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ABSTRACT

Federated learning (FL) allows multiple clients with (private) data to collabora-
tively train a common machine learning model without sharing their private train-
ing data. In-the-wild deployment of FL faces two major hurdles: robustness to
poisoning attacks and communication efficiency. To address these concurrently,
we propose Federated Supermask Learning (FSL). FSL server trains a global sub-
network within a randomly initialized neural network by aggregating local subnet-
works of all collaborating clients. FSL clients share local subnetworks in the form
of rankings of network edges; more useful edges have higher ranks. By shar-
ing integer rankings, instead of float weights, FSL restricts the space available to
craft effective poisoning updates, and by sharing subnetworks, FSL reduces the
communication cost of training. We show theoretically and empirically that FSL
is robust by design and also significantly communication efficient; all this with-
out compromising clients’ privacy. Our experiments demonstrate the superiority
of FSL in real-world FL settings; in particular, (1) FSL achieves similar perfor-
mances as state-of-the-art FedAvg with significantly lower communication costs:
for CIFAR10, FSL achieves same performance as Federated Averaging while re-
ducing communication cost by ∼ 35%. (2) FSL is substantially more robust to
poisoning attacks than state-of-the-art robust aggregation algorithms.

1 INTRODUCTION

Federated Learning (FL) is an emerging AI technology, where mutually untrusted clients (e.g., An-
droid devices) collaborate to train a shared model, called the global model, without explicitly sharing
their local training data. FL training involves a server (e.g., Google server) which collects model
updates from selected FL clients in each round of training, and uses them to update the global model.
FL, although highly promising, faces multiple challenges (Kairouz et al., 2019; Li et al., 2020b) to
its practical deployment, in particular, communication efficiency and robustness, which are the focus
of our work. Privacy preservation is another major challenge to FL, but is orthogonal to our work.

We present Federated Supermask Learning (FSL), a novel approach to perform FL while concur-
rently achieving the two goals of robustness and communication efficiency. FSL is built on a novel
learning paradigm called supermasks (Zhou et al., 2019; Ramanujan et al., 2020), which allows it to
reduce communication costs while achieving significantly higher robustness. Specifically, in FSL,
clients collaborate to find a subnetwork within a randomly initialized neural network which we call
the supernetwork (this is in contrast to conventional FL where clients collaborate to train a neural
network). The goal of training in FSL is to collaboratively identify a supermask, which is a binary
mask of 1’s and 0’s, that is superimposed on the random neural network (the supernetwork) to obtain
the final subnetwork. The subnetwork is then used for downstream tasks, e.g., image classification,
hence it is equivalent to the global model in conventional FL. Note that in entire FSL training,
weights of the supernetwork do not change.

More specifically, each FSL client computes the importance of the edges of the supernetwork based
on their local data. The importance of the edges is represented as a ranking vector. Each FSL
client will use the edge popup algorithm (Ramanujan et al., 2020) and their data to compute their
local rankings (the edge popup algorithm aims at learning which edges in a supernetwork are more
important over the other edges by minimizing the loss of the subnetwork on their local data). Each
client then will send their local edge ranking to the server. Finally, the FSL server uses a novel
voting mechanism to aggregate client rankings into a supermask, which represents which edges of
the random neural network (the supernetwork) will form the global subnetwork.

1



Under review as a conference paper at ICLR 2022

Intuitions on FSL’s robustness: In traditional FL algorithms, clients send large-dimension model
updates ∈ Rd (real numbers) to the server, providing malicious clients a significant flexibility in
fabricating malicious updates. By contrast, FSL clients merely share the rankings of the edges of
the supernetwork, i.e., integers ∈ [1, d], where d is the size of the supernetwork. Therefore, as we
will show both theoretically and empirically, FSL provides robustness by design and reduces the
impact of untargeted poisoning attacks. Furthermore, unlike most existing robust FL frameworks,
FSL does not require any knowledge about the percentages of malicious clients.

Intuitions on FSL’s communication efficiency: In FSL, the clients and the server communicate
just the rankings of the edges in the supernetwork, i.e., a permutation of indices in [1, d]. Ranking
vectors are generally significantly smaller than the global model. This, as we will show, signifi-
cantly reduces the upload and download communication in FSL compared to Federated Averaging
(FedAvg) (McMahan et al., 2017), where clients communicate model parameters, each of 32/64 bits.

Empirical results: We experiment with three datasets in real-world heterogeneous FL settings and
show that: (1) FSL achieves similar performance (e.g., model accuracy) as state-of-the-art FedAvg
but with significantly reduced communication costs: for CIFAR10, the accuracy and communication
cost per client are 85.4% and 40.2MB for FedAvg, while 85.3% and 26.2MB for FSL. (2) FSL is
highly robust to poisoning attacks as compared to state-of-the-art robust aggregation algorithms:
from 85.4% in the benign setting, 10% malicious clients reduce the accuracy of FL to 56.3% and
58.8% with Trimmed-Mean (Xie et al., 2018; Yin et al., 2018) and Multi-Krum (Blanchard et al.,
2017), respectively, while FSL’s performance only decreases to 79.0%.

We also compare FSL with two communication reduction methods, SignSGD (Bernstein et al.,
2019) and TopK (Alistarh et al., 2018a) and show that FSL produces comparable communication
costs and model accuracies. For instance, on CIFAR10, FSL, SignSGD, and TopK achieve 85.3%,
79.1%, and 82.1% test accuracy, respectively, when the corresponding communication costs (down-
load and upload) are 26.2MB, 20.73MB, and 30.79MB. On the other hand, FSL offers a significantly
superior robustness. For instance, on CIFAR10, 10% (20%) malicious clients reduce the accuracy
of SignSGD to 39.7% (10.0%), but FSL’s accuracy decreases to only 79.0% (69.5%). TopK is in-
compatible with existing robust aggregation algorithms, hence uses Average aggregation and is as
vulnerable as FedAvg, especially in the real-world heterogeneous settings.

2 RELATED WORKS

Supermask Learning: Modern neural networks have a very large number of parameters. These
networks are generally overparameterized (Dauphin & Bengio, 2013; Denil et al., 2013), i.e., they
have more parameters than they need to perform a particular task, e.g., classification. The lottery
ticket hypothesis (Frankle & Carbin, 2019) states that a fully-trained neural network, i.e., supernet-
work, contains sparse subnetworks, i.e., subsets of all neurons in supernetwork, which can be trained
from scratch (i.e., by training same initialized weights of the subnetwork) and achieve performances
close to the fully trained supernetwork. The lottery ticket hypothesis allows for massive reductions
in the sizes of neural networks. (Ramanujan et al., 2020) offer a complementary conjecture that an
overparameterized neural network with randomly initialized weights contains subnetworks which
perform as good as the fully trained network.

Poisoning Attacks and Defenses for Federated Learning (FL): FL involves mutually untrusting
clients. Hence, a poisoning adversary may own or compromise some of the FL clients, called
malicious clients, with the goal of mounting a targeted or untargeted poisoning attack. In a targeted
attack, the goal is to reduce the utility of the model on specific test inputs, while in the untargeted
attack, the goal is to reduce the utility for all (or most) test inputs. It is shown (Blanchard et al.,
2017) that even a single malicious client can mount an effective untargeted attack on FedAvg.

In order to make FL robust to the presence of such malicious clients, the literature has designed
various robust aggregation rules (AGR) (Blanchard et al., 2017; Mhamdi et al., 2018; Yin et al.,
2018; Chang et al., 2019), which aim to remove or attenuate the updates that are more likely to be
malicious according to some criterion. For instance, Multi-krum (Blanchard et al., 2017) repeatedly
removes updates that are far from the geometric median of all the updates, and Trimmed-mean (Xie
et al., 2018; Yin et al., 2018) removes the largest and smallest values of each update dimension and
calculates the mean of the remaining values. Unfortunately, these robust AGRs are not very effective
in non-convex FL settings and multiple works have demonstrated strong targeted (Wang et al., 2020;
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Bhagoji et al., 2019) and untargeted attacks (Shejwalkar & Houmansadr, 2021; Fang et al., 2020) on
them.

Communication Cost of FL: In many real-world applications of FL, it is essential to minimize
the communication between FL server and clients. Especially in cross-device FL, the clients (e.g.,
mobile phones and wearable devices) have limited resources and communication can be a major
bottleneck. There are two major types of communication reduction methods: (1) Qunatization
methods reduce the resolution of (i.e., number of bits used to represent) each dimension of a client
update. For instance, SignSGD (Bernstein et al., 2019) uses the sign (1 bit) of each dimension of
model updates. (2) Sparsification methods propose to use only a subset of all the update dimensions.
For instance, in TopK (Aji & Heafield, 2017; Alistarh et al., 2018a), only the largest K% update
dimensions are sent to the server in each FL round. We note that, communication reduction methods
primarily focus on and succeed at reducing upload communication (client → server), but they use
the entire model in download communication (server→ client).

3 PRELIMINARIES

3.1 FEDERATED LEARNING

In FL (McMahan et al., 2017; Kairouz et al., 2019; Konečnỳ et al., 2016), N clients collaborate to
train a global model without directly sharing their data. In round t, the service provider (server)
selects n out of N total clients and sends them the most recent global model θt. Each client trains
a local model for E local epochs on their data starting from the θt using stochastic gradient descent
(SGD). Then the client send back the calculated gradients (Ok for kth client) to the server. The
server then aggregates the collected gradients and updates the global model for the next round. FL
can be either cross-device or cross-silo (Kairouz et al., 2019). In cross-device FL, N is large (from
few thousands to billions) and only a small fraction of clients is chosen in each FL training round,
i.e., n � N . By contrast, in cross-silo FL, N is moderate (up to 100) and all clients are chosen in
each round, i.e., n = N . In this work, we evaluate the performance of FSL and other FL baselines
for cross-device FL under realistic production FL settings.

3.2 EDGE-POPUP ALGORITHM
Algorithm 1 Edge-popup (EP) algorithm: it finds
a subnetwork of size k% of the entire network θ

1: Input: number of local epochs E, training
data D, initial weights θw and scores θs, sub-
network size k%, learning rate η

2: for e ∈ [E] do
3: B ← Split D in B batches
4: for batch b ∈ [B] do
5: EP FORWARD (θw, θs, k, b)
6: θs = θs − η∇`(θs; b)
7: end for
8: end for
9: return θs

10: function EP FORWARD(θw, θs, k, b)
11: m← sort(θs)
12: t← int((1− k) ∗ len(m))
13: m[: t] = 0
14: m[t :] = 1
15: θp = θw �m
16: return θp(b)
17: end function

The edge-popup (EP) algorithm (Ramanujan
et al., 2020) is a novel optimization method to
find supermasks within a large, randomly ini-
tialized neural network, i.e., a supernetwork,
with performances close to the fully trained su-
pernetwork. EP algorithm does not train the
weights of the network, instead only decides
the set of edges to keep and removes the rest
of the edges (i.e., pop). Specifically, EP al-
gorithm assigns a positive score to each of the
edges in the supernetwork. On forward pass, it
selects top k% edges with highest scores, where
k is the percentage of the total number of edges
in the supernetwork that will remain in the fi-
nal subnetwork. On the backward pass, it up-
dates the scores with the straight-through gradi-
ent estimator (Bengio et al., 2013). Algorithm 1
presents EP algorithm; we defer further details
to Appendix D.

4 FEDERATED SUPERMASK LEARNING: DESIGN

In this section, we provide the design of our federated supermask learning (FSL) algorithm. FSL
clients collaborate (without sharing their local data) to find a subnetwork within a randomly ini-
tialized, untrained neural network called the supernetwork. Algorithm 2 describes FSL’s training.
Training a global model in FSL means to first find a unanimous ranking of supernetwork edges and
then use the subnetwork of the top ranked edges as the final output. We detail a round of FSL train-
ing and depict it in Figure 1, where we use a supernetwork with six edges ei∈[0,5] to demonstrate a
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single FSL round and consider three clients Cj∈[1,3] who aim to find a subnetwork of size k=50%
of the original supernetwork.

Algorithm 2 Federated Supermask Learning (FSL)
1: Input: number of FL rounds T , number of local epochs E, number of selected users in each

round n, seed SEED, learning rate η, subnetwork size k%
2: Server: Initialization
3: θs, θw ← Initialize random scores and weights of global model θ using SEED
4: R1

g ← ARGSORT(θs) . Sort the initial scores and obtain initial rankings
5: for t ∈ [1, T ] do
6: U ← set of n randomly selected clients out of N total clients
7: for u in U do
8: Clients: Calculating the ranks
9: θs, θw ← Initialize scores and weights using SEED

10: θs[Rtg]← SORT(θs) . sort the scores based on the global ranking
11: S ← Edge-PopUp(E,Dtr

u , θ
w, θs, k, η) . Client u uses Algorithm1 to train a

supermask on its local training data
12: Rtu ← ARGSORT(S) . Ranking of the client
13: end for
14: Server: Majority Vote
15: Rt+1

g ← VOTE(Rtu∈U ) . Majority vote aggregation
16: end for
17: function VOTE(R{u∈U} ):
18: V ← ARGSORT(R{u∈U})
19: A← SUM(V )
20: return ARGSORT(A)
21: end function

4.1 SERVER: INITIALIZATION PHASE (ONLY FOR ROUND t = 1)

In the first round, the FSL server chooses a random seed SEED to generate initial random weights
θw and scores θs for the global supernetwork θ; note that, θw, θs, and SEED remain constant during
the entire FSL training. Next, the FSL server shares SEED with FSL clients, who can then locally
reconstruct the initial weights θw and scores θs using SEED. Figure 1- 1 depicts this step.

Recall that, the goal of FSL training is to find the most important edges in θw without changing the
weights. Unless specified otherwise, both server and clients use the Singed Kaiming Constant algo-
rithm (Ramanujan et al., 2020) to generate random weights and the Kaiming Uniform algorithm (He
et al., 2015) to generate random scores. However, in Appendix C.1, we also explore the impacts
of different initialization algorithms on the performance of FSL. We use the same seed to initialize
weights and scores.

At the beginning, the FSL server finds the global rankings of the initial random scores (Algorithm 2
line 4), i.e.,R1

g = ARGSORT(θs). We define rankings of a vector as the indices of elements of vector
when the vector is sorted from low to high, which is computed using ARGSORT function (argsort).

4.2 CLIENTS: CALCULATING THE RANKS (FOR EACH ROUND t)

In the tth round, FSL server randomly selects n clients among total N clients, and shares the global
rankings Rtg with them. Each of the selected n clients locally reconstructs the weights θw’s and
scores θs’s using SEED (Algorithm 2 line 9). Then, each FSL client reorders the random scores
based on the global rankings, Rtg (Algorithm 2 line 10); we depict this in Figure 1- 2a .

Next, each of the n clients uses reordered θs and finds a subnetwork within θw using Algorithm 1;
to find a subnetwork, they use their local data and E local epochs (Algorithm 2 line 11). Note that,
each iteration of Algorithm 1 updates the scores θs. Then client u computes their local rankings Rtu
using the final updated scores (S) and ARGSORT(.), and sends Rtu to the server. Figure 1- 2a shows
how each of the selected n clients reorders the random scores using global rankings. For instance,
the initial global rankings for this round are Rtg = [2, 3, 0, 5, 1, 4], meaning that edge e4 should get
the highest score (s4 = 1.2), and edge e2 should get the lowest score (s2 = 0.2).
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Figure 1: A single FSL round with three clients and network of 6 edges.

Figure 1- 2b shows, for each client, the scores and rankings they obtained after finding their local
subnetwork. For example, rankings of client C1 are Rt1 = [4, 0, 2, 3, 5, 1], i.e., e4 is the least impor-
tant and e1 is the most important edge for C1. Considering desired subnetwork size to be 50%, C1

uses edges {3,5,1} in their final subnetwork.

4.3 SERVER: MAJORITY VOTE (FOR EACH ROUND t)
The server receives all the local rankings of the selected n clients, i.e., Rt{u∈U}. Then, it performs a
majority vote over all the local rankings using VOTE(.) function. Note that, for client u, the index i
represents the importance of the edgeRtu[i] for Cu. For instance, in Figure 1- 2b , rankings of C1 are
Rt1 = [4, 0, 2, 3, 5, 1], hence the edge e4 at index=0 is the least important edge forC1, while the edge
e1 at index=5 is the most important edge. Consequently, VOTE(.) function assigns reputation=0 to
edge e4, reputation=1 to e0, reputation=2 to e2, and so on. In other words, for rankings Rtu of Cu
and edge ei, VOTE(.) computes the reputation of ei as its index in Rtu. Finally, VOTE(.) computes
the total reputation of ei as the sum of reputations from each of the local rankings. In Figure 1- 2b ,
reputations of e0 are 1 in Rt1, 1 in Rt2, and 0 in Rt3, hence, the total reputation of e0 is 2. We depict
this in Figure 1- 3 ; here, the final total reputations for edges e{i∈[0,5]} are A = [2, 12, 3, 11, 8, 9].
Finally, the server computes global rankings Rt+1

g to use for round t + 1 by sorting the final total
reputations of all edges, i.e., Rt+1

g = ARGSORT(A).

Note that, all FSL operations that involve sorting, reordering, and voting are performed in a layer-
wise manner. For instance, the server computes global rankings Rtg in round t for each layer sepa-
rately, and consequently, the clients selected in round t reorder their local randomly generated scores
θs for each layer separately.

5 FEDERATED SUPERMASK LEARNING: SALIENT FEATURES

In this section, we discuss the two salient features of FSL that are instrumental for any distributed
learning algorithm to be practical: robustness to poisoning attacks and communication efficiency.

5.1 ROBUSTNESS OF FSL TO POISONING ATTACKS

FSL is a distributed learning algorithm with mutually untrusting clients. Hence, a poisoning adver-
sary may own or compromise some of FSL clients, called malicious clients, and mount a targeted
or untargeted poisoning attack. In our work, we consider the untargeted attacks as they are more
severe than targeted attacks and can cause denial-of-service for all collaborating clients (Shejwalkar
et al., 2021) and show that FSL is secure against such poisoning attacks by design.

5



Under review as a conference paper at ICLR 2022

Intuition on FSL’s robustness: Existing FL algorithms, including robust FL algorithms, are shown
to be vulnerable to targeted and untargeted poisoning attacks (Shejwalkar et al., 2021) where mali-
cious clients corrupt the global model by sharing malicious model updates. One of the key reasons
behind the susceptibility of existing algorithms is that their model updates can have arbitrary values.
For instance, to manipulate vanilla FedAvg, malicious clients send very large updates (Blanchard
et al., 2017), and to manipulate Multi-krum and Trimmed-mean, (Fang et al., 2020; Shejwalkar &
Houmansadr, 2021) propose to perturb a benign update in a specific malicious direction. On the
other hand, in FSL, clients must send a permutation of indices ∈ [1, n`] for each layer. Hence, FSL
significantly reduces the space of the possible malicious updates that an adversary can craft. Ma-
jority voting in FSL further reduces the chances of successful attack. Intuitively, this makes FSL
design robust to poisoning attacks. Below, we make this intuition more concrete.

The worst-case untargeted poisoning attack on FSL: Here, the poisoning adversary aims to
reduce the accuracy of the final global FSL subnetwork on most test inputs. To achieve this, the
adversary should replace the high ranked edges with low ranked edges in the final subnetwork. For
the worst-case analysis of FSL, we assume a very strong adversary (i.e., threat model): 1) each of the
malicious clients has some data from benign distribution; 2) malicious clients know the entire FSL
algorithm and its parameters; 3) malicious clients can collude. Under this threat model we design
a worst case attack on FSL (Algorithm 3 in Appendix A.1), which executes as follows: First, all
malicious clients compute rankings on their benign data and use VOTE(.) algorithm to compute an
aggregate rankings. Finally, each of the malicious clients uses the reverse of the aggregate rankings
to share with the FSL server in given round. The adversary should invert the rankings layer-wise
as the FSL server will aggregate the local rankings per layer too, and it is not possible to mount a
model-wise attack.

Now we justify why the attack in Algorithm 3 is the worst case attack on FSL for the strong threat
model we consider. Note that, FSL aggregation, i.e., VOTE(.), computes the reputations using
clients’ rankings and sums the reputations of each network edge. Therefore, the strongest poi-
soning attack would want to reduce the reputation of good edges. This can be achieved following
the aforementioned procedure of Algorithm 3 to reverse the rankings computed using benign data.
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Figure 2: Upper bound on the failure
probability of VOTE(.) function in FSL.

Theoretical analysis of robustness of FSL algorithm:
In this section, we prove an upper bound on the failure
probability of robustness of FSL, i.e., the probability that
a good edge will be removed from the final subnetwork
when malicious clients mount the worst case attack.

Following the work of Bernstein et al. (2019), we make
two assumptions in order to facilitate a concrete robust-
ness analysis of FSL: a) each malicious client has access
only to its own data, and b) we consider a simpler VOTE(.)
function, where the FSL server puts an edge ei in the fi-
nal subnetwork if more than half of the clients have ei (a
good edge) in their local subnetworks. In other words,
the rankings that each client sends to the server is just a
bit mask showing that each edge should or should not be
in the final subnetwork. The server makes a majority vote
on the bit masks, and if an edge has more than half votes,
it will be in the global subnetwork. Our VOTE(.) mecha-
nism has more strict robustness criterion, as it uses more nuanced reputations of edges instead of bit
masks. Hence, the upper bound on failure probability in this section also applies to the FSL VOTE(.)
function.

The probability that our voting system fails is the probability that more than half of the votes
do not include ei in their subnetworks. The upper bound on the probability of failure would be

1/2
√

np(1−p)
(n(p+α(1−2p)−1/2))2 , where n is the number of clients being processed, p shows the probabil-

ity that a benign client puts ei in their top ranks, and α is the fraction of malicious clients. Due to
space limitations, we defer the detailed proof to Appendix A.2. Figure 2 shows the upper bound on
the failure of VOTE(.) for different values of α and p. We note that, the higher the probability p, the
higher the robustness of FSL.
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5.2 FSL’S COMMUNICATION COSTS

In FL, and especially in the cross-device setting, clients have limited communication bandwidth.
Hence, FL algorithms must be communication efficient. We discuss here the communication cost
of FSL algorithm. In the first round, the FSL server only sends one seed of 32 bits to all the FSL
clients, so they can construct the random weights (θw) and scores (θs). In a round t, each of selected
FSL clients receives the global rankings Rtg and sends back their local rankings Rtu. The rankings
are a permutation of the indices of the edges in each layer, i.e., of [0, n` − 1]∀` ∈ [L] where L is the
number of layers and n` is the number of parameters in `th layer.

We use the naive approach to communicate layer-wise rankings, where each FSL client exchanges
a total of

∑
`∈[L] n` × log(n`) bits. Because, for the layer `, the client receives and sends n` ranks

where each one is encoded with log(n`) bits. On the other hand, a client exchanges
∑
`∈[L] n` × 32

bits in FedAvg, when 32 bits are used to represent each of n` weights in layer `. In Appendix E, we
compare theoretical communication costs of various FL algorithms.

Sparse-FSL: Here, we propose Sparse-FSL, a simple extension of FSL to further reduce the com-
munication cost. In Sparse-FLS, a client sends only the most important ranks of their local rankings
to the server for aggregation. For instance, in Figure 1, client C1 sends Rt1 = [4, 0, 2, 3, 5, 1] in case
of FSL. But in sparse-FSL, with sparsity set to 50%, client C1 sends just the top 3 rankings, i.e.,
sendsR′t1 = [3, 5, 1]. For each client, the sparse-FSL server assumes 0 reputation for all of the edges
not included in the client’s rankings, i.e., in Figure 1, sparse-FSL server will assign reputation=0 for
edges e4, e0, and e2. Then the server uses VOTE(.) to compute total reputations of all edges and
then sort them to obtain the final aggregate global rankings, i.e., Rt+1

g , to use for subsequent rounds.
We observe in out experiments, that sparse-FSL performs very close to FSL, even with sparsity as
low as 10%, while also significantly reducing the communication cost. Due to space limitation, we
defer the communication cost comparison of FSL with FedAvg, SingSGD, and LotteryFL (Li et al.,
2020a) to Appendix E.

6 EXPERIMENTS
In this section, we investigate the utility, robustness, and communication cost of our FSL frame-
work. We use MNIST, CIFAR10, and FEMNIST data and distribute them in non-iid fashion (using
Dirichlet distribution) among 1000, 1000, and 3400 clients respectively. At the end of the training,
we calculate the test accuracy of all the clients on the final global model, and we report the mean
and standard deviation of all clients’ test accuracies in our experiments. We provide further details
of experimental setup in Appendix B. In addition to FSL, we also evaluate Sparse-FSL in different
settings. We use SFSL top x% to denote a Sparse-FSL clients who sends top x% of ranks in each
round.

6.1 COMMUNICATION COST ANALYSIS

In FSL, both clients and server communicate just the edge ranks instead of weight parameters.
Thus, FSL reduces both upload and download communication cost. Table 1 illustrates the utility,
i.e., the accuracy on test data, and communication cost of FSL and state-of-the-art quantization,
i.e., SignSGD (Bernstein et al., 2019), and sparsification, i.e., TopK (Alistarh et al., 2018b; Aji &
Heafield, 2017) communication-reduction methods.

FSL versus SignSGD: We note that, FSL is significantly more accurate than SignSGD. For in-
stance, on CIFAR10, distributed non-iid among 1000 clients, FSL achieves 85.3% while SignSGD
achieves 79.1% , or on FEMNIST, FSL achieves 84.2% while SignSGD achieves 79.3%. This is
because, FSL clients send more nuanced information via rankings of their subnetworks compared to
SignSGD, where clients just send the signs of their model updates.

SignSGD in FL reduces only the upload communication, but for efficiency reasons, the server sends
all of the weight parameters (each of 32 bits) to the newly selected clients. Hence, SignSGD has
very efficient upload communication, but very inefficient download communication. For instance,
on CIFAR10, for both upload and download, FSL achieves 13.1MB each while SignSGD achieves
0.63MB and 20.1MB, respectively.

FSL versus TopK: We compare FSL with TopK with K ∈ {10, 50}%. FSL is more accurate
than Topk for MNIST and CIFAR10: on CIFAR10, FSL accuracy is 85.3%, while TopK accuracies
are 82.1% and 77.8% with K=50% and K=10%, respectively. Similar to SignSGD, Topk is more
efficiently reduces upload cost, but has very high download communication cost. Therefore, the
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Table 1: Comparing the utility (test accuracy) and communication cost of FedAvg, FSL (in bold),
SignSGD and, TopK and Sparse-FSL (SFSL) with different percentages of sparsity (in bold).

Dataset Algorithm Accuracy (STD) Upload (MB) Download (MB)

MNIST + LeNet
1000 clients

FedAvg 98.8 (3.1) 6.20 6.20
FSL 98.8 (3.2) 4.05 4.05

SFSL Top 50% 98.2 (3.8) 2.03 4.05
SFSL Top 10% 89.5 (9.2) 0.40 4.05

SignSGD 97.2 (4.6) 0.19 6.20
TopK 50% 98.8 (3.2) 3.29 6.20
TopK 10% 98.7 (3.2) 0.81 6.20

CIFAR10 + Conv8
1000 clients

FedAvg 85.4 (11.2) 20.1 20.1
FSL 85.3 (11.3) 13.1 13.1

SFSL Top 50% 77.6 (13.0) 6.5 13.1
SFSL Top 10% 27.5 (14.4) 1.3 13.1

SignSGD 79.1 (13.6) 0.63 20.1
TopK 50% 82.1 (11.8) 10.69 20.1
TopK 10% 77.8 (13.0) 2.64 20.1

FEMNIST + LeNet
3400 clients

FedAvg 85.8 (10.2) 6.23 6.23
FSL 84.2 (10.7) 4.06 4.06

SFSL Top 50% 75.2 (12.7) 2.03 4.06
SFSL Top 10% 59.2 (15.0) 0.40 4.06

SignSGD 79.3 (12.4) 0.19 6.23
TopK 50% 85.7 (9.9) 3.31 6.23
TopK 10% 85.5 (10.0) 0.81 6.23

combined upload and download communication cost per client per round is 26.2MB for FSL and
30.79MB for TopK with K=50%, and TopK still has worse performance.

Communication cost reduction due to Sparse-FSL (SFSL): We now evaluate SFSL explained
in Section 5.2. In SFSL with top 50% ranks, clients send the top 50% of their ranks to the server,
which reduces the upload bandwidth consumption by half. Please note that the download cost of
SFSL is the same as FSL since the FSL server should send all the global rankings to the selected
clients in each round. We note from Table 1 that, by sending fewer ranks, SFSL reduces upload
communication at a small cost of performance. For instance, on CIFAR10, SFLS with top 50%
reduces the upload communication by 50% at the cost reducing accuracy from 85.4% to 77.6%.

6.2 SECURITY ANALYSIS

We compare FSL with state-of-the-art robust aggregation rules (AGRs): Mkrum (Blanchard et al.,
2017), and Trimmed-mean (Xie et al., 2018; Yin et al., 2018). Table 2 gives the performances of
robust AGRs, SignSGD, and FSL with different percentages of malicious clients. Here, we make
a rather impractical assumption in favor of the robust AGRs: we assume that the server knows the
exact % of malicious clients in each FL round. FSL does not require this knowledge.

FSL achieves higher robustness than state-of-the-art robust AGRs: We note from Table 2 that,
FSL is more robust to the presence of malicious clients who try to poison the global model compared
to Multi-Krum, Trimmed-mean, and SignSGD for both 10% and 20% malicious clients rates. For
instance, on CIFAR10, 10% malicious clients can decrease the accuracy of FL models to 56.3%,
58.8%, and 39.8% for Trimmed-mean, Multi-Krum, and SignSGD respectively; 20% malicious
clients can decrease the accuracy of the FL models to 20.5%, 25.6%, 10.0% for Trimmed-mean,
Multi-Krum, and SignSGD respectively. On the other hand, FSL performance decreases to 79.0%
and 69.5% for 10% and 20% attacking ratio respectively.

We make similar observations for MNIST and FEMNIST datasets: for FEMNIST, 10% (20%) mali-
cious clients reduce accuracy of the global model from 85.8% to 72.7% (56.2%) for Trimmed-Mean,
to 80.9% (23.7%) for Multi-krum, and 76.7% (55.1%) for SignSGD, while FSL accuracy decreases
to 83.0% (65.8%). We omit evaluating TopK, because even a single malicious client (Blanchard
et al., 2017) can jeopardize its accuracy.

8
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Table 2: Comparing the robustness of various FL algorithms: FSL and SFSL (in bold) outperform
state-of-the-art robust AGRs and SignSGD against strongest of untargeted poisoning attacks.

Dataset AGR No malicious 10% malicious 20% malicious

MNIST + LeNet
1000 clients

FedAvg 98.8 (3.2) 10.0 (10.0) 10.0 (10.0)
Trimmed-mean 98.8 (3.2) 95.1 (7.7) 87.6 (9.5)

Multi-krum 98.8 (3.2) 98.6 (3.3) 97.9 (4.1)
SignSGD 97.2 (4.6) 96.6 (5.0) 96.2 (5.6)

FSL 98.8 (3.1) 98.8 (3.1) 98.7 (3.3)
SFSL Top 50% 98.2 (3.8) 97.04 (4.4) 95.1 (7.8)

CIFAR10 + Conv8
1000 clients

FedAvg 85.4 (11.2) 10.0 (10.1) 10.0 (10.1)
Trimmed-mean 84.9 (11.0) 56.3 (16.0) 20.5 (13.2)

Multi-krum 84.7 (11.3) 58.8 (15.8) 25.6 (14.4)
SignSGD 79.1 (12.8) 39.7 (15.9) 10.0 (10.1)

FSL 85.3 (11.3) 79.0 (12.4) 69.5 (14.8)
SFSL Top 50% 77.6 (13.0) 41.7 (15.4) 39.7 (15.2)

FEMNIST + LeNet
3400 clients

FedAvg 85.8 (10.2) 6.3 (5.8) 6.3 (5.8)
Trimmed-mean 85.2 (11.0) 72.7 (15.7) 56.2 (20.3)

Multi-krum 85.2 (10.9) 80.9 (12.2) 23.7 (12.8)
SignSGD 79.3 (12.4) 76.7 (13.2) 55.1 (14.9)

FSL 84.2 (10.7) 83.0 (10.9) 65.8 (17.8)
SFSL Top 50% 75.2 (12.7) 70.5 (14.4) 60.39 (14.8)

6.3 MISCELLANEOUS DISCUSSIONS

Due to space limitations, we defer a detailed discussion of ablation studies of FSL to Appendix C
and below give their important takeaways.

Initialization matters in FSL: In FSL, the weight parameters are randomly initialized at the start
and remain fixed throughout the training. An appropriate initialization is instrumental to the success
of FSL, since the clients are trying to find the most important weight parameters. We study efficacy
of three initializing strategies that use three different distributions: Glorot Normal, Kaiming Normal,
and Singed Kaiming Constant. Table 5 shows the results. We observe from Table 5 that, Singed
Kaiming Constant initialization achieves the best results that are closest to FedAvg.

Varying the sparsity of edge-popup algorithm in FSL: Figure 4 illustrates how the performance
of FSL varies with the sizes of local subnetworks that the clients share with the server. In other
words, when we vary the sparsity k% of edge popup algorithm during local subnetwork search
k ∈ [10, 20, 30, 40, 50, 60, 70, 80, 90]%. Interestingly we note that, FSL performs the worst when
clients use all (k=100%) or none (k=0%) of the edges. This is because, it is difficult to find a
subnetwork with small number of edges. While using all of the edge essentially results in using a
random neural network. As we can see FSL with k ∈ [40, 70]%, gives the best performances for all
the three datasets. Hence, we set k=50% by default in our experiments.

7 CONCLUSIONS

We designed a novel collaborative learning algorithm, called Federated Supermask Learning (FSL),
to address the issues of robustness to poisoning and communication efficiency in existing FL algo-
rithms. We argue that a core reason for the susceptibility of existing FL algorithms to poisoning
is the use of arbitrary values in their model updates. Hence, in FSL, we use ranks of edges of a
randomly initialized neural network contributed by collaborating clients to find a global ranking
and then use a subnetwork based only on the top edges. Use of rankings in a fixed range restricts
the space available to poisoning adversaries to craft malicious updates, and also allows FSL to use
sophisticated communication reduction methods. We show, both theoretically and empirically, that
ranking based collaborative learning can effectively mitigate the robustness issue as well as reduce
the communication costs involved.

9
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8 REPRODUCIBILITY STATEMENT

We have attached our implementation code and experiment notebooks as supplementary materi-
als. There are separate experiment notebooks showing the process of FSL training for MNIST,
CIFAR10, and FEMNIST (results that we used in Table 1 and Table 2). We have explained all the
hyperparameters including optimizer, learning rate, momentum, weight decay, and batch size in Ap-
pendix B.1 for both FSL and FedAvg (including using robust AGRs) settings. We also explained the
model architectures we used in our experiments in Table 4 explaining different layers with number
of parameters inside each. We also explained how we distributed MNIST and CIFAR10 samples
among 1,000 clients using Dirichlet distribution to make them non-iid in Appendix B.3.

We propose Federated Supermask Learning (FSL) where clients find a subnetwork within a ran-
domly initialized neural network, without training the weights of the network. Our extensive evalu-
ation demonstrated FSL can provide better communication cost and more robustness to untargeted
poisoning attacks compared to existing FL compressors and Byzantine-robust aggregation rules.
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A MISSING DETAILS OF ROBUSTNESS OF FSL

A.1 FSL WORST CASE POISONING ATTACK ALGORITHM

Algorithm 3 shows the rankings poisoning attack explained in Section 5.

Algorithm 3 FSL Poisoning
1: Input: number of malicious clientsM , number of malicious local epochsE′, seed SEED, global

ranking Rtg , learning rate η, subnetwork size k%
2: function CRAFTMALICIOUSUPDATE(M, SEED, Rtg, E

′, η, k):
3: for mu ∈ [M ] do . For all the malicious clients
4: Malicious Client Executes:
5: θs, θw ← Initialize scores and weights using SEED
6: θs[Rtg]← SORT(θs)

7: S ← Edge-PopUp(E′, Dtr
u , θ

w, θs, k, η)
8: Rtmu ← ARGSORT(S) . Ranking of the malicious client
9: end for

10: Aggregation:
11: Rtm ← VOTE(Rtmu∈[M ]) . Majority vote aggregation
12: return REVERSE(Rtm) . reverse the ranking
13: end function

A.2 THEORETICAL ANALYSIS OF ROBUSTNESS OF FSL

In this section, we detail the proof of robustness of FSL. In other words, we prove an upper bound
on the failure probability of robustness of FSL, i.e., the probability that a good edge will be re-
moved from the final subnetwork when malicious clients mount the worst case attack. Inspired from
SignSGD (Bernstein et al., 2019), for this proof, We assume a simpler VOTE(.) function where if
more than half of the clients add an edge ei to their subnetworks, then the FSL server adds it to the
final global subnetwork. We also assume that the malicious clients cannot collude in our proof.

Assume that edge ei is a good edge, i.e., having ei in the final subnetwork improves the performance
of the final subnetwork. Let Z be the random variable that represents the number of clients who vote
for the edge ei to be in the final subnetwork, i.e., the number of clients whose local subnetwork of
size k% of the entire supernetwork (Algorithm 2 line 11) contains ei. Therefore, Z ∈ [0, n] where
n is the number of clients being processed in a given FSL round.

Let G and B be the random variable that represent the number of benign and malicious clients that
vote for edge ei, respectively; the malicious clients inadvertently exclude the good edge ei in their
local subnetwork based on their benign training data.

There are total of αn malicious clients, where α is the fraction of malicious clients that B of them
decides that ei is a bad edge and should not be removed. Each of the malicious clients computes
the subnetwork on its own benign training data, so B of them do not conclude that ei is a good
edge. Hence, Z = G + B. We can say that G and B have binomial distribution , i.e., G ∼
binomial([(1−α)n, p] and B ∼ binomial([αn, 1− p] where p is the probability that a benign client
has this edge in their local subnetwork and α is the fraction of malicious clients. Note that the
probability that our voting in simplified FSL fails is P [failure] = P [Z <= n

2 ], i.e., when more than
half of the clients vote against ei, i.e., they do not include ei in their local subnetworks. We can find
the mean and variance of Z as follows:

E[Z] = (1− α)np+ αn(1− p) (1)

V ar[Z] = (1− α)np(1− p) + αnp(1− p) = np(1− p) (2)

Cantelli (1929) provides an inequality where for a random variable X with mean µ and variance σ2

we have P [µ−X >= λ] <= 1

1+λ2

σ2

. Using this inequality, we can write:
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Figure 3: Empirical robustness bounds of FSL. Bars are showing the number of votes for a particular
edge in first layer of LeNet (trained on MNIST) with selecting 25 clients in each round and no
presence of malicious client. The adversary tries to flip one good edge from the global model. The
horizontal lines are showing the thresholds for each malicious ratio that if the number of votes is
less than them, the adversary can change the decision about this edge.

P [Z <=
n

2
] = P [E[Z]− Z >= E[Z]− n/2] <= 1

1 + (E[z]−n/2)2
var[Z]

(3)

because 1 + x2 >= 2x, we have:

P [Z <=
n

2
] <= 1/2

√
V ar[Z]

(E[Z]− n/2)2
= 1/2

√
np(1− p)

(np− αnp+ αn− αnp− n/2)2
(4)

= 1/2

√
np(1− p)

(n(p+ α(1− 2p)− 1/2))2

What this means is that the probability that the simplified VOTE(.) fails is upper bounded as in (4).
We show the effect of the different values of α and p in Figure 2. We can see from Figure 2,
if the benign clients can train better supermasks (better chance that a good edge ended in their
subnetwork), the probability that the attackers succeed is lower (more robustness). VOTE(.) in FSL
(Section 4.3) is more sophisticated and puts more constraints on the malicious clients, hence the
about upper bound also applies to FSL.

We show the theoretical relationship between upper bound on the failure of VOTE(.) for different
values of malicious rate (α) in Figure 2. To validate our theoretical bounds, we measure the least
number of malicious clients that the adversary needs to control to remove a good edge from the
global subnetwork in Figure 3. In this figure, we report the votes of one particular edge in the first
layer of LeNet (trained on MNIST) where there are 288 edges in the first layer (Table B.1 shows the
number of edges in each layer). We consider this edge as a good edge since we observe that it would
be in the final global subnetwork (at FSL round 20) if there were no malicious clients. In this figure,
the bars are showing the number of votes this edge received to be in the global subnetwork for that
FSL round. The horizontal lines are showing the thresholds that if the number of votes is less than
them, the adversary can change the decision about this good edge. We are selecting 25 clients in
each round, so we consider 2 × α × 25 for thresholds. For instance, when we assume there are
20% malicious clients (on average there are 5 malicious among 25 selected clients) that means that
5 votes of benign votes decreases and 5 votes is added to malicious votes, so the threshold would be
10.
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Table 3: Model architectures. We use identical architecture to those Ramanujan et al. (2020);
Wortsman et al. (2020) used.

Architecture Layer Name Number of parameters

LeNet + MNIST
(Wortsman et al., 2020)

Convolution(32) + Relu 288
Convolution(64) + Relu 18432

MaxPool(2x2) -
FC(128) + Relu 1605632

FC(10) 1280

Conv8 + CIFAR10
(Ramanujan et al., 2020)

Convolution(64) + Relu 1728
Convolution(64) + Relu 36864

MaxPool(2x2) -
Convolution(128) + Relu 73728
Convolution(128) + Relu 147456

MaxPool(2x2) -
Convolution(256) + Relu 294912
Convolution(256) + Relu 589824

MaxPool(2x2) -
Convolution(512) + Relu 1179648
Convolution(512) + Relu 2359296

MaxPool(2x2) -
FC(256) + Relu 524288
FC(256) + Relu 65536

FC(10) 2560

LeNet + FEMNIST
(Wortsman et al., 2020)

Convolution(32) + Relu 288
Convolution(64) + Relu 18432

MaxPool(2x2) -
FC(128) + Relu 1605632

FC(62) 7936

B MISSING DETAILS OF EXPERIMENTAL SETUP

B.1 DATASETS AND MODEL ARCHITECTURES

MNIST is a 10-class class-balanced classification task with 70,000 gray-scale images, each of size
28 × 28. We experiment with LeNet architecture given in Table 4. For local training in each FSL/FL
round, each client uses 2 epochs. For training weights (experiments with FedAvg, SignSGD, TopK),
we use SGD optimizer with learning rate of 0.01, momentum of 0.9, weight decay of 1e-4, and
batch size 8. For training supermasks (experiments with FSL), we use SGD with learning rate of
0.4, momentum 0.9, weight decay 1e-4, and batch size 8.

CIFAR10 (Krizhevsky & Hinton, 2009) is a 10-class classification task with 60,000 RGB images
(50,000 for training and 10,000 for testing), each of size 32 × 32. We experiment with a VGG-like
architecture given in Table 4, which is identical to what Ramanujan et al. (2020) used. For local
training in each FSL/FL round, each client uses 5 epochs. For training weights (experiments with
FedAvg, SignSGD, TopK), we use SGD with learning rate of 0.1, momentum of 0.9, weight decay
of 1e-4, and batch size of 8. For training supermasks (experiments with FSL), we optimize SGD
with learning rate of 0.4, momentum of 0.9, weight decay of 1e-4, and batch size of 8.

FEMNIST (Caldas et al., 2018; Cohen et al., 2017) is a character recognition classification task
with 3,400 clients, 62 classes (52 for upper and lower case letters and 10 for digits), and 671,585
gray-scale images. Each client has data of their own handwritten digits or letters. We use LeNet
architecture given in Table 4. For local training in each FSL/FL round, each client uses 2 epochs.
For training weights (experiments with FedAvg, SignSGD, TopK), we use SGD with learning rate
of 0.15, momentum of 0.9, weight decay of 1e-4, and batch size of 10. For training supermasks
(experiments with FSL), we optimize SGD with learning rate of 0.2, momentum of 0.9, weight
decay of 1e-4, and batch size of 10.

15



Under review as a conference paper at ICLR 2022

B.2 HYPERPARAMETERS TUNING

We optimize the hyperparameters based on FSL and other baselines independently. The hyperpa-
rameters that we used in our experiments are tuned in scenario with no malicious clients. Table B.1
shows the performance of FSL and other baselines on CIFAR10 (distributed over 1000 users using
Dirichlet distribution) for different values of hyperparameters when there are 10% malicious clients
among the clients. This table shows the robustness of FSL still persists even if we change the hyper-
parameters. We reported mean of accuracies and standard deviation of accuracies for all the clients
at the final FSL round.

B.3 NON-IID DATA DISTRIBUTION

Using Dirichlet Distribution: Considering the heterogeneous data in the real-word cross-device
FL, similar to previous works (Reddi et al., 2020; Hsu et al., 2019), we distribute MNIST and
CIFAR10 among 1,000 clients in a non-iid fashion using Dirichlet distribution with parameter β =
1. Note that increasing β results in more iid datasets. Next, we split datasets of each client into
training (80%) and test (20%). At the end of the FL rounds, we calculate the test accuracy of each
client for its test data, and we report the average of test accuracies of all the clients. We run all the
experiments for 2000 global rounds of FSL and FL and select 25 clients in each round.

Assigning only two classes to each client: McMahan et al. (2017) used a more extreme hetero-
geneous data assignment. For assignment of MNIST and CIFAR10 among 1000 clients using this
Non-iid-ness method, we sort all the training and validation data inside MNIST and CIFAR10, then
partition them into 2000 shards. This means that each shards of training MNIST has 30 images and
each CIFAR10 shard has 25 images. Then we assign two random shards to each client resulting
in each client have at most data of two classes, and in CIFAR10 experiments, each client has 50
training images, and 10 test images, and in MNIST experiments, each client has 60 training images
and 10 test images. We only use this assignment in Section C.3.

B.4 BASELINE FL ALGORITHMS

Federated averaging In non-adversarial FL settings, i.e., without any malicious clients, the
dimension-wise Average (FedAvg) (Konečnỳ et al., 2016; McMahan et al., 2017) is an effective
AGR. In fact, due to its efficiency, Average is the only AGR implemented by FL applications in
practice (Ludwig et al., 2020; Paulik et al., 2021).

SignSGD is a quantization method used in distributed learning to compress each dimension of
updates into 1 bit instead of 32 or 64 bits. To achieve this, in SignSGD (Bernstein et al., 2019)
the clients only send the sign of the gradient updates to the server, and the server runs a majority
vote on them. SignSGD is designed for distributed learning where all the clients participate in
each round, so all the clients are aware of the most updated weight parameters of the global model.
However, using SignSGD in FL just provides benefit in upload bandwidth, but to achieve good
overall performance of the global model, the server should send all the weight parameters (each of
32 bits) to the newly selected clients in each round. This makes SignSGD very efficient in upload
cost, but it is as inefficient as FedAvg in download.

TopK is a sparsification method used in distributed learning that transmits only a few elements in
each model update to the server. In TopK (Aji & Heafield, 2017; Alistarh et al., 2018a), the clients
first sort the absolute values of their local gradient updates, and send the Top K% largest gradients
update dimensions to the server for aggregation. TopK suffers from the same problem as SignSGD:
for performance reasons, the server should send the entire updated model weights to the new selected
clients.

B.5 MODEL POISONING ATTACK FOR ROBUSTNESS EVALUATIONS

To evaluate robustness of various FL algorithms, we use state-of-the-art model poisoning attack
proposed by Shejwalkar & Houmansadr (2021) in our robustness experiments. The attack proposes
a general FL poisoning framework and then tailors it to specific FL settings. It first computes an
average ∇b of the available benign updates and perturbs it in a dynamic, data-dependent malicious
direction ω to compute the final poisoned update∇′ = ∇b + γω. DYN-OPT finds the largest γ that
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Table 4: Performance of FSL with different hyperparameters trained on CIFAR10 (distributed over
1000 clients using Dirichlet distribution).

Method hyperparameter value Test Accuracy with 10% malicious

FSL

batch size
6 78.4 (12.6)
8 79.0 (12.4)

16 76.4 (13.6)

local epochs
2 79.8 (12.2)
5 79.0 (12.4)

10 78.2 (12.6)

learning rate

0.1 73.5 (13.4)
0.2 82.4 (12.1)
0.3 83.11 (11.8)
0.4 79.0 (12.4)
0.5 77.5 (13.1)

FedAvg - - 10.0 (10.1)

TopK - - 10.0 (10.1)

FedAvg + Trimmed-mean

batch size
6 55.5 (14.5)
8 56.3 (16.0)

16 37.7 (15.6)

local epochs
2 41.0 (15.4)
5 56.3 (16.0)

10 21.0 (9.9)

learning rate

0.01 34.0 (15.5)
0.05 38.3 (15.3)
0.1 56.3 (16.0)
0.15 10.0 (10.0)
0.2 10.0 (10.0)

FedAvg + Multi-Krum

batch size
6 19.0 (12.5)
8 58.8 (15.8)

16 36.7 (14.8)

local epochs
2 46.1 (15.9)
5 58.8 (15.8)

10 24.3 (11.7)

learning rate

0.01 15.3 (11.7)
0.05 50.0 (16.2)
0.1 58.8 (15.8)
0.15 15.4 (11.9)
0.2 10.0 (10.0)

SignSGD

batch size
6 33.1 (15.6)
8 39.7 (15.9)

16 10.2 (10.1)

local epochs
2 10.2 (10.5)
5 39.7 (15.9)

10 41.5 (16.0)

learning rate

0.01 44.2 (15.8)
0.05 41.9 (15.5)
0.1 39.7 (15.9)
0.15 35.8 (15.3)
0.2 10.2 (10.1)
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successfully circumvents the target AGR. DYN-OPT is much stronger, because unlike STAT-OPT,
it finds the largest γ and uses a dataset tailored ω.

C MISSING EXPERIMENTS

C.1 FSL: INITIALIZATION MATTERS

Table 5: Comparing the performance of FSL with different random weight initialization algorithms
with the performance of vanilla FedAvg for cross-device setting. Using Singed Kaiming Constant
as weight initialization gives the best performance for all the datasets.

Dataset Metric Algorithm
FedAvg FSL

Winit ∼ - XN NK UK

MNIST
LeNet
N=1000

Mean 98.8 96.6 98.7 98.8
STD 3.1 5.2 3.2 3.1
Min 75.0 57.1 75.0 75.0
Max 100 100 100 100

CIFAR10
Conv8
N=1000

Mean 85.4 63.6 82.0 85.3
STD 11.2 15.6 11.9 11.3
Min 33.3 0 0 33.3
Max 100 100 100 100

FEMNIST
LeNet
N=3400

Mean 85.8 69.2 82.9 84.2
STD 10.2 14.2 11.1 10.7
Min 10.0 0 14.3 7.1
Max 100 100 100 100

In FSL, the weight parameters are fixed throughout the FSL protocol and they are initialized ran-
domly at the beginning of the protocol. It is very important to appropriately initialize the weights
since the clients will find the subnetworks within these weights. We use three different distribution
for initializing the weight parameters as follows:

Glorot Normal (Glorot & Bengio, 2010) where we denote byXN . Previous work Zhou et al. (2019)
used this initialization to demonstrate that subnetworks of randomly weighted neural networks can
achieve impressive performance.

Kaiming Normal (He et al., 2015) where we denote by Nk defined as NK = N
(
0,
√

2/n`−1

)
where N shows normal distribution. n` shows the number of parameters in the `th layer.

Singed Kaiming Constant (Ramanujan et al., 2020) where all the wights are a constant σ but they
are assigned {+,−} randomly. This constant, σ, is the standard deviation of Kaiming Normal. We
show this initialization with UK as we are sampling from {−σ,+σ} where σ =

(√
2/n`−1

)
.

Table 5 shows the results of running FSL for three datasets under the three aforementioned initializa-
tion algorithms. We compare FSL with FedAvg and report the mean, standard deviation, minimum,
and maximum of the accuracies for the clients’ local subnetwork (for FSL) and local models (for
FedAvg) at the end of FSL/FedAvg training. As we can see under three different random initial-
ization, using Signed Kaiming Normal (UK) results in better performance. We note from Table 5
that FSL with Signed Kaiming Normal (UK) initialization achieves performance very close to the
performance of FedAVg.

Note that, since the FSL clients update scores in each round, unlike initialization of weights, initial-
ization of scores does not have significant impact on the final global subnetwork search. Therefore,
we do not explore different randomized initialization algorithms for scores and simply use Kaiming
Uniform initialization for scores.
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Figure 4: Comparing performance of FSL for different subnetwork sizes. k (x-axis) shows the %
of weights that each client is including in its subnetwork, test accuracy (y-axis) shows the mean of
accuracies for all the clients on their test data. The chosen clients in each round send all the ranks to
the server. FSL with subnetworks of ∈ [40%, 70%] result in better performances.

Ramanujan et al. (2020) also considered these three initialization to find the best subnetwork in
centralized machine learning setting. They also showed that using Singed Kaiming Normal gives
the best supermasks. Our results align with their conclusions, hence we use Singed Kaiming Normal
to initialize the weights and Kaiming Uniform to initialize the scores of global supernetwork.

C.2 PERFORMANCES OF FSL WITH VARYING SIZES OF SUBNETWORKS

In FSL, each client uses Edge-Pop Algorithm (Ramanujan et al., 2020) and their local data to find a
local subnetwork within a randomly initialized global network, which we call supernetwork. Edge-
Pop algorithm use parameter k which represents the % of all the edges in a supernetwork which will
remain in the final subnetwork. For instance, k = 50% denotes that each client finds a subnetwork
within a supernetwork that has half the number of edges as in the supernetwork.

Figure 4 illustrates how the performance of the global subnetwork in FSL varies with the size of
subnetwork; note that, all of the clients collaborate to find the global subnetwork. We train nine
FSL models with k ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90}% and a FedAvg model (shown using a
horizontal line); FedAvg model updates all the weights, hence it is a supermask with k = 100%.

C.3 PERFORMANCES OF FSL WITH DIFFERENT HETEROGENEOUS DATA DISTRIBUTION
METHODS

Table 6 shows the performances of FSL and FedAvg using different methods of non-iid assignment.
We distribute the data between 1000 clients with two methods: (I) Dirichlet distribution with β = 1
similar to (Reddi et al., 2020; Hsu et al., 2019) and (II) each client has data of 2 random classes sim-
ilar to (McMahan et al., 2017). In this table, we can see that FSL can achieve the same performance
of FedAvg in different heterogeneous data distributions.

D MISSING DETAILS OF EDGE-POPUP AND FSL ALGORITHM

Suppose in a fully connected neural network, there are L layers and layer ` ∈ [1, L] has n` neu-
rons, denoted by V ` = {V `1 , ..., V `n`}. If Iv and Zv denote the input and output for neuron v
respectively, then the input of the node v is the weighted sum of all nodes in previous layer, i.e.,
Iv =

∑
u∈V `−1 WuvZu. Here, Wuv is the weight of the edge connecting u to v. Edge-popup

algorithm tries to find subnetwork E, so the input for neuron v would be: Iv =
∑

(u,v)∈EWuvZu.

Updating scores. Consider an edge Euv that connects two neurons u and v, Wuv be the weight of
Euv , and suv be the score assigned to the edgeEuv by Edge-popup algorithm. Then the edge-popup
algorithm removes edge Euv from the supermask if its score suv is not high enough. Each iteration
of supermask training updates the scores of all edges such that, if having an edge Euv in subnetwork
reduces loss (e.g., cross-entropy loss) over training data, the score suv increases.
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Table 6: Comparing the performance of FSL and FedAvg for cross-device setting using two methods
of data assignment. We distribute the data between 1000 clients with two methods: (I) Dirichlet
distribution with β = 1 and (II) each client has data of 2 random classes.

Dataset Type of Non-IID Metric Algorithm
FedAvg FSL

MNIST
LeNet
N=1000

Dirichlet Distribution β = 1

Mean 98.8 98.8
STD 3.1 3.1
Min 75.0 75.0
Max 100 100

Randomly 2 classes assigned to each client

Mean 98.4 98.3
STD 4.3 4.1
Min 70.0 80.0
Max 100 100

CIFAR10
Conv8
N=1000

Dirichlet Distribution β = 1

Mean 85.4 85.3
STD 11.2 11.3
Min 33.3 33.3
Max 100 100

Randomly 2 classes assigned to each client

Mean 70.6 70.9
STD 21.9 19.2
Min 0 10.0
Max 100 100

The algorithm selects top k% edges (i.e., finds a subnetwork with sparsity of k%) with highest
scores, so Iv reduces to Iv =

∑
u∈V `−1 WuvZuh(suv) where h(.) returns 1 if the edge exists in top-

k% highest score edges and 0 otherwise. Because of existence of h(.), which is not differentiable,
it is impossible to compute the gradient of loss with respect to suv . Recall that, the edge-popup
algorithm use straight-through gradient estimator (Bengio et al., 2013) to compute gradients. In
this approach, h(.) will be treated as the identity in the backward pass meaning that the upstream
gradient (i.e., ∂L

∂Iv
) goes straight-through h(). Now using chain rule, we can derive ∂L

∂Iv
∂Iv
∂suv

=
∂L
∂Iv

WuvZuwhere L is the loss to minimize. Then we can SGD with step size η to update scores as
suv ←− suv − η ∂L∂IvZuWuv .

Ramanujan et al. (2020) proved that when edge (a, b) replaces (c, b) in layer ` and the rest of the
subnetwork remains fixed then the loss of the supermask learning decreases (provided the loss is
sufficiently smooth). Motivated by their proof, we can show when these two edges are swapped in
FSL, the loss decreases for FSL optimization too.

Theorem 1: when edge (a, b) replaces (c, b) in layer ` and the rest of the subnetwork remains fixed
then the loss of the FSL optimization will decrease (provided the loss is sufficiently smooth).

proof. First, we know that the optimization problem of FSL is as follow:

min
Rg

F (θw, Rg) = min
Rg

N∑
i=1

λiLi(θ
w �m) s.t. (5)

m[Rg < t] = 0 and m[Rg >= t] = 1 (6)

where λi shows the importance of the ith client in empirical risk minimization which λi = 1
N gives

same importance to all the participating clients. m is the final mask that contains the edges of top
ranks, and Li is the loss function for the ith client. θw�m shows the subnetwork inside the random
θw that all clients unanimously vote for. In this optimization, the FSL clients try to minimize F by
finding the best global ranking Rg .

We now wish to show F (θw, Rt+1
g ) < F (θw, Rtg) when in FSL round t+1, the edge (a, b) replaces

(c, b) in layer ` and the rest of the subnetwork remains fixed. Suppose global rank of edge (a, b) was
Rtg[(a, b)] and global rank of edge (c, b) was Rtg[(c, b)] in round t, so we have:
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Rtg[(a, b)] < Rtg[(c, b)] (7)

Rt+1
g [(a, b)] > Rt+1

g [(c, b)] (8)

where the order of all remaining global ranks remain fixed, and only these two edges are swapped
in global ranking. Now let st,iab shows the score of weight wab in round t and client ith and st+1,i

ab
shows the updated score of it after local training. As in our majority vote, we are calculating the
sum of the reputation of edges we will have:

N∑
i=1

st,iab <

N∑
i=1

st,icb (9)

N∑
i=1

st+1,i
ab >

N∑
i=1

st+1,i
cb (10)

We also know that Edge-popup algorithm updates the scores in the ith client as follow:

st+1,i
ab = st,iab − η

∂L

∂Ia
ZaWab (11)

Based on 9, 10 and 11, we can say:

N∑
i=1

st,iab −
N∑
i=1

st,icb <

N∑
i=1

st+1,i
ab −

N∑
i=1

st+1,i
cb (12)

We also know that:

N∑
i=1

(
st+1,i
ab − st,iab

)
=

N∑
i=1

(
−η ∂L

i

∂Iia
ZiaWab

)
(13)

N∑
i=1

(
st+1,i
cb − st,icb

)
=

N∑
i=1

(
−η ∂L

i

∂Iic
ZicWcb

)
(14)

Based on 12, 13 and 14, we can say:

N∑
i=1

(
∂Li

∂Iic
ZicWcb

)
>

N∑
i=1

(
∂Li

∂Iia
ZiaWab

)
(15)

So based on 15, and what Ramanujan et al. (2020) proved for each supermask training we can
show 16. We assume that loss is smooth and the input to the nodes that their edges are swapped are
close before and after the swap.

N∑
i=1

(
Li(θ

w �mt+1)
)
<

N∑
i=1

(
Li(θ

w �mt)
)

(16)
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Figure 5: Communication cost Analysis. Please note that the download communication cost of all
SFSLs would be the same as FSL.

that means:
F (θw, Rt+1

g ) < F (θw, Rtg) (17)

E MISSING DETAILS ABOUT COMMUNICATION COST COMPARISON

One of the features of the FSL training is its communication efficiency. In Section 5.2, we show that
if the FSL clients send and receive rankings, the communication cost will be

∑
`∈[L] n` × log(n`)

bits per client. In this section, we are providing a lower bound on the FSL communication cost, and
then compare it with FedAvg and SignSGD.

Lowerbound of communication cost of FSL: Since the FSL clients send and receive layer-wise
rankings of indices, i.e., integers ∈ [0, n` − 1], for layer `, there are n`! possible permutations for
layer ` ∈ [L]. If we use the best possible compression method in FSL, an FSL client needs to
send and receive

∑
`∈[L] log(n`!) bits. Therefore, the download and upload bandwidth for each FSL

client would be
∑
`in[L] log (n` ∗ (n` − 1) ∗ ... ∗ 2 ∗ 1) =

∑
`∈[L]

∑n`
i=1 log(i) bits. Please note

that in our experiment, FSL clients send and receive the rankings without any further compression,
and

∑
`∈[L]

∑n`
i=1 log(i) just shows a lower-bound of communication cost of FSL. In Section 6.1,

we measure the performance and communication cost of FSL with other existing FL compressors
signSGD (Bernstein et al., 2019) and TopK (Aji & Heafield, 2017; Alistarh et al., 2018a). In Fig-
ure 5, we compare the communication cost of one client per FL round for FedAvg, SignSGD, and
different variant of FSL for different number of parameters.

Similar work in this domain is LotteryFL (Li et al., 2020a), a personalization framework that each
FL client learns a lottery ticket network (LTN) by pruning the base model using Lottery Ticket
hypothesis (Frankle & Carbin, 2019). In LotteryFL, each client sends and receives the update for
its subnetwork, and at the end, they have an extra step for personalization. FSL is different from
LotteryFL as the FSL clients find subnetworks within a random and fixed network and send the
ranks of their subnetwork edges instead of what LotteryFL clients do that train their weights and
find a subnetwork by freezing some weights and send their actual model update. LotteryFL is based
on FedAvg that the clients can send any update to the server, which is vulnerable to the same attacks
that existed for FedAVG. In terms of communication cost, FSL is very close to LotteryFL as they
report 1.81x improvement over CIFAR10 which is close to FSL and SFSL(50%) which provide
1.53x, 3.09x improvement respectively over CIFAR10.

F ADDITIONAL COMPARISONS

Figure 6 is showing the learning curve of FSL for different numbers of local epochs for CIFAR10
experiment. On the x-ais we have accumulated communication cost: e× 13.1× 2× 25 MB where
e is the FSL round, 13.1MB is the cost of FSL per client, 2 is for download+upload cost, and 25
clients are selected in each round.
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Table 7: The effect of other settings on performance of FSL trained on CIFAR10 distributed over
1000 clients using Dirichlet distribution. The bold shows the value we used in our experiments.

Method hyperparameter value Test Accuracy with 10% malicious

FSL

Number of participants (n)
15 84.8 (11.3)
25 85.3 (11.3)
50 84.9 (11.2)

local epochs (E)
2 82.2 (12.0)
5 85.3 (11.3)

10 83.5 (11.9)

Non-iid degree (β)
1 85.3 (11.3)

10 85.6 (11.1)
100 85.6 (10.9)
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Figure 6: Comparing performance of FSL for different local epochs.

Table 7 is showing the effect of other settings on performance of FSL trained on CIFAR10 distributed
over 1000 clients using Dirichlet distribution. The bold shows the value we used in our experiments.
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