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ABSTRACT

Flow-based Generative Models (FGMs) effectively transform noise into a data
distribution, and coupling the noise and data in the training of FGM by Opti-
mal Transport (OT) improves the straightness of the flow paths. However, ex-
isting OT-based couplings are difficult to combine with modern models and/or
to scale to large datasets due to the curse of dimensionality in the sample com-
plexity of (batch) OT. This paper introduces AlignFlow, a new approach using
Semi-Discrete Optimal Transport (SDOT) to enhance FGM training by establish-
ing explicit alignment between noise and data pairs. SDOT computes a transport
map by partitioning the noise space into Laguerre cells, each mapped to a corre-
sponding data point. During the training of FGM, i.i.d.-sampled noise is matched
with corresponding data by the SDOT map. AlignFlow bypasses the curse of di-
mensionality and scales effectively to large datasets and models. Our experiments
demonstrate that AlignFlow improves a wide range of state-of-the-art FGM algo-
rithms and can be integrated as a plug-and-play solution with negligible additional
cost.

1 INTRODUCTION

The generative model is a machine learning task that generates new data that resembles the given
dataset. This task is important and has seen great progress over the past decades, e.g., ChatGPT
(Achiam et al., 2023) for natural language and Stable Diffusion (Rombach et al., 2022) for image
generation. In addition to autoregressive models that dominate language modeling, other backbone
algorithms for generative modeling include GANs (Goodfellow et al., 2020), normalizing flows
(Rezende & Mohamed, 2015), regression models (e.g., GPT (Radford et al., 2018), LLaMA (Tou-
vron et al., 2023)), diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021),
and Flow-based Generative Models (FGMs) (Liu et al., 2022; Lipman et al., 2022; Albergo et al.,
2023).

This work will focus on improving a wide range of FGMs, including flow matching (Lipman et al.,
2022), shortcut model (Frans et al., 2025), MeanFlow (Geng et al., 2025), Live Reflow Frans et al.
(2025), but excluding continuous normalizing flows (CNF) (Chen et al., 2018; Albergo & Vanden-
Eijnden, 2022) (see Sec. 3.1 for more specifications). FGMs focus on learning a time-dependent
vector field, approximated by a neural network whose integration is a trajectory that transits a ran-
domly sampled noise to newly generated data.

Despite their ability to generate high-quality samples, a major drawback of FGMs is the high com-
putational cost associated with sampling. The inference process involves integrating an ODE, where
each integration step requires a forward pass through the neural network. As a result, generating
a single sample requires multiple neural network evaluations. This cost is measured by the Num-
ber of Function Evaluations (NFE), which refers to the number of forward passes. For vanilla flow
matching, the NFE is typically greater than 100.

FGMs’ training procedure generally consists of the following three steps: (1) randomly sample noise
and data points; (2) compute the target vector field that the neural network aims to approximate; and
(3) update the model parameters via an optimization step. For further details, refer to Algorithms 1
and 4. In this work, we focus on improving the first step. While many state-of-the-art methods have
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proposed sophisticated designs for the target vector field, they often rely on independently sampling
noise and data pairs. However, this independent pairing has been shown to inherently induce curved
trajectories (Liu et al., 2022; Hertrich et al., 2025), leading to high NFE. In other words, the random
matching of data and noise inherently encourages non-straight generative paths.

To address the limitations of random noise–data matching, we propose AlignFlow, a method that
aligns noise and data using semi-discrete optimal transport (SDOT) to guide the target vector fields
learned by the neural network. SDOT computes the optimal transport (OT) plan from a continuous
noise distribution to a discrete dataset. This results in a fixed mapping that defines the shortest and
most direct connection from any sampled noise point to a corresponding data point. Our training
procedure adopts a two-stage approach: the first stage computes the SDOT map, and the second
stage trains the FGM using any target vector field of choice. However, instead of randomly pairing
i.i.d. noise with uniformly sampled data, we match each noise sample to a data point as prescribed
by the SDOT map. A high-level overview is provided in Algorithm 3. For implementation details
such as class-conditioned generation and data augmentation, please refer to Section 3.5. We outline
the key benefits below, with further discussion in Section 4.

• AlignFlow is a plug-and-play method, making it easy to integrate into existing FGMs. It
can be readily combined with state-of-the-art training techniques to further enhance perfor-
mance.

• AlignFlow bypasses the curse of dimensionality (Sec. 4.1), thus scales well to large-scale
models and datasets in high-dimensional spaces.

• The SDOT map defines a deterministic and optimal transport path without randomness; that
is, each noise sample is consistently matched to a fixed data point, independent of batch
size. This property makes This batch-invariance ensures stable convergence (see Sec. 4.2)
even when batch sizes are severely constrained, addressing a critical bottleneck for training
large-scale models where memory limitations enforce small-batch regimes.

• The extra cost for computing the SDOT map is low (less than 1% extra cost) (Sec. 4.3).

AlignFlow improves FGMs and bypasses the curse of dimensionality problem in OT. Consider the
task of estimating an OT plan between the unknown data distribution p̃1 and a known noise distribu-
tion p0. This task is challenging not merely due to computational limitations, but rather stems from
the inherent statistical limitations imposed by the finite size of the dataset. (For further discussion,
see Sec. 4.1.)

Theorem 1 (Sample complexity in OT (Informal version for Thm. 1 in Fournier & Guillin (2015))).
In a d-dimensional space, the error in estimating the p-Wasserstein distance Wp(p̃1, p0) between a
known distribution p0 and an unknown distribution p̃1 with only access to |I| samples is of order
∼ |I|−p/d.

Thm. 1 shows that the number of samples required grows exponentially w.r.t. dimensionality, which
is known as curse of dimensionality. Importantly, this limitation is fundamental: the only way to
reduce this error is to increase the dataset size, which is often infeasible in practice. Therefore, any
approach that attempts to estimate an OT plan between the population distribution p̃1 and p0 cannot
scale effectively to modern, high-dimensional generative modeling tasks (see Sec. E).

Bypassing the Curse of Dimensionality. OT is widely regarded as highly relevant to generative
modeling, as it characterizes transformations between distributions via straight and efficient trans-
port paths, a desirable property in FGMs. Unlike prior (batch) OT-based approaches, AlignFlow
bypasses the curse of dimensionality by computing a Semi-Discrete OT (SDOT) plan between the
empirical dataset (a discrete distribution) and the noise distribution (a known continuous distribu-
tion). Since both distributions are explicitly known, this formulation allows for an accurate and
tractable transport plan, even in high-dimensional settings.

2 MORE RELATED WORKS

A central factor in reducing the NFE during sampling in FGMs is the straightness of the generative
path. Since the inference process involves integrating a learned vector field, straighter trajectories
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are easier to integrate accurately, thereby requiring fewer NFEs. Numerous methods have been
proposed to encourage straighter paths, and we categorize these efforts into three main approaches:

Target vector field: This class of methods aims to straighten generative paths by guiding the neural
network to learn a smoother or more linear target vector field. Approaches such as consistency
training and the Shortcut model (Frans et al., 2025) adopt techniques from diffusion models (Yang
et al., 2024), enforcing penalties on inconsistencies between the forward and backward segments
of the path. MeanFlow (Geng et al., 2025) introduces a stronger regularization term based on the
Jacobian-vector product. These advanced loss functions have proven effective, reducing the NFE to
as low as 4 and even 1 for class-conditioned generation on the ImageNet dataset.

Distillation: Recent works aim to reduce NFE by distilling a trained FGM into a more efficient
model (Boffi et al., 2025; Dao et al., 2025). Distillation techniques have also shown success in
diffusion models (Salimans & Ho, 2022; Song et al., 2023; Kim et al., 2023). However, distillation
involves an additional training stage built upon a pre-trained model, and thus can be viewed as
complementary to our approach.

Coupling: Traditional FGMs sample noise and data independently (Algo. 1). Many pioneers im-
prove FGMs by better coupling, i.e., choosing the noise and data from a carefully designed joint
distribution:

• Kornilov et al. (2024) trains an Input Convex Neural Network (ICNN) (Amos et al., 2017)
to serve as the Brenier potential (Peyré et al., 2019, Thm. 2.1), thereby providing the OT
map between the real data distribution and the noise distribution. In this framework, the
ICNN and the FGM are trained jointly. However, the inclusion of the ICNN introduces
significant computational overhead, making it challenging to scale to large models and
high-dimensional tasks.

• Tong et al. (2023) employs Sinkhorn iterations (Peyré et al., 2019, Sec. 4.2) to compute
the OT plan between i.i.d. sampled noise and data at each training step. However, this ap-
proach is sensitive to batch size: large batches incur high computational cost, as Sinkhorn is
an iterative algorithm with per-minibatch complexity of O(n2); meanwhile, small batches
limit the quality of the estimated coupling. Empirical results suggest that this method strug-
gles to generalize to class-conditioned generation1. Calvo-Ordonez et al. (2025) introduce
a weight from Gibbs kernel in the FGM training objective, which generalizes the idea of
Tong et al. (2023). However, its dependence on minibatch makes it have similar weak-
nesses.

• Zhang et al. (2025) provides an approach that scales the Sinkhorn algorithm to large-scale
datasets, computing OT couplings between sampled noise and data points in large batches.
Moreover, PCA can be used to further speed up Sinkhorn computation, which Zhang et al.
(2025) reports does not sacrifice generation quality. Davtyan et al. (2025) improves upon
mini-batch OT by computing the map between a pre-sampled noise set and the whole
dataset. Nevertheless, it is limited by its ability to handle only a finite number of noise
samples.

• Liu et al. (2022) proposes to disentangle crossing trajectories in the learned vector field
to promote straighter generative paths. This approach has recently been scaled to larger
models by Esser et al. (2024), although the scaling process is non-trivial. While the method
does not directly solve an OT problem, its underlying formulation is closely related to OT,
as discussed in Theorem 3.5 of their paper.

3 METHODOLOGY

Mathematically, the generative modeling task can be formulated as follows: given a dataset {xi}i∈I ,
assumed to consist of i.i.d. samples from an unknown probability distribution p̃1 on a space X ,2 the
goal is to generate new samples that follow the same distribution p̃1 using only the observed dataset
{xi}i∈I .

1https://github.com/atong01/conditional-flow-matching/issues/117
2In many settings, X is taken to be a latent space, and the data is obtained via encoding through a VAE.
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Algorithm No Extra
tuning

Scale to
large

models

No Curse
of Dim OT based

Tong et al. (2023) ✓ ✗ ✗ ✓
Coupling Liu et al. (2022) ✓ ✓ - ✗

Kornilov et al. (2024) ✗ ✗ ✗ ✓
Noise-data
alignment AlignFlow (ours) ✓ ✓ ✓ ✓

Table 1: A comparison between coupling methods and noise-data alignment.

Notation Throughout this paper, we will use p0 to denote the noise distribution (some distribution
that is easy to sample from, e.g. normal distribution) and p1 is the Dirac distribution corresponding
to the dataset, i.e., p1 =

∑
i∈I biδxi

where the weights are uniform in our setting, i.e., bi ≡ 1
|I| .

i ∈ I is the index for the dataset, while j ∈ J is the index for the samples in the minibatch. p̃1 is
the unknown real data distribution. In all cases, we will use superscripts for the dataset index and
subscripts for time.

3.1 FLOW-BASED GENERATIVE MODELS (FGMS)

We first summarize a general FGM framework in Algo. 1. In each iteration of the training pro-
cess, we first sample a set of noise x0, data x1 and time t. Then we compute xt as the interpo-
lation between x0 and x1. Finally, we let a NN u(xt, t; θ) to approximate a target vector field
TargetVectorField and update the NN parameters.

Algorithm 1: Flow-based Generative Model (Training)
Input: Source distribution p0, dataset {xi

1}i∈I , neural network u(x, t; θ)
Output: Learned velocity field u(·, ·; θ)

1 Hyperparameters: batch size B, number of steps K
▷ Training loop

2 for k = 1 . . .K do
3 Sample i.i.d. {xj

0}Bj=1 ∼ p0 ▷ sample noise

4 Sample minibatch {xmj

1 }Bj=1 from dataset {xi
1}i∈I ▷ sample data

5 tj ∼ U(0, 1) for j = 1, . . . , B ▷ sample time
6 for j = 1 . . . B do
7 xj

t ← (1− tj)xj
0 + tjx

mj

1

8 vj = TargetVectorField(xj
0, x

mj

1 )

9 v̂j = u(xj
t , t

j ; θ)

10 L(θ) = Loss
({

v̂j , vj
}B

j=1

)
▷ objective function

11 Update θ using∇θL ▷ optimization

(Vanilla) Flow Matching Lipman et al. (2022) chooses TargetVectorField(x0, x1) = x1 − x0

and Loss
({

v̂j , vj
}B

j=1

)
= 1

B

∑
j

∥∥v̂j − vj
∥∥2
2
. The Shortcut Model (Frans et al., 2025), MeanFlow

(Geng et al., 2025), consistency training (Frans et al., 2025), Live Reflow Frans et al. (2025) et al.
all fit into the above FGM framework.

In line 3 and 4 of Algo. 1, noise and data points are sampled independently, leading to curved
trajectories intrinsically Liu et al. (2022); Hertrich et al. (2025). To address this limitation, we
sample noise-data pairs from the joint distribution computed by SDOT.

4
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3.2 COUPLING BETWEEN NOISE AND DATA

In fact, the loss function Algo. 1 optimizes estimates the following expectation 3:

L(θ) ≈ L(θ) = Et∼Unif[0,1],x0∼p0,x1∼p1
∥u(xt, t; θ)− TargetVectorField(x0, x1)∥pp (1)

This means x0 (sampled from p0) and x1 (sampled from p1) are independent in Algo. 1, i.e.,
(x0, x1) ∼ p0×p1. Recent works, such as (Pooladian et al., 2023; Liu et al., 2022; Tong et al., 2023),
are trying to find more powerful joint distributions, and sample (x0, x1) from any γ ∈ Γ(p0, p1):

Lγ(θ) = Et∼Unif[0,1],(x0,x1)∼γ∥u(xt, t; θ)− TargetVectorField(x0, x1)∥pp (2)

where Γ(p0, p1) is the set of all possible joint distribution of p0 and p1:

Γ :=

{
γ ∈ P(X × X ) :

∫
γ(x0, x1) dx0 = p1(x1) ∀x1,

∫
γ(x0, x1) dx1 = p0(x0) ∀x0

}
(3)

Each element in Γ is referred to as a coupling between p0 and p1. As evident from the defini-
tion, Γ is a vast set. Although training with any valid coupling theoretically yields a correct vector
field, the straightness of the resulting trajectories and the efficiency of the training process can vary
significantly depending on the choice of coupling. This naturally raises the question: which cou-
pling should we choose? OT is widely believed to provide meaningful guidance in addressing this
question. In the next section, we will derive a specific coupling γ based on OT theory. 4

3.3 SEMI-DISCRETE OPTIMAL TRANSPORT

4 2 0 2 4
4

3

2

1

0

1

2

3

4

(a) Dataset and noise dis-
tribution

4 2 0 2 4
4

3

2

1

0

1

2

3

4

(b) Laguerre cells

Figure 1: Visualization of Laguerre cells in 2-dim.
The noise distribution is the normal distribution
(dark shadow in the left figure), and the dataset
is the points in the lower left corner. The whole
space is partitioned into cells using SDOT, and
each region is mapped to the data point with same
color by the SDOT map. The integral of the prob-
ability of the noise distribution in each Laguerre
cell equals the probability of the corresponding
data point.

The Optimal Transport (OT) problem seeks
to compute the optimal coupling between two
probability distributions by minimizing a given
cost function c : X × X → R, (see, e.g., Peyré
et al. (2019) for a comprehensive overview):

γ∗ := arg min
γ∈Γ(q1,q2)

(∫
X×X

c(y1, y2) dγ(y1, y2)
)
,

(4)
where we choose c(y1, y2) := ∥y1 − y2∥2
throughout the paper. 5

A discrete distribution is the opposite of a
continuous distribution (e.g., normal distribu-
tion), meaning that the random variable only
takes finite (or countable) values, e.g., the
dataset distribution p1 = 1

|I|
∑

i∈I δxi
. A

OT problem between a continuous distribu-
tion and a discrete distribution is called Semi-
Discrete Optimal Transport (SDOT) (Peyré
et al., 2019, Sec. 5), and this will become our
main tool for noise-data alignment.

Unlike general OT problems, the transport plan of SDOT problems can be represented by a |I|-dim
vector g = [gi]i∈I called dual weight, where |I| is the number of points in the discrete distribution
p1. Given the dual weight g, the SDOT plan is φ(·; g) : X → I

φ(x0; g) := argmin
i∈I

c(x0, x
i
1)− gi (5)

3We here choose the loss function to be Loss
({

v̂it, v
i
t

}B

i=1

)
:= 1

B

∑
i

∥∥v̂it − vit
∥∥p

p
for simplicity

4Formally, any joint distribution over two marginals is a coupling. However, in the context of FGMs,
we distinguish between two types: we refer to the joint distribution between noise p0 and the dataset p1 as
noise–data alignment, while we use coupling to refer specifically to the joint distribution between p0 and the
unknown data distribution p̃1.

5The minimum value is W 2
2 (q1, q2) := minγ∈Γ(q1,q2)

(∫
X×X ∥y1 − y2∥2dγ(y1, y2)

)
.

5
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where g will be omited when no ambiguity.

In fact, X is partitioned into cells by the SDOT map in the sense that cell Li contains the points
transported to the i-th point in the dataset. Such a partition is called Laguerre cells Li (Fig. 1).

Li(g) := {x ∈ X : c(x, yi)− gi ≤ c(x, yj)− gj ,∀j} (6)

Now we need to discuss how to compute the dual weight g. SDOT, same as general OT problems in
Eq. (4), is a minimization problem. By analyzing its dual problem, the dual weight can be solved by
maximizing the following objective function utilizing the Laguerre cell (see e.g., Eq. 5.7 in Peyré
et al. (2019)):

E(g) :=
∑
i∈I

∫
Li(g)

(c(x, yj)− gj) dp0(x) + ⟨g,b⟩ (7)

whose gradient is given by ∇E(g)i = −
∫
Li(g) dp0 + bi, where bi is the probability for each point.

In our cases, bi ≡ 1
|I| .

To solve this maximization problem, we use Adam (Kingma & Ba, 2014) to maximize it. Although
such a solution for the SDOT problem is not new (e.g., Peyré et al. (2019)), we newly propose an
efficient EMA estimation for MRE and L1, which will be helpful when tuning the hyperparameters
ϵ, β, lr, and justify the performance of the output dual weight. For more discussion, see Sec.
A. We summarize the dual weight computation algorithm in Algo. 2, where line 6 corresponds to
entropically regularized SDOT and line 8 is the standard SDOT. Both operations run in linear time
in dataset size |I|.

Algorithm 2: Dual weight computation for SDOT map
Input: Source distribution p0, dataset {xi}i∈I and the corresponding probabilities b = [bi]i∈I , entropic

regularization strength ϵ, EMA parameter β, batch size B, cost function c
Output: Dual weight g = [gi]i∈I

1 Initialization: ∇Eema = 0, g = 0, gema = 0
2 for step = 1, 2 . . . do
3 Sample i.i.d. {xj

0}Bj=1 ∼ p0 ▷ sample noise
4 for j = 1, . . . , B do
5 if ϵ ̸= 0 then

6 hj = SoftMaxi∈I

(
− c(x

j
0,x

i
1)−gi
ϵ

)
▷ SDOT map with current g

7 else
8 φ(xj

0; g) = argmini∈I c(xj
0, x

i
1)− gi

9 hj = 1
φ(x

j
0;g)

10 ∇E(g) = 1
B

∑
j hj − b

11 ∇Eema = β∇Eema + (1− β)∇E(g) ▷ Smoothen by EMA
12 Update g using∇Eϵ(g) ▷ optimization
13 gema = βgema + (1− β)g
14 Return: dual weight gema

After the dual weight g is computed, the SDOT map X → I by Eq. (5).

3.4 MAIN ALGORITHM

Having established the necessary technical framework, we now proceed to the natural derivation
of the AlignFlow methodology. As noted in the introduction, computing the OT plan between the
unknown true data distribution p̃1 and the noise distribution p0 is infeasible because the OT sample
complexity is severely hampered by the curse of dimensionality (Thm. 1). This core difficulty arises
from the fact that we have only limited empirical samples available from p̃1, whose underlying form
remains unknown.

The critical question then becomes: How can we effectively bypass the sample complexity limita-
tions imposed by the curse of dimensionality?

6
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Idea for AlignFlow The critical insight behind AlignFlow is to circumvent the challenge posed
by the unknown true data distribution p̃1 by focusing on the known empirical distribution p1, which
is characterized by a Dirac distribution over the dataset samples. The OT plan between p1 and p0
retains the desirable properties of OT, including a straight path. Furthermore, since the empirical
distribution p1 is inherently discrete, the OT problem can be computed efficiently by Algo. 2.

This leads to the AlignFlow (Algo. 3), which uses the SDOT map to compute the noise-data align-
ment. Note that in the derivation of Algo. 3, we never use the unknown p̃1. This is a theoretical
benefit for AlignFlow: we do not require any assumption about the real data distribution p̃1. And
this is the key to bypassing the curse of dimensionality.

Algorithm 3: AlignFlow: noise-data alignment by SDOT (Training)
Input: Source distribution p0, dataset {xi

1}i∈I , neural network u(x, t; θ)
Output: Learned velocity field u(·, ·; θ)

1 Hyperparameters: batch size B, number of steps K
2 * Stage 1: compute SDOT map *
3 Run Algo. 2 to get dual weight g.

4 * Stage 2: Train flow-based generative model *
5 Let M = K ·B
6 Sample i.i.d. {xj

0}Mj=1 ∼ p0 ▷ sample noise

7 mj = φ(xj
0) for j = 1, . . . ,M ▷ match noise to data

8 tj ∼ U(0, 1) for j = 1, . . . ,M ▷ sample time

9 {mj}Mj=1 = Rebalance
(
{mj}Mj=1

)
▷ Only if needed. Sec. F

▷ Training loop
10 for k = 1 . . .K do
11 for l = 1 . . . B do
12 j = (k − 1) ·B + l

13 xj
t ← (1− tj)xj

0 + tjx
mj

1

14 vj = TargetVectorField(xj
0, x

mj

1 )

15 v̂j = u(xj
t , t

j ; θ)

16 L(θ) = Loss
({

v̂j , vj
}k·B
j=(k−1)·B+1

)
▷ objective function

17 Update θ using∇θL ▷ optimization

3.5 ADDITIONAL TECHNIQUES

Remark 1 (Noise storage). In line 7 and 9 in Algo. 3, we need to sample a large amount of noise
ahead before we start training the FGM model, Simply saving them in memory, even on disks, will
be almost impossible. 6. Our solution is to only save the random seed generating the noise, i.e., each
noise-data pair is (seed, index).

Such an approach will require a map from seed to random matrices (supported by Jax) and loading
the whole ImageNet latent to memory for random fetch (automatically optimized by the PyTorch
dataloader). By such an approach, the (seed, index) pairs for 500 epochs of ImageNet training will
only cost ∼ 1GB disk space.

Remark 2 (Data augmentation). Data augmentation is a critical component for achieving optimal
performance in image-related tasks. However, incorporating complicated augmentation techniques,
such as random cropping or random rotation, directly into the SDOT map formulation can be chal-
lenging.

Fortunately, for most state-of-the-art image generation tasks, the necessary data augmentation is
often limited to a random horizontal flip for peak performance. This specific case can be elegantly
managed without complex modification to the SDOT framework: we can simply redefine the dataset
as the union of two subsets: the original images and their horizontally flipped counterparts.

6According to our tests, 10 epochs of noise for ImageNet training in latent space (Sec. 5.3 and 5.2) will take
terabytes of disk space. Besides disk space, IO will be a huge problem.

7
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Remark 3 (Class-conditioned generation). For class-conditioned tasks, such as those discussed in
Sections 5.2 and 5.3, we assume the data follows a class-specific distribution, denoted p1,c, for the
c-th class. The procedure involves computing the SDOT map between the base noise distribution p0
and each class-specific data distribution p1,c. Subsequently, after the noise is generated, the method
proceeds to create (noise, data) pairs and performs the requisite rebalance operation independently
for each class.

4 ADVANTAGE OF ALIGNFLOW

4.1 BYPASS CURSE OF DIMENSIONALITY

The curse of dimensionality (Thm. 1 ) originates from the difficulty of empirically estimating the
true, unknown data distribution. The AlignFlow framework, however, effectively bypasses this
challenge by focusing solely on the SDOT plan between p1 (the known, finite empirical dataset
itself) and p0. Since p1 is fully defined by the dataset and p0 is easily sampled, the SDOT plan
can, theoretically, be solved with zero estimation error. We emphasize that this approach makes no
assumption regarding the quality of the SDOT plan (between p1 and p0) as an approximation of the
classical OT plan (between p̃1 and p0).

4.2 DETERMINISTIC ALIGNMENT

The Semi-Discrete Optimal Transport (SDOT) map is theoretically fully deterministic: a given sam-
ple from the noise distribution is consistently mapped to a fixed data point.

Intuitively, this determinism confers a significant advantage in terms of convergence speed: To de-
termine the target vector field vt at some t and xt, the standard approach using the random coupling
(as in Algorithm 1) requires iterating across the entire dataset:

u(xt, t; θ) = Ex1∼p1
TargetVectorField(x0, x1)p0(x0), x0 = x1 − (x1 − xt)/t (8)

However, the fixed coupling in AlignFlow avoids this estimation process, and the target vector field
for the neural network to learn is provided by

u(xt, t; θ) = TargetVectorField(x0, x1)p0(x0), x0 = x1 − (x1 − xt)/t, x1 = φ(xt) (9)

This crucial difference demonstrates that fixed coupling significantly simplifies the estimation of
the target vector field, thereby leading to the accelerated convergence observed empirically with
AlignFlow.

4.3 LOW COMPUTATIONAL COST

AlignFlow directly computes the SDOT map in stage 1. Compared to other pioneers using indirect
approaches that estimate the OT plan by samples (e.g., Reflow operation in Liu et al. (2022), ICNN
in Kornilov et al. (2024), and Sinkhorn iteration in Tong et al. (2023)), the computation of the SDOT
map in Stage 1 is more accurate and efficient. Empirically, stage 1 takes negligible cost (< 1% extra
time). More details are in Sec. A.

Upon completion of Stage 1, SDOT map is fully computed. Consequently, the only additional
overhead in Stage 2 stems from the generation of the training noise-data pairs (Lines 7 and 9 in
Algorithm 3). This process is highly efficient and executes rapidly on modern GPUs, incurring an
almost negligible cost (typically <0.1% of the total training time).

5 EXPERIMENTS

5.1 CIFAR10 UNCONDITIONAL GENERATION ON UNET

Following the methodology of (Tong et al., 2023, Section 5.3), we trained a U-Net model uncon-
ditionally on the CIFAR10 dataset. In this setup, the Flow Generative Model (FGM) was trained
directly in the pixel space. The comparative training curve is displayed in Figure 2(a), and the
FID-50k scores for various ODE integrators are detailed in Table 2. Compared to the coupling

8
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(a) CIFAR 10 on Unet, gener-
ated by adaptive integrator DO-
PRI5 (Sec. 5.1)
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(c) SiT on ImageNet256 with
Meanflow, generated by 1-step for-
ward Euler.

Figure 2: Training curves for AlignFlow on different tasks. Each figure illustrates the FID-50k score
against the number of training steps. The results demonstrate that AlignFlow provides a consistent
and simultaneous improvement over all baseline algorithms shown, enhancing both final perfor-
mance and training convergence speed.

Euler (100 steps) Euler (1000 steps) DOPRI5
Minibatch OT (Tong et al., 2023) 4.80 3.92 3.82

AlignFlow (ours) 4.72 3.79 3.71

Table 2: Comparing FID-50k score for Unet trained on CIFAR10 between minibatch OT and Align-
Flow with different ODE integrators. The reported results are the average of 5 independent runs.
AlignFlow outperforms minibatch OT under different ODE integrators.

estimated via the standard minibatch Optimal Transport (OT) algorithm, our AlignFlow approach
demonstrates faster convergence and achieves better FID scores across all tested ODE integrators.
All experiments utilized the official code provided by Tong et al. (2023).

5.2 IMAGENET256 ON DIT WITH SHORTCUT MODEL

AlignFlow can be easily combined with modern SOTA models and scales to large datasets. We train
it with DiT as NN on the class-conditioned ImageNet with 256 × 256 resolution (ImageNet256).
The FGM operates in the latent space with shape 28 × 28 × 4 generated by a pretrained VAE. All
model hyperparameters were adopted directly from (Frans et al., 2025, Table 1 and 3) without any
modification or tuning. The comparison of the training curve for the shortcut model with and without
AlignFlow is presented in Fig. 2(b). The improvement of more models by AlignFlow is shown in
Tab. 3.

Algorithm AlignFlow? NFE=4 Difference NFE=1 Difference

Flow Matching ✓ 93.16 ↓ 32.46 276.18 ↓ 28.86
✗ 125.62 305.04

Consistency Training ✓ 103.14 ↓ 8.70 64.33 ↓ 12.04
✗ 111.84 76.37

Live Reflow (Frans
et al., 2025)

✓ 60.23 ↓ 34.52 47.06 ↓ 12.81
✗ 94.75 59.87

Shortcut Models
(Frans et al., 2025)

✓ 30.31 ↓ 2.80 43.92 ↓ 2.73
✗ 33.11 46.65

Table 3: Evaluation of DiT-B/2 on ImageNet 256 using FID-50k demonstrates that AlignFlow sig-
nificantly enhances performance across all tested NFE configurations.

9
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Backbone # params w/ AlignFlow w/o AlignFlow Difference
SiT-B/4 131M 13.75 15.53 ↓ 1.78
SiT-B/2 131M 5.60 6.17 ↓ 0.57
SiT-L/2 459M 3.51 3.84 ↓ 0.33

SiT-XL/2 676M 3.23 3.43 ↓ 0.20

Table 4: FID-50k on ImageNet256 by Meanflow (NFE=1). AlignFlow improves MeanFlow in all
model sizes.

5.3 IMAGENET256 ON SIT WITH MEANFLOW

AlignFlow further improves the one-step generation model MeanFlow (Geng et al., 2025). Mean-
Flow uses SiT as NN and is trained on class-conditioned ImageNet256. The FGM is trained in the
latent space with shape 28 × 28 × 4 generated by a pretrained VAE. The code is a non-official Py-
Torch implementation (Zhu, 2025), since it has proven to be able to reproduce the reported results
on GPU. All the hyperparameters are identical to the official setting in Sec. A in Geng et al. (2025)
without further tuning. The training curve in Fig. 2(c) and the FID score is in Tab. 4. AlignFlow
improves both performance and convergence speed in all cases, showing that AlignFlow scales to
large models. Image samples are shown in Fig. 4 in the appendix.

6 FUTURE WORK

Many modern tasks involve datasets with complex label structures, such as text-to-image generation
where each data point is a tuple consisting of an image and text. Since text prompts are rarely
identical across a dataset, standard label-based techniques are insufficient.

Here we can provide an idea of how AlignFlow may be used to address this task: suppose the data
is given by tuples (x, y), where x is the image (let’s take the image modality as an example) and y
is the text, and the task is to train AlignFlow that generates new x̃ given some new ỹ. We can cluster
the text y (e.g., via an LLM or extract the text embedding of each text y and apply a traditional
clustering method) and assign a label z = clustering(y) to each y, making the input data (x, y, z).
For example, y1 =“a dog is swimming” and y2 =“a dog is running” could be clustered into the same
cluster. Then, for each cluster, we compute the SDOT map φ|z to map noise to images x. Training
the flow-based generative model with v(x|y) can be guided by the corresponding SDOT map φ|z ,
where z is the class label for y.

10
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A EFFICIENT SDOT ALGORITHM FOR LARGE DATASETS

A.1 INDICATOR FOR PERFORMANCE OF ALGO. 2

Before diving into details, let’s define Maximum Relative Error (MRE) and L1 (Liu et al., 2021),
which help to judge the quality of the dual weight:

MRE(g) = max
i∈I

|pi − bi|
bi

, L1(g) =
∑
i∈I

|pi − bi|, pi :=

∫
Li(g) dp0 (10)

In Algo. 2, they can be estimated efficiently by M̃RE = ∥∇Eema∥∞ and L̃1 = ∥∇Eema∥1.

Mathematically, MRE and L1 are simply estimating ∥∇E∥∞ and ∥∇E∥1. However, the reason why
MRE is important is because it measures the unbalance between each target. MRE = 0 means the
SDOT is computed perfectly, both because it perfectly minimizes the objective function Eq. (4) and
also because each target is mapped to with equal probability. See also Sec. F.

A.2 ENTROPIC REGULARIZATION FOR SDOT

Discrete OT problems are known to be non-smooth and people add regularization terms to smoothen
the landscape. For SDOT problems, similar techniques can also be applied. Instead of solving the
problem Eq. (4), SDOT with entropic regularization is solving (Altschuler et al., 2022)

min
γ∈Γ(p0,p1)

∫
X×X

c(x0, x1)dγ(x0, x1) + ϵKL(γ||p0 ⊗ p1) (11)

Although introducing the extra term leads to bias, it significantly improves smoothness.

A.3 HYPERPARAMETERS TUNING FOR COMPUTATION OF SDOT

Algo. 2 has mainly three hyperparameters to be tuned: entropic regularization strength ϵ, EMA
parameter β, and learning rate lr in Adam. During the iteration in Algo. 2, L1 will be continuously
decaying if the hyperparameters are correctly tuned.

• Entropic regularization strength ϵ balances the bias and difficulties of the optimization prob-
lem. Large ϵ will introduce bias, while 0 or a small ϵ leads to harder optimization.

• ϵ should be fixed during the optimization procedure. When optimizing the problem, con-
sider increasing the batch size and/or decreasing the learning rate when L1 plateaus.

• The optimization stops when MRE meets your requirement. We recommend ensuring it is
below 0.2 for good performance in the downstream task of FGM.

• Usually, the learning rate for Adam should be relatively large. Unlike in modern machine
learning problems that 0.001 learning rate is recommended, in the computation of SDOT
map Algo. 2, 10 is a good starting point for tuning the learning rate.

• For large datasets, please use a larger batch size and/or increase the EMA parameter β (e.g.,
change 0.99 to 0.999)

A.4 HYPERPARAMETERS AND COMPUTATIONAL COST

For CIFAR 10, we use the training set for training (50000 images with shape 32× 32× 3).

• Normalize the whole dataset with mean = (0.5, 0.5, 0.5) and std = (0.5, 0.5, 0.5).
• Concatenate the dataset with the augmented (horizontally flipped) dataset.
• Compute the SDOT map with Algo. 2 and hyperparameters in Table 5

For ImageNet, we use the training set with 1281167 images separated into 1000 classes. In both
shortcut model in Sec. 5.2 and Meanflow in Sec. 5.3, the SDOT map was done in the latent space
with each latent representation 28 × 28 × 4. Each image was augmented by horizontal flipping,
making each class have around 2600 images in total after augmentation.
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# step learning rate batch size EMA parameter β entropic reg ϵ MRE L1
0-1000 10 1024 0.99 1 3.4 0.29

1000-6000 0.1 4096 0.999 1 0.27 0.045
6000-11000 0.1 16384 0.999 0.01 0.11 0.019

Table 5: CIFAR 10 (unconditional) SDOT hyperparameters. It costs 8 min 30 s on L40S.

# step learning rate batch size EMA parameter β entropic reg ϵ MRE L1
3000 10 4096 0.99 0.01 ∼ 0.08 ∼ 0.016

Table 6: ImageNet256 (class conditioned, latent space) SDOT hyperparameters. It costs <10 s on
L40S for each class.

Remark 4. Although ImageNet is larger than CIFAR, the SDOT map computation is cheaper for
ImageNet then CIFAR due to the following reasons:

• ImageNet experiments perform SDOT in the latent space, which has similar dimension to
CIFAR in pixel space.

• ImageNet is class-conditioned, makes each class has only ∼ 2600 images. Since OT prob-
lem scales quadratically w.r.t. number of targets , although the ImageNet dataset is larger,
it becomes 1000 easier SDOT problems.

• Evaluating the SDOT map φ in Eq. (5) requires computing the minimum across the entire
dataset, incurring a computational cost of O(|I|) with a small constant factor. While this
may initially appear computationally expensive, modern machine learning models are typ-
ically over-parametrized, meaning the number of parameters vastly exceeds the number of
data points. Consequently, the computational cost is dominated by the forward pass and
backward propagation rather than the SDOT map evaluation. This analysis explains why
the additional overhead observed in our experiments is negligible, regardless of dataset
size.

B MORE DETAILS FOR FLOW-BASED GENERATIVE MODELS

B.1 MORE EXAMPLES FOR FGM FRAMEWORK IN ALGO. 1

Shortcut model In this model, an auxiliary input d for the neural network, i.e., u =
u(x, t, d; θ) and dj is i.i.d. sampled from D(·|tj). Given hyperparameter κ, choose
TargetVectorField(xj

0, x
j
1) = xj

1 − xj
0 for j = 1, ..., κ, and TargetVectorField(xj

0, x
j
1) =

StopGrad(sjt + sjt+d) for j = κ + 1, ..., B, where sjt := u(xj
t , t

j , dj), xj
t+d := xj

t + std
j ,

sjt+d := u(xj
tj+dj , t

j + dj , dj). Together with Loss
({

v̂j , vj
}B

j=1

)
:= 1

B

∑
j

∥∥v̂j − vj
∥∥2
2
, Algo.

1 recovers the shortcut model in Frans et al. (2025).

Meanflow In this model, an extra r input for the neural network, i.e., u = u(x, t, r; θ). By choos-
ing TargetVectorField(x0, x1) = StopGrad(vt− (t− r)vt∂xu+∂tu) and Loss

({
v̂i, vi

}B

i=1

)
:=

1
B

∑
i

∥∥v̂i − vi
∥∥p
p
, Algo. 1 recovers Meanflow in Geng et al. (2025).

B.2 SAMPLING/INFERENCE PROCESS FOR FGM

To better see the benefits of the specially-designed target vector field, let’s see the inference process
for FGM in Algo. 4. The inference process is a process integrating the ODE ∂txt = u(t, xt; θ) with
initial condition x0 sampled from p0, and x1 is a new sample. Most inference processes for FGM are
the same, except the ODE integrator may be different. However, the difficulty for such integration
varies by the learned u(t, x; θ): intuitively, let’s imagine two trajectories of xt, one is complicated,
while the other is a straight line. Then the straight line can be easily computed by one-step forward
Euler x1 = x0 + u(0, x0; θ), while the complicated one requires a complicated ODE integrator.
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This means the straightness of the integrated trajectory is the key: the straighter the path, the easier
integration and thus, less NFE of NN (Liu et al., 2022). Algorithm trained by fancy target vector
field will benefit from the extra straightness, e.g., Meanflow is able to generate high-quality samples
with NFE=1, while vanilla flow matching requires > 100 NFE.

Algorithm 4: FGM / AlignFlow (Sampling)
Input: Noise distribution p0, neural network u = u(x, t; θ), ODEIntegrator
Output: A new sample from the data distribution

1 Sample {x(0)} ∼ p0 ▷ sample noise
2 v(t) := u(x(t), t; θ)
3 x(1) = ODEIntegrator(v(t))
4 Return: a new sample x(1)

C SYNTHETIC EXPERIMENT: CHECKERBOARD

In this section, we visualize different learned trajectories by training the FGM on a synthetic 2-
dimensional data distribution. Following (Lipman et al., 2022, Fig. 4), we set the data distribution
p̃1 as the checkerboard in [−2, 2] × [−2, 2]. p0 is chosen as the widely used normal distribution.
However, different from their setting, which assumes accessibility to an infinite amount of training
data 7, we fix the training set at the beginning instead. Although our setting leads to less smoothness
of the learned distribution than the infinite data setting, it simulates real ML tasks where data is
limited.

Fig. 3 plots the density changes from normal distribution to checkerboard when time evolves from
0 to 1, showing that AlignFlow gives a straighter path compared to minibatch OT and vanilla flow
matching in Fig. 3. Identical hyperparameters are used in all cases.

For AlignFlow, we compare the density evolution for FGM trained with different couplings between
noise and data.

(a) AlignFlow (Alog. 3)

(b) Minibatch OT (Tong et al., 2023)

(c) Vanilla flow matching (Lipman et al., 2022)

Figure 3: Comparison of the trajectory of FGM between different methods. AlignFlow has a
straighter trajectory compared to vanilla flow matching and has a clearer boundary compared to
Minibatch OT (e.g., at t = 0.22).

7In the checkerboard experiment in Lipman et al. (2022); Tong et al. (2023), new training data is drawn in
each minibatch.
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D CAPABILITY OF GENERALIZATION

Experts may notice that Eq. (5) is a map from noise to data, which is already X → X . Since FGM
also gives a vector field whose integration is X → X , why do we still need to train the FGM model
in stage 2? The answer is, the SDOT map φ in Eq. (5) only remembers the dataset and cannot
generalize, i.e., every noise is mapped to a data point in the dataset, and no new data is generated.
As a result, a powerful NN is required to be trained in Stage 2 in Algo. 3 on top of the SDOT map.

Another interesting thing is: The SDOT map is a fixed map from noise to the dataset. Will this noise-
data alignment hurt the capability of generalization compared to random noise-data alignment? The
answer is no. Here are some explanations from different aspects:

• In traditional FGM (1), the (noise, data) pair is also generated from the p0× p1, rather than
p0 × p̃1, and the capability of generalization is widely proven. Algo. 3 only changes the
coupling, but not the marginal distribution.

• Experimentally, we are generating the images that do not exist in the original dataset (Fig.
4)

• Theoretical guarantee that any coupling will lead to the correct push forward vector field in
Eq. (2) in by Sec. 3.2.

• We also provide an intuition: All FGMs try to learn the map from noise to a discrete dataset,
since there is no access to the real data distribution p̃1. However, the model still generalizes.
This is because the generalization ability comes from the regularity of the neural network
that approximates the vector field, but does not come from the randomness of the matching
between noise and data.

E MORE ABOUT CURSE OF DIMENSIONALITY

Modern generative model tasks are usually high-dimensional with limited data. For example,

• On unconditional CIFAR dataset in pixel space (Sec. 5.1), the dimension is 32× 32× 3 =
3072, but we only have 100k training data in total (50k images, 100k after horizontal flip
augmentation)

• In ImageNet256 task (Sec. 5.2 and 5.3), we have only approximately 2600 images (1300
images in each class, 2600 after horizontal flip) for each class, and the latent space we
perform FGM algorithm has dimension 28× 28× 4 = 3136.

Don’t forget that we require the number of samples to be of order exponential dimension in Thm. 1,
which is definitely not enough based in the cases above. And this phenomenon is more severe in the
class-conditional generation setting, since we require the number of samples in each class to be of
order exponential dimension.

To judge if an algorithm will suffer from the curse of dimensionality, we can use the following
criterion: if a method uses samples to estimate an OT plan between p̃1 and p0, then it must suffer
from the curse of dimensionality. The reason is that estimating the OT plan by samples needs an
important assumption: the OT plan between p1 and p0 approximates the OT plan between p̃0 and
p0, which is generally not true as discussed above. According to this criterion, Tong et al. (2023);
Kornilov et al. (2024) will suffer from the curse of dimensionality. Although rectified flow (Liu et al.,
2022) does not estimate the OT plan directly, it claims the algorithm is also trying to approximate
the OT plan between p̃1 and p0.

F REBALANCE: HANDLING NON-PERFECT SDOT MAP

Instead of sampling i.i.d. data, Algo. 3 only samples noise and feeds the NN with data gener-
ated by the SDOT map (line 7). This may lead to the problem of the SDOT map not being com-
puted perfectly, and the data feeding the NN is biased. Roughly speaking, when ∇E is not 0, then
φ(x0), x0

i.i.d.∼ p0 is biased from p1 (See more discussions in Sec. A, especially MRE defined in Eq.
(10)).
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If you find running Algo. 2 until MRE converges to 0 is too hard and expensive, especially for large
datasets with a huge number of data without class condition, rebalance is here to help. A non-zero
MRE leads to biased sampled data, meaning that the model is training with some of the data seen
more often, while others are seen less often. To address this difficulty, we introduce the rebalance
operation in Line 9, defined by

rebalance
(
{mj}Mj=1

)
:= arg max

{m̃j}

∑
j

1(m̃j = mj) :

∣∣∣∣∣∣max
i∈I

M∑
j=1

1i(m̃j)−min
i∈I

M∑
j=1

1i(m̃j)

∣∣∣∣∣∣ ≤ 1


(12)

Intuitively, rebalance calculates the minimum modification of the targets s.t. the frequency of each
data point is the same. Such an operation forces the model to see the correct unbiased dataset even
SDOT map is not fully converged, at the cost of introducing some randomness in the coupling.

In our research, we didn’t find a difference in the CIFAR10 experiment in Sec. 5.1 between with and
without the rebalance operation, since Algo. 2 learns SDOT map pretty well (more than 85% of the
data are unchanged in the rebalance operation). However, we use it throughout all our experiments
to ensure that the data fed into the FGM model is the same as random coupling for a fair comparison.
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G IMAGE SAMPLES GENERATED BY ALIGNFLOW

Figure 4: Images generated by MeanFlow+AlignFlow trained on ImageNet256 (FID=3.23, NFE=1).
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