmin(G−1

t+1,γ) = 1
γ+λmax(σt+1) ≥

1
γ+κ .

We can split the expectation:

E[∇L(θt)⊤G−1
t+1,γ∇L(θt)]

=E[∇L(θt)⊤G−1
t+1,γ∇L(θt) | Et] Pr(Et) + E[∇L(θt)⊤G−1

t+1,γ∇L(θt) | Ec
t ] Pr(Ec

t )
≥E[∇L(θt)⊤G−1

t+1,γ∇L(θt) | Et] Pr(Et) (Since the term is non-negative)
≥E[λmin(G−1

t+1,γ)∥∇L(θt)∥2 | Et] Pr(Et)

≥ 1
γ + κ

E[∥∇L(θt)∥2 | Et] Pr(Et).

The term ∇L(θt) is a function of the history up to step t− 1. The event Et depends on the random sample dt,
which is drawn independently of that history. Consequently, the random variable ∥∇L(θt)∥2 is independent
of the event Et. For a random variable X that is independent of an event A, we have E[X | A] = E[X].
Therefore:

E[∥∇L(θt)∥2 | Et] = E[∥∇L(θt)∥2].

This gives us:
E[∇L(θt)⊤G−1

t+1,γ∇L(θt)] ≥
1

γ + κ
E[∥∇L(θt)∥2] · 1

2 .

Let λ′
min = 1

2(γ+κ) = 1
2(γ+2M2

d
) > 0. Substituting this back into the sum:

∞∑
t=0

ηtλ
′
min E[∥∇L(θt)∥2] ≤ C <∞.

Since λ′
min > 0 is a constant, we have shown that

∑∞
t=0 ηt E[∥∇L(θt)∥2] <∞. Given that E[∥∇L(θt)∥2] ≥ 0

and
∑∞

t=0 ηt = ∞ (Assumption 3), a standard result from analysis states that for the sum to be finite, it
must be that lim inft→∞ E[∥∇L(θt)∥2] = 0.

We provide the theoretical analysis here to show the sanity of our approximation. It is worth noting that the
convergence result holds regardless of the convexity of the objective.
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Table 2: The results on the XSUM dataset.

Optimizers LoRA Full

R1/R2/RL ↑ P̂train FLOPs Mem R1/R2/RL ↑ P̂train FLOPs Mem
Adam 31.06/9.09/24.10 10.236 5.61e9 2.67 32.61/10.40/25.48 3.747 5.42e9 2.06
Momentum 27.39/6.64/20.81 12.566 5.61e9 2.67 29.90/8.28/23.07 4.831 4.60e9 1.98
QNG (τ=1) 29.01/7.63/22.32 11.775 5.62e9 2.67 29.96/8.34/23.11 4.938 8.60e9 3.45
QNG (τ=2) 28.99/7.64/22.28 11.658 5.63e9 2.68 29.94/8.39/23.17 4.778 9.05e9 3.75
QNG (τ=4) 28.95/7.74/22.42 11.646 5.66e9 2.69 29.98/8.30/23.13 4.826 1.22e10 4.66
QNG (τ=8) 29.01/7.74/22.42 11.822 5.74e9 2.71 29.84/8.29/23.13 4.860 2.21e10 5.89
QNG (τ=16) 28.98/7.67/22.29 11.717 6.05e9 2.74 29.85/8.37/23.13 4.870 5.06e10 9.31
QNG (τ=32) 29.00/7.66/22.28 11.752 7.15e9 2.77 29.91/8.34/23.05 4.879 9.76e10 16.51
Ginger (τ=1) 31.03/9.03/24.03 10.278 5.63e9 2.67 32.73/10.51/25.64 4.212 1.00e10 3.43
Ginger (τ=2) 31.14/9.07/24.11 10.298 5.64e9 2.68 32.93/10.68/25.85 3.532 1.10e10 3.67
Ginger (τ=4) 31.07/9.10/24.10 10.268 5.68e9 2.68 32.85/10.71/25.85 3.618 1.43e10 4.35
Ginger (τ=8) 31.07/9.10/24.10 10.196 5.77e9 2.70 32.81/10.60/25.72 3.564 2.41e10 6.48
Ginger (τ=16) 30.93/8.96/24.04 10.176 6.08e9 2.74 32.88/10.60/25.78 3.370 5.51e10 9.77
Ginger (τ=32) 31.03/9.10/24.08 10.044 7.18e9 2.77 32.82/10.66/25.75 3.418 16.33e10 18.04

4 Experiments

In this section, we conduct experiments on different tasks and model architectures to verify the effectiveness
of Ginger. For task selection, we consider image classification and conditional language modeling, which are
two symbolic benchmarks in deep learning. For the baselines, we only consider the methods that are able to
achieve linear memory and time complexity, which include the first-order methods and the quasi-second-order
methods. For the former, we consider the standard momentum method and the well-established Adam
optimizer Kingma & Ba (2015). For the latter, we mainly consider the quasi-natural gradient (QNG) method
recently proposed by He et al. (2022).

4.1 Image classification

Dataset. We use the CIFAR-100 (Krizhevsky et al., 2009) image classification dataset, which contains 50K
training and 10K test images. Each data point is a 32× 32 RGB image belonging to one of the 100 classes.

Models. We consider popular convolutional neural network (CNN) architectures for image classification,
namely, ResNet-18 (11M parameters) and ResNet-50 (24M parameters) (He et al., 2016).

Training details. We use the standard data augmentation and normalization for training He et al. (2016).
We set the coefficients of first moment and second moment as 0.9 and 0.99, respectively, for all optimizers.
We tune the learning rate in the set of {1, 5}× 10{−1,−2,−3,−4} for all optimizers on a subset of the validation
set. Additionally, we test a variant of the quasi-second-order method that maintains the diagonal elements of
the FIM. It is labeled as DNG in the experiments. After tuning, we fix the learning rate for each optimizer
across all variations of it. To rule out the effect of learning rate scheduling and weight decay, we do not use
them in our experiments. We train all models for 200 epochs with a batch size of 128.

Evaluation metrics. We report the best validation accuracy and the corresponding evaluating loss Lval.
To get more insights into the training process, we also report the minimum training loss (scaled by 10−6 for
readability) on sampled batches. In addition, we calculate floating point operations per iteration (FLOPs)
and the peak memory usage with the JAX profiling tool (Bradbury et al., 2018).

Results. The main results are summarized in Table 1. We can see that Ginger achieves the best validation
accuracy on both ResNet-18 and ResNet-50. In addition, Ginger achieves the best training loss on ResNet-18
and the second-best training loss on ResNet-50. These results indicate that Ginger is able to achieve better
generalization performance than other optimizers. In terms of FLOPs and memory usage, Ginger inevitably

9
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requires more FLOPs and memory than the first-order methods like Momentum or Adam. However, it is still
able to achieve linear memory and time complexity, which is much more efficient than the quasi-second-order
methods.

An interesting observation is that when τ grows larger, the performance of Ginger generally increases. This
is because a larger τ leads to a more accurate approximation of the preconditioning matrix. However, the
performance saturates when τ is large enough, as the generalized Gauss–Newton matrix heavily depends on
the leading eigenvalues, corroborating findings in prior work (Feinberg et al., 2023).

Although a larger τ generally yields better approximation, it also leads to more FLOPs (quadratic increase)
and memory (linear increase). As mentioned in Section 2, however, we typically have τ ≪

√
d, so our

approach does not add to the complexity much compared with other parts of the learning algorithm, such as
forward and backward propagation.

4.2 Conditional language modeling

Language modeling is another well-established task in deep learning, with the tremendous success of large
language models like GPT-3 (Brown et al., 2020). In this paper, we specifically consider conditional language
modeling, namely, text summarization, as it is easier to evaluate.

Dataset. We use the XSUM dataset (Narayan et al., 2018) in our experiments. XSUM is a summarization
dataset that contains 204K training samples, 11K validation samples, and 11K test samples. Each sample is
a news article with a summary. The task is to generate a summary of the article.

Models. We use the standard Transformer as our model architecture. Specifically, we load a pre-trained
T5-small model (Raffel et al., 2020) and fine-tune it with the XSUM dataset. The model has around 60M
parameters in total.

In addition to the standard full-parameter fine-tuning, we also consider the setting where only low-rank
adapters (LoRA) (Hu et al., 2022) are fine-tuned. It has gained increasing attention recently because it is able
to achieve comparable performance with much fewer parameters, making it an ideal choice for fine-tuning
large language models.

Training details. For each sample, we first tokenize the source and target sentences with the T5 tokenizer.
We then truncate the source to 512 tokens and the target to 128 tokens.

Most of the hyper-parameters are tuned in the same way as in the image classification task. In addition, we
set the rank of each attention adapter as 8 for the LoRA setting. We train all models for 1 epoch with a
batch size of 4.

Evaluation metrics. We report the best rouges scores (Lin, 2004), including ROUGE-1, ROUGE-2,
and ROUGE-L individually. These scores represent the overlap between the generated summary and the
ground-truth summary. They are widely used in summarization tasks. We also report the training perplexity
P̂train and the evaluating loss Lval. Similar to image classification, we also report FLOPs and the peak
memory usage for each optimizer.

Results. For the full-parameter fine-tuning setting, there is a clear trend that Ginger achieves better
performance than other optimizers. Especially, the larger τ leads to lower training loss during the training
process. Further, the lower loss translates to better rouges scores in general. This indicates that Ginger is
able to maintain a reasonable generalization ability.

For the LoRA fine-tuning setting, Ginger also achieves a marginally better performance. However, the
performance of Ginger is not as good as the full-parameter fine-tuning setting. We hypothesize that this is
because the LoRA weights are generally easier to optimize with their low-rank structure, making the curvature
information less important. Nevertheless, we argue in this case that Ginger is agnostic to architectural
modifications or gradient calculation methods, making it a more general optimizer.

10
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4.3 Analyses.

Sensitive of τ and α. We conduct experiments to analyze the sensitivity of τ and α on the image
classification task. We use ResNet-18 as the model architecture and CIFAR-100 as the dataset. All the other
hyper-parameters are the same as in the main experiments. We report the best validation accuracy and the
minimum training loss in Table 3 and Table 4, respectively.

Table 3: Validation accuracy (%).

α\τ 2 4 8
0.9 73.24 73.35 73.15
0.99 72.66 72.90 72.89
0.999 72.73 73.14 72.57

Table 4: Training loss (10−6).

α\τ 2 4 8
0.9 14.82 6.03 10.62
0.99 22.78 13.37 11.18
0.999 52.98 11.92 17.55

As shown, the training losses vary only slightly (on the order of 10−5), suggesting that performance is not
significantly degraded even under hyperparameter perturbations. This indicates that Ginger is robust to
the choice of hyperparameters in the sense that it maintains stable training without divergence across a wide
range of α and τ values.

5 Discussion

There has been a long history of approximating second-order optimization methods. The most popular ones
are BFGS (Nocedal & Wright, 1999) and L-BFGS (Liu & Nocedal, 1989), which approximate the inverse of
the Hessian matrix with reasonably large memory and time complexity. However, they are not suitable for
non-convex functions with non-PSD Hessian matrices.

The generalized Gauss–Newton method as an approximation of the Hessian matrix is guaranteed to have the
PSD preconditioning. However, materializing the exact Gauss–Newton method is not practical for modern
deep learning. Martens et al. (2010), which uses the conjugate gradient method to solve the linear system
with the Hessian-vector product. However, the memory and time complexity of the Hessian-free method are
still too high for modern deep learning.

To further reduce the excessive memory and time complexity, Martens & Grosse (2015) proposed KFAC,
which approximates the Fisher information matrix with Kronecker factors. However, it is restricted to certain
model architectures. Moreover, even with the block-diagonal approximation or its variant Ba et al. (2017),
the time complexity of KFAC takes O(n3) for each layer with a hidden size of n. This translates to at least
O(d1.5) for the total parameter size d of the model, making it strictly superlinear in model size.

Recently, He et al. (2022) proposed a quasi-natural gradient method, which approximates the Fisher
information matrix with linear complexity. As discussed in this paper, we show that the quasi-natural
gradient method is equivalent to an identity matrix plus a low-rank matrix. However, the low-rank matrix
might not capture the curvature information well, which leads to a non-informative preconditioner. In
contrast, our method directly minimizes the norm difference between the inverses of the next EMA and
approximation. As confirmed by experiments, our method is more effective than the quasi-natural gradient
method.

Instead of the generalized Gauss–Newton matrix, it is also possible to use (
∑t

i=1[gig
⊤
i ])1/2 as Gt, known

as AdaGrad (Duchi et al., 2011). The full-matrix AdaGrad requires quadratic memory and cubic time,
not scalable to large models. To reduce the complexity, Gupta et al. (2018) proposed Shampoo, which
approximates the full-matrix AdaGrad with Kronecker factors. However, the time complexity is O(d1.5),
which does not scale well to large models.
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6 Conclusion

Summary. In this work, we propose Ginger, an efficient curvature approximation with linear complexity
for general neural networks. Specifically, it is based on the eigendecomposition of the inverse generalized
Gauss–Newton matrix. We show convergence of Ginger for non-convex objectives. Experiments on different
tasks with different model architectures verify the effectiveness of our method.

Future directions. In this work, we build the convergence proof of Ginger to show the sanity of our
method. However, we only show its benefits empirically and do not attempt to obtain the asymptotic
convergence rates. This is because they typically require additional assumptions of the loss function. We
leave this direction to future work. In addition, the time complexity is O(dτ2) for τ ≪

√
d, which may grow

quadratically in τ . We hope to reduce the complexity to O(dτ) to make it scalable to large models.
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A Technical Lemmas

Lemma 3 (Woodbury matrix identity). For an invertible matrix A ∈ Rn×n and matrices U ∈ Rn×k and
V ∈ Rk×n, where the matrix (Ik + V A−1U) is also invertible, the identity holds:

(A + UV )−1 = A−1 −A−1U(Ik + V A−1U)−1V A−1.

When the rank k is much smaller than the dimension n (i.e., k ≪ n), this formula avoids the costly inversion
of the large n× n matrix A + UV .

B Proofs

In this section, we provide proofs for Lemma 1 and Lemma 2.

B.1 Proof of Lemma 1

Lemma 1 (Eigenvalue bounds). For all t ≥ 0, the eigenvalues of the inverse preconditioner are bounded.
Specifically, λmax(G−1

t,γ) = γ−1 and there exists a constant λ′
min > 0 such that E[λmin(G−1

t,γ)] ≥ λ′
min.

Proof. The upper bound follows from the construction: Gt,γ = γI + Ut diag(σt)U⊤
t ⪰ γI, which gives

λmax(G−1
t,γ) = γ−1.

For the lower bound, we have λmin(G−1
t,γ) = 1

λmax(Gt,γ ) = 1
γ+λmax(σt) . The eigenvalues in σt are the top-

τ eigenvalues of Gt,0, so λmax(σt) ≤ λmax(Gt,0) ≤ Tr(Gt,0). From the EMA update and taking total
expectations:

E[Tr(Gt,0)] = αE[Tr(Gt−1,0)] + (1− α)E[∥dt∥2] ≤ αE[Tr(Gt−1,0)] + (1− α)M2
d .

Since α ∈ (0, 1) and assuming G0,0 = 0, by induction we have E[Tr(Gt,0)] ≤M2
d for all t. For any ϵ ∈ (0, 1), by

Markov’s inequality, we can choose κ = M2
d /ϵ such that Pr[λmax(σt) ≥ κ] ≤ Pr[Tr(Gt,0) ≥ κ] ≤ E[Tr(Gt,0)]

κ ≤ ϵ.
Now we can lower bound the expected minimum eigenvalue:

E[λmin(G−1
t,γ)] = E

[
1

γ + λmax(σt)

]
≥ E

[
1

γ + λmax(σt)
1{λmax(σt)<κ}

]
≥ 1

γ + κ
Pr[λmax(σt) < κ]

≥ 1
γ + κ

(1− ϵ) = 1
γ + M2

d /ϵ
(1− ϵ).

Since this holds for any ϵ ∈ (0, 1), we can choose ϵ = 1/2 for concreteness, which yields a positive constant
λ′

min = 1
2(γ+2M2

d
) > 0.

B.2 Proof of Lemma 2

Lemma 2 (One-step progress). We have

E[L(θt+1)] ≤ E[L(θt)]− ηt E[∇L(θt)⊤G−1
t+1,γ∇L(θt)] +

Lη2
t M2

g

2γ2 .

for all t ≥ 1.
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Proof. From the Lipschitz continuity of the gradient (Assumption 1):

L(θt+1) ≤ L(θt) + ⟨∇L(θt), θt+1 − θt⟩+ L

2 ∥θt+1 − θt∥2.

Taking the total expectation and substituting the update rule θt+1 − θt = −ηtG
−1
t+1,γgt:

E[L(θt+1)] ≤ E[L(θt)]− ηt E[⟨∇L(θt), G−1
t+1,γgt⟩] + Lη2

t

2 E[∥G−1
t+1,γgt∥2].

For the cross-term, we use the tower property. We first condition on the history up to step t (Ft) and the
random vector dt, which makes Gt+1,γ fixed.

E[⟨∇L(θt), G−1
t+1,γgt⟩] = E

[
E[⟨∇L(θt), G−1

t+1,γgt⟩ | Ft, dt]
]

.

Inside the inner expectation, and by the independence of the mini-batches for gt and dt:

E[⟨∇L(θt), G−1
t+1,γgt⟩ | Ft, dt] = ⟨∇L(θt), G−1

t+1,γ E[gt | Ft, dt]⟩ = ∇L(θt)⊤G−1
t+1,γ∇L(θt).

Taking the outer expectation gives E[∇L(θt)⊤G−1
t+1,γ∇L(θt)]. For the final term, using λmax(G−1

t+1,γ) = γ−1

and Assumption 2

E[∥G−1
t+1,γgt∥2] ≤ E[λmax(G−1

t+1,γ)2∥gt∥2] ≤ 1
γ2 E[∥gt∥2] ≤

M2
g

γ2 .

The result follows by combining the terms.
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