
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ALIGNFLOW: IMPROVING FLOW-BASED GENERATIVE
MODELS WITH SEMI-DISCRETE OPTIMAL TRANS-
PORT

Anonymous authors
Paper under double-blind review

ABSTRACT

Flow-based Generative Models (FGMs) effectively transform noise into a data
distribution, and coupling the noise and data in the training of FGM by Opti-
mal Transport (OT) improves the straightness of the flow paths. However, ex-
isting OT-based couplings are difficult to combine with modern models and/or
to scale to large datasets due to the curse of dimensionality in the sample com-
plexity of (batch) OT. This paper introduces AlignFlow, a new approach using
Semi-Discrete Optimal Transport (SDOT) to enhance FGM training by establish-
ing explicit alignment between noise and data pairs. SDOT computes a transport
map by partitioning the noise space into Laguerre cells, each mapped to a corre-
sponding data point. During the training of FGM, i.i.d.-sampled noise is matched
with corresponding data by the SDOT map. AlignFlow bypasses the curse of di-
mensionality and scales effectively to large datasets and models. Our experiments
demonstrate that AlignFlow improves a wide range of state-of-the-art FGM algo-
rithms and can be integrated as a plug-and-play solution with negligible additional
cost.

1 INTRODUCTION

The generative model is a machine learning task that generates new data that resembles the given
dataset. This task is important and has seen great progress over the past decades, e.g., ChatGPT
(Achiam et al., 2023) for natural language and Stable Diffusion (Rombach et al., 2022) for image
generation. In addition to autoregressive models that dominate language modeling, other backbone
algorithms for generative modeling include GANs (Goodfellow et al., 2020), normalizing flows
(Rezende & Mohamed, 2015), regression models (e.g., GPT (Radford et al., 2018), LLaMA (Tou-
vron et al., 2023)), diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021),
and Flow-based Generative Models (FGMs) (Liu et al., 2022; Lipman et al., 2022; Albergo et al.,
2023).

This work will focus on improving a wide range of FGMs, including flow matching (Lipman et al.,
2022), shortcut model (Frans et al., 2025), MeanFlow (Geng et al., 2025), Live Reflow Frans et al.
(2025), but excluding continuous normalizing flows (CNF) (Chen et al., 2018; Albergo & Vanden-
Eijnden, 2022) (see Sec. 3.1 for more specifications). FGMs focus on learning a time-dependent
vector field, approximated by a neural network whose integration is a trajectory that transits a ran-
domly sampled noise to newly generated data.

Despite their ability to generate high-quality samples, a major drawback of FGMs is the high com-
putational cost associated with sampling. The inference process involves integrating an ODE, where
each integration step requires a forward pass through the neural network. As a result, generating
a single sample requires multiple neural network evaluations. This cost is measured by the Num-
ber of Function Evaluations (NFE), which refers to the number of forward passes. For vanilla flow
matching, the NFE is typically greater than 100.

FGMs’ training procedure generally consists of the following three steps: (1) randomly sample noise
and data points; (2) compute the target vector field that the neural network aims to approximate; and
(3) update the model parameters via an optimization step. For further details, refer to Algorithms 1
and 4. In this work, we focus on improving the first step. While many state-of-the-art methods have

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

proposed sophisticated designs for the target vector field, they often rely on independently sampling
noise and data pairs. However, this independent pairing has been shown to inherently induce curved
trajectories (Liu et al., 2022; Hertrich et al., 2025), leading to high NFE. In other words, the random
matching of data and noise inherently encourages non-straight generative paths.

To address the limitations of random noise–data matching, we propose AlignFlow, a method that
aligns noise and data using semi-discrete optimal transport (SDOT) to guide the target vector fields
learned by the neural network. SDOT computes the optimal transport (OT) plan from a continuous
noise distribution to a discrete dataset. This results in a fixed mapping that defines the shortest and
most direct connection from any sampled noise point to a corresponding data point. Our training
procedure adopts a two-stage approach: the first stage computes the SDOT map, and the second
stage trains the FGM using any target vector field of choice. However, instead of randomly pairing
i.i.d. noise with uniformly sampled data, we match each noise sample to a data point as prescribed
by the SDOT map. A high-level overview is provided in Algorithm 3. For implementation details
such as class-conditioned generation and data augmentation, please refer to Section 3.5. We outline
the key benefits below, with further discussion in Section 4.

• AlignFlow is a plug-and-play method, making it easy to integrate into existing FGMs. It
can be readily combined with state-of-the-art training techniques to further enhance perfor-
mance.

• AlignFlow bypasses the curse of dimensionality (Sec. 4.1), thus scales well to large-scale
models and datasets in high-dimensional spaces.

• The SDOT map defines a deterministic and optimal transport path without randomness; that
is, each noise sample is consistently matched to a fixed data point, independent of batch
size. This property makes This batch-invariance ensures stable convergence (see Sec. 4.2)
even when batch sizes are severely constrained, addressing a critical bottleneck for training
large-scale models where memory limitations enforce small-batch regimes.

• The extra cost for computing the SDOT map is low (less than 1% extra cost) (Sec. 4.3).

AlignFlow improves FGMs and bypasses the curse of dimensionality problem in OT. Consider the
task of estimating an OT plan between the unknown data distribution p̃1 and a known noise distribu-
tion p0. This task is challenging not merely due to computational limitations, but rather stems from
the inherent statistical limitations imposed by the finite size of the dataset. (For further discussion,
see Sec. 4.1.)

Theorem 1 (Sample complexity in OT (Informal version for Thm. 1 in Fournier & Guillin (2015))).
In a d-dimensional space, the error in estimating the p-Wasserstein distance Wp(p̃1, p0) between a
known distribution p0 and an unknown distribution p̃1 with only access to |I| samples is of order
∼ |I|−p/d.

Thm. 1 shows that the number of samples required grows exponentially w.r.t. dimensionality, which
is known as curse of dimensionality. Importantly, this limitation is fundamental: the only way to
reduce this error is to increase the dataset size, which is often infeasible in practice. Therefore, any
approach that attempts to estimate an OT plan between the population distribution p̃1 and p0 cannot
scale effectively to modern, high-dimensional generative modeling tasks (see Sec. E).

Bypassing the Curse of Dimensionality. OT is widely regarded as highly relevant to generative
modeling, as it characterizes transformations between distributions via straight and efficient trans-
port paths, a desirable property in FGMs. Unlike prior (batch) OT-based approaches, AlignFlow
bypasses the curse of dimensionality by computing a Semi-Discrete OT (SDOT) plan between the
empirical dataset (a discrete distribution) and the noise distribution (a known continuous distribu-
tion). Since both distributions are explicitly known, this formulation allows for an accurate and
tractable transport plan, even in high-dimensional settings.

2 MORE RELATED WORKS

A central factor in reducing the NFE during sampling in FGMs is the straightness of the generative
path. Since the inference process involves integrating a learned vector field, straighter trajectories

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

are easier to integrate accurately, thereby requiring fewer NFEs. Numerous methods have been
proposed to encourage straighter paths, and we categorize these efforts into three main approaches:

Target vector field: This class of methods aims to straighten generative paths by guiding the neural
network to learn a smoother or more linear target vector field. Approaches such as consistency
training and the Shortcut model (Frans et al., 2025) adopt techniques from diffusion models (Yang
et al., 2024), enforcing penalties on inconsistencies between the forward and backward segments
of the path. MeanFlow (Geng et al., 2025) introduces a stronger regularization term based on the
Jacobian-vector product. These advanced loss functions have proven effective, reducing the NFE to
as low as 4 and even 1 for class-conditioned generation on the ImageNet dataset.

Distillation: Recent works aim to reduce NFE by distilling a trained FGM into a more efficient
model (Boffi et al., 2025; Dao et al., 2025). Distillation techniques have also shown success in
diffusion models (Salimans & Ho, 2022; Song et al., 2023; Kim et al., 2023). However, distillation
involves an additional training stage built upon a pre-trained model, and thus can be viewed as
complementary to our approach.

Coupling: Traditional FGMs sample noise and data independently (Algo. 1). Many pioneers im-
prove FGMs by better coupling, i.e., choosing the noise and data from a carefully designed joint
distribution:

• Kornilov et al. (2024) trains an Input Convex Neural Network (ICNN) (Amos et al., 2017)
to serve as the Brenier potential (Peyré et al., 2019, Thm. 2.1), thereby providing the OT
map between the real data distribution and the noise distribution. In this framework, the
ICNN and the FGM are trained jointly. However, the inclusion of the ICNN introduces
significant computational overhead, making it challenging to scale to large models and
high-dimensional tasks.

• Tong et al. (2023) employs Sinkhorn iterations (Peyré et al., 2019, Sec. 4.2) to compute
the OT plan between i.i.d. sampled noise and data at each training step. However, this ap-
proach is sensitive to batch size: large batches incur high computational cost, as Sinkhorn is
an iterative algorithm with per-minibatch complexity of O(n2); meanwhile, small batches
limit the quality of the estimated coupling. Empirical results suggest that this method strug-
gles to generalize to class-conditioned generation1. Calvo-Ordonez et al. (2025) introduce
a weight from Gibbs kernel in the FGM training objective, which generalizes the idea of
Tong et al. (2023). However, its dependence on minibatch makes it have similar weak-
nesses.

• Zhang et al. (2025) provides an approach that scales the Sinkhorn algorithm to large-scale
datasets, computing OT couplings between sampled noise and data points in large batches.
Moreover, PCA can be used to further speed up Sinkhorn computation, which Zhang et al.
(2025) reports does not sacrifice generation quality. Davtyan et al. (2025) improves upon
mini-batch OT by computing the map between a pre-sampled noise set and the whole
dataset. Nevertheless, it is limited by its ability to handle only a finite number of noise
samples.

• Liu et al. (2022) proposes to disentangle crossing trajectories in the learned vector field
to promote straighter generative paths. This approach has recently been scaled to larger
models by Esser et al. (2024), although the scaling process is non-trivial. While the method
does not directly solve an OT problem, its underlying formulation is closely related to OT,
as discussed in Theorem 3.5 of their paper.

3 METHODOLOGY

Mathematically, the generative modeling task can be formulated as follows: given a dataset {xi}i∈I ,
assumed to consist of i.i.d. samples from an unknown probability distribution p̃1 on a space X ,2 the
goal is to generate new samples that follow the same distribution p̃1 using only the observed dataset
{xi}i∈I .

1https://github.com/atong01/conditional-flow-matching/issues/117
2In many settings, X is taken to be a latent space, and the data is obtained via encoding through a VAE.

3

https://github.com/atong01/conditional-flow-matching/issues/117

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm No Extra
tuning

Scale to
large

models

No Curse
of Dim OT based

Tong et al. (2023) ✓ ✗ ✗ ✓
Coupling Liu et al. (2022) ✓ ✓ - ✗

Kornilov et al. (2024) ✗ ✗ ✗ ✓
Noise-data
alignment AlignFlow (ours) ✓ ✓ ✓ ✓

Table 1: A comparison between coupling methods and noise-data alignment.

Notation Throughout this paper, we will use p0 to denote the noise distribution (some distribution
that is easy to sample from, e.g. normal distribution) and p1 is the Dirac distribution corresponding
to the dataset, i.e., p1 =

∑
i∈I biδxi

where the weights are uniform in our setting, i.e., bi ≡ 1
|I| .

i ∈ I is the index for the dataset, while j ∈ J is the index for the samples in the minibatch. p̃1 is
the unknown real data distribution. In all cases, we will use superscripts for the dataset index and
subscripts for time.

3.1 FLOW-BASED GENERATIVE MODELS (FGMS)

We first summarize a general FGM framework in Algo. 1. In each iteration of the training pro-
cess, we first sample a set of noise x0, data x1 and time t. Then we compute xt as the interpo-
lation between x0 and x1. Finally, we let a NN u(xt, t; θ) to approximate a target vector field
TargetVectorField and update the NN parameters.

Algorithm 1: Flow-based Generative Model (Training)
Input: Source distribution p0, dataset {xi

1}i∈I , neural network u(x, t; θ)
Output: Learned velocity field u(·, ·; θ)

1 Hyperparameters: batch size B, number of steps K
▷ Training loop

2 for k = 1 . . .K do
3 Sample i.i.d. {xj

0}Bj=1 ∼ p0 ▷ sample noise

4 Sample minibatch {xmj

1 }Bj=1 from dataset {xi
1}i∈I ▷ sample data

5 tj ∼ U(0, 1) for j = 1, . . . , B ▷ sample time
6 for j = 1 . . . B do
7 xj

t ← (1− tj)xj
0 + tjx

mj

1

8 vj = TargetVectorField(xj
0, x

mj

1)

9 v̂j = u(xj
t , t

j ; θ)

10 L(θ) = Loss
({

v̂j , vj
}B

j=1

)
▷ objective function

11 Update θ using∇θL ▷ optimization

(Vanilla) Flow Matching Lipman et al. (2022) chooses TargetVectorField(x0, x1) = x1 − x0

and Loss
({

v̂j , vj
}B

j=1

)
= 1

B

∑
j

∥∥v̂j − vj
∥∥2
2
. The Shortcut Model (Frans et al., 2025), MeanFlow

(Geng et al., 2025), consistency training (Frans et al., 2025), Live Reflow Frans et al. (2025) et al.
all fit into the above FGM framework.

In line 3 and 4 of Algo. 1, noise and data points are sampled independently, leading to curved
trajectories intrinsically Liu et al. (2022); Hertrich et al. (2025). To address this limitation, we
sample noise-data pairs from the joint distribution computed by SDOT.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.2 COUPLING BETWEEN NOISE AND DATA

In fact, the loss function Algo. 1 optimizes estimates the following expectation 3:

L(θ) ≈ L(θ) = Et∼Unif[0,1],x0∼p0,x1∼p1
∥u(xt, t; θ)− TargetVectorField(x0, x1)∥pp (1)

This means x0 (sampled from p0) and x1 (sampled from p1) are independent in Algo. 1, i.e.,
(x0, x1) ∼ p0×p1. Recent works, such as (Pooladian et al., 2023; Liu et al., 2022; Tong et al., 2023),
are trying to find more powerful joint distributions, and sample (x0, x1) from any γ ∈ Γ(p0, p1):

Lγ(θ) = Et∼Unif[0,1],(x0,x1)∼γ∥u(xt, t; θ)− TargetVectorField(x0, x1)∥pp (2)

where Γ(p0, p1) is the set of all possible joint distribution of p0 and p1:

Γ :=

{
γ ∈ P(X × X) :

∫
γ(x0, x1) dx0 = p1(x1) ∀x1,

∫
γ(x0, x1) dx1 = p0(x0) ∀x0

}
(3)

Each element in Γ is referred to as a coupling between p0 and p1. As evident from the defini-
tion, Γ is a vast set. Although training with any valid coupling theoretically yields a correct vector
field, the straightness of the resulting trajectories and the efficiency of the training process can vary
significantly depending on the choice of coupling. This naturally raises the question: which cou-
pling should we choose? OT is widely believed to provide meaningful guidance in addressing this
question. In the next section, we will derive a specific coupling γ based on OT theory. 4

3.3 SEMI-DISCRETE OPTIMAL TRANSPORT

4 2 0 2 4
4

3

2

1

0

1

2

3

4

(a) Dataset and noise dis-
tribution

4 2 0 2 4
4

3

2

1

0

1

2

3

4

(b) Laguerre cells

Figure 1: Visualization of Laguerre cells in 2-dim.
The noise distribution is the normal distribution
(dark shadow in the left figure), and the dataset
is the points in the lower left corner. The whole
space is partitioned into cells using SDOT, and
each region is mapped to the data point with same
color by the SDOT map. The integral of the prob-
ability of the noise distribution in each Laguerre
cell equals the probability of the corresponding
data point.

The Optimal Transport (OT) problem seeks
to compute the optimal coupling between two
probability distributions by minimizing a given
cost function c : X × X → R, (see, e.g., Peyré
et al. (2019) for a comprehensive overview):

γ∗ := arg min
γ∈Γ(q1,q2)

(∫
X×X

c(y1, y2) dγ(y1, y2)
)
,

(4)
where we choose c(y1, y2) := ∥y1 − y2∥2
throughout the paper. 5

A discrete distribution is the opposite of a
continuous distribution (e.g., normal distribu-
tion), meaning that the random variable only
takes finite (or countable) values, e.g., the
dataset distribution p1 = 1

|I|
∑

i∈I δxi
. A

OT problem between a continuous distribu-
tion and a discrete distribution is called Semi-
Discrete Optimal Transport (SDOT) (Peyré
et al., 2019, Sec. 5), and this will become our
main tool for noise-data alignment.

Unlike general OT problems, the transport plan of SDOT problems can be represented by a |I|-dim
vector g = [gi]i∈I called dual weight, where |I| is the number of points in the discrete distribution
p1. Given the dual weight g, the SDOT plan is φ(·; g) : X → I

φ(x0; g) := argmin
i∈I

c(x0, x
i
1)− gi (5)

3We here choose the loss function to be Loss
({

v̂it, v
i
t

}B

i=1

)
:= 1

B

∑
i

∥∥v̂it − vit
∥∥p

p
for simplicity

4Formally, any joint distribution over two marginals is a coupling. However, in the context of FGMs,
we distinguish between two types: we refer to the joint distribution between noise p0 and the dataset p1 as
noise–data alignment, while we use coupling to refer specifically to the joint distribution between p0 and the
unknown data distribution p̃1.

5The minimum value is W 2
2 (q1, q2) := minγ∈Γ(q1,q2)

(∫
X×X ∥y1 − y2∥2dγ(y1, y2)

)
.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where g will be omited when no ambiguity.

In fact, X is partitioned into cells by the SDOT map in the sense that cell Li contains the points
transported to the i-th point in the dataset. Such a partition is called Laguerre cells Li (Fig. 1).

Li(g) := {x ∈ X : c(x, yi)− gi ≤ c(x, yj)− gj ,∀j} (6)

Now we need to discuss how to compute the dual weight g. SDOT, same as general OT problems in
Eq. (4), is a minimization problem. By analyzing its dual problem, the dual weight can be solved by
maximizing the following objective function utilizing the Laguerre cell (see e.g., Eq. 5.7 in Peyré
et al. (2019)):

E(g) :=
∑
i∈I

∫
Li(g)

(c(x, yj)− gj) dp0(x) + ⟨g,b⟩ (7)

whose gradient is given by ∇E(g)i = −
∫
Li(g) dp0 + bi, where bi is the probability for each point.

In our cases, bi ≡ 1
|I| .

To solve this maximization problem, we use Adam (Kingma & Ba, 2014) to maximize it. Although
such a solution for the SDOT problem is not new (e.g., Peyré et al. (2019)), we newly propose an
efficient EMA estimation for MRE and L1, which will be helpful when tuning the hyperparameters
ϵ, β, lr, and justify the performance of the output dual weight. For more discussion, see Sec.
A. We summarize the dual weight computation algorithm in Algo. 2, where line 6 corresponds to
entropically regularized SDOT and line 8 is the standard SDOT. Both operations run in linear time
in dataset size |I|.

Algorithm 2: Dual weight computation for SDOT map
Input: Source distribution p0, dataset {xi}i∈I and the corresponding probabilities b = [bi]i∈I , entropic

regularization strength ϵ, EMA parameter β, batch size B, cost function c
Output: Dual weight g = [gi]i∈I

1 Initialization: ∇Eema = 0, g = 0, gema = 0
2 for step = 1, 2 . . . do
3 Sample i.i.d. {xj

0}Bj=1 ∼ p0 ▷ sample noise
4 for j = 1, . . . , B do
5 if ϵ ̸= 0 then

6 hj = SoftMaxi∈I

(
− c(x

j
0,x

i
1)−gi
ϵ

)
▷ SDOT map with current g

7 else
8 φ(xj

0; g) = argmini∈I c(xj
0, x

i
1)− gi

9 hj = 1
φ(x

j
0;g)

10 ∇E(g) = 1
B

∑
j hj − b

11 ∇Eema = β∇Eema + (1− β)∇E(g) ▷ Smoothen by EMA
12 Update g using∇Eϵ(g) ▷ optimization
13 gema = βgema + (1− β)g
14 Return: dual weight gema

After the dual weight g is computed, the SDOT map X → I by Eq. (5).

3.4 MAIN ALGORITHM

Having established the necessary technical framework, we now proceed to the natural derivation
of the AlignFlow methodology. As noted in the introduction, computing the OT plan between the
unknown true data distribution p̃1 and the noise distribution p0 is infeasible because the OT sample
complexity is severely hampered by the curse of dimensionality (Thm. 1). This core difficulty arises
from the fact that we have only limited empirical samples available from p̃1, whose underlying form
remains unknown.

The critical question then becomes: How can we effectively bypass the sample complexity limita-
tions imposed by the curse of dimensionality?

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Idea for AlignFlow The critical insight behind AlignFlow is to circumvent the challenge posed
by the unknown true data distribution p̃1 by focusing on the known empirical distribution p1, which
is characterized by a Dirac distribution over the dataset samples. The OT plan between p1 and p0
retains the desirable properties of OT, including a straight path. Furthermore, since the empirical
distribution p1 is inherently discrete, the OT problem can be computed efficiently by Algo. 2.

This leads to the AlignFlow (Algo. 3), which uses the SDOT map to compute the noise-data align-
ment. Note that in the derivation of Algo. 3, we never use the unknown p̃1. This is a theoretical
benefit for AlignFlow: we do not require any assumption about the real data distribution p̃1. And
this is the key to bypassing the curse of dimensionality.

Algorithm 3: AlignFlow: noise-data alignment by SDOT (Training)
Input: Source distribution p0, dataset {xi

1}i∈I , neural network u(x, t; θ)
Output: Learned velocity field u(·, ·; θ)

1 Hyperparameters: batch size B, number of steps K
2 * Stage 1: compute SDOT map *
3 Run Algo. 2 to get dual weight g.

4 * Stage 2: Train flow-based generative model *
5 Let M = K ·B
6 Sample i.i.d. {xj

0}Mj=1 ∼ p0 ▷ sample noise

7 mj = φ(xj
0) for j = 1, . . . ,M ▷ match noise to data

8 tj ∼ U(0, 1) for j = 1, . . . ,M ▷ sample time

9 {mj}Mj=1 = Rebalance
(
{mj}Mj=1

)
▷ Only if needed. Sec. F

▷ Training loop
10 for k = 1 . . .K do
11 for l = 1 . . . B do
12 j = (k − 1) ·B + l

13 xj
t ← (1− tj)xj

0 + tjx
mj

1

14 vj = TargetVectorField(xj
0, x

mj

1)

15 v̂j = u(xj
t , t

j ; θ)

16 L(θ) = Loss
({

v̂j , vj
}k·B
j=(k−1)·B+1

)
▷ objective function

17 Update θ using∇θL ▷ optimization

3.5 ADDITIONAL TECHNIQUES

Remark 1 (Noise storage). In line 7 and 9 in Algo. 3, we need to sample a large amount of noise
ahead before we start training the FGM model, Simply saving them in memory, even on disks, will
be almost impossible. 6. Our solution is to only save the random seed generating the noise, i.e., each
noise-data pair is (seed, index).

Such an approach will require a map from seed to random matrices (supported by Jax) and loading
the whole ImageNet latent to memory for random fetch (automatically optimized by the PyTorch
dataloader). By such an approach, the (seed, index) pairs for 500 epochs of ImageNet training will
only cost ∼ 1GB disk space.

Remark 2 (Data augmentation). Data augmentation is a critical component for achieving optimal
performance in image-related tasks. However, incorporating complicated augmentation techniques,
such as random cropping or random rotation, directly into the SDOT map formulation can be chal-
lenging.

Fortunately, for most state-of-the-art image generation tasks, the necessary data augmentation is
often limited to a random horizontal flip for peak performance. This specific case can be elegantly
managed without complex modification to the SDOT framework: we can simply redefine the dataset
as the union of two subsets: the original images and their horizontally flipped counterparts.

6According to our tests, 10 epochs of noise for ImageNet training in latent space (Sec. 5.3 and 5.2) will take
terabytes of disk space. Besides disk space, IO will be a huge problem.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Remark 3 (Class-conditioned generation). For class-conditioned tasks, such as those discussed in
Sections 5.2 and 5.3, we assume the data follows a class-specific distribution, denoted p1,c, for the
c-th class. The procedure involves computing the SDOT map between the base noise distribution p0
and each class-specific data distribution p1,c. Subsequently, after the noise is generated, the method
proceeds to create (noise, data) pairs and performs the requisite rebalance operation independently
for each class.

4 ADVANTAGE OF ALIGNFLOW

4.1 BYPASS CURSE OF DIMENSIONALITY

The curse of dimensionality (Thm. 1) originates from the difficulty of empirically estimating the
true, unknown data distribution. The AlignFlow framework, however, effectively bypasses this
challenge by focusing solely on the SDOT plan between p1 (the known, finite empirical dataset
itself) and p0. Since p1 is fully defined by the dataset and p0 is easily sampled, the SDOT plan
can, theoretically, be solved with zero estimation error. We emphasize that this approach makes no
assumption regarding the quality of the SDOT plan (between p1 and p0) as an approximation of the
classical OT plan (between p̃1 and p0).

4.2 DETERMINISTIC ALIGNMENT

The Semi-Discrete Optimal Transport (SDOT) map is theoretically fully deterministic: a given sam-
ple from the noise distribution is consistently mapped to a fixed data point.

Intuitively, this determinism confers a significant advantage in terms of convergence speed: To de-
termine the target vector field vt at some t and xt, the standard approach using the random coupling
(as in Algorithm 1) requires iterating across the entire dataset:

u(xt, t; θ) = Ex1∼p1
TargetVectorField(x0, x1)p0(x0), x0 = x1 − (x1 − xt)/t (8)

However, the fixed coupling in AlignFlow avoids this estimation process, and the target vector field
for the neural network to learn is provided by

u(xt, t; θ) = TargetVectorField(x0, x1)p0(x0), x0 = x1 − (x1 − xt)/t, x1 = φ(xt) (9)

This crucial difference demonstrates that fixed coupling significantly simplifies the estimation of
the target vector field, thereby leading to the accelerated convergence observed empirically with
AlignFlow.

4.3 LOW COMPUTATIONAL COST

AlignFlow directly computes the SDOT map in stage 1. Compared to other pioneers using indirect
approaches that estimate the OT plan by samples (e.g., Reflow operation in Liu et al. (2022), ICNN
in Kornilov et al. (2024), and Sinkhorn iteration in Tong et al. (2023)), the computation of the SDOT
map in Stage 1 is more accurate and efficient. Empirically, stage 1 takes negligible cost (< 1% extra
time). More details are in Sec. A.

Upon completion of Stage 1, SDOT map is fully computed. Consequently, the only additional
overhead in Stage 2 stems from the generation of the training noise-data pairs (Lines 7 and 9 in
Algorithm 3). This process is highly efficient and executes rapidly on modern GPUs, incurring an
almost negligible cost (typically <0.1% of the total training time).

5 EXPERIMENTS

5.1 CIFAR10 UNCONDITIONAL GENERATION ON UNET

Following the methodology of (Tong et al., 2023, Section 5.3), we trained a U-Net model uncon-
ditionally on the CIFAR10 dataset. In this setup, the Flow Generative Model (FGM) was trained
directly in the pixel space. The comparative training curve is displayed in Figure 2(a), and the
FID-50k scores for various ODE integrators are detailed in Table 2. Compared to the coupling

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 1 2 3 4
Steps ×105

3.5

4

5

6

7

FI
D-

50
k

AlignFlow
Minibatch OT

(a) CIFAR 10 on Unet, gener-
ated by adaptive integrator DO-
PRI5 (Sec. 5.1)

0.5 1.0 1.5 2.0
Steps ×106

30

40

60

FI
D-

50
k

26.65 30.17

w/ AlignFlow
w/o AlignFlow
reported

(b) DiT-B/2 on ImageNet256 with
shortcut model, generated by 4-step
forward Euler.

40 80 160 240
Epoch

3

4

5

6

7

8

9

FI
D-

50
k

w/ AlignFlow
w/o AlignFlow

B/2
L/2
XL/2

(c) SiT on ImageNet256 with
Meanflow, generated by 1-step for-
ward Euler.

Figure 2: Training curves for AlignFlow on different tasks. Each figure illustrates the FID-50k score
against the number of training steps. The results demonstrate that AlignFlow provides a consistent
and simultaneous improvement over all baseline algorithms shown, enhancing both final perfor-
mance and training convergence speed.

Euler (100 steps) Euler (1000 steps) DOPRI5
Minibatch OT (Tong et al., 2023) 4.80 3.92 3.82

AlignFlow (ours) 4.72 3.79 3.71

Table 2: Comparing FID-50k score for Unet trained on CIFAR10 between minibatch OT and Align-
Flow with different ODE integrators. The reported results are the average of 5 independent runs.
AlignFlow outperforms minibatch OT under different ODE integrators.

estimated via the standard minibatch Optimal Transport (OT) algorithm, our AlignFlow approach
demonstrates faster convergence and achieves better FID scores across all tested ODE integrators.
All experiments utilized the official code provided by Tong et al. (2023).

5.2 IMAGENET256 ON DIT WITH SHORTCUT MODEL

AlignFlow can be easily combined with modern SOTA models and scales to large datasets. We train
it with DiT as NN on the class-conditioned ImageNet with 256 × 256 resolution (ImageNet256).
The FGM operates in the latent space with shape 28 × 28 × 4 generated by a pretrained VAE. All
model hyperparameters were adopted directly from (Frans et al., 2025, Table 1 and 3) without any
modification or tuning. The comparison of the training curve for the shortcut model with and without
AlignFlow is presented in Fig. 2(b). The improvement of more models by AlignFlow is shown in
Tab. 3.

Algorithm AlignFlow? NFE=4 Difference NFE=1 Difference

Flow Matching ✓ 93.16 ↓ 32.46 276.18 ↓ 28.86
✗ 125.62 305.04

Consistency Training ✓ 103.14 ↓ 8.70 64.33 ↓ 12.04
✗ 111.84 76.37

Live Reflow (Frans
et al., 2025)

✓ 60.23 ↓ 34.52 47.06 ↓ 12.81
✗ 94.75 59.87

Shortcut Models
(Frans et al., 2025)

✓ 30.31 ↓ 2.80 43.92 ↓ 2.73
✗ 33.11 46.65

Table 3: Evaluation of DiT-B/2 on ImageNet 256 using FID-50k demonstrates that AlignFlow sig-
nificantly enhances performance across all tested NFE configurations.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Backbone # params w/ AlignFlow w/o AlignFlow Difference
SiT-B/4 131M 13.75 15.53 ↓ 1.78
SiT-B/2 131M 5.60 6.17 ↓ 0.57
SiT-L/2 459M 3.51 3.84 ↓ 0.33

SiT-XL/2 676M 3.23 3.43 ↓ 0.20

Table 4: FID-50k on ImageNet256 by Meanflow (NFE=1). AlignFlow improves MeanFlow in all
model sizes.

5.3 IMAGENET256 ON SIT WITH MEANFLOW

AlignFlow further improves the one-step generation model MeanFlow (Geng et al., 2025). Mean-
Flow uses SiT as NN and is trained on class-conditioned ImageNet256. The FGM is trained in the
latent space with shape 28 × 28 × 4 generated by a pretrained VAE. The code is a non-official Py-
Torch implementation (Zhu, 2025), since it has proven to be able to reproduce the reported results
on GPU. All the hyperparameters are identical to the official setting in Sec. A in Geng et al. (2025)
without further tuning. The training curve in Fig. 2(c) and the FID score is in Tab. 4. AlignFlow
improves both performance and convergence speed in all cases, showing that AlignFlow scales to
large models. Image samples are shown in Fig. 4 in the appendix.

6 FUTURE WORK

Many modern tasks involve datasets with complex label structures, such as text-to-image generation
where each data point is a tuple consisting of an image and text. Since text prompts are rarely
identical across a dataset, standard label-based techniques are insufficient.

Here we can provide an idea of how AlignFlow may be used to address this task: suppose the data
is given by tuples (x, y), where x is the image (let’s take the image modality as an example) and y
is the text, and the task is to train AlignFlow that generates new x̃ given some new ỹ. We can cluster
the text y (e.g., via an LLM or extract the text embedding of each text y and apply a traditional
clustering method) and assign a label z = clustering(y) to each y, making the input data (x, y, z).
For example, y1 =“a dog is swimming” and y2 =“a dog is running” could be clustered into the same
cluster. Then, for each cluster, we compute the SDOT map φ|z to map noise to images x. Training
the flow-based generative model with v(x|y) can be guided by the corresponding SDOT map φ|z ,
where z is the class label for y.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Michael S Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic inter-
polants. arXiv preprint arXiv:2209.15571, 2022.

Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
framework for flows and diffusions. arXiv preprint arXiv:2303.08797, 2023.

Jason M Altschuler, Jonathan Niles-Weed, and Austin J Stromme. Asymptotics for semidiscrete
entropic optimal transport. SIAM Journal on Mathematical Analysis, 54(2):1718–1741, 2022.

Brandon Amos, Lei Xu, and J Zico Kolter. Input convex neural networks. In International confer-
ence on machine learning, pp. 146–155. PMLR, 2017.

Nicholas Matthew Boffi, Michael Samuel Albergo, and Eric Vanden-Eijnden. Flow map matching
with stochastic interpolants: A mathematical framework for consistency models. Transactions on
Machine Learning Research, 2025.

Sergio Calvo-Ordonez, Matthieu Meunier, Alvaro Cartea, Christoph Reisinger, Yarin Gal, and
Jose Miguel Hernandez-Lobato. Weighted conditional flow matching. arXiv preprint
arXiv:2507.22270, 2025.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Quan Dao, Hao Phung, Trung Tuan Dao, Dimitris N Metaxas, and Anh Tran. Self-corrected flow
distillation for consistent one-step and few-step image generation. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 39, pp. 2654–2662, 2025.

Aram Davtyan, Leello Tadesse Dadi, Volkan Cevher, and Paolo Favaro. Faster inference of flow-
based generative models via improved data-noise coupling. In The Thirteenth International Con-
ference on Learning Representations, 2025.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
for high-resolution image synthesis. In Forty-first international conference on machine learning,
2024.

Nicolas Fournier and Arnaud Guillin. On the rate of convergence in wasserstein distance of the
empirical measure. Probability theory and related fields, 162(3):707–738, 2015.

Kevin Frans, Danijar Hafner, Sergey Levine, and Pieter Abbeel. One step diffusion via shortcut
models. The Thirteenth International Conference on Learning Representations, 2025.

Zhengyang Geng, Mingyang Deng, Xingjian Bai, J Zico Kolter, and Kaiming He. Mean flows for
one-step generative modeling. arXiv preprint arXiv:2505.13447, 2025.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the
ACM, 63(11):139–144, 2020.

Johannes Hertrich, Antonin Chambolle, and Julie Delon. On the relation between rectified flows
and optimal transport. arXiv preprint arXiv:2505.19712, 2025.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu Uesaka,
Yutong He, Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models: Learning proba-
bility flow ode trajectory of diffusion. arXiv preprint arXiv:2310.02279, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Nikita Kornilov, Petr Mokrov, Alexander Gasnikov, and Aleksandr Korotin. Optimal flow match-
ing: Learning straight trajectories in just one step. Advances in Neural Information Processing
Systems, 37:104180–104204, 2024.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Huidong Liu, Ke Ma, Lei Zhou, and Dimitris Samaras. Efficient semi-discrete optimal transport
using the maximum relative error between distributions. 2021.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications to data
science. Foundations and Trends® in Machine Learning, 11(5-6):355–607, 2019.

Aram-Alexandre Pooladian, Heli Ben-Hamu, Carles Domingo-Enrich, Brandon Amos, Yaron Lip-
man, and Ricky TQ Chen. Multisample flow matching: Straightening flows with minibatch cou-
plings. arXiv preprint arXiv:2304.14772, 2023.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language under-
standing by generative pre-training. 2018.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In Interna-
tional conference on machine learning, pp. 1530–1538. PMLR, 2015.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. arXiv
preprint arXiv:2202.00512, 2022.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256–2265. PMLR, 2015.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. ICLR, 2021.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. 2023.

Alexander Tong, Kilian Fatras, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-
Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models
with minibatch optimal transport. arXiv preprint arXiv:2302.00482, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Ling Yang, Zixiang Zhang, Zhilong Zhang, Xingchao Liu, Minkai Xu, Wentao Zhang, Chenlin
Meng, Stefano Ermon, and Bin Cui. Consistency flow matching: Defining straight flows with
velocity consistency. arXiv preprint arXiv:2407.02398, 2024.

Stephen Zhang, Alireza Mousavi-Hosseini, Michal Klein, and Marco Cuturi. On fitting flow models
with large sinkhorn couplings. arXiv preprint arXiv:2506.05526, 2025.

Yu Zhu. Meanflow: Pytorch implementation. https://github.com/zhuyu-cs/
MeanFlow, 2025. PyTorch implementation of Mean Flows for One-step Generative Modeling.

12

https://github.com/zhuyu-cs/MeanFlow
https://github.com/zhuyu-cs/MeanFlow

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A EFFICIENT SDOT ALGORITHM FOR LARGE DATASETS

A.1 INDICATOR FOR PERFORMANCE OF ALGO. 2

Before diving into details, let’s define Maximum Relative Error (MRE) and L1 (Liu et al., 2021),
which help to judge the quality of the dual weight:

MRE(g) = max
i∈I

|pi − bi|
bi

, L1(g) =
∑
i∈I

|pi − bi|, pi :=

∫
Li(g) dp0 (10)

In Algo. 2, they can be estimated efficiently by M̃RE = ∥∇Eema∥∞ and L̃1 = ∥∇Eema∥1.

Mathematically, MRE and L1 are simply estimating ∥∇E∥∞ and ∥∇E∥1. However, the reason why
MRE is important is because it measures the unbalance between each target. MRE = 0 means the
SDOT is computed perfectly, both because it perfectly minimizes the objective function Eq. (4) and
also because each target is mapped to with equal probability. See also Sec. F.

A.2 ENTROPIC REGULARIZATION FOR SDOT

Discrete OT problems are known to be non-smooth and people add regularization terms to smoothen
the landscape. For SDOT problems, similar techniques can also be applied. Instead of solving the
problem Eq. (4), SDOT with entropic regularization is solving (Altschuler et al., 2022)

min
γ∈Γ(p0,p1)

∫
X×X

c(x0, x1)dγ(x0, x1) + ϵKL(γ||p0 ⊗ p1) (11)

Although introducing the extra term leads to bias, it significantly improves smoothness.

A.3 HYPERPARAMETERS TUNING FOR COMPUTATION OF SDOT

Algo. 2 has mainly three hyperparameters to be tuned: entropic regularization strength ϵ, EMA
parameter β, and learning rate lr in Adam. During the iteration in Algo. 2, L1 will be continuously
decaying if the hyperparameters are correctly tuned.

• Entropic regularization strength ϵ balances the bias and difficulties of the optimization prob-
lem. Large ϵ will introduce bias, while 0 or a small ϵ leads to harder optimization.

• ϵ should be fixed during the optimization procedure. When optimizing the problem, con-
sider increasing the batch size and/or decreasing the learning rate when L1 plateaus.

• The optimization stops when MRE meets your requirement. We recommend ensuring it is
below 0.2 for good performance in the downstream task of FGM.

• Usually, the learning rate for Adam should be relatively large. Unlike in modern machine
learning problems that 0.001 learning rate is recommended, in the computation of SDOT
map Algo. 2, 10 is a good starting point for tuning the learning rate.

• For large datasets, please use a larger batch size and/or increase the EMA parameter β (e.g.,
change 0.99 to 0.999)

A.4 HYPERPARAMETERS AND COMPUTATIONAL COST

For CIFAR 10, we use the training set for training (50000 images with shape 32× 32× 3).

• Normalize the whole dataset with mean = (0.5, 0.5, 0.5) and std = (0.5, 0.5, 0.5).
• Concatenate the dataset with the augmented (horizontally flipped) dataset.
• Compute the SDOT map with Algo. 2 and hyperparameters in Table 5

For ImageNet, we use the training set with 1281167 images separated into 1000 classes. In both
shortcut model in Sec. 5.2 and Meanflow in Sec. 5.3, the SDOT map was done in the latent space
with each latent representation 28 × 28 × 4. Each image was augmented by horizontal flipping,
making each class have around 2600 images in total after augmentation.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

step learning rate batch size EMA parameter β entropic reg ϵ MRE L1
0-1000 10 1024 0.99 1 3.4 0.29

1000-6000 0.1 4096 0.999 1 0.27 0.045
6000-11000 0.1 16384 0.999 0.01 0.11 0.019

Table 5: CIFAR 10 (unconditional) SDOT hyperparameters. It costs 8 min 30 s on L40S.

step learning rate batch size EMA parameter β entropic reg ϵ MRE L1
3000 10 4096 0.99 0.01 ∼ 0.08 ∼ 0.016

Table 6: ImageNet256 (class conditioned, latent space) SDOT hyperparameters. It costs <10 s on
L40S for each class.

Remark 4. Although ImageNet is larger than CIFAR, the SDOT map computation is cheaper for
ImageNet then CIFAR due to the following reasons:

• ImageNet experiments perform SDOT in the latent space, which has similar dimension to
CIFAR in pixel space.

• ImageNet is class-conditioned, makes each class has only ∼ 2600 images. Since OT prob-
lem scales quadratically w.r.t. number of targets , although the ImageNet dataset is larger,
it becomes 1000 easier SDOT problems.

• Evaluating the SDOT map φ in Eq. (5) requires computing the minimum across the entire
dataset, incurring a computational cost of O(|I|) with a small constant factor. While this
may initially appear computationally expensive, modern machine learning models are typ-
ically over-parametrized, meaning the number of parameters vastly exceeds the number of
data points. Consequently, the computational cost is dominated by the forward pass and
backward propagation rather than the SDOT map evaluation. This analysis explains why
the additional overhead observed in our experiments is negligible, regardless of dataset
size.

B MORE DETAILS FOR FLOW-BASED GENERATIVE MODELS

B.1 MORE EXAMPLES FOR FGM FRAMEWORK IN ALGO. 1

Shortcut model In this model, an auxiliary input d for the neural network, i.e., u =
u(x, t, d; θ) and dj is i.i.d. sampled from D(·|tj). Given hyperparameter κ, choose
TargetVectorField(xj

0, x
j
1) = xj

1 − xj
0 for j = 1, ..., κ, and TargetVectorField(xj

0, x
j
1) =

StopGrad(sjt + sjt+d) for j = κ + 1, ..., B, where sjt := u(xj
t , t

j , dj), xj
t+d := xj

t + std
j ,

sjt+d := u(xj
tj+dj , t

j + dj , dj). Together with Loss
({

v̂j , vj
}B

j=1

)
:= 1

B

∑
j

∥∥v̂j − vj
∥∥2
2
, Algo.

1 recovers the shortcut model in Frans et al. (2025).

Meanflow In this model, an extra r input for the neural network, i.e., u = u(x, t, r; θ). By choos-
ing TargetVectorField(x0, x1) = StopGrad(vt− (t− r)vt∂xu+∂tu) and Loss

({
v̂i, vi

}B

i=1

)
:=

1
B

∑
i

∥∥v̂i − vi
∥∥p
p
, Algo. 1 recovers Meanflow in Geng et al. (2025).

B.2 SAMPLING/INFERENCE PROCESS FOR FGM

To better see the benefits of the specially-designed target vector field, let’s see the inference process
for FGM in Algo. 4. The inference process is a process integrating the ODE ∂txt = u(t, xt; θ) with
initial condition x0 sampled from p0, and x1 is a new sample. Most inference processes for FGM are
the same, except the ODE integrator may be different. However, the difficulty for such integration
varies by the learned u(t, x; θ): intuitively, let’s imagine two trajectories of xt, one is complicated,
while the other is a straight line. Then the straight line can be easily computed by one-step forward
Euler x1 = x0 + u(0, x0; θ), while the complicated one requires a complicated ODE integrator.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

This means the straightness of the integrated trajectory is the key: the straighter the path, the easier
integration and thus, less NFE of NN (Liu et al., 2022). Algorithm trained by fancy target vector
field will benefit from the extra straightness, e.g., Meanflow is able to generate high-quality samples
with NFE=1, while vanilla flow matching requires > 100 NFE.

Algorithm 4: FGM / AlignFlow (Sampling)
Input: Noise distribution p0, neural network u = u(x, t; θ), ODEIntegrator
Output: A new sample from the data distribution

1 Sample {x(0)} ∼ p0 ▷ sample noise
2 v(t) := u(x(t), t; θ)
3 x(1) = ODEIntegrator(v(t))
4 Return: a new sample x(1)

C SYNTHETIC EXPERIMENT: CHECKERBOARD

In this section, we visualize different learned trajectories by training the FGM on a synthetic 2-
dimensional data distribution. Following (Lipman et al., 2022, Fig. 4), we set the data distribution
p̃1 as the checkerboard in [−2, 2] × [−2, 2]. p0 is chosen as the widely used normal distribution.
However, different from their setting, which assumes accessibility to an infinite amount of training
data 7, we fix the training set at the beginning instead. Although our setting leads to less smoothness
of the learned distribution than the infinite data setting, it simulates real ML tasks where data is
limited.

Fig. 3 plots the density changes from normal distribution to checkerboard when time evolves from
0 to 1, showing that AlignFlow gives a straighter path compared to minibatch OT and vanilla flow
matching in Fig. 3. Identical hyperparameters are used in all cases.

For AlignFlow, we compare the density evolution for FGM trained with different couplings between
noise and data.

(a) AlignFlow (Alog. 3)

(b) Minibatch OT (Tong et al., 2023)

(c) Vanilla flow matching (Lipman et al., 2022)

Figure 3: Comparison of the trajectory of FGM between different methods. AlignFlow has a
straighter trajectory compared to vanilla flow matching and has a clearer boundary compared to
Minibatch OT (e.g., at t = 0.22).

7In the checkerboard experiment in Lipman et al. (2022); Tong et al. (2023), new training data is drawn in
each minibatch.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

D CAPABILITY OF GENERALIZATION

Experts may notice that Eq. (5) is a map from noise to data, which is already X → X . Since FGM
also gives a vector field whose integration is X → X , why do we still need to train the FGM model
in stage 2? The answer is, the SDOT map φ in Eq. (5) only remembers the dataset and cannot
generalize, i.e., every noise is mapped to a data point in the dataset, and no new data is generated.
As a result, a powerful NN is required to be trained in Stage 2 in Algo. 3 on top of the SDOT map.

Another interesting thing is: The SDOT map is a fixed map from noise to the dataset. Will this noise-
data alignment hurt the capability of generalization compared to random noise-data alignment? The
answer is no. Here are some explanations from different aspects:

• In traditional FGM (1), the (noise, data) pair is also generated from the p0× p1, rather than
p0 × p̃1, and the capability of generalization is widely proven. Algo. 3 only changes the
coupling, but not the marginal distribution.

• Experimentally, we are generating the images that do not exist in the original dataset (Fig.
4)

• Theoretical guarantee that any coupling will lead to the correct push forward vector field in
Eq. (2) in by Sec. 3.2.

• We also provide an intuition: All FGMs try to learn the map from noise to a discrete dataset,
since there is no access to the real data distribution p̃1. However, the model still generalizes.
This is because the generalization ability comes from the regularity of the neural network
that approximates the vector field, but does not come from the randomness of the matching
between noise and data.

E MORE ABOUT CURSE OF DIMENSIONALITY

Modern generative model tasks are usually high-dimensional with limited data. For example,

• On unconditional CIFAR dataset in pixel space (Sec. 5.1), the dimension is 32× 32× 3 =
3072, but we only have 100k training data in total (50k images, 100k after horizontal flip
augmentation)

• In ImageNet256 task (Sec. 5.2 and 5.3), we have only approximately 2600 images (1300
images in each class, 2600 after horizontal flip) for each class, and the latent space we
perform FGM algorithm has dimension 28× 28× 4 = 3136.

Don’t forget that we require the number of samples to be of order exponential dimension in Thm. 1,
which is definitely not enough based in the cases above. And this phenomenon is more severe in the
class-conditional generation setting, since we require the number of samples in each class to be of
order exponential dimension.

To judge if an algorithm will suffer from the curse of dimensionality, we can use the following
criterion: if a method uses samples to estimate an OT plan between p̃1 and p0, then it must suffer
from the curse of dimensionality. The reason is that estimating the OT plan by samples needs an
important assumption: the OT plan between p1 and p0 approximates the OT plan between p̃0 and
p0, which is generally not true as discussed above. According to this criterion, Tong et al. (2023);
Kornilov et al. (2024) will suffer from the curse of dimensionality. Although rectified flow (Liu et al.,
2022) does not estimate the OT plan directly, it claims the algorithm is also trying to approximate
the OT plan between p̃1 and p0.

F REBALANCE: HANDLING NON-PERFECT SDOT MAP

Instead of sampling i.i.d. data, Algo. 3 only samples noise and feeds the NN with data gener-
ated by the SDOT map (line 7). This may lead to the problem of the SDOT map not being com-
puted perfectly, and the data feeding the NN is biased. Roughly speaking, when ∇E is not 0, then
φ(x0), x0

i.i.d.∼ p0 is biased from p1 (See more discussions in Sec. A, especially MRE defined in Eq.
(10)).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

If you find running Algo. 2 until MRE converges to 0 is too hard and expensive, especially for large
datasets with a huge number of data without class condition, rebalance is here to help. A non-zero
MRE leads to biased sampled data, meaning that the model is training with some of the data seen
more often, while others are seen less often. To address this difficulty, we introduce the rebalance
operation in Line 9, defined by

rebalance
(
{mj}Mj=1

)
:= arg max

{m̃j}

∑
j

1(m̃j = mj) :

∣∣∣∣∣∣max
i∈I

M∑
j=1

1i(m̃j)−min
i∈I

M∑
j=1

1i(m̃j)

∣∣∣∣∣∣ ≤ 1


(12)

Intuitively, rebalance calculates the minimum modification of the targets s.t. the frequency of each
data point is the same. Such an operation forces the model to see the correct unbiased dataset even
SDOT map is not fully converged, at the cost of introducing some randomness in the coupling.

In our research, we didn’t find a difference in the CIFAR10 experiment in Sec. 5.1 between with and
without the rebalance operation, since Algo. 2 learns SDOT map pretty well (more than 85% of the
data are unchanged in the rebalance operation). However, we use it throughout all our experiments
to ensure that the data fed into the FGM model is the same as random coupling for a fair comparison.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

G IMAGE SAMPLES GENERATED BY ALIGNFLOW

Figure 4: Images generated by MeanFlow+AlignFlow trained on ImageNet256 (FID=3.23, NFE=1).

18

	Introduction
	More Related Works
	Methodology
	Flow-based Generative Models (FGMs)
	Coupling between noise and data
	Semi-Discrete Optimal Transport
	Main algorithm
	Additional techniques

	Advantage of AlignFlow
	Bypass Curse of dimensionality
	Deterministic alignment
	Low computational cost

	Experiments
	CIFAR10 unconditional generation on Unet
	ImageNet256 on DiT with Shortcut Model
	ImageNet256 on SiT with MeanFlow

	Future Work
	Efficient SDOT algorithm for large datasets
	Indicator for performance of Algo. 2
	Entropic regularization for SDOT
	Hyperparameters tuning for computation of SDOT
	Hyperparameters and computational cost

	More details for Flow-Based Generative Models
	More examples for FGM framework in Algo. 1
	Sampling/inference process for FGM

	Synthetic experiment: Checkerboard
	Capability of generalization
	More about Curse of Dimensionality
	Rebalance: handling non-perfect SDOT map
	Image samples generated by AlignFlow

