

000 SCULPTING USER PREFERENCES FOR RECOMMENDA- 001 TION WITH POSITIVE-NEGATIVE DIFFUSION GUID- 002 ANCE 003 004

006 **Anonymous authors**

007 Paper under double-blind review

011 ABSTRACT

013 Diffusion models are emerging as a powerful generative paradigm for sequential
014 recommendation, demonstrating a remarkable ability to model complex user-item
015 interaction dynamics. Despite their strong modeling ability, most diffusion-based
016 recommenders face limited generative control because the standard classifier-free
017 guidance derives its repulsive signal from a global and user-agnostic unconditional
018 prior, which prevents the model from directly exploiting negative feedback at in-
019 ference. A natural solution is to replace the unconditional prior with user-aware
020 negative conditions. However, this is challenging because, unlike in text-to-image
021 tasks where negative prompts acquire stable semantics from a pre-trained text en-
022 coder, item embeddings in recommendation are learned dynamically. As a result,
023 a “negative condition” is not guaranteed to provide effective repulsive guidance
024 unless the model is explicitly trained to recognize it as a signal for avoidance.
025 To enable effective and steerable negative guidance in diffusion recommenders,
026 we propose SteerRec, a novel framework built upon two core innovations. At in-
027 ference, we introduce Positive-Negative Guidance (PNG) inference mechanism,
028 which replaces the generic unconditional prior with a user-aware negative con-
029 dition. To ensure the negative condition provides meaningful repulsive guidance
030 in the dynamic embedding space, we design a Guidance Alignment Triplet Loss
031 (GAL). The GAL is a margin-based objective that explicitly aligns the training
032 process with PNG by ensuring the model’s prediction under a positive condition
033 is closer to the target item than its prediction under a negative condition. Exten-
034 sive experiments on three widely used public benchmarks provide strong empirical
035 evidence for the effectiveness of SteerRec. Our implementation is available at
036 <https://anonymous.4open.science/r/SteerRec-5D70>.

037 1 INTRODUCTION

038 Modern recommender systems learn user preferences from historical interactions to rank relevant
039 items from large-scale catalogs, and within this landscape sequential recommendation has become a
040 critical subfield for modeling temporal user dynamics to predict the next item. (Hidasi et al., 2016;
041 Kang & McAuley, 2018; Sun et al., 2019; Zhou et al., 2020; Xie et al., 2022). Since user preferences
042 evolve with context and often follow complex distributions, generative modeling offers a natural
043 and powerful paradigm for sequential recommendation. Diffusion models (DMs) (Sohl-Dickstein
044 et al., 2015; Ho et al., 2020), owing to their ability to capture intricate preference distributions and
045 iteratively refine predictions, have emerged as a backbone for generative recommendation (Rajput
046 et al., 2023; Wu et al., 2024; Wang et al., 2023a; Zhao et al., 2024; Mao et al., 2025).

047 Existing diffusion-based sequential recommenders typically formulate the task as conditional gen-
048 eration, synthesizing an embedding vector for the user’s next preferred item. Most conditional dif-
049 fusion models adopt classifier-free guidance (CFG) as the standard inference mechanism, in which
050 the conditional prediction is extrapolated away from the unconditional prediction. This guidance
051 stabilizes the diffusion process and improves the fidelity of the generated outputs. Early approaches
052 such as DreamRec conditioned generation on chronological user history, relying exclusively on pos-
053 itive signals (Yang et al., 2023; Li et al., 2023; Wang et al., 2024). Recognizing the critical role of
negative signals in shaping user preferences (Chen et al., 2023; Zhang et al., 2024), PreferDiff ad-

Figure 1: Illustration of the guidance mechanism within a single denoising step at time t . Heatmaps show the user’s preference density. (a) CFG: Contrasting with a global prior creates a single, non-personalized repulsive force. (b) SteerRec (PNG): Contrasting with user-aware negatives creates targeted repulsive forces.

vanced the field by incorporating negative samples through Bayesian Personalized Ranking (BPR) to strengthen the learning signal (Rendle et al., 2009; Liu et al., 2025). Although incorporating negative samples via a ranking objective enriches the embedding space, the role of these signals is confined to the training loss. Consequently, these signals are not used as an explicit steering force during the inference-time denoising process. Using negative signals only in the training loss is an indirect way of handling negative feedback, failing to unlock the native guidance capabilities and full generative potential of DMs.

This indirect handling of negative signals is the root cause of a significant training-inference discrepancy in prior diffusion recommenders. The issue stems from their continued reliance on the standard CFG mechanism. In CFG, the repulsive force originates from the model’s prediction conditioned on the null context (\emptyset), an output that serves as a user-agnostic prior for every user. This “one-size-fits-all” approach, illustrated in Figure 1(a), is ineffective for targeted avoidance, which means the guided prediction can still land undesirably close to disliked items. Consequently, a fundamental misalignment arises: negative signals are used to shape the embedding space during training but cannot be used to directly steer the generative process away from undesirable items at inference time.

Thus, an important research question emerges: *How can we effectively incorporate user-aware negative information as a direct guidance signal during inference?* Addressing this question requires moving beyond the standard CFG framework, which is not designed for negative conditioning (Ho & Salimans, 2022). Interestingly, in the field of text-to-image generation, negative guidance has proven to be highly effective (Rombach et al., 2022; Gandikota et al., 2023; Bansal et al., 2023; Ban et al., 2024; Koulischer et al., 2025). Its success, however, is largely attributable to the availability of large-scale and pre-trained semantic encoders, rather than explicit training objectives that enforce repulsion. For example, to generate “a man without a beard”, a user can supply a positive prompt (“a man”) alongside a negative prompt (“beard”). Since powerful encoders such as CLIP provide stable and universal representations for both concepts, the denoising network is thus able to distinguish what to generate and what to avoid. By replacing the unconditional (null prompt) prediction with the prediction conditioned on the negative prompt (“beard”), CFG is cleverly adapted to repulse the undesired concept (“beard”) while steering the generation toward the desired one (“a man”). However, this negative guidance paradigm does not transfer directly to recommendation. Unlike text-to-image tasks where conditions are expressed in natural language and grounded in a fixed semantic space, recommendation operates in a learned and evolving embedding space where positive conditions (user history), negative conditions, and target items are all drawn from the same item set (Koren et al., 2009). As a result, their semantics are relative and interdependent, rather than fixed and universally interpretable. This makes negative guidance in recommendation inherently unstable: simply providing a negative item at inference does not guarantee meaningful repulsion, because the model has not been trained to interpret this negative signal as a repulsive force. In other words, the absence of an externally grounded semantic space (like the role of CLIP in vision-language tasks)

means that recommendation systems require an explicit training objective to align inference-time negative conditions with effective guidance.

To address this challenge, we introduce a new framework named SteerRec, which integrates negative signals directly into inference-time guidance and aligns the training process accordingly. As illustrated in Figure 1(b), SteerRec enforces both attraction toward desired items and targeted repulsion from negatives by contrasting the positive condition against a user-aware negative condition. Specifically, SteerRec introduces a Positive-Negative Guidance (PNG) mechanism, which replaces the user-agnostic unconditional prior with instance-specific negative conditions and admits a principled likelihood-ratio interpretation (Neyman & Pearson, 1933; Casella & Berger, 2024). To ensure the effectiveness of the PNG mechanism in the dynamic embedding space, we further design a Guidance Alignment Triplet Loss (GAL). GAL is a margin-based objective designed to structure the denoising network’s output space (Schroff et al., 2015; Sohn, 2016; He et al., 2020; Sun et al., 2020). GAL enforces a triplet-based geometric constraint: for a ground-truth item (the anchor), the model’s prediction under a positive condition must be closer to the anchor than its prediction under a negative condition. This explicit alignment during training empowers the PNG mechanism to exert precise and reliable repulsive control during inference. Our contributions are summarized as follows:

- We propose SteerRec, a novel diffusion recommendation framework that enables direct and reliable negative guidance. SteerRec resolves a critical training-inference misalignment in existing methods by replacing the user-agnostic unconditional prior of CFG with user-aware negative conditions.
- By introducing a Positive-Negative Guidance mechanism at inference and a complementary Guidance Alignment Triplet Loss during training, SteerRec effectively structures the dynamic embedding space. This process leads to more precise and controllable user preference generation.
- Extensive experiments on three public benchmark datasets demonstrate the effectiveness and superiority of SteerRec, with significant performance gains over leading baselines. Our in-depth analyses further validate the advantages of our direct negative guidance paradigm.

2 PRELIMINARY

This section provides the technical background necessary to understand our proposed method. We formally define the sequential recommendation task and detail the core mechanics of DMs and CFG, the latter of which motivates our work.

2.1 SEQUENTIAL RECOMMENDATION

The task of sequential recommendation is to predict the next item a user will interact with based on their interaction history. Formally, for a set of users \mathcal{U} and items \mathcal{I} , the goal is to predict the next item $i_n \in \mathcal{I}$ for a user $u \in \mathcal{U}$ with an interaction history of $S_u = (i_1, i_2, \dots, i_{n-1})$. In mainstream discriminative frameworks, this is operationalized as a ranking task. Each item i is represented by a learnable embedding vector $\mathbf{x} \in \mathbb{R}^d$. The sequence of embeddings $(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_{n-1})$ is processed by a neural encoder (e.g., a Transformer) to produce a single context vector $\mathbf{c}^+ \in \mathbb{R}^d$. The model is trained with a ranking objective to distinguish the true next item i_n from a set of sampled negative items $H \subset \mathcal{I}$. The goal is to learn representations that ensure the score computed from \mathbf{c}^+ for item i_n is higher than for any item $j \in H$. The final recommendation list is generated by ranking all candidate items based on their computed scores.

2.2 DIFFUSION MODELS FOR SEQUENTIAL RECOMMENDATION

DMs have recently been applied to sequential recommendation, marking a shift from discriminative paradigms to a generative approach. Instead of learning to classify the next item from a set of candidates, the task is reframed as generating an embedding that represents the user’s next preferred item, conditioned on their history (Yang et al., 2023; Liu et al., 2025; Li et al., 2023). This process is typically defined by two complementary stages:

162 **Forward Process.** The forward process is a fixed Markov chain that gradually injects Gaussian
 163 noise into the ground-truth target item embedding \mathbf{x}_0 over T timesteps. This is governed by a
 164 predefined variance schedule $\{\beta_t\}_{t=1}^T$.
 165

$$166 \quad q(\mathbf{x}_{1:T} | \mathbf{x}_0) = \prod_{t=1}^T q(\mathbf{x}_t | \mathbf{x}_{t-1}), \quad \text{where} \quad q(\mathbf{x}_t | \mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1 - \beta_t} \mathbf{x}_{t-1}, \beta_t \mathbf{I}) \quad (1)$$

169 A key property of this process is that the noisy latent \mathbf{x}_t can be sampled in a closed form for any
 170 timestep t :

$$171 \quad \mathbf{x}_t = \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, \quad \text{where} \quad \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I}) \quad (2)$$

172 where $\alpha_t = 1 - \beta_t$ and $\bar{\alpha}_t = \prod_{s=1}^t \alpha_s$. As $t \rightarrow T$, \mathbf{x}_T converges to an isotropic Gaussian.
 173

174 **Reverse Process.** The reverse process aims to learn the data distribution by approximating the
 175 true posterior $q(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{x}_0)$ with a parameterized model $p_\theta(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{c}^+)$. This is achieved by
 176 training a neural network F_θ to denoise the corrupted input \mathbf{x}_t , conditioned on the user’s historical
 177 context vector \mathbf{c}^+ . While the full training objective involves optimizing a variational bound on the
 178 log-likelihood, it can be simplified to a mean squared error objective (Ho et al., 2020). Following
 179 recent diffusion recommenders (Yang et al., 2023; Liu et al., 2025), we parameterize our model to
 180 predict the original data \mathbf{x}_0 rather than the noise term ϵ . This offers the conceptual advantage of
 181 directly aligning the network’s output with the task’s ultimate goal. The model $F_\theta(\mathbf{x}_t, \mathbf{c}^+, t)$ is thus
 182 optimized via the following simple reconstruction loss, L_{recon} :

$$183 \quad L_{\text{recon}}(\theta) = \mathbb{E}_{\mathbf{x}_0, \mathbf{c}^+, t} [\|\mathbf{x}_0 - F_\theta(\mathbf{x}_t, \mathbf{c}^+, t)\|^2] \quad (3)$$

185 **Inference and Recommendation.** At inference time, the model generates the next-item embedding
 186 through an iterative denoising process. Starting from pure Gaussian noise $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, the
 187 model iteratively applies the reverse process for $t = T, \dots, 1$. In each step, the denoising network
 188 $F_\theta(\mathbf{x}_t, \mathbf{c}^+, t)$ predicts the clean embedding, and an efficient sampler such as Denoising Diffusion
 189 Implicit Models (DDIM) (Song et al., 2021a) is used to estimate the next state \mathbf{x}_{t-1} . After T steps,
 190 this process yields the final generated embedding $\hat{\mathbf{x}}_0$. Finally, this embedding is used to rank all can-
 191 didate items by computing their inner product scores with $\hat{\mathbf{x}}_0$, and the top-K highest-scoring items
 192 are returned as the recommendation list.
 193

2.3 CONTROLLABLE GENERATION WITH CFG

195 To enhance the influence of the conditioning signal \mathbf{c}^+ on the generative process, diffusion-based
 196 recommenders commonly adopt CFG (Ho & Salimans, 2022). The core idea is to train a single
 197 network F_θ to operate in both a conditional mode (receiving \mathbf{c}^+) and an unconditional mode. This
 198 is achieved via conditional dropout, where during training, the context \mathbf{c}^+ is randomly replaced by
 199 a shared, learnable null context token \emptyset .
 200

201 This dual-mode training enables control at inference time. At inference, the guided prediction is
 202 formed by combining the model’s outputs under both its conditional and unconditional modes. By
 203 extrapolating away from the unconditional prediction, the conditional signal can be amplified. The
 204 guided prediction of the clean data, $\hat{\mathbf{x}}_0$, is thus formulated as:
 205

$$\hat{\mathbf{x}}_0(\mathbf{x}_t, \mathbf{c}^+) = (1 + w) \cdot F_\theta(\mathbf{x}_t, \mathbf{c}^+, t) - w \cdot F_\theta(\mathbf{x}_t, \emptyset, t) \quad (4)$$

206 where w is the guidance scale. A higher w value strengthens the effect of the condition, which is
 207 known to improve sample fidelity at the potential cost of diversity (Dhariwal & Nichol, 2021). This
 208 guidance mechanism steers the generation away from the generic, marginal distribution represented
 209 by the unconditional prediction, which lacks the specificity required for fine-grained, personalized
 210 negative feedback.
 211

3 METHODOLOGY

212 Our SteerRec overcomes the limitations of standard diffusion recommenders through a fundamental
 213 redesign of both the inference-time guidance and the training objective. Its core lies in a new in-
 214 ference paradigm, Positive-Negative Guidance, which replaces the generic unconditional prior with
 215

Figure 2: The architecture of the SteerRec framework. The top panel illustrates the overall forward and reverse diffusion processes. The bottom panel details a single diffusion step under our proposed PNG mechanism. Within this step, a positive condition (c^+) is encoded from user history, while a negative condition (c^-) is formed from items sampled from the user’s uninteracted items. The denoising network separately utilizes the positive (c^+) and negative (c^-) conditions to generate two predictions, \hat{x}_0^{pos} and \hat{x}_0^{neg} . These predictions are then combined by the PNG guidance formula to produce a guided prediction \hat{x}_0 for the DDIM update step. This PNG mechanism is enabled by our GAL used during training.

user-aware negative feedback. To ensure this new guidance mechanism is effective, we introduce a corresponding Guidance Alignment Triplet Loss during training, which explicitly aligns the denoising network’s behavior with the PNG mechanism. In the following sections, we will detail each of these components and discuss the strategies for constructing the negative conditions that power this framework. The overall architecture of SteerRec is illustrated in Figure 2.

3.1 THE POSITIVE-NEGATIVE GUIDANCE PARADIGM

The core of our methodology is an inference paradigm that replaces the “positive-vs-unconditional” structure of CFG with a more precise “positive-vs-negative” guidance mechanism. This allows the generative process to be directly steered by user-aware negative feedback.

PNG Formulation. Our primary goal is to directly leverage user-aware negative feedback as a guiding signal within the denoising process. The standard CFG provides a valuable extrapolation principle, but the repulsive force of this framework is user-agnostic, steering generation away from a generic prior instead of specific items a user dislikes. Inspired by CFG’s extrapolation, we introduce the PNG mechanism, which replaces the generic prior with a user-aware negative condition. The PNG framework is adapted for our denoising network F_θ that predicts the original data \mathbf{x}_0 , and is formalized as:

$$\hat{\mathbf{x}}_0(\mathbf{x}_t, \mathbf{c}^+, \mathbf{c}^-) = (1 + w) \cdot F_\theta(\mathbf{x}_t, \mathbf{c}^+, t) - w \cdot F_\theta(\mathbf{x}_t, \mathbf{c}^-, t) \quad (5)$$

where \mathbf{c}^+ is the positive condition derived from user history, \mathbf{c}^- (detailed in Section 3.3) is the user-aware negative condition, and w is the guidance scale that controls the guidance intensity, balancing fidelity to the positive condition against recommendation diversity. For an intuitive understanding, Equation 5 can be rewritten as:

$$\hat{\mathbf{x}}_0(\mathbf{x}_t, \mathbf{c}^+, \mathbf{c}^-) = F_\theta(\mathbf{x}_t, \mathbf{c}^+, t) + w \cdot (F_\theta(\mathbf{x}_t, \mathbf{c}^+, t) - F_\theta(\mathbf{x}_t, \mathbf{c}^-, t)) \quad (6)$$

Here, the difference between the positive and negative predictions serves as a corrective guidance vector, actively pushing the prediction away from the space defined by the negative condition.

Theoretical Foundation. Our guidance rule is not merely heuristic but is theoretically grounded in the principles of score-based modeling (Song & Ermon, 2019; 2020; Song et al., 2021b). The guided

reverse process, as implemented through Eq. 5, possesses an instantaneous score ($\nabla_{\mathbf{x}_t} \log p^*(\mathbf{x}_t)$) that is equivalent to the gradient of a likelihood-ratio-tilted density:

$$p^*(\mathbf{x}_t | \mathbf{c}^+, \mathbf{c}^-) \propto \frac{p_\theta(\mathbf{x}_t | \mathbf{c}^+)^{1+w}}{p_\theta(\mathbf{x}_t | \mathbf{c}^-)^w} \quad (7)$$

This target density is motivated by the Neyman-Pearson Lemma (Neyman & Pearson, 1933), which identifies the likelihood ratio as the optimal statistic for discriminating between the positive condition \mathbf{c}^+ and the negative condition \mathbf{c}^- . Therefore, our guidance steers the reverse process towards this target distribution at each noise level t . A detailed derivation showing the equivalence in score-space and its connection to our \mathbf{x}_0 -prediction model is provided in Appendix C.

Efficient Reverse Process with DDIM. To efficiently generate the final item embedding, we integrate our guidance rule into the DDIM sampling process. Unlike the original DDPM sampler, DDIM enables a much faster reverse process by defining a non-Markovian chain that permits a small number of large, deterministic sampling steps. The one-step update from \mathbf{x}_t to \mathbf{x}_{t-1} proceeds deterministically by first computing our guided prediction $\hat{\mathbf{x}}_0$ (from Eq. 5) and then using it to solve for the next state:

$$\mathbf{x}_{t-1} = \sqrt{\bar{\alpha}_{t-1}} \hat{\mathbf{x}}_0 + \sqrt{1 - \bar{\alpha}_{t-1}} \cdot \left(\frac{\mathbf{x}_t - \sqrt{\bar{\alpha}_t} \hat{\mathbf{x}}_0}{\sqrt{1 - \bar{\alpha}_t}} \right) \quad (8)$$

This process is iterated for a small number of steps to generate the final embedding.

3.2 TRAINING-INFERENCE ALIGNMENT

The effectiveness of our PNG inference mechanism hinges on the denoising network F_θ producing semantically distinct outputs for the positive (\mathbf{c}^+) and negative (\mathbf{c}^-) conditions. If trained only with a simple reconstruction objective, the network has no incentive to interpret the negative condition \mathbf{c}^- as a repulsive signal, which undermines the effectiveness of the PNG mechanism. To resolve this training-inference discrepancy, we must explicitly teach the model the oppositional nature of these conditions.

To achieve this, we introduce the Guidance Alignment Triplet Loss, a margin-based objective inspired by deep metric learning (Schroff et al., 2015; Sohn, 2016). The core principle of GAL is to structure the model’s output space such that the prediction under the positive condition is geometrically closer to the ground-truth item than the prediction under the negative condition is. To formalize this, given a noisy input \mathbf{x}_t , we first compute two denoised predictions under the opposing conditions:

$$\hat{\mathbf{x}}_0^{\text{pos}} = F_\theta(\mathbf{x}_t, \mathbf{c}^+, t) \quad (\text{the positive prediction}) \quad (9)$$

$$\hat{\mathbf{x}}_0^{\text{neg}} = F_\theta(\mathbf{x}_t, \mathbf{c}^-, t) \quad (\text{the negative prediction}) \quad (10)$$

Based on these two predictions, GAL is formulated as:

$$L_{\text{GAL}} = \max(0, d(\hat{\mathbf{x}}_0^{\text{pos}}, \mathbf{x}_0^+) - d(\hat{\mathbf{x}}_0^{\text{neg}}, \mathbf{x}_0^+) + m) \quad (11)$$

where $d(\cdot, \cdot)$ is a distance metric (e.g., Cosine distance), and m is a positive margin hyperparameter that defines the minimum desired separation between the distances.

While GAL enforces the necessary alignment for guidance, we still require an objective to ensure the generated item is accurate. This is accomplished by a standard reconstruction loss, which encourages the positive prediction to be close to the ground truth:

$$L_{\text{recon}} = d(\hat{\mathbf{x}}_0^{\text{pos}}, \mathbf{x}_0^+) \quad (12)$$

The final training objective, L , is a composite loss that combines both alignment and reconstruction:

$$L = (1 - \mu) \cdot L_{\text{recon}} + \mu \cdot L_{\text{GAL}} \quad (13)$$

Here, $\mu \in [0, 1]$ is a hyperparameter that balances the contribution of the reconstruction objective (generative fidelity) and the alignment objective (guidance effectiveness).

3.3 INSTANTIATING NEGATIVE CONDITIONS

A crucial component of SteerRec is the construction of the negative condition \mathbf{c}^- . Unlike the static, global prior in CFG, our negative condition is dynamic and instance-specific. We instantiate this condition by sampling a set of negative items and aggregating their corresponding embeddings.

Negative Item Sampling. We adopt two distinct but complementary sampling strategies to maintain computational efficiency and effectiveness during the training and inference phases. During training, we employ in-batch negative sampling, treating all other items in a mini-batch as negative samples for each positive instance. This strategy, widely adopted in self-supervised learning (Chen et al., 2020; Karpukhin et al., 2020), is highly efficient and provides a diverse set of challenging negatives for each training instance. At inference time, when batch information is unavailable, we construct the negative condition by sampling a set of items randomly from the global item corpus. Even this simple random sampling strategy provides a robust repulsive signal, effectively validating the potential of negative guidance in diffusion-based recommendation.

Embedding Aggregation. To generate a stable and comprehensive repulsive signal, we aggregate the set of selected N_{neg} negative item embeddings $\{\mathbf{x}_{neg}^{(k)}\}_{k=1}^{N_{neg}}$ into a single condition vector \mathbf{c}^- using the centroid method (Xie et al., 2016), as follows:

$$\mathbf{c}^- = \frac{1}{N_{neg}} \sum_{k=1}^{N_{neg}} \mathbf{x}_{neg}^{(k)} \quad (14)$$

While global random sampling serves as an efficient baseline strategy, the performance of SteerRec can be further unlocked when higher-quality sources of negative feedback are available, as demonstrated in Appendix F. The complete training and inference procedures are detailed in Appendix D.2.

4 EXPERIMENTS

In this section, we conduct extensive experiments to answer the following research questions:

- **RQ1:** How does SteerRec perform compared with other sequential recommenders?
- **RQ2:** How do the core components of SteerRec, the PNG inference mechanism and the GAL objective, each contribute to its overall performance?
- **RQ3:** How do SteerRec’s key hyperparameters influence its performance, and what is its training efficiency?

4.1 EXPERIMENTAL SETUP

Datasets and Baselines. We evaluate SteerRec on three public Amazon Review datasets: Sports and Outdoors, Beauty, and Toys and Games. Following the protocol of recent works (Liu et al., 2025), we adopt a chronological 80/10/10 user-based split and perform five-core filtering. We compare SteerRec against a comprehensive suite of baselines, including traditional sequential models (e.g., GRU4Rec (Hidasi et al., 2016), SASRec (Kang & McAuley, 2018), BERT4Rec (Sun et al., 2019)), advanced paradigms such as contrastive learning (e.g., CL4SRec (Xie et al., 2022)) and autoregressive generation (e.g., TIGER (Rajput et al., 2023)), and other diffusion-based methods (e.g., DiffuRec (Li et al., 2023), DreamRec (Yang et al., 2023), PreferDiff (Liu et al., 2025)). Detailed dataset statistics and baseline descriptions are provided in Appendix D.

Implementation and Evaluation. To ensure a fair comparison, we implement SteerRec using the same SASRec backbone and key hyperparameters (e.g., embedding dimension of 3072) as recent diffusion recommenders (Liu et al., 2025). We use a linear noise schedule with the deterministic DDIM sampler for efficient inference. For evaluation, we adopt two standard top-K ranking metrics, Recall@K and NDCG@K (K={5, 10}), computed in a full-ranking setting over the entire item corpus. Further implementation details, including the hyperparameter search space, are available in Appendix D.2.

4.2 OVERALL PERFORMANCE COMPARISON (RQ1)

As shown in Table 1, diffusion-based models generally outperform traditional sequential models, which can be attributed to their powerful ability to model complex data distributions. Among all baselines, our proposed SteerRec achieves the best performance across all datasets and metrics. The

378 Table 1: Overall performance comparison on all three datasets. The best performance is in **bold**, and
 379 the second best is underlined. All improvements of SteerRec are statistically significant ($p \ll 0.05$).
 380

381 Model	382 Sports and Outdoors				383 Beauty				384 Toys and Games			
	385 R@5	386 N@5	387 R@10	388 N@10	389 R@5	390 N@5	391 R@10	392 N@10	393 R@5	394 N@5	395 R@10	396 N@10
GRU4Rec	0.0019	0.0017	0.0026	0.0020	0.0090	0.0058	0.0090	0.0072	0.0087	0.0073	0.0096	0.0081
SASRec	0.0042	0.0028	0.0053	0.0032	0.0098	0.0069	0.0156	0.0088	0.0108	0.0088	0.0165	0.0107
BERT4Rec	0.0101	0.0051	0.0149	0.0073	0.0152	0.0105	0.0266	0.0141	0.0221	0.0124	0.0308	0.0165
CL4SRec	0.0112	0.0075	0.0151	0.0085	0.0226	0.0119	0.0327	0.0169	0.0227	0.0145	0.0330	0.0170
TIGER	0.0091	0.0065	0.0160	0.0091	0.0247	0.0167	0.0378	0.0195	0.0187	0.0129	0.0251	0.0158
DiffuRec	0.0093	0.0075	0.0120	0.0083	0.0284	0.0206	0.0320	0.0226	0.0310	0.0246	0.0332	0.0251
DreamRec	0.0147	0.0132	0.0207	0.0134	0.0387	0.0278	0.0481	0.0314	0.0425	0.0315	0.0476	0.0342
PreferDiff	0.0188	0.0148	0.0222	0.0159	0.0420	0.0307	0.0509	0.0336	0.0453	0.0347	0.0525	0.0370
SteerRec	0.0208	0.0167	0.0275	0.0189	0.0443	0.0334	0.0531	0.0365	0.0473	0.0370	0.0592	0.0404
Improv. (%)	+10.64%	+12.84%	+23.87%	+18.87%	+5.48%	+8.79%	+4.32%	+8.04%	+4.42%	+6.63%	+12.8%	+9.19%

391
 392 improvements are particularly pronounced on top-10 metrics such as Recall@10 and NDCG@10.
 393 For instance, on the Sports and Outdoors dataset, SteerRec achieves relative gains of 23.87% on
 394 R@10 and 18.87% on N@10 over the strongest baseline.
 395

396 The superiority of SteerRec stems from its novel approach to leveraging negative signals. Unlike
 397 models such as DiffuRec and DreamRec that rely solely on positive signals, SteerRec incorporates
 398 direct negative guidance to explicitly sculpt the user’s preference space by repelling the generation
 399 from undesirable items. Compared to PreferDiff, which indirectly introduces negative signals by
 400 aligning the diffusion model with a BPR loss during training, SteerRec’s approach is more direct
 401 and powerful. Our GAL explicitly enables the PNG mechanism at inference time, allowing the
 402 model to use negative information to manifestly guide the denoising process. This direct, end-to-
 403 end alignment allows SteerRec to generate an ideal item embedding that is simultaneously close to
 404 user preferences and far from disliked items.
 405

4.3 ABLATION STUDY (RQ2)

406 We designed an ablation study with two model variants to validate the contributions of SteerRec’s
 407 two primary components: the PNG inference mechanism and the GAL training objective. The
 408 variants are defined as:
 409

- **SteerRec (w/o PNG):** This variant is trained with the full objective, including the L_{GAL} ,
 410 but reverts to standard CFG for inference. This tests the impact of our PNG mechanism.
- **SteerRec (w/o GAL):** This variant is trained using only the reconstruction objective but
 411 still applies PNG at inference. This tests the necessity of the alignment loss for the guidance
 412 to be effective.

413 Table 2: Ablation study of SteerRec’s core components. The performance drop in both variants
 414 demonstrates that the PNG mechanism and the GAL are both essential.
 415

416 Model Variant	417 Sports and Outdoors				418 Beauty				419 Toys and Games			
	420 R@5	421 N@5	422 R@10	423 N@10	424 R@5	425 N@5	426 R@10	427 N@10	428 R@5	429 N@5	430 R@10	431 N@10
SteerRec	0.0208	0.0167	0.0275	0.0189	0.0443	0.0334	0.0531	0.0365	0.0473	0.0370	0.0592	0.0404
w/o PNG	0.0193	0.0157	0.0244	0.0172	0.0393	0.0313	0.0474	0.0339	0.0445	0.0348	0.0539	0.0375
w/o GAL	0.0181	0.0142	0.0215	0.0153	0.0411	0.0324	0.0496	0.0351	0.0449	0.0351	0.0494	0.0367

428 The results in Table 2 indicate that both components are critical to SteerRec’s performance. Removing
 429 the PNG mechanism (w/o PNG) results in a consistent performance drop, confirming that the
 430 inference-time negative guidance is a key driver of the improvements. A more substantial decline
 431 is observed for the w/o GAL variant. This underscores the necessity of the alignment loss; without
 432 it, the guidance mechanism operates on unaligned representations and becomes largely ineffective.
 433 The success of SteerRec thus stems from the synergy between its training objective and guidance
 434 paradigm.

432 4.4 HYPERPARAMETER AND EFFICIENCY ANALYSIS (RQ3)
433

434 **Impact of Guidance Scale w .** We investigate the impact of the guidance scale w , which con-
435 trols the overall guidance intensity, balancing preference fidelity against generative diversity. As
436 shown in Figure 3, SteerRec’s performance is sensitive to this value. Across all datasets, perfor-
437 mance generally improves with a moderate increase in w before declining. This demonstrates the
438 typical trade-off where overly strong guidance can improve fidelity but narrow the generation space
439 excessively, harming diversity. Additional analyses on other key hyperparameters, such as the loss
440 balancing coefficient μ , the triplet margin m , and the number of negative samples N_{neg} , are provided
441 in Appendix D.4.

442 Figure 3: The impact of the guidance scale w on Recall@10 performance.
443
444

445 **Faster Convergence than PreferDiff.** To assess practical advantages, we analyze the training ef-
446 ficiency of SteerRec against PreferDiff. As shown in Figure 4, SteerRec converges significantly
447 faster. It reaches its peak performance on the validation set around epoch 20 (approx. 6 minutes),
448 whereas PreferDiff requires nearly twice as many iterations, converging around epoch 34 (approx.
449 11 minutes). This accelerated convergence stems from the direct and efficient learning signal pro-
450 vided by our GAL objective. By immediately training the model to distinguish between positive and
451 negative conditions, SteerRec directly aligns the training process with the PNG inference mecha-
452 nism. In contrast, PreferDiff’s indirect alignment of its BPR loss with the standard CFG objective
453 results in a slower learning process. Similar convergence trends on the other datasets are provided
454 in Appendix D.5.

473 Figure 4: Training performance comparison between SteerRec and PreferDiff on the Sports dataset.
474
475476 5 CONCLUSION AND LIMITATIONS
477

478 In this work, we introduced SteerRec, a framework that redefines guidance for diffusion-based rec-
479 ommenders. Instead of the standard CFG, SteerRec replaces the generic unconditional prior with
480 a user-aware negative condition to enable more precise, personalized repulsion. To facilitate this,
481 we proposed the GAL, an alignment loss that ensures the model can distinguish between positive
482 and negative guidance, leading to significant performance gains as validated by our experiments.
483 Key limitations of our framework include its dependence on the quality of negative samples and the
484 potential for designing more advanced alignment loss functions. Future work could also explore ap-
485 plying negative guidance primarily in the later stages of the denoising process, drawing inspiration
486 from similar techniques in image generation.

486 ETHICS STATEMENT
487488 The research presented in this paper focuses on algorithmic advancements for sequential recom-
489 mendation. We exclusively used publicly available, anonymized benchmark datasets (Amazon Reviews),
490 which are standard in the academic community for recommendation research. Our work does not in-
491 volve collecting new data from human subjects, nor does it deal with sensitive personal information.
492 The proposed method, SteerRec, aims to improve recommendation accuracy and does not introduce
493 inherent fairness or privacy risks beyond those generally associated with recommender systems. We
494 believe our work adheres to the ICLR Code of Ethics.
495496 REPRODUCIBILITY STATEMENT
497498 To ensure the reproducibility of our work, we have made our implementation publicly available
499 at the anonymous URL provided on the first page. All experiments were conducted on three well-
500 known public datasets: Sports and Outdoors, Beauty, and Toys and Games from the Amazon Review
501 collection. Comprehensive details regarding the model architecture, training procedures, and hyper-
502 parameter settings for all experiments are provided in Appendix D.2 and D.3. Our implementation
503 is available at <https://anonymous.4open.science/r/SteerRec-5D70>.
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540 REFERENCES
541

542 Yuanhao Ban, Ruochen Wang, Tianyi Zhou, Minhao Cheng, Boqing Gong, and Cho-Jui Hsieh.
543 Understanding the impact of negative prompts: When and how do they take effect? In *European
544 conference on computer vision*, pp. 190–206. Springer, 2024.

545 Arpit Bansal, Hong-Min Chu, Avi Schwarzschild, Soumyadip Sengupta, Micah Goldblum, Jonas
546 Geiping, and Tom Goldstein. Universal guidance for diffusion models. In *Proceedings of the
547 IEEE/CVF conference on computer vision and pattern recognition*, pp. 843–852, 2023.

548 Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
549 Taylor, Troy Luhman, Eric Luhman, et al. Video generation models as world simulators. *OpenAI
550 Blog*, 1(8):1, 2024.

551 George Casella and Roger Berger. *Statistical inference*. Chapman and Hall/CRC, 2024.

552 Chong Chen, Weizhi Ma, Min Zhang, Chenyang Wang, Yiqun Liu, and Shaoping Ma. Revisiting
553 negative sampling vs. non-sampling in implicit recommendation. *ACM Transactions on Informa-
554 tion Systems*, 41(1):1–25, 2023.

555 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
556 contrastive learning of visual representations. In *International conference on machine learning*,
557 pp. 1597–1607. PMLR, 2020.

558 Gabriele Corso, Hannes Stärk, Bowen Jing, Regina Barzilay, and Tommi S. Jaakkola. DiffDock:
559 Diffusion steps, twists, and turns for molecular docking. In *The Eleventh International Conference
560 on Learning Representations, ICLR 2023*, 2023.

561 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances
562 in neural information processing systems*, 34:8780–8794, 2021.

563 Rohit Gandikota, Joanna Materzynska, Jaden Fiotto-Kaufman, and David Bau. Erasing concepts
564 from diffusion models. In *Proceedings of the IEEE/CVF international conference on computer
565 vision*, pp. 2426–2436, 2023.

566 Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
567 unsupervised visual representation learning. In *Proceedings of the IEEE/CVF conference on
568 computer vision and pattern recognition*, pp. 9729–9738, 2020.

569 Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. Session-based rec-
570 ommendations with recurrent neural networks. In *Proceedings of the 4th International Conference
571 on Learning Representations*, San Juan, Puerto Rico, 2016.

572 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint
573 arXiv:2207.12598*, 2022.

574 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in
575 neural information processing systems*, 33:6840–6851, 2020.

576 Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P
577 Kingma, Ben Poole, Mohammad Norouzi, David J Fleet, et al. Imagen video: High definition
578 video generation with diffusion models. *arXiv preprint arXiv:2210.02303*, 2022.

579 Emiel Hoogeboom, Victor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant diffu-
580 sion for molecule generation in 3d. In *International conference on machine learning*, pp. 8867–
581 8887. PMLR, 2022.

582 Yu Hou, Jin-Duk Park, and Won-Yong Shin. Collaborative filtering based on diffusion models:
583 Unveiling the potential of high-order connectivity. In *Proceedings of the 47th International ACM
584 SIGIR Conference on Research and Development in Information Retrieval*, pp. 1360–1369, 2024.

585 Wang-Cheng Kang and Julian McAuley. Self-attentive sequential recommendation. In *2018 IEEE
586 international conference on data mining (ICDM)*, pp. 197–206. IEEE, 2018.

594 Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick SH Lewis, Ledell Wu, Sergey Edunov, Danqi
 595 Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In *EMNLP*
 596 (1), pp. 6769–6781, 2020.

597 Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
 598 based generative models. *Advances in neural information processing systems*, 35:26565–26577,
 600 2022.

601 Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. DiffWave: A versatile dif-
 602 fusion model for audio synthesis. In *Proceedings of the 9th International Conference on Learning*
 603 *Representations, ICLR 2021*, 2021.

604 Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recommender
 605 systems. *Computer*, 42(8):30–37, 2009.

606 Felix Koulischer, Johannes Deleu, Gabriel Raya, Thomas Demeester, and Luca Ambrogioni. Dy-
 607 namic negative guidance of diffusion models. In *The Thirteenth International Conference on*
 608 *Learning Representations, ICLR 2025*, 2025.

609 Xiang Li, John Thickstun, Ishaan Gulrajani, Percy S Liang, and Tatsunori B Hashimoto. Diffusion-
 610 lm improves controllable text generation. *Advances in neural information processing systems*, 35:
 611 4328–4343, 2022.

612 Zihao Li, Aixin Sun, and Chenliang Li. Diffurec: A diffusion model for sequential recommendation.
 613 *ACM Transactions on Information Systems*, 42(3):1–28, 2023.

614 Shuo Liu, An Zhang, Guoqing Hu, Hong Qian, and Tat-Seng Chua. Preference diffusion for rec-
 615 ommendation. In *The Thirteenth International Conference on Learning Representations, ICLR*
 616 2025, 2025.

617 Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of machine*
 618 *learning research*, 9(Nov):2579–2605, 2008.

619 Wenyu Mao, Shuchang Liu, Haoyang Liu, Haozhe Liu, Xiang Li, and Lantao Hu. Distinguished
 620 quantized guidance for diffusion-based sequence recommendation. In *Proceedings of the ACM*
 621 *on Web Conference 2025*, pp. 425–435, 2025.

622 Jerzy Neyman and Egon Sharpe Pearson. Ix. on the problem of the most efficient tests of statistical
 623 hypotheses. *Philosophical Transactions of the Royal Society of London. Series A, Containing*
 624 *Papers of a Mathematical or Physical Character*, 231(694-706):289–337, 1933.

625 Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Mildenhall. DreamFusion: Text-to-3d using 2d
 626 diffusion. In *The Eleventh International Conference on Learning Representations, ICLR 2023*,
 627 2023.

628 Vadim Popov, Ivan Vovk, Vladimir Gogoryan, Tasnima Sadekova, and Mikhail Kudinov. Grad-
 629 tts: A diffusion probabilistic model for text-to-speech. In *International conference on machine*
 630 *learning*, pp. 8599–8608. PMLR, 2021.

631 Shashank Rajput, Nikhil Mehta, Anima Singh, Raghunandan Hulikal Keshavan, Trung Vu, Lukasz
 632 Heldt, Lichan Hong, Yi Tay, Vinh Tran, Jonah Samost, et al. Recommender systems with gener-
 633 ative retrieval. *Advances in Neural Information Processing Systems*, 36:10299–10315, 2023.

634 Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
 635 conditional image generation with CLIP latents. *arXiv preprint arXiv:2204.06125*, 2022.

636 Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. BPR: Bayesian
 637 personalized ranking from implicit feedback. In *Proceedings of the 25th Conference on Uncer-*
 638 *tainty in Artificial Intelligence*, pp. 452–461, Quebec, Canada, 2009.

639 Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. Factorizing personalized
 640 markov chains for next-basket recommendation. In *Proceedings of the 19th international con-*
 641 *ference on World wide web*, pp. 811–820, 2010.

648 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 649 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 650 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

651

652 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
 653 Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
 654 text-to-image diffusion models with deep language understanding. *Advances in neural informa-
 655 tion processing systems*, 35:36479–36494, 2022.

656

657 Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for face
 658 recognition and clustering. In *Proceedings of the IEEE conference on computer vision and pattern
 659 recognition*, pp. 815–823, 2015.

660

661 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 662 learning using nonequilibrium thermodynamics. In *International conference on machine learn-
 663 ing*, pp. 2256–2265. pmlr, 2015.

664

665 Kihyuk Sohn. Improved deep metric learning with multi-class n-pair loss objective. *Advances in
 666 neural information processing systems*, 29, 2016.

667

668 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In *Pro-
 669 ceedings of the 9th International Conference on Learning Representations*, Virtual, 2021a.

670

671 Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
 672 *Advances in neural information processing systems*, 32, 2019.

673

674 Yang Song and Stefano Ermon. Improved techniques for training score-based generative models.
 675 *Advances in neural information processing systems*, 33:12438–12448, 2020.

676

677 Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum likelihood training of
 678 score-based diffusion models. *Advances in neural information processing systems*, 34:1415–
 679 1428, 2021b.

680

681 Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang. Bert4rec: Seque-
 682 ntial recommendation with bidirectional encoder representations from transformer. In *Proceedings
 683 of the 28th ACM international conference on information and knowledge management*, pp. 1441–
 684 1450, 2019.

685

686 Yifan Sun, Changmao Cheng, Yuhan Zhang, Chi Zhang, Liang Zheng, Zhongdao Wang, and Yichen
 687 Wei. Circle loss: A unified perspective of pair similarity optimization. In *Proceedings of the
 688 IEEE/CVF conference on computer vision and pattern recognition*, pp. 6398–6407, 2020.

689

690 Wenjie Wang, Xinyu Lin, Fuli Feng, Xiangnan He, and Tat-Seng Chua. Generative recommenda-
 691 tion: Towards next-generation recommender paradigm. *arXiv preprint arXiv:2304.03516*, 2023a.

692

693 Wenjie Wang, Yiyuan Xu, Fuli Feng, Xinyu Lin, Xiangnan He, and Tat-Seng Chua. Diffusion rec-
 694 ommender model. In *Proceedings of the 46th international ACM SIGIR conference on research
 695 and development in information retrieval*, pp. 832–841, 2023b.

696

697 Yu Wang, Zhiwei Liu, Liangwei Yang, and Philip S Yu. Conditional denoising diffusion for sequen-
 698 tial recommendation. In *Pacific-Asia conference on knowledge discovery and data mining*, pp.
 699 156–169. Springer, 2024.

700

701 Chuhan Wu, Fangzhao Wu, Mingxiao An, Jianqiang Huang, Yongfeng Huang, and Xing Xie. Npa:
 702 neural news recommendation with personalized attention. In *Proceedings of the 25th ACM
 703 SIGKDD international conference on knowledge discovery & data mining*, pp. 2576–2584, 2019a.

704

705 Chuhan Wu, Fangzhao Wu, Suyu Ge, Tao Qi, Yongfeng Huang, and Xing Xie. Neural news rec-
 706 ommendation with multi-head self-attention. In *Proceedings of the 2019 conference on empirical
 707 methods in natural language processing and the 9th international joint conference on natural
 708 language processing (EMNLP-IJCNLP)*, pp. 6389–6394, 2019b.

702 Fangzhao Wu, Ying Qiao, Jiun-Hung Chen, Chuhan Wu, Tao Qi, Jianxun Lian, Danyang Liu, Xing
 703 Xie, Jianfeng Gao, Winnie Wu, et al. Mind: A large-scale dataset for news recommendation.
 704 In *Proceedings of the 58th annual meeting of the association for computational linguistics*, pp.
 705 3597–3606, 2020.

706 Likang Wu, Zhi Zheng, Zhaopeng Qiu, Hao Wang, Hongchao Gu, Tingjia Shen, Chuan Qin, Chen
 707 Zhu, Hengshu Zhu, Qi Liu, et al. A survey on large language models for recommendation. *World
 708 Wide Web*, 27(5):60, 2024.

709 Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised deep embedding for clustering analysis.
 710 In *International conference on machine learning*, pp. 478–487. PMLR, 2016.

711 Xu Xie, Fei Sun, Zhaoyang Liu, Shiwen Wu, Jinyang Gao, Jiandong Zhang, Bolin Ding, and Bin
 712 Cui. Contrastive learning for sequential recommendation. In *2022 IEEE 38th international con-
 713 ference on data engineering (ICDE)*, pp. 1259–1273. IEEE, 2022.

714 715 Zhengyi Yang, Jiancan Wu, Zhicai Wang, Xiang Wang, Yancheng Yuan, and Xiangnan He. Generate
 716 what you prefer: Reshaping sequential recommendation via guided diffusion. *Advances in Neural
 717 Information Processing Systems*, 36:24247–24261, 2023.

718 An Zhang, Wenchang Ma, Jingnan Zheng, Xiang Wang, and Tat-Seng Chua. Robust collaborative
 719 filtering to popularity distribution shift. *ACM Transactions on Information Systems*, 42(3):1–25,
 720 2024.

721 Jujia Zhao, Wang Wenjie, Yiyan Xu, Teng Sun, Fuli Feng, and Tat-Seng Chua. Denoising diffu-
 722 sion recommender model. In *Proceedings of the 47th International ACM SIGIR Conference on
 723 Research and Development in Information Retrieval*, pp. 1370–1379, 2024.

724 Kun Zhou, Hui Wang, Wayne Xin Zhao, Yutao Zhu, Sirui Wang, Fuzheng Zhang, Zhongyuan Wang,
 725 and Ji-Rong Wen. S3-rec: Self-supervised learning for sequential recommendation with mutual
 726 information maximization. In *Proceedings of the 29th ACM international conference on informa-
 727 tion & knowledge management*, pp. 1893–1902, 2020.

728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755

756

A USE OF LLMs

759 During the preparation of this manuscript, we utilized a large language model (LLM) as a writing
 760 assistant. Its role was primarily to aid in polishing and refining prose, improving grammar, and
 761 ensuring clarity and conciseness in our descriptions. The LLM was not used for research ideation,
 762 conducting experiments, or generating core theoretical and methodological contributions presented
 763 in this work. All final content, including the scientific claims and technical details, was written and
 764 verified by the authors, who take full responsibility for the paper.

766

B RELATED WORK

768 **Sequential Recommendation.** The task of sequential recommendation has evolved significantly.
 769 Early approaches often relied on Markov chains to model item-to-item transitions (Rendle et al.,
 770 2010). The field saw a major shift with the introduction of recurrent neural networks (RNNs) to cap-
 771 ture the temporal dynamics of user sequences (Hidasi et al., 2016). Subsequently, Transformer-based
 772 models, leveraging self-attention mechanisms, became the standard due to their superior ability to
 773 capture long-range dependencies in user behavior (Kang & McAuley, 2018; Sun et al., 2019). More
 774 recently, to address data sparsity and improve representation robustness, self-supervised learning,
 775 particularly contrastive learning, has been successfully applied (Zhou et al., 2020; Xie et al., 2022).
 776 Our work builds upon this rich history but explores the problem from a novel generative, rather than
 777 discriminative, perspective.

779 **DMs in Recommendation.** The success of DMs in high-fidelity data synthesis (Sohl-Dickstein
 780 et al., 2015; Ho et al., 2020; Karras et al., 2022; Song et al., 2021b) has led to their broad application
 781 across numerous fields, including image (Rombach et al., 2022; Saharia et al., 2022; Ramesh et al.,
 782 2022; Dhariwal & Nichol, 2021), video (Brooks et al., 2024; Ho et al., 2022), audio (Kong et al.,
 783 2021; Popov et al., 2021), 3D modeling (Poole et al., 2023), natural language (Li et al., 2022), and
 784 molecular biology (Hoogeboom et al., 2022; Corso et al., 2023). This proven ability to model com-
 785 plex distributions has motivated their exploration in recommender systems. The application of DMs
 786 to recommendation has primarily evolved along two technical pathways. The first approach frames
 787 recommendation as a generative profile completion task. Models like DiffRec and CF-Diff treat a
 788 user’s entire multi-hot interaction vector as the data to be diffused, learning to restore the full profile
 789 from a noisy version (Wang et al., 2023b; Hou et al., 2024). A second, distinct pathway employs
 790 an explicitly conditional generation framework, which is prevalent in sequential recommendation.
 791 In these models, a user’s chronological interaction history is encoded into a context vector to guide
 792 the generation of a single next-item embedding (Yang et al., 2023; Li et al., 2023; Wang et al.,
 793 2024). A common thread uniting these conditional models is their reliance on positive signals for
 794 guidance. PreferDiff (Liu et al., 2025) made an important step forward by incorporating negative
 795 information, adding a BPR-inspired loss to the training objective to learn more discriminative repre-
 796 sentations. However, a critical gap remains. The use of user-aware negative signals to directly steer
 797 the inference-time guidance process is an unexplored area. All prior conditional diffusion recom-
 798 menders, including PreferDiff, still rely on the standard user-agnostic CFG for inference. SteerRec
 799 is the first framework designed to fill this gap, introducing a novel paradigm where negative feedback
 800 directly shapes the generative process at inference time.

801

C THEORETICAL JUSTIFICATION OF THE STEERREC FRAMEWORK

804 This appendix provides a comprehensive theoretical justification for the SteerRec framework, start-
 805 ing from first principles. We begin by tracing the mathematical evolution of guidance mechanisms
 806 in diffusion models, establishing the context and motivation for our approach. We then present a
 807 detailed derivation of our PNG mechanism, connecting its score-based formulation to the practical
 808 direct x_0 prediction used in our implementation. Finally, we provide a rigorous analysis of our
 809 novel GAL, tracing its origins in deep metric learning and proving its alignment with our inference
 objective.

810
811 C.1 THE EVOLUTION OF GUIDANCE IN DIFFUSION MODELS812
813 Guidance mechanisms are central to making DMs controllable generative tools. Our work builds
814 upon and extends a rich lineage of guidance techniques, which we detail below.815
816 **Classifier Guidance (CG).** The original concept of guidance, introduced by (Dhariwal & Nichol,
817 2021), leverages a separately trained classifier $p_\phi(c|\mathbf{x}_t)$ to steer the generation process. The core
818 idea is to modify the score of the unconditional distribution $\nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t)$ by adding the gradient of
819 the log-likelihood from the classifier. This is formally derived from Bayes' rule:

820
821
$$p(\mathbf{x}_t|c) = \frac{p(c|\mathbf{x}_t)p(\mathbf{x}_t)}{p(c)} \quad (15)$$

822 By taking the logarithm and then the gradient with respect to the noisy data \mathbf{x}_t , we obtain the score
823 function of the conditional distribution:

824
$$\log p(\mathbf{x}_t|c) = \log p(c|\mathbf{x}_t) + \log p(\mathbf{x}_t) - \log p(c) \quad (16)$$

825
$$\nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t|c) = \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t) + \nabla_{\mathbf{x}_t} \log p_\phi(c|\mathbf{x}_t) \quad (17)$$

826
827 Here, the term $s_\theta(\mathbf{x}_t) = \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t)$ represents the score of the unconditional diffusion model,
828 and $\nabla_{\mathbf{x}_t} \log p_\phi(c|\mathbf{x}_t)$ is the gradient provided by the external classifier. The relationship be-
829 between the score function and the noise prediction ϵ_θ of a diffusion model is given by $s_\theta(\mathbf{x}_t) =$
830 $-\epsilon_\theta(\mathbf{x}_t)/\sqrt{1-\bar{\alpha}_t}$. By substituting this relationship, we can derive the guided noise prediction
831 $\hat{\epsilon}_\theta(\mathbf{x}_t, c)$:

832
$$\hat{\epsilon}_\theta(\mathbf{x}_t, c) = \epsilon_\theta(\mathbf{x}_t) - w\sqrt{1-\bar{\alpha}_t} \cdot \nabla_{\mathbf{x}_t} \log p_\phi(c|\mathbf{x}_t) \quad (18)$$

833 where w is the guidance scale. While powerful, this approach requires training a separate classifier
834 on noisy data, which adds significant complexity and computational overhead.835
836 **CFG.** To overcome the limitations of CG, (Ho & Salimans, 2022) proposed CFG. The core insight
837 is to train a single conditional model $\epsilon_\theta(\mathbf{x}_t, c)$ to also operate unconditionally by randomly replacing
838 the condition c with a null token \emptyset during training. At inference, the guidance is formulated as an
839 extrapolation away from the unconditional prediction:

840
841
$$\hat{\epsilon}_\theta(\mathbf{x}_t, c) = \epsilon_\theta(\mathbf{x}_t, \emptyset) + w \cdot (\epsilon_\theta(\mathbf{x}_t, c) - \epsilon_\theta(\mathbf{x}_t, \emptyset)) \quad (19)$$

842
843 The term $(\epsilon_\theta(\mathbf{x}_t, c) - \epsilon_\theta(\mathbf{x}_t, \emptyset))$ can be seen as an approximation of the classifier gradient from
844 CG. We can formalize this connection. Consider an implicit classifier $p(c|\mathbf{x}_t) \propto p(\mathbf{x}_t|c)/p(\mathbf{x}_t)$. Its
845 log-gradient is:

846
847
$$\begin{aligned} \nabla_{\mathbf{x}_t} \log p(c|\mathbf{x}_t) &= \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t|c) - \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t) \\ &\approx -\frac{1}{\sqrt{1-\bar{\alpha}_t}} (\epsilon_\theta(\mathbf{x}_t, c) - \epsilon_\theta(\mathbf{x}_t, \emptyset)) \end{aligned} \quad (20)$$

848 Substituting this implicit gradient back into the original CG formula gives a result that closely re-
849 sembles the CFG rule, demonstrating that CFG is a principled and efficient approximation of CG.850
851 C.2 DETAILED DERIVATION OF THE STEERREC PNG MECHANISM852
853 PNG evolves from CFG, replacing the “positive-vs-unconditional” structure with a more powerful
854 “positive-vs-negative” paradigm, designed for optimal discrimination between two opposing user
855 preferences.856
857 **Guidance via Optimal Discrimination.** The philosophy of CG and CFG is one of Bayesian es-
858 timation. Our SteerRec framework, however, addresses the different goal of actively discriminating
859 between a positive condition c^+ and a negative condition c^- . The optimal statistic for such a task is
860 the likelihood ratio, as established by the Neyman-Pearson Lemma (Neyman & Pearson, 1933). We
861 therefore posit that a principled generative process should be guided by a score function that reflects
862 this statistic at each denoising step t . This is achieved by defining a target marginal distribution at
863

864 each time t , $p_\theta^*(\mathbf{x}_t|\cdot)$, to be directly proportional to the likelihood ratio, sharpened by a guidance
 865 scale w .

866 The SteerRec guidance mechanism is derived from a target probability distribution p_θ^* defined by
 867 the conditional likelihood ratio:
 868

$$869 \quad p_\theta^*(\mathbf{x}_t|\mathbf{c}^+, \mathbf{c}^-) \propto \frac{p_\theta(\mathbf{x}_t|\mathbf{c}^+)^{1+w}}{p_\theta(\mathbf{x}_t|\mathbf{c}^-)^w} \quad (21)$$

872 The proof proceeds by deriving the score function of the posited target distribution. We begin with
 873 the logarithm of the distribution in Eq. 21:

$$874 \quad \log p_\theta^*(\mathbf{x}_t|\mathbf{c}^+, \mathbf{c}^-) = (1+w) \log p_\theta(\mathbf{x}_t|\mathbf{c}^+) - w \log p_\theta(\mathbf{x}_t|\mathbf{c}^-) - \log Z \quad (22)$$

876 where Z is the partition function. Applying the gradient operator $\nabla_{\mathbf{x}_t}$ to derive the score function
 877 $s_\theta^* := \nabla_{\mathbf{x}_t} \log p_\theta^*$:

$$879 \quad s_\theta^*(\mathbf{x}_t, \mathbf{c}^+, \mathbf{c}^-) = \nabla_{\mathbf{x}_t} [(1+w) \log p_\theta(\mathbf{x}_t|\mathbf{c}^+) - w \log p_\theta(\mathbf{x}_t|\mathbf{c}^-) - \log Z] \quad (23)$$

$$880 \quad = (1+w) \nabla_{\mathbf{x}_t} \log p_\theta(\mathbf{x}_t|\mathbf{c}^+) - w \nabla_{\mathbf{x}_t} \log p_\theta(\mathbf{x}_t|\mathbf{c}^-) \quad (\text{since } \nabla_{\mathbf{x}_t} \log Z = 0) \quad (24)$$

$$882 \quad = (1+w)s_\theta(\mathbf{x}_t, \mathbf{c}^+, t) - w \cdot s_\theta(\mathbf{x}_t, \mathbf{c}^-, t) \quad (25)$$

884 The final derived score function (Eq. 25) is the score-space formulation of our guidance rule.

886 **From Score Functions to Direct \mathbf{x}_0 Prediction.** While theoretically grounded in score matching,
 887 our model $F_\theta(\mathbf{x}_t, \mathbf{c}, t)$ is parameterized to directly predict the clean data \mathbf{x}_0 . The score function
 888 s_θ and the predicted \mathbf{x}_0 are intrinsically linked via the relationship $s_\theta(\mathbf{x}_t, \mathbf{c}, t) = -(\mathbf{x}_t -$
 889 $\sqrt{\bar{\alpha}_t} F_\theta(\mathbf{x}_t, \mathbf{c}, t))/(1 - \bar{\alpha}_t)$. We now substitute this relationship back into our derived score guidance rule (Eq. 25). Let $\hat{\mathbf{x}}_0^{\text{pos}} = F_\theta(\mathbf{x}_t, \mathbf{c}^+, t)$ and $\hat{\mathbf{x}}_0^{\text{neg}} = F_\theta(\mathbf{x}_t, \mathbf{c}^-, t)$. This yields a guided score s_θ^* :

$$893 \quad s_\theta^*(\mathbf{x}_t, \dots) = (1+w) \left(-\frac{\mathbf{x}_t - \sqrt{\bar{\alpha}_t} \hat{\mathbf{x}}_0^{\text{pos}}}{1 - \bar{\alpha}_t} \right) - w \left(-\frac{\mathbf{x}_t - \sqrt{\bar{\alpha}_t} \hat{\mathbf{x}}_0^{\text{neg}}}{1 - \bar{\alpha}_t} \right)$$

$$894 \quad = \frac{1}{1 - \bar{\alpha}_t} [-(1+w)(\mathbf{x}_t - \sqrt{\bar{\alpha}_t} \hat{\mathbf{x}}_0^{\text{pos}}) + w(\mathbf{x}_t - \sqrt{\bar{\alpha}_t} \hat{\mathbf{x}}_0^{\text{neg}})]$$

$$895 \quad = \frac{1}{1 - \bar{\alpha}_t} [(-1 - w + w)\mathbf{x}_t + (1 + w)\sqrt{\bar{\alpha}_t} \hat{\mathbf{x}}_0^{\text{pos}} - w\sqrt{\bar{\alpha}_t} \hat{\mathbf{x}}_0^{\text{neg}}]$$

$$896 \quad = -\frac{\mathbf{x}_t - \sqrt{\bar{\alpha}_t} ((1+w)\hat{\mathbf{x}}_0^{\text{pos}} - w\hat{\mathbf{x}}_0^{\text{neg}})}{1 - \bar{\alpha}_t} \quad (26)$$

902 By comparing this result back to the structure of the score-to- \mathbf{x}_0 relationship, we can identify the
 903 term in the parenthesis as the guided prediction of the clean data, $\hat{\mathbf{x}}_0$. Therefore, we arrive at the
 904 final guidance rule in the \mathbf{x}_0 prediction space:

$$905 \quad \hat{\mathbf{x}}_0(\mathbf{x}_t, \mathbf{c}^+, \mathbf{c}^-) = (1+w)F_\theta(\mathbf{x}_t, \mathbf{c}^+, t) - wF_\theta(\mathbf{x}_t, \mathbf{c}^-, t) \quad (27)$$

907 This detailed derivation confirms that the intuitive guidance formula used in our implementation is
 908 a direct and principled consequence of the score-based formulation.

910 C.3 THEORETICAL ANALYSIS OF THE GAL

912 The effectiveness of the PNG mechanism hinges on the model’s ability to produce semantically
 913 distinct outputs under opposing conditions. We designed the GAL to explicitly instill this capability.

915 **Motivation from Deep Metric Learning.** Our loss function is directly inspired by the Triplet
 916 Loss, a cornerstone of deep metric learning popularized by (Schroff et al., 2015) for face recognition.
 917 The goal of metric learning is to learn an embedding space where similar inputs are mapped to
 918 nearby points and dissimilar inputs are mapped to distant points. For an anchor sample a , a positive

sample p (of the same identity as a), and a negative sample n (of a different identity), the Triplet Loss is formulated as:

$$L_{\text{triplet}} = \sum_i^N [\|\mathbf{f}(\mathbf{x}_i^a) - \mathbf{f}(\mathbf{x}_i^p)\|_2^2 - \|\mathbf{f}(\mathbf{x}_i^a) - \mathbf{f}(\mathbf{x}_i^n)\|_2^2 + m]_+ \quad (28)$$

where $\mathbf{f}(\cdot)$ is the embedding function, m is a margin, and $[z]_+ = \max(0, z)$. This loss penalizes the model unless the distance between the anchor and the positive is smaller than the distance between the anchor and the negative by at least the margin m .

We adapt this powerful principle to our generative context. Instead of operating on static input embeddings, we apply the triplet constraint to the dynamic outputs of our denoising network under different conditions. The analogy is as follows:

- **Anchor (a):** The ground-truth item embedding, \mathbf{x}_0^+ .
- **Positive (p):** The denoised prediction under positive guidance, $\hat{\mathbf{x}}_0^{\text{pos}} = F_\theta(\mathbf{x}_t, \mathbf{c}^+, t)$.
- **Negative (n):** The denoised prediction under negative guidance, $\hat{\mathbf{x}}_0^{\text{neg}} = F_\theta(\mathbf{x}_t, \mathbf{c}^-, t)$.

Our L_{GAL} directly instantiates this logic, ensuring that the generative process itself learns to respect the desired preference structure.

Gradient-based Proof of Alignment. Minimizing the L objective directly optimizes for the fidelity and separability required by the inference mechanism.

We analyze the gradient of the total loss with respect to the model parameters θ , $\nabla_\theta L$. The total loss is:

$$L = (1 - \mu) \cdot d(\hat{\mathbf{x}}_0^{\text{pos}}, \mathbf{x}_0^+) + \mu \cdot \max(0, d(\hat{\mathbf{x}}_0^{\text{pos}}, \mathbf{x}_0^+) - d(\hat{\mathbf{x}}_0^{\text{neg}}, \mathbf{x}_0^+) + m) \quad (29)$$

When the margin constraint is violated (i.e., when the term inside $\max(0, \dots)$ is positive), the gradient of the GAL part is non-zero. The total gradient becomes:

$$\nabla_\theta L = (1 - \mu) \nabla_\theta d(\hat{\mathbf{x}}_0^{\text{pos}}, \mathbf{x}_0^+) + \mu (\nabla_\theta d(\hat{\mathbf{x}}_0^{\text{pos}}, \mathbf{x}_0^+) - \nabla_\theta d(\hat{\mathbf{x}}_0^{\text{neg}}, \mathbf{x}_0^+)) \quad (30)$$

$$= (1 - \mu + \mu) \nabla_\theta d(\hat{\mathbf{x}}_0^{\text{pos}}, \mathbf{x}_0^+) - \mu \nabla_\theta d(\hat{\mathbf{x}}_0^{\text{neg}}, \mathbf{x}_0^+) \quad (31)$$

$$= \nabla_\theta d(\hat{\mathbf{x}}_0^{\text{pos}}, \mathbf{x}_0^+) - \mu \nabla_\theta d(\hat{\mathbf{x}}_0^{\text{neg}}, \mathbf{x}_0^+) \quad (32)$$

This gradient consists of two opposing forces acting on the model parameters:

1. The term $\nabla_\theta d(\hat{\mathbf{x}}_0^{\text{pos}}, \mathbf{x}_0^+)$ forces the model to adjust its parameters to make its positive prediction $\hat{\mathbf{x}}_0^{\text{pos}}$ closer to the ground truth \mathbf{x}_0^+ . This directly optimizes for fidelity.
2. The term $-\mu \nabla_\theta d(\hat{\mathbf{x}}_0^{\text{neg}}, \mathbf{x}_0^+)$ forces the model to adjust its parameters to make its negative prediction $\hat{\mathbf{x}}_0^{\text{neg}}$ further away from the ground truth \mathbf{x}_0^+ . This directly optimizes for separability, creating the semantically distinct outputs that the inference rule relies on.

When the margin is satisfied, $L_{\text{GAL}} = 0$ and the gradient is simply $(1 - \mu) \nabla_\theta d(\hat{\mathbf{x}}_0^{\text{pos}}, \mathbf{x}_0^+)$, focusing solely on improving reconstruction. The training objective thus dynamically supplies precisely the two properties demanded by the inference rule, establishing a tight alignment by design.

C.4 CONNECTION TO THE DDIM SAMPLING PROCESS

The final generated item embedding is produced by the DDIM sampler, which iteratively uses the guided prediction $\hat{\mathbf{x}}_0$. The one-step update from a noisy state \mathbf{x}_t to a less noisy state \mathbf{x}_{t-1} is given by:

$$\mathbf{x}_{t-1} = \sqrt{\bar{\alpha}_{t-1}} \hat{\mathbf{x}}_0 + \sqrt{1 - \bar{\alpha}_{t-1}} \cdot \hat{\epsilon}_\theta(\mathbf{x}_t, \hat{\mathbf{x}}_0) \quad (33)$$

where the predicted noise $\hat{\epsilon}_\theta$ is derived from the guided prediction $\hat{\mathbf{x}}_0$:

$$\hat{\epsilon}_\theta(\mathbf{x}_t, \hat{\mathbf{x}}_0) = \frac{\mathbf{x}_t - \sqrt{\bar{\alpha}_t} \hat{\mathbf{x}}_0}{\sqrt{1 - \bar{\alpha}_t}} \quad (34)$$

Here, $\hat{\mathbf{x}}_0$ is exactly the output of our SteerRec guidance rule (Eq. 27). This completes the chain, showing how our principled guidance mechanism integrates seamlessly into the established DDIM sampling process to generate the final preference item embedding.

972 **D EXPERIMENTAL SETUP**
973974 This section provides a comprehensive overview of our experimental setup to ensure full repro-
975 ducibility.
976977 **Datasets and Preprocessing.** We conduct experiments on three public benchmark datasets from
978 the Amazon Review 2014 collection¹: Sports and Outdoors, Beauty, and Toys and Games. To ensure
979 a direct and fair comparison with recent work, we utilize the identical preprocessed data and user-
980 based data splits (80% train, 10% validation, 10% test) as publicly released by (Liu et al., 2025).
981 The protocol involves five-core filtering, where users and items with fewer than five interactions are
982 iteratively removed. For sequence construction, we use the last 10 interactions as the input context
983 for predicting the next item. Sequences with fewer than 10 interactions are post-padded with a
984 special padding token (ID 0). The key statistics of the datasets after preprocessing are summarized
985 in Table 3.
986987 Table 3: Detailed statistics of the datasets after preprocessing.
988

988 Dataset	989 #Sequences	990 #Items	991 #Interactions
990 Sports and Outdoors	991 35,598	992 18,357	256,598
991 Beauty	992 22,363	12,101	162,150
992 Toys and Games	19,412	11,924	138,444

993 **D.1 BASELINE MODEL DESCRIPTIONS**
994995 We compare SteerRec against a comprehensive suite of baseline models, categorized as follows.
996997 **Traditional Sequential Models.**
9981000

- 1001 • **GRU4Rec** (Hidasi et al., 2016): Employs Gated Recurrent Units (GRUs) to model the
1002 temporal dynamics within user interaction sequences for session-based recommendation.
- 1003 • **SASRec** (Kang & McAuley, 2018): A seminal work that introduced the Transformer ar-
1004 chitecture with causal self-attention to capture item-item transitions for recommendation.
- 1005 • **BERT4Rec** (Sun et al., 2019): Adapts the bidirectional Transformer architecture from
1006 NLP, using a Cloze (masked item prediction) objective to learn deep sequential representa-
1007 tions.

1008 **Contrastive and Generative Models.**
10091010

- 1011 • **CL4SRec** (Xie et al., 2022): Augments a Transformer-based model with a contrastive
1012 learning objective, learning robust sequence representations by maximizing agreement be-
1013 tween different augmented views of the same sequence.
- 1014 • **TIGER** (Rajput et al., 2023): A generative model that reframes recommendation as a
1015 sequence-to-sequence task by quantizing item semantics into discrete codes using a VQ-
1016 VAE, which are then predicted autoregressively.

1017 **Diffusion-based Models.**
10181019

- 1020 • **DiffuRec** (Li et al., 2023): A diffusion model for sequential recommendation that is trained
1021 with a standard cross-entropy loss, where the noised target item embedding is used to mod-
1022 ule historical item representations.
- 1023 • **DreamRec** (Yang et al., 2023): A foundational diffusion-based recommender that gener-
1024 ates a next-item embedding guided by the user’s history. It is trained with a reconstruction
1025 loss and uses standard CFG at inference.

¹<https://cseweb.ucsd.edu/~jmcauley/datasets/amazon/links.html>

1026
 1027
 1028
 1029
 1030
 1031
 1032 • **PreferDiff**² (Liu et al., 2025): An enhancement over DreamRec that incorporates a BPR-
 1033 style preference loss during training to learn from negative samples. It still relies on the
 1034 standard user-agnostic CFG for inference.
 1035

1036 **D.2 IMPLEMENTATION DETAILS**
 1037

1038 **Environment and Reproducibility.** All experiments were implemented in PyTorch and executed
 1039 on a single NVIDIA V100-SXM2 GPU with 32GB memory. We set a fixed random seed for all
 1040 stochastic operations to ensure reproducibility.
 1041

1042 **Shared Model Architecture.** To ensure a fair comparison and isolate the benefits of our frame-
 1043 work, SteerRec is built upon the same SASRec backbone³ as DreamRec and PreferDiff. This
 1044 backbone consists of a single Transformer layer with two attention heads. Consistent with these
 1045 baselines, the item embedding dimension for all diffusion-based models is set to 3072. Following
 1046 PreferDiff, the denoising network is implemented as a simple linear projection layer. All model
 1047 parameters are initialized using a standard normal distribution.
 1048

1049 **Training Details.** We use the AdamW optimizer for training all models. For the loss computa-
 1050 tions in our framework, we use Cosine distance as the distance metric $d(\cdot, \cdot)$. This choice follows
 1051 PreferDiff (Liu et al., 2025), which demonstrated that Cosine distance is particularly effective for
 1052 recommendation tasks. We employ an early stopping strategy with a patience of 10 epochs, mon-
 1053 itored on the validation set’s Recall@5 performance. The training batch size is set to 256 for all
 1054 experiments.
 1055

1056 **Algorithm 1** Training Procedure of SteerRec

1057 1: **repeat**
 1058 2: $(\mathbf{c}^+, \mathbf{x}_0^+) \sim \mathcal{D}$ ▷ Sample a context (user history) and its target item
 1059 3: $\mathbf{c}^- \leftarrow$ Construct Negative Condition ▷ Construct the negative condition for training
 1060 4: $t \sim \text{Uniform}(\{1, \dots, T\})$ ▷ Sample a random timestep
 1061 5: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ ▷ Sample a Gaussian noise vector
 1062 6: $\mathbf{x}_t \leftarrow \sqrt{\bar{\alpha}_t} \mathbf{x}_0^+ + \sqrt{1 - \bar{\alpha}_t} \epsilon$ ▷ Corrupt the target item via the forward process
 1063 7: $\hat{\mathbf{x}}_0^{\text{pos}} \leftarrow F_\theta(\mathbf{x}_t, \mathbf{c}^+, t)$ ▷ Denoise using the positive condition
 1064 8: $\hat{\mathbf{x}}_0^{\text{neg}} \leftarrow F_\theta(\mathbf{x}_t, \mathbf{c}^-, t)$ ▷ Denoise using the negative condition
 1065 9: $L_{\text{recon}} \leftarrow d(\hat{\mathbf{x}}_0^{\text{pos}}, \mathbf{x}_0^+)$ ▷ Compute the reconstruction loss
 1066 10: $L_{\text{GAL}} \leftarrow \max(0, d(\hat{\mathbf{x}}_0^{\text{pos}}, \mathbf{x}_0^+) - d(\hat{\mathbf{x}}_0^{\text{neg}}, \mathbf{x}_0^+) + m)$ ▷ Compute the GAL
 1067 11: $L \leftarrow (1 - \mu) \cdot L_{\text{recon}} + \mu \cdot L_{\text{GAL}}$ ▷ Compute the final composite loss
 1068 12: Take a gradient descent step on $\nabla_\theta L$ ▷ Update model parameters
 1069 13: **until** converged

1070 **Algorithm 2** Inference Procedure of SteerRec

1071 **Require:** User history context \mathbf{c}^+ , guidance scale w
 1072 1: $\mathbf{c}^- \leftarrow$ Construct Negative Condition ▷ Construct the negative condition for inference
 1073 2: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ ▷ Sample initial noise from the prior distribution
 1074 3: **for** $t = T, \dots, 1$ **do** ▷ Begin the reverse denoising loop
 1075 4: $\hat{\mathbf{x}}_0^{\text{pos}} \leftarrow F_\theta(\mathbf{x}_t, \mathbf{c}^+, t)$ ▷ Predict clean item \mathbf{x}_0 with the positive condition
 1076 5: $\hat{\mathbf{x}}_0^{\text{neg}} \leftarrow F_\theta(\mathbf{x}_t, \mathbf{c}^-, t)$ ▷ Predict clean item \mathbf{x}_0 with the negative condition
 1077 6: $\hat{\mathbf{x}}_0 \leftarrow (1 + w) \hat{\mathbf{x}}_0^{\text{pos}} - w \cdot \hat{\mathbf{x}}_0^{\text{neg}}$ ▷ Apply PNG mechanism to get the guided prediction
 1078 7: $\hat{\epsilon}_\theta \leftarrow (\mathbf{x}_t - \sqrt{\bar{\alpha}_t} \hat{\mathbf{x}}_0) / \sqrt{1 - \bar{\alpha}_t}$ ▷ Estimate the corresponding noise ϵ
 1079 8: $\mathbf{x}_{t-1} \leftarrow \sqrt{\bar{\alpha}_{t-1}} \hat{\mathbf{x}}_0 + \sqrt{1 - \bar{\alpha}_{t-1}} \cdot \hat{\epsilon}_\theta$ ▷ Perform one DDIM update step
 1080 9: **end for**
 1081 10: **return** $\hat{\mathbf{x}}_0$ ▷ Return the final denoised item embedding

²<https://github.com/lswhim/PreferDiff>

³<https://github.com/kang205/SASRec>

1080
 1081 **Diffusion-Specific Parameters.** We use a linear noise schedule for β_t over T total timesteps, with
 1082 $\beta_{start} = 10^{-4}$ and $\beta_{end} = 0.02$. During inference, we use the deterministic DDIM sampler (Song
 1083 et al., 2021a) for efficient generation. SteerRec often achieves optimal performance with a smaller
 1084 number of total timesteps T (e.g., 800-1200) compared to PreferDiff that may require more (e.g.,
 1085 2000-5000). We attribute this to our more direct and structured training objective. Our GAL
 1086 objective imposes a complex geometric constraint at every denoising step—forcing the model to dis-
 1087 tinguish between positive and negative conditions with a margin. Learning this intricate separation
 1088 at extremely fine-grained noise levels (as required by a very large T) can be challenging and ineffi-
 1089 cient. Instead, GAL provides such a potent and explicit signal about the relative preference structure
 1090 that the model learns the desired geometry more rapidly, obviating the need for a long, fine-grained
 1091 denoising chain.
 1092

1093 D.3 HYPERPARAMETER SETTINGS

1094 Our framework’s hyperparameters were tuned via a grid search on the validation set. The search
 1095 spaces are detailed in Table 4. The best-performing configurations for SteerRec’s key hyperparam-
 1096 eters are presented in Table 5.

1097 Table 4: Hyperparameter search space for SteerRec.
 1098

1099 Hyperparameter	1100 Search Space
1101 Learning Rate (lr)	$\{2 \cdot 10^{-4}, 1 \cdot 10^{-4}, 5 \cdot 10^{-5}, 1 \cdot 10^{-5}\}$
1102 Guidance Scale (w)	$\{2, 4, 6, 8, 10\}$
1103 Loss Balance (μ)	$\{0.2, 0.4, 0.6, 0.8\}$
1104 Triplet Margin (m)	$\{0.05, 0.1, 0.2, 0.3, 0.4\}$
1105 Diffusion Timesteps (T)	$\{600, 800, 1000, 1200, 1400, 1600, 1800, 2000\}$
1106 Inference Negative Samples (K)	$\{16, 32, 64, 128, 256\}$

1107 Table 5: Best settings for SteerRec’s key hyperparameters on each dataset.
 1108

1110 Dataset	1111 Guidance Scale (w)	1112 Loss Balance (μ)	1113 Timesteps (T)	1114 Margin (m)
1115 Sports and Outdoors	2	0.4	1000	0.1
1116 Beauty	4	0.2	1200	0.1
1117 Toys and Games	4	0.2	800	0.1

1118 D.4 ADDITIONAL HYPERPARAMETER ANALYSIS

1119 This section provides a detailed sensitivity analysis of the key hyperparameters introduced in our
 1120 framework beyond the guidance scale w presented in the main text. We analyze the impact of the
 1121 loss balancing coefficient μ , the triplet margin m , and the number of inference-time negative samples
 1122 N_{neg} .

1123 **Impact of Loss Balancing Coefficient μ .** The coefficient μ balances the reconstruction loss and
 1124 the GAL. As shown in Figure 5, its value is critical for model performance. An excessively large
 1125 μ (e.g., 1.0) overemphasizes preference separation, which compromises generative quality and ult-
 1126 imately harms performance. The optimal performance is consistently found when μ is in the mod-
 1127 erate range of $[0.2, 0.6]$, indicating that a balanced contribution from both objectives is crucial for
 1128 SteerRec.

1129 **Impact of Triplet Margin m .** The margin m in the L_{GAL} objective sets the desired separation
 1130 between the positive and negative predictions during training. Figure 6 shows that the model is
 1131 sensitive to this value. A very small margin (e.g., 0.05) may not provide a strong enough alignment
 1132 signal to effectively structure the embedding space. As the margin increases to a moderate value
 1133 (typically in the range of $[0.1, 0.2]$), performance improves significantly. However, an overly large

Figure 5: The impact of the loss balancing coefficient μ on recall@10 performance.

1142
1143
1144
1145 margin (e.g., 0.4) can make the training objective too difficult to satisfy, especially for hard nega-
1146 tives, thus hindering convergence and degrading performance. This demonstrates the importance of
1147 selecting a well-calibrated margin.
1148

Figure 6: The impact of the triplet margin m on Recall@10 performance.

1157
1158
1159
1160 **Impact of Inference Negative Samples N_{neg} .** The number of negative samples N_{neg} used to
1161 construct the repulsive signal c^- at inference time also has a notable impact on performance, as
1162 shown in Figure 7. Using too few negative samples (e.g., 16) may result in an unstable or biased
1163 anti-preference signal, leading to lower performance. As N_{neg} increases, the performance gener-
1164 ally peaks with a moderate number of samples, typically around $N_{neg} = 32$ or $N_{neg} = 64$ for
1165 most datasets. This suggests that a sufficiently representative set of negatives is enough to form an
1166 effective repulsive vector. Interestingly, using an excessive number of negatives (e.g., 128 or 256)
1167 does not yield further improvements and can even slightly degrade performance, possibly due to the
1168 introduction of noisy or less relevant negative signals into the aggregated centroid.
1169

Figure 7: The impact of the number of inference-time negative samples N_{neg} on Recall@10 performance.

D.5 ADDITIONAL CONVERGENCE ANALYSIS

1184 As established in the main paper, SteerRec demonstrates significantly accelerated convergence com-
1185 pared to the PreferDiff across all datasets. This appendix provides the supplementary convergence
1186 curves for the Beauty and Toys and Games datasets, which complement the results for the Sports
1187 dataset shown in the main text. Figures 8 and 9 illustrate this trend. In both cases, SteerRec (blue
1188 curve) not only converges to a higher performance plateau but also exhibits a much steeper initial

Figure 8: Training performance comparison between SteerRec and PreferDiff on the Beauty dataset.

Figure 9: Training performance comparison between SteerRec and PreferDiff on the Toys and Games dataset.

learning curve, reaching near-optimal performance in substantially fewer epochs than PreferDiff (red curve).

E EMBEDDING SPACE VISUALIZATION

To better understand how SteerRec structures the item representation space, we visualize the learned embeddings with t-SNE⁴ (Maaten & Hinton, 2008) and compare SteerRec against SASRec and PreferDiff. Figures 10, 11, and 12 show results for the Sports, Beauty, and Toys datasets. A consistent trend emerges across all datasets. SASRec learns a highly concentrated embedding space, with items crowded into a dense and largely unstructured core. PreferDiff, which incorporates a preference loss, explores the space more broadly but forms uneven clusters with indistinct boundaries. In contrast, SteerRec produces a well-structured representation space with multiple distinct and dense clusters separated by clear low-density regions.

F EXTENDED EXPERIMENTS ON THE MIND-SMALL DATASET

To further validate the effectiveness of SteerRec, especially in settings with rich negative feedback, we conduct experiments on the widely-used MIND-small news recommendation dataset⁵ (Wu et al., 2020). This dataset is particularly suitable for our study because it provides explicit negative signals and has been widely adopted in news recommendation research (Wu et al., 2019a;b). Below we describe the dataset, experimental setup, and results.

⁴Visualizations were generated using the scikit-learn implementation: <https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html>

⁵<https://msnews.github.io/>

Figure 10: t-SNE visualization of the learned item embedding spaces on the Sports dataset.

Figure 11: t-SNE visualization of the learned item embedding spaces on the Beauty dataset.

Figure 12: t-SNE visualization of the learned item embedding spaces on the Toys dataset.

F.1 DATASET DETAILS AND EXPERIMENTAL SETUP

Dataset Characteristics. MIND-small is a large-scale benchmark derived from Microsoft News logs. It contains 156,965 training and 73,152 development impression logs. A key feature is the impression-level records: each log includes the clicked article (positive signal) and the simultaneously displayed but unclicked articles, which serve as explicit negative signals. These high-quality negatives make MIND-small an ideal testbed for our PNG mechanism.

Data Construction. We process the raw behaviors.tsv and news.tsv files. User click histories from the “History” field form the positive condition sequence. For each clicked article, the negative condition is constructed from the unclicked items in the same impression. Following the standard protocol, evaluation is performed at the impression level, with the entire impression serving as the candidate set. The official development set is randomly split 50/50 into validation and test subsets.

1296 **Experimental Settings.** All models—PreferDiff, SteerRec with random negatives, and SteerRec
 1297 with high-quality negatives—share the same SASRec backbone and hyperparameters (Table 6). The
 1298 embedding dimension is set to 3072, following prior work (Liu et al., 2025). The only differences
 1299 are in the loss functions and inference-time guidance strategies. Model-specific hyperparameters (λ
 1300 for PreferDiff; μ, m for SteerRec) are tuned on the validation set.
 1301

1302 Table 6: Shared hyperparameter settings for all models on the MIND-small dataset.
 1303

Hyperparameter	Value
Backbone Model	SASRec
Embedding Dimension (d)	3072
Max Sequence Length	10
Transformer Heads	2
Transformer Layers	1
Optimizer	AdamW
Learning Rate	$1 \cdot 10^{-4}$
Batch Size	256
Guidance Scale (w)	4
Validation Metric	Recall@5

1317 Figure 13: Performance comparison of PreferDiff and SteerRec (with random vs. high-quality
 1318 negative guidance) on the MIND-small test set.
 13191320 Figure 14: Convergence curves of PreferDiff and SteerRec (with random vs. high-quality negative
 1321 guidance) on the MIND-small test set.
 1322

1350 F.2 PERFORMANCE ANALYSIS ON MIND-SMALL
13511352 To validate our framework on the MIND-small dataset, we analyze PreferDiff against two Steer-
1353 Rec variants: one guided by random negatives and one guided by high-quality negatives. This
1354 comparison is designed to highlight two core advantages: the fundamental superiority of our PNG
1355 mechanism, and the significant performance gains from high-quality, steerable guidance.1356
1357 **Superiority of the PNG Mechanism.** The first key finding, illustrated in Figure 13, is that Steer-
1358 Rec guided by simple random negatives already outperforms PreferDiff. This result validates the
1359 core advantage of our PNG mechanism: it directly applies repulsive forces at inference time, over-
1360 coming a key limitation of prior work where negative signals are only used indirectly during training.1361
1362 **Steerability and Stability with High-Quality Guidance.** The second finding highlights the
1363 framework’s steerable nature. Performance is further amplified when the PNG mechanism is sup-
1364 plied with high-quality, impression-level negatives, achieving the best results. This demonstrates
1365 that SteerRec’s efficacy scales with the quality of the guidance signal. Moreover, this high-quality
1366 guidance also engenders a markedly more stable training process. As shown in Figure 14, this variant
1367 avoids the severe initial instability exhibited by other models and converges smoothly, underscoring
1368 the dual benefits of providing consistent and meaningful repulsive signals.1369 G DISCUSSIONS
13701371 G.1 CORE MOTIVATION: SOLVING TWO FUNDAMENTAL PROBLEMS
13721373 Our work is inspired by the success of negative guidance in text-to-image (T2I) models (e.g., Stable
1374 Diffusion), which can effectively remove unwanted concepts. To our knowledge, our work is the
1375 first to attempt to bring this powerful concept of steerable negative guidance to diffusion-based
1376 sequential recommendation. In doing so, we had to solve two distinct problems that prior work did
1377 not address:

- **Problem 1: The Training-Inference Inconsistency.** Prior work (like PreferDiff) has a fundamental misalignment: they use negatives in the training loss (BPR) but still rely on a generic null condition (CFG) at inference. Our **Positive-Negative Guidance (PNG)** mechanism solves this by replacing the null condition with a user-aware negative condition c^- , further unlocking the potential of conditional diffusion.
- **Problem 2: The “Semantic Challenge”.** Simply applying negative information is sub-optimal. As analyzed in our introduction, the T2I paradigm does not transfer directly.
 - *The T2I Paradigm:* Stable Diffusion is trained via the standard CFG paradigm (randomly masking the positive prompt with a null token \emptyset). At inference, one can simply swap \emptyset with a negative prompt (e.g., “beard”) to achieve negative guidance. This works immediately because T2I relies on **fixed, pre-trained encoders (like CLIP)**, where prompts like “beard” possess stable, universal semantic embeddings that contrast meaningfully with “man”.
 - *The RecSys Reality:* Recommendation, conversely, operates in a **dynamic, learned embedding space** where positive conditions, negative conditions, and target items are all drawn from the same evolving item set. This makes negative guidance inherently unstable: simply providing a negative condition c^- at inference (replacing \emptyset) works poorly because the model has not been trained to interpret this signal as a repulsive force. Unlike T2I, where CLIP provides semantic grounding, RecSys models do not inherently know that c^- means “avoid”.
 - *Our Solution:* Our **Guidance Alignment Loss (GAL)** is the explicit training objective designed to solve this semantic challenge. It explicitly builds the geometric separability that CLIP provides “for free” in T2I, teaching the model to treat c^- as a repulsive signal.

1402 In essence, PNG solves the inconsistency, and GAL solves the semantics. The combination (PNG +
1403 GAL) is the complete framework that unlocks the potential of steerable diffusion in recommenda-
1404 tion.

1404
1405 G.2 TRAINING OBJECTIVE AND BASELINE COMPARISON1406
1407 To better clarify our technical contribution and highlight the novelty of SteerRec, we have prepared
1408 a new diagram (Figure 15) that explicitly visualizes our training objective and contrasts it with key
1409 diffusion-based recommenders.1428
1429 Figure 15: Illustration of the training objective of SteerRec. While DreamRec relies solely on recon-
1430 struction conditioned on user history (c^+), SteerRec introduces a parallel negative condition (c^-)
1431 and a Guidance Alignment Loss (L_{GAL}). This explicitly trains the denoising network to distinguish
1432 between positive and negative guidance signals.1433
1434 We follow the conditional generation paradigm established by existing works, such as DreamRec
1435 (Yang et al., 2023) and PreferDiff (Liu et al., 2025). In this framework, the user history is encoded
1436 into a single context vector c^+ , and the denoising network F_θ (typically a simple MLP) is explicitly
1437 conditioned on it to predict the target item x_n^0 from the noisy state x_n^t : $F_\theta(x_n^t, c^+, t)$. The structural
1438 differences lie in how negative information is incorporated:

- **DreamRec (No Negative):** This baseline relies exclusively on a Reconstruction Loss (L_{recon}) based on the positive condition c^+ . It does not utilize negative samples during the diffusion training process.
- **PreferDiff (Negative as Target):** This method enhances DreamRec by introducing a ranking loss ($L_{BPR-Diff}$). Crucially, this approach treats the negative sample as a **Noisy Target** (x_t^{neg}), while the condition remains the user history (c^+).
 - **Mechanism:** $\hat{x}_0^{neg} = F_\theta(x_t^{neg}, c^+, t)$.
 - **Role:** Here, the negative information serves merely as a **reconstruction target** to calculate a BPR ranking loss (comparing the reconstruction error of x_t^{pos} vs. x_t^{neg}). The model never learns to generate based on a negative condition. Consequently, at inference, it cannot utilize negative signals for guidance and must revert to standard CFG.
- **SteerRec (Negative as Condition):** Our training objective integrates the Guidance Alignment Loss (L_{GAL}). In stark contrast, SteerRec inputs the negative information as a **Guidance Condition** (c^-), acting upon the positive noisy target (x_t^{pos}).
 - **Mechanism:** $\hat{x}_0^{neg} = F_\theta(x_t^{pos}, c^-, t)$.
 - **Role:** Here, the negative information serves as an **active guidance signal**. We explicitly train the network to output a “repulsive” prediction when conditioned on c^- . This structural shift is what enables our PNG mechanism to actively steer generation at inference time, a capability PreferDiff fundamentally lacks.

1458 As illustrated in Figure 15, this alignment allows the network to interpret c^- as a repulsive
 1459 signal, directly serving our Positive-Negative Guidance (PNG) mechanism at inference.
 1460

1461 G.3 GENERALIZABILITY TO DATASETS WITH LONGER SEQUENCES

1463 A key question is how well SteerRec generalizes to datasets characterized by longer user interaction
 1464 histories, as the Amazon datasets used in the main experiments have relatively short average
 1465 sequence lengths (< 10). To address this, we conducted additional experiments on the widely-
 1466 used MovieLens-1M (ML-1M) benchmark. Following the protocol of recent diffusion-based recom-
 1467 menders (Liu et al., 2025), we varied the maximum sequence length from 10 to 50. The results
 1468 are presented in Table 7.

1469 Table 7: Recommendation Performance (Recall@5 / NDCG@5) with varied length of user history
 1470 on ML-1M. The best performance is in **bold**.

Model	Length=10	Length=20	Length=30	Length=40	Length=50
SASRec	0.0201 / 0.0137	0.0242 / 0.0131	0.0306 / 0.0179	0.0217 / 0.0138	0.0205 / 0.0134
BERT4Rec	0.0215 / 0.0152	0.0265 / 0.0146	0.0331 / 0.0200	0.0248 / 0.0154	0.0198 / 0.0119
TIGIR	0.0451 / 0.0298	0.0430 / 0.0270	0.0430 / 0.0289	0.0364 / 0.0238	0.0430 / 0.0276
DreamRec	0.0464 / 0.0314	0.0480 / 0.0349	0.0514 / 0.0394	0.0497 / 0.0350	0.0447 / 0.0377
PreferDiff	0.0629 / 0.0439	0.0513 / 0.0365	0.0546 / 0.0408	0.0596 / 0.0420	0.0546 / 0.0399
SteerRec	0.0728 / 0.0531	0.0679 / 0.0525	0.0596 / 0.0466	0.0579 / 0.0423	0.0646 / 0.0469

1480 **Results.** As shown in Table 7, SteerRec consistently outperforms other baselines across different
 1481 lengths of user historical interactions. This confirms the robustness and generalizability of our
 1482 framework beyond short-sequence scenarios.

1484 G.4 ANALYSIS OF INFERENCE EFFICIENCY AND Timesteps

1486 We analyze the trade-off between diffusion timesteps (T) and model performance, as well as the
 1487 trade-off between inference steps (S) and efficiency.

1489 **1. Training Timesteps (T) vs. Performance.** A large number of training timesteps is necessary
 1490 for current diffusion-based recommenders. This aligns with findings in related work (Liu et al.,
 1491 2025), which suggest that high-dimensional embeddings ($D = 3072$) require a fine-grained denois-
 1492 ing process (i.e., large T) to learn the complex distribution effectively. To validate this, we conducted
 1493 an ablation study on T while fixing the number of inference steps at $S = 10$.

1494 Table 8: Effect of different *training* timesteps T on performance (Recall@5 / NDCG@5), with
 1495 inference steps fixed at $S = 10$.

1497 Training Steps (T)	1498 Sports	1499 Beauty	1500 Toys
1500 100	0.0112 / 0.0072	0.0148 / 0.0094	0.0216 / 0.0164
1501 200	0.0121 / 0.0076	0.0215 / 0.0153	0.0314 / 0.0236
1502 400	0.0146 / 0.0101	0.0331 / 0.0246	0.0443 / 0.0320
1503 600	0.0202 / 0.0153	0.0376 / 0.0284	0.0458 / 0.0339
1504 800	0.0205 / 0.0153	0.0380 / 0.0286	0.0473 / 0.0370
1505 1000	0.0208 / 0.0167	0.0429 / 0.0325	0.0465 / 0.0363
1506 1200	0.0199 / 0.0148	0.0443 / 0.0334	0.0461 / 0.0359
1507 2000	0.0205 / 0.0145	0.0416 / 0.0322	0.0453 / 0.0337
1508 4000	0.0208 / 0.0155	0.0420 / 0.0330	0.0463 / 0.0367

1510 **Results.** We observe that recommendation performance drops significantly when the training
 1511 timesteps T are too small (e.g., $T < 400$). The model generally achieves optimal performance

1512 in the range of $T = 800$ to 1200 . This empirically confirms our hypothesis that a fine-grained dis-
 1513cretization (i.e., a sufficiently large T) is essential for learning accurate denoising trajectories in the
 1514high-dimensional item embedding space ($D = 3072$).
 1515

1516 **2. Inference Steps (S) vs. Efficiency.** While training requires large T , inference can be highly
 1517 efficient. By using the DDIM sampler, we can skip steps during generation. For instance, on the
 1518 Sports dataset ($T = 1000$), setting the skip interval to 100 results in only 10 actual denoising steps
 1519 ($S = 10$), which takes approximately 2 seconds per batch. Table 9 demonstrates the trade-off
 1520 between inference time and performance. SteerRec achieves commendable results with as few as 10
 1521 to 20 steps.
 1522

1523 Table 9: Effect of different *denoising* (inference) steps S on performance (Recall@5 / NDCG@5).
 1524 Transposing the table allows for a clearer comparison of the trade-off between inference time and
 1525 recommendation quality.
 1526

1527 Inference Steps (S)	1528 Time Cost	1529 Performance (Recall@5 / NDCG@5)		
		1530 Sports	1531 Beauty	1532 Toys
1529 1	1530 <1s	1531 0.0186 / 0.0145	1532 0.0407 / 0.0310	1533 0.0422 / 0.0339
1530 2	1531 <1s	1532 0.0193 / 0.0143	1533 0.0407 / 0.0304	1534 0.0459 / 0.0358
1531 5	1532 1s	1533 0.0199 / 0.0156	1534 0.0416 / 0.0320	1535 0.0456 / 0.0353
1532 10	1533 2s	1534 0.0208 / 0.0167	1535 0.0429 / 0.0325	1536 0.0461 / 0.0363
1533 20	1534 3s	1535 0.0210 / 0.0167	1536 0.0433 / 0.0331	1537 0.0470 / 0.0370
1534 50	1535 12s	1536 0.0211 / 0.0164	1537 0.0443 / 0.0334	1538 0.0473 / 0.0370
1535 100	1536 23s	1537 0.0211 / 0.0163	1538 0.0442 / 0.0330	1539 0.0469 / 0.0367
1536 500	1537 57s	1538 0.0213 / 0.0163	1539 0.0445 / 0.0334	1540 0.0473 / 0.0370
1537 1000	1538 120s	1539 0.0213 / 0.0162	1540 0.0443 / 0.0334	1541 0.0473 / 0.0370

1538 **Results.** As demonstrated in the table, SteerRec achieves competitive performance with as few as
 1539 10 to 20 inference steps, requiring only roughly 2–3 seconds per batch. While increasing the steps
 1540 to 1000 yields slight improvements in some metrics, the computational cost increases linearly (from
 1541 3s to 120s), which is disproportionate to the marginal performance gain. Therefore, setting the
 1542 inference steps $S \in [10, 20]$ provides an optimal balance between recommendation accuracy and
 1543 real-world efficiency.
 1544

1545 G.5 TIME COMPLEXITY AND RUNTIME ANALYSIS

1546 To demonstrate the practicality of SteerRec, we analyze its theoretical time complexity and compare
 1547 its actual runtime against key baselines.
 1548

1549 **Theoretical Time Complexity Analysis.** We analyze the time complexity per training/inference
 1550 batch. Let B denote the batch size, L the sequence length, D the hidden embedding dimension, N
 1551 the total number of items, and S the number of inference steps.
 1552

- 1553 • **Training:** The training complexity consists of two main components:
 1554
 - 1555 – **Encoder (Transformer):** The complexity for the self-attention mechanism is $O(B \cdot L^2 \cdot D)$.
 1556
 - 1557 – **Denoising (MLP):** Our denoising network requires two forward passes (one for c^+
 1558 and one for c^-) to calculate L_{GAL} . Since the network consists of linear layers, the
 1559 complexity is proportional to $O(B \cdot D^2)$.
 - 1560 – **Comparison:** This is asymptotically identical to PreferDiff, which also requires a
 1561 Transformer pass and two denoising passes (for positive and negative items) to com-
 1562 pute its ranking loss.
- 1563 • **Inference:** The inference complexity consists of the following components:
 1564
 - 1565 – **Encoder:** Encoding the user history takes $O(B \cdot L^2 \cdot D)$.
 - 1566 – **Guidance Mechanism:** The PNG mechanism requires two forward passes per DDIM
 1567 step (Total: $2 \cdot S$ passes). The complexity is $2 \cdot S \cdot O(B \cdot D^2)$. This is exactly the same

1566 as the standard CFG mechanism used by baselines, which also requires two passes
 1567 (c^+ and \emptyset).
 1568 **– Full Ranking:** Calculating scores for all items takes $O(B \cdot N \cdot D)$.
 1569 **– Negative Sampling:** The random negative sampling is a simple lookup operation with
 1570 negligible cost compared to the matrix operations above.
 1571 **– Conclusion:** Since all major complexity terms ($O(S \cdot B \cdot D^2)$ and $O(B \cdot N \cdot D)$) are
 1572 present in both methods, SteerRec introduces no additional asymptotic complexity
 1573 compared to standard CFG-based diffusion models.
 1574

1575 **Actual Runtime Comparison.** Furthermore, we also make comparisons of training time and in-
 1576 ference time between SteerRec and other baselines.
 1577

1578 Table 10: Comparison of Training Time and Inference Times.
 1579

Dataset	Model	Training Time (s/epoch) / (s/total)	Inference Time (s/epoch)
Sports	SASRec	2.67 / 31	0.47
	BERT4Rec	7.87 / 79	0.65
	TIGER	11.42 / 1069	24.14
	DreamRec	16.32 / 811	356.43
	PreferDiff	20.78 / 588	2.11
	SteerRec	21.15 / 416	2.23
Beauty	SASRec	1.05 / 36	0.37
	BERT4Rec	3.66 / 80	0.40
	TIGER	5.41 / 1058	10.19
	DreamRec	10.36 / 535	288.32
	PreferDiff	13.00 / 470	1.62
	SteerRec	13.22 / 364	1.81
Toys	SASRec	0.80 / 56	0.22
	BERT4Rec	3.11 / 93	0.23
	TIGER	3.76 / 765	4.21
	DreamRec	10.13 / 512	302.75
	PreferDiff	12.07 / 437	1.29
	SteerRec	12.21 / 412	1.36

1601 **Results.** We can observe that while SteerRec maintains comparable inference and per-epoch training
 1602 times to PreferDiff, it demonstrates a significant advantage in Total Training Time. This is because
 1603 our GAL can construct user preferences more effectively, leading to much faster convergence.
 1604

1605 G.6 IMPACT OF NEGATIVE SAMPLING STRATEGIES

1606 In the early stages of this research, we explicitly explored **Retrieval-based Hard Negative Mining**
 1607 (**HNM**) at inference. Specifically, we employed a strategy of ranking all items based on similarity to
 1608 the user context (i.e., the encoded user history vector c^+). We selected $N_{neg} = 20$ negative samples
 1609 from different similarity intervals: the strict top ranks (Top 20), the top percentile (Top 1%-3%), and
 1610 a mid-high percentile (Top 10%-15%).
 1611

1612 Table 11: Performance and Efficiency of Different Negative Sampling Strategies (Sports Dataset).
 1613

Negative Strategy	R@5	N@5	R@10	N@10	Time (s)
Random	0.0208	0.0167	0.0275	0.0189	2.2s
HNM (Top 1%-3%)	0.0211	0.0169	0.0280	0.0191	3.6s
HNM (Top 10%-15%)	0.0209	0.0166	0.0276	0.0189	3.6s
HNM (Top 20)	0.0185	0.0152	0.0262	0.0177	3.6s

1620 We identified two critical issues:
1621

- 1622 • **A. The “False Negative” Risk:** As shown in Table 11, strict HNM (Top 20) causes a
1623 performance drop. This is because high-similarity negatives likely include the Target Item
1624 (false negative). Treating the ground truth as a negative condition “poisons” the repulsive
1625 guidance, actively steering the model away from the correct target.
- 1626 • **B. Scalability Bottleneck:** Random sampling is $O(1)$, whereas HNM requires expensive
1627 full-corpus ranking ($O(N)$).
 - 1628 – *Training Cost:* Unlike inference where the HNM cost is amortized over multiple de-
1629 noising steps, training involves only *one* network step per batch. Thus, adding Global
1630 HNM would roughly double the training time per epoch, making it computationally
1631 prohibitive on large datasets.

1632 **Conclusion:** Random Sampling currently offers the best balance of robustness and efficiency,
1633 though developing efficient HNM strategies remains a promising avenue for future work.

1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673