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ABSTRACT

Evaluating the performance of deep networks against unseen validation data is a
crucial step to measure generalization performance. However, ostensibly neither
the training nor validation and test data are ever sufficiently extensive to repli-
cate real-world application. This works advocates for a change of perspective for
evaluating performance of deep networks. Instead of evaluating against unseen
validation data, we propose to rather capture when the model starts to prioritize
learning unnecessary or even detrimental specifics of training data instead of gen-
eral patterns. While this has been challenging to theoretically derive, we propose
gradient-weight alignment as an empirical metric to determine performance on
unseen data from training information alone. Our performance measure is effi-
cient and widely applicable, closely tracking validation accuracy during training.
It connects model performance to individual training samples, enabling its use not
only for assessing generalization and as an early stopping criterion, but also for
offering insights into training dynamics.

1 INTRODUCTION

Validation sets are so fundamental and historically tied to machine learning that they tend not to be
sufficiently questioned. How well they represent the actual downstream task, especially in critical
applications such as medicine, is only seldom a topic in literature. In almost all cases though,
validation sets are not sufficiently extensive and there is either a slight distribution shift or even a
major change in the downstream application the trained (and validated) model is used for. This
begs the question as to what one aims to quantify by using validation sets. On one hand, this is
when a model does no longer improve its performance on unseen data during training for early
stopping and, on the other hand, how good the performance on unseen data is estimated to be, i.e.
the generalization gap. In an ideal scenario, a validation metric should not only measure these two
properties but additionally connect model performance to the actual individual data points it was
trained on.

Generalization occurs when the representations learned by a model from training data closely align
with the true underlying concepts of real-world phenomena. Empirical evidence and theoretical
analyses suggest that deep neural networks typically learn broad, simple patterns first, before pro-
gressing to more complex, specific details — a process sometimes referred to as a “simplicity
bias” (Arpit et al., 2017). Capturing low-complexity patterns first is a training dynamic that is
associated with the model improving its ability to generalize effectively to unseen data by capturing
the essential features needed for robust predictions. The exact role of learning patterns of increas-
ing complexity or even noise, often associated with memorization/overfitting, is still debated in the
context of deep learning (Feldman, 2020). In this work, we empirically show that the direction of
the gradients within the loss landscape spanned by the model weights allows us to identify whether
general patterns are being learned. On a high level, the key intuition underlying our work is as fol-
lows: when per-sample gradients seize to be aligned with the model weights during training, this
process starts to deteriorate the learned representations in the weights. On the contrary, increasing
alignment with the model weights and among gradients indicates improved generalization capabili-
ties allowing for using gradient-weight alignment to predict the performance of the model on unseen
data.

Contributions: In this work, we propose to leverage the alignment between per-sample gradients
and the model weights to efficiently quantify the model performance on unseen data solely based
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on information drawn from the training samples and the model while training, which we will from
now on refer to as Train-Time Information (TTI). Instead of using possibly non-exhaustive vali-
dation datasets with a lack of understanding of how training data affects optimization, our perfor-
mance measure is intrinsically linked to model convergence itself. Our alignment metric is not only
straightforward to compute and applicable even in large-scale settings but also provides insight on a
subgroup and even per-sample level. Most importantly, it predicts generalization without a valida-
tion set, allowing for determining when a model stops learning useful information and for comparing
the performance of different models in terms of leveraging available training data information. Our
results can be summarized as follows:

• We introduce Gradient-Weight Alignment (GWA) and show how the alignment between
per-sample gradients and the model weights corresponds to generalization behavior during
different training phases of deep neural networks.

• We propose to use the moments of the alignment scores’ distributions to identify these
different training phases and the individual samples contributing to the optimization.

• We perform an extensive empirical study to evaluate the predictive capabilities of GWA
and show that it does not only measure generalization capability but can also be used as a
robust early stopping criterion.

2 RELATED WORK

Our work relates to two distinct lines of research in deep neural network optimization focusing either
on classifying training or generalization behavior.

To understand when a model starts overfitting, our work aims at offering a new perspective on train-
ing dynamics, i.e. Stochastic Gradient Descent (SGD)’s intrinsic bias to prioritize learning simple,
generalizable patterns before shifting towards more complex functions. The idea was first popu-
larized for deep networks by Arpit et al. (2017) and associated with memorization at the end of
training. Rahaman et al. (2019) and Kalimeris et al. (2019) showed that this behavior corresponds
to an increasing complexity of the model’s learned function. SGD initially learns functions charac-
terized by close-to-linear decision boundaries and low frequencies in the Fourier domain. Only later
during optimization does SGD lead to non-linear functions of increasing complexity which are less
robust to pertubations. This is also reflected in the work by Mangalam & Prabhu (2019), showing
that the samples learned early in training can also be correctly predicted by shallow SVMs and Ran-
dom Forests. While these works focus on the model itself, Refinetti et al. (2023) and Belrose et al.
(2024) provide empirical evidence that the simplicity bias of the network function is mirrored by
a bias to exploit lower-order input statistics first during training. We adopt the hypothesis of deep
networks learning patterns of increasing complexity but shift the focus away from analyzing when
a model learns which features and instead quantify when learning any additional feature becomes
superfluous for generalization.

Quantifying the generalization gap from TTI, i.e. determining how well a model performs on un-
seen data without a validation set, has witnessed much research in recent years with mixed practical
value (Jiang et al., 2019). Arguably the most widely used approaches are based on quantifying the
curvature of the loss function either by directly computing its Hessian, which tends to be computa-
tionally prohibitive, or by approximating it (Hochreiter & Schmidhuber, 1994; Martens & Grosse,
2015; Keskar et al., 2017; Pruthi et al., 2020). However, the curvature of the loss function is most
meaningful in the context of stationary points and tends to vary substantially during training while
also being sensitive to different choices of hyperparameters (Jastrzebski et al., 2020; Cohen et al.,
2021; Gilmer et al., 2022). A key benefit of computing the curvature of the loss function to under-
stand generalization is the ability to do so on a per-sample level, allowing for measuring the influence
of individual samples on the optimization process. This connection was first leveraged through the
use of influence functions for deep neural networks by Koh & Liang (2017), i.e. by employing a
counterfactual strategy which assesses the impact on a model’s output when (hypothetically) omit-
ting a single training sample. An alternative for sample influence that avoids second-order deriva-
tives is sub-sampling based influence estimation (Feldman, 2020; Feldman & Zhang, 2020). While
both works propose estimators which are computationally demanding and typically computed at the
end of training, they not only quantified per-sample influence but also highlighted memorization as
a key –yet underexplored– component of generalization.
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We contend that, to comprehensively evaluate and characterize model training, we not only need to
measure the final generalization gap but should also quantify the influence of individual samples on
the optimization throughout training. In the following, we explore the interaction between gradi-
ents and weights during training and propose a novel approach that allows to connect sample-level
information to training behavior and generalization.

3 GRADIENT-WEIGHT ALIGNMENT

3.1 BACKGROUND

Figure 1: Illustration of varying align-
ment between per-sample gradients and the
model weights during training and corre-
sponding changes in directional dispersion.

We will motivate GWA by looking into two areas of
optimization research: First, we will look into research
on per-sample gradients and the role of their directions
for generalization. And second, we explore how to im-
prove these approaches by evaluating recent theoreti-
cal findings on the alignment between gradients and
weights. Fig. 1 provides a graphical overview of these
phenomena.

The analysis of per-sample gradient directions is an
area that has only received little interest, while hav-
ing shown promising initial results and being inher-
ently connected to training behavior of deep neural
networks. Intuitively, if there is high alignment be-
tween per-sample gradients, the model learns general
features prevalent across the dataset. Liu et al. (2020)
proposed the gradient signal-to-noise ratio across the dataset for each weight to measure the gen-
eralization gap. Fort et al. (2020) introduced stiffness and experimentally showed that the pairwise
per-sample gradients can be used to characterize generalization and class membership. A similar
statistic was proposed by Sankararaman et al. (2020) to quantify the convergence rate, with higher
alignment between gradients leading to faster convergence. Chatterjee (2020) extends this to the
coherent gradient hypothesis based on algorithmic stability. All of these approaches are based on
the benefit of gradients “pointing the same direction”, i.e. directional alignment between gradi-
ents. However, the aforementioned approaches require the gradients of all samples in the dataset to
be stored in memory, rendering their use practically impossible. Moreover, they all aggregate the
scores over the dataset, thus not allowing one to draw conclusions on a per-sample basis.

Compared to per-sample gradient alignment, there has been limited empirical research on the align-
ment between gradients and weights for deep networks in practice. Theoretical works have focused
on deep homogeneous networks, a wide-ranging class of neural networks allowing for rigorous theo-
retical study, with their properties having been shown to often extend to other network architectures.
If the data can be perfectly classified, the optimization trajectory starts with weights of small mag-
nitude (Glorot & Bengio, 2010; He et al., 2015) which then grows during training, moving away
from the origin of initialization and theoretically diverging in norm to infinity (Lyu & Li, 2020).
Ji & Telgarsky (2020) show that this behavior is stable, with the weights converging in direction,
i.e. keeping their orientation constant, and the corresponding gradients aligning with the weights’
direction. Recent empirical research has affirmed this stable behavior by analyzing the direction of
stochastic batch gradients with respect to a set of optimal weights (Guille-Escuret et al., 2024).

Our work postulates a connecting hypothesis between per-sample gradient directions and the align-
ment between gradients and weight: we hypothesize that the pairwise alignment between per-sample
gradients is reflected in the directional alignment between per-sample gradients and the model
weights. By investigating GWA, we cannot just measure the effect of gradient similarity on the
optimization process, but also the changing impact of individual samples over time on the direction
of the optimization trajectory. We demonstrate that this allows for measuring the two key goals of
any validation metric: First, the expected alignment across the dataset allows for estimating the gen-
eralization gap of the network similar to pairwise per-sample gradient alignment while keeping the
ability to trace per-sample contributions. And second, the dispersion of the alignment scores allows
for determining training dynamics that reflect how well the model is able to capture variance in the
dataset and also to detect overfitting.

3
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3.2 METHOD

Our method relies on measuring the alignment between per-sample gradients and the model weights.
Let gt(xi) = −∇wL(wt, xi) denote the negative gradient of the loss function for a single sample xi

with respect to the model weights w at a time step t. We define GWA as the set of alignment scores
At = {γt(x0), . . . , γt(xi)} at a time step t, with the per-sample alignment scores being defined as:

γt(xi) = cos(gt(xi),wt) =
gt(xi) ·wt

∥gt(xi)∥∥wt∥
. (1)

Note that, in theory, if xi can be perfectly classified, the corresponding alignment score γt(xi) → 1
as t → ∞, as shown by Ji & Telgarsky (2020). Although this may never occur in practice, this
serves as useful intuition. To understand the model’s training dynamics, we are not only interested
in individual samples but the behavior of the full dataset as well as quantifying differences within
the dataset. Intuitively, the set At can be seen as the directions required to optimally learn each
sample in the dataset at a given time step t. This set of GWA scores has a bounded probability
distribution of values over [−1, 1] with randomness induced by the training data distribution and the
stochasticity in model training. 1 Thus, seeing as GWA is a fundamentally distributional quantity,
we opt to leverage the moments of the GWA distribution to characterize the complex dynamics of
the alignment scores during training. We expand on this point next.

Moments of A When looking at the alignment within the dataset, we are on one hand interested in
how well the samples are aligned with the weight direction on average, as well as the the agreement
among the samples, reflected in the tailedness of the distribution. Thus, the first and fourth moments,
i.e. the expectation and the kurtosis, are of particular interest. The expected GWA, E [At], measures
the directional alignment of all samples with the model’s weights and is representative of the overall
(average) direction of the optimization. A large directional alignment indicates a consistent learning
direction, which is expected when learning general features during early training phases. Zero or
negative directional alignment indicates signal orthogonal or opposing the previous direction of
the optimization. To measure the agreement between samples we measure the lack of directional
coherence, i.e. the directional dispersion by computing the excess kurtosis of A,K[At]. The kurtosis
reflects how heavy the tail of the alignment score distribution is, with low values being associated
with thin tails of the distribution and concentrated per-sample alignment scores. Heavy tails of the
GWA distribution indicate high directional dispersion. Note that we use the kurtosis instead of the
variance to indicate dispersion, since heavy-tailed distributions frequently occur in practice, and
such distributions often do not have a well-defined notion of variance (i.e. a second moment). In
summary, we will used the term directional alignment to denote the expected GWA, and the term
directional dispersion to denote the excess kurtosis of the GWA distribution.

Lightweight Estimator Computing all alignment scores at each time step t would provide a de-
tailed view of how all individual data points collectively influence the model’s training dynamics.
However, computing γi for all samples at every iteration within an epoch is computationally ex-
pensive. Instead, we use a mini-batch estimator of At (i.e. an empirical estimate of the dataset
statistics), and stabilize this estimator by employing an exponential moving average to keep track of
the distribution’s moments Mj , j ∈ {1, 4} as follows:

M [At] = (1− α) ·M [At−1] + αM [AB] , (2)

with AB being the alignment scores of the current batch and α a small discount factor such as the
relative size of the update. The practical computation of gradient-weight alignment is summarized
in Algorithm 1, which is lightweight enough to be usable and to be run online even for large-scale
models such as Vision Transformers, as seen below. For efficient computation, steps 4-7 can be vec-
torized, resulting solely in additional memory requirements for the per-sample gradients in a single
batch. We empirically found that the aforementioned lightweight estimator correlates excellently
with a fully offline computation (using fixed model weights for all samples and computing the score
for every gradient individually). Moreover, we experimentally determined that choosing α = 1/T in
equation 2, with T denoting the total number of training updates per epoch yields optimal results,
and thus use this parameter throughout. In summary, although a full offline computation of every

1Note that, in the following, we will sometimes abuse notation by re-using the symbol A to denote both the
set and the distribution over the set.
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γi at each t is the optimal (minimum variance unbiased) estimator of the empirical distribution over
At, the lightweight estimator using mini-batching and stabilized by EMA yields excellent practical
results with performance high enough to be run online even for large models. We thus regard the
lightweight estimator to be one of the core contributions of our work.

Algorithm 1 Gradient-Weight Alignment (GWA) in SGD
Require: Number of iterations T , batch size b, learning rate ηt, model weights w

1: Initialize w0

2: for each iteration t = 1, . . . , T do
3: Sample a mini-batch B of size b from the dataset
4: for each sample xi in B do
5: Compute gradient gt(xi) = ∇L(wt, xi)

6: Compute per-sample alignment: γi =
gt(xi)·wt

∥gt(xi)∥·∥wt∥
7: end for
8: Compute directional alignment: E[At] = (1− 1/T) · E[At−1] +

1
T ·b

∑b
i γi

9: Compute directional dispersion: K[At] = (1− 1/T) ·K[At−1] +
1

T ·b
∑b

i=1

(
γi−γ̄
σ

)4
10: end for

4 RESULTS
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Figure 2: (Top) Distribution of alignment scores
γi at different stages during training on CIFAR-
100. The distribution is shifted by its mean
(Mid) followed by a concentration of the align-
ment scores (Late) later during training. The cor-
responding quantile-quantile plots reflect the de-
creasing kurtosis in the three phases (bottom).
Gaussian distribution for reference in black.

Recall that the goal of GWA is to provide a
metric which quantifies a model’s generaliza-
tion capability, predicts when the model stops
learning useful information for generalization,
and connects these insights to the training data
samples. In the following, we will demon-
strate how GWA and the underlying per-sample
distribution of alignment scores At provides
a solid basis to deriving these insights. We
will first show how the distribution and its first
and fourth moments, i.e. directional alignment
and directional dispersion evolve during train-
ing and connect them to generalization. Finally,
we will validate the effectiveness of our method
by showing their potential to replace previously
established methods and to serve as criteria for
gauging generalization capability and for deter-
mining early stopping.

4.1 DISTRIBUTION
OF ALIGNMENT SCORES

To interpret the results below, we note the fol-
lowing. Empirically, generalization is associ-
ated with two processes: (1) an increase in di-
rectional alignment and (2) a concentration of alignment scores, i.e. a decrease in directional dis-
persion. These two processes can either happen in parallel, which is common on easier tasks and
smaller models, or sequentially, with the directional dispersion decreasing after the directional align-
ment has peaked. We hypothesize the increase in directional alignment at the beginning of training
to be due to the learning of simple patterns, i.e. due to the simplicity bias of gradient descent. In
other words, the predominant “signal” during early training is from the general patterns present in
the majority of data samples. In later stages, the gradient direction is increasingly influenced by
more specific patterns. The samples with such specific patterns represent the tails of the alignment
distributions. The heavier these tails are, the stronger the influence of such samples is. Note that this
corresponds exactly to the notion of a heavy-tailed distribution (which kurtosis measures): it is not
necessarily a large number of samples which influence the alignment, but a small number of very
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Figure 3: (Left) Validation accuracy and corresponding directional alignment and directional dis-
persion on ImageNet1k trained from scratch following (Steiner et al., 2021). (Right) ResNet110
trained on the CIFAR-10-N with human-annotated label noise to provoke overfitting.
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Figure 4: Directional alignment E[At] and dispersion K[At] for CIFAR-100 on two models of
different size and random labels for comparison. The directional alignment alone is not sufficient
to determine generalization behavior but only allows for deriving training behavior in tandem with
the kurtosis of At. Training a model on random labels equivalent to (Zhang et al., 2017) leads to no
substantial change in neither directional alignment nor directional dispersion, staying around 0.

influential samples. An increasing directional dispersion in mid training thus reflects variation in the
dataset and the model’s capability to capture it. In other words, if a model has sufficient learning
capacity, the directional dispersion will tend to decrease towards the end of training. In contrast, a
poorly generalizing model (i.e. an overfit model) will have worse directional alignment during the
initial generalization phase and increasing directional dispersion in later stages.

Fig. 3 shows this behavior exemplarily on two datasets: In the left subplots, we trained a ViT/S-16 on
ImageNet and observe an increase in directional alignment in early training together with an increase
in directional dispersion followed by a decrease in late training. This pattern is a clear sign of
generalization. In contrast, the right subplots show a ResNet110 trained on CIFAR-10 with human-
annotated label noise. While the model generalizes well initially, the label noise leads to overfitting
in later stages indicated by a decreasing directional alignment and more importantly an increase in
directional dispersion. Similar behavior can be seen for models of different sizes trained on CIFAR-
100 in Fig. 4. Note that ResNet110 has fewer parameters than ResNet50, and thus lower learning
capacity. Therefore, after ca. epoch 100 the directional dispersion begins to increase, corresponding
to a decrease in test accuracy. Finally, the most drastic example is observed in the right subplots,
where the model is trained on randomized labels. Here, the directional alignment remains negative
throughout most of the training and stabilizes around 0. We thus conclude that this model is unable
to learn generalizable patterns, which is mirrored in a test error of 99% throughout training.
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Figure 5: (Left) Near-perfect log-correlation of pairwise per-sample gradient alignment (stiff-
ness Fort et al. (2020)) and our directional alignment E[At]. Development of stiffness during training
versus validation accuracy (center) and directional alignment (right). Note that directional align-
ment tracks the validation accuracy closely (yellow and red curves).
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Figure 6: (Left) Correlation between alignment of batch gradient gtB and optimal set of weights w∗

as proposed by Guille-Escuret et al. (2024) and our directional alignment E[At]. Development of
the alignment with regards to w∗ during training versus validation accuracy (center) and directional
alignment (right). Note that directional alignment tracks the validation accuracy near-perfectly (yel-
low and red curves).

4.2 GWA VS. METHODS FROM PRIOR WORK

There are two related works particularly relevant to our approach. First, the research on gradient
alignment introduced in 3.1 provides a direct connection to the convergence rate of optimization
and model generalization. We compare against the expected pairwise gradient alignment as intro-
duced in Fort et al. (2020); Sankararaman et al. (2020), in particular the definition of stiffness as
Ei ̸=j [cos(gt(xi),gt(xj)]. Intuitively, our proposed directional alignment can be seen as the align-
ment between gradients with a reference vector, specifically the weights wt, rather than the pairwise
alignment between gradients. This renders our proposed quantity much more memory-efficient, as
it does not require holding all gradients in memory to compute the pairwise scores, while allowing
for directly tracing the per-sample contributions to the expectation of the alignment distribution At.
Fig. 5 shows that directional alignment not only measures the same training dynamics as stiffness,
but actually tracks the corresponding validation accuracy more closely throughout training.

While GWA functions similarly to Ji & Telgarsky (2020) by considering the current set of weights
wt to compute the alignment scores γi, we are also interested in how well the gradients point towards
the optimal set of weights w∗. Guille-Escuret et al. (2024) introduced the alignment between the
stochastic batch gradient gt(B) and the vector pointing towards the optimum w∗ from the current set
of weights wt as a ratio between loss curvature and the error bound during optimization. However
this is prohibitive to compute in practice as the true optimum is unknown and approximating it
requires to re-run the optimization at least once to find an optimal set of weights w∗ for a given
run. Even then, this optimum is not guaranteed to be global, and thus, multiple repetitions would
theoretically be required. Fig. 6 shows that directional alignment, while not measuring the same
quantity, is predictive of the same relative behavior during optimization indicating a relationship
between GWA and the loss curvature relative to the distance to the optimum. Not only is directional
alignment independent of w∗, it also traces the change in validation performance more closely.
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In summary, directional alignment measures training behavior that has been established by prior
works on pairwise per-sample gradient alignment and by analyzing the loss curvature with respect
to the optimum while requiring neither the memory nor the compute overhead of the aforementioned
approaches. Additionally, GWA inherently allows for tracing how individual samples contribute to
the measured score, contrary to the other approaches, which aggregate over the dataset. We leverage
this property in the next section.

4.3 MEASURING SAMPLE MEMORIZATION
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Figure 7: (Left) Memorized samples can be identified by
negative alignment during initial training phase, whereas
memorization with positive alignment sets in after reach-
ing maximum directional alignment. (Right) Average direc-
tional alignment until maxt E[At] for the different number
of most memorized samples compared to overall GWA dis-
tribution At. Higher prevalence in the negative tail of At.

The GWA distribution of alignment
scores At is composed of per-sample
values. This allows for analyzing
contributions of individual samples
to directional alignment and disper-
sion. This poses the question as to
which samples are not aligned with
the expectation of the distribution and
whether these samples change their
gradient direction throughout train-
ing. Despite the inherent complexity
of quantifying sample influence on
optimization, we focus on two recent
areas of research to demonstrate the
effectiveness of GWA: First, we eval-
uate memorization of samples by the
model by analyzing the behavior of
highly memorized samples through-
out training. We use the approach and

the corresponding memorization scores proposed by Feldman & Zhang (2020) for CIFAR-10 trained
on a ResNet50 for this purpose. Here, a sample has high memorization if excluding the sample dur-
ing training leads to a large change in accuracy for this specific sample. Fig. 7 (left) shows that the
2 000 samples with the highest memorization score are opposing the overall directional alignment
during in the initial training epochs. This corroborates the simplicity bias, whereas the optimization
focuses on simple, highly prevalent patterns first. The distribution of alignment scores At (Fig. 7
right) shows a similar picture: 2 000 of the most memorized samples are responsible for the most
negative part of the alignment distribution. This precisely aligns with the notion of a heavy-tailed
distribution where few samples have an outsize effect. Note moreover that in Fig. 7 (left), the highly
memorized samples become increasingly aligned only after the overall alignment has peaked. As
shown by Feldman (2020), further improvements in generalization performance later during training
are mostly driven by memorized samples which exhibit the highest directional alignment, indicating
the necessity of memorization for improving generalization in learning tasks.
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Figure 8: (Left) The mislabeled samples of CIFAR-100-
N are negatively aligned throughout the training, poten-
tially opposing the direction of correctly classified samples.
(Right) Mean shift between correct and mislabeled samples
in At at the last epoch.

While memorization can be poten-
tially beneficial for generalization,
we expect label noise to have a detri-
mental effect on model performance.
In the following, we will repeat-
edly make use of the CIFAR-N (Wei
et al., 2022) dataset which offers ver-
sions of CIFAR-10/100 with differ-
ent levels of human-annotated label
noise allowing us to evaluate varying
model performance and overfitting.
We train the ResNet110 from Fig. 4
on CIFAR-N with 40% label noise,
i.e. a large part of the samples are
mislabeled by human annotators to a
class with high similarity. Observ-
ing Fig. 8, it can be seen that the net-
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Figure 9: Correlation between test accuracy and the maximum directional alignment maxt (E[At])
during training on CIFAR-10-100-N with different levels of label noise. The ViT/Ti-16 is fine-tuned
on ImageNet21k weights (Dosovitskiy et al., 2021).

work is still able to pick up signal with an on-average positive directional alignment. While there
is a substantial overlap between the correct and mislabeled samples in the alignment distribution
At, the average directional alignment of the mislabeled samples stays below zero, i.e. opposing the
weight direction, throughout the whole optimization. Notably, this is unlike the highly memorized
samples in the previous experiment which were learned by the model at some point during train-
ing. To summarize, GWA helps to better understand the complex patterns of sample influence on
the model performance. We showed that memorized samples only get learned later during training
(as also shown e.g. in Stephenson et al. (2021)), while label noise on average tends to oppose the
directional alignment of the entire dataset.

4.4 ASSESSING THE GENERALIZATION GAP

Predicting generalization from TTI alone has been a major challenge in research. Here we show
that this is to some extent possible with GWA. Directional alignment and directional dispersion
have shown great promise in tracing test accuracy throughout training in our previous experiments.
To quantitatively evaluate if it is possible to use the alignment scores to measure generalization
performance, we train models of different sizes from scratch and with fine-tuning. We use the
previously introduced CIFAR-N dataset, which includes versions of CIFAR-10 and CIFAR-100 with
different levels of human-annotated label noise, and evaluate on the duplicate-free ciFAIR (Barz &
Denzler, 2019) test set in a large-scale experiment over varying generalization performances with
and without overfitting. This prevents the model from achieving artificially high test accuracy due
to training data being near-identically duplicated in the test set.

We first use the maximum directional alignment maxt (E[At]) during training and compare it against
the maximum accuracy on ciFAIR. We choose directional alignment without including dispersion
as it has shown strong correlation with the expected pairwise gradient alignment in Sec. 4.2, which
has been shown in previous works to relate to generalization. Fig. 9 shows a clear correlation within
each dataset and model architecture, with lower test accuracy being associated with lower maximum
directional alignment. Notably, this correlation between directional alignment and generalization is
maintained on the pre-trained ViT, indicating that the alignment scores do not only work when
training from scratch on randomly initialized weights, but also for pre-trained models.

The strong correlation with test accuracy poses the question if we can use directional align-
ment as an early stopping criterion. We take the time step with the lowest directional dispersion
argmint (K[At]) subject to previously having reached the peak directional alignment. We compare
our GWA-based early stopping against standard early stopping based on the highest validation ac-
curacy. Table 1 shows that using GWA to determine the optimal epoch returns model performance
that comes close to using the validation accuracy for early stopping while using only the available
information during training. This is even the case under label noise of up to 40%. Additionally,
we assess whether the difference between the two early stopping criteria decreases when evaluated
on test data subjected to realistic perturbations and corruptions, as encountered in practical applica-
tions. For this purpose, we utilize the CIFAR-C and CIFAR-P test sets from Hendrycks & Dietterich
(2019), which consist of various versions with differing levels of alterations to the original test sets,

9
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Test Accuracy [%] CIFAR-C [%] CIFAR-P [%]

Noise GWA-Stop Val.-Stop GWA Val. GWA Val.

CIFAR-10 – 79.59±1.04 81.81±0.54 66.08 66.45 68.76 68.89
9% 77.34±0.79 78.73±0.59 62.33 63.11 64.27 64.91
17% 75.95±0.37 77.03±0.55 59.27 56.86 61.43 58.78
40% 68.40±1.37 70.01±0.17 55.56 57.82 56.20 57.90

CIFAR-100 – 41.04±0.30 44.14±1.12 26.29 27.49 26.61 27.49
20% 40.39±0.60 41.13±0.74 22.51 22.88 22.37 22.62
40% 36.63±0.43 36.75±0.29 22.96 21.69 22.75 21.36

Table 1: Test Accuracy for early stopping with either GWA or based on validation accuracy for
CIFAR-10 and CIFAR-100 on a ResNet56 with different levels of human-annotated label noise from
CIFAR-N. Additional average test accuracy across different corrupted (CIFAR-C) and perturbed
(CIFAR-P) test sets from Hendrycks & Dietterich (2019) to evaluate robustness of the model.

designed to evaluate the robustness of models. On these more or less out-of-distribution test sets,
GWA sometimes even outperforms validation accuracy in determining the optimal epoch for test
performance. Thus, early stopping based on GWA not only provides a method that relies solely on
TTI but also excels in identifying robust models if required for the downstream tasks. This makes
it particularly advantageous in fields with limited data and significant domain shifts in application,
such as the medical field.

To summarize, directional alignment not only correlates with test performance when evaluating the
performance of a model for a given dataset by using TTI only but can also be used as an early
stopping criterion.

5 DISCUSSION AND CONCLUSION

The reliance on per-sample gradients is a bottleneck for GWA required if we want to trace informa-
tion back to individual samples. With the recent progress in improving efficiency in this area due
vectorization and compilation, we are confident that computing per-sample gradients will not only
get even more feasible but also widely adapted in practice. Even with further improvements in effi-
ciency, validation accuracy itself will not be replaced by GWA due to its simplicity and reliability in
most cases. Nontheless, GWA is a expressive metric that will be especially helpful when additional
information about the training is required, domain shifts are to expected in application, and/or only
little data is available. Similarly, directional alignment and dispersion are just two moments of the
GWA distribution. Analyzing time dynamics of the alignment score distribution has the potential to
further enhance current results and presents a promising avenue for future research. An interesting
aspect of the gradient-weight alignment scores is their small magnitude. Due to the high repre-
sentation dimensionality of gradients and weight vectors of deep networks, the cosine similarity of
the per-sample alignment scores tends to get smaller for larger models, making comparisons across
model architectures challenging. We consider solving this an interesting direction for future work.

In summary, we investigated GWA and introduced directional alignment and directional dispersion
as two metrics to capture training dynamics during optimization. We demonstrated that both meth-
ods not only track validation accuracy throughout training but can also efficiently approximate other
metrics, such as the expected pairwise gradient alignment. Their ability to trace per-sample influence
through memorization and mislabeling, estimate generalization performance, and serve as a robust
early stopping criterion makes GWA a promising validation measure. We hope that this work will
inspire renewed interest in unbiased performance metrics and further exploration of the relationship
between individual data samples and model training dynamics.
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6 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we made several key prior decisions. Our research
exclusively utilizes publicly available datasets that are widely recognized in the literature. Addi-
tionally, the models trained during our evaluations either adhere to standard training setups (e.g.
, ViT/Ti-16 on ImageNet1k or ResNet50 for memorization on CIFAR-100) or are commonly used
models for the task (e.g. , ResNet56 and ResNet110 on CIFAR-10-100-N). Notably, due to the
nature of per-sample gradients we adapted all ResNets to use group normalization instead of the
commonly applied batch normalization. For easier reproduction, code is available in JAX at:
https://anonymous.4open.science/r/iclr-73F2
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