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Abstract

The n-body problem, fundamental to astrophysics, simulates
the motion of n bodies acting under the effect of their own
mutual gravitational interactions. Traditional machine learning
models that are used for predicting and forecasting trajectories
are often data-intensive “black box” models, which ignore
the physical laws, thereby lacking interpretability. Whereas
Scientific Machine Learning ( Scientific ML ) directly embeds
the known physical laws into the machine learning frame-
work. Through robust modelling in the Julia programming
language, our method uses the Scientific ML frameworks:
Neural ordinary differential equations (NODEs) and Univer-
sal differential equations (UDEs) to predict and forecast the
system’s dynamics. In addition, an essential component of
our analysis involves determining the “forecasting breakdown
point”, which is the smallest possible amount of training data
our models need to predict future, unseen data accurately. We
employ synthetically created noisy data to simulate real-world
observational limitations. Our findings indicate that the UDE
model is much more data efficient, needing only 20% of data
for a correct forecast, whereas the Neural ODE requires 90%.

1 Introduction

The classical n-body problem in astrophysics seeks to predict
the motion of a system of celestial objects that interact grav-
itationally with each other. Although an analytical closed-
form solution exists for a system of two objects, no such
solution has been discovered for three or more objects. As a
result, historically, numerical integration methods such as the
Runge-Kutta method or leap-frog schemes have been used
to simulate solutions. However, traditional solvers operate
under the assumption that the physical model of an n-body
system is perfectly known and complete. Therefore, this as-
sumption limits our ability to apply it to a realistic scenario
where the system might be subject to unmodeled physics.
To address these challenges, Scientific Machine Learn-
ing ( Scientific ML ) has emerged as a powerful paradigm
where we shift our objective from just simulating a known
physical model to discovering or correcting the governing
equations directly from observational data. Scientific ML
combines the expressive power of neural networks with the
interpretability of differential equations. This approach has
been successfully implemented in various scientific disci-
plines like fluid mechanics, circuit modelling, optics, gene
expression, quantum circuits, and epidemiology (Baker et al.

2019; Dandekar, Rackauckas, and Barbastathis 2020; Dan-
dekar et al. 2020; Abhijit Dandekar 2022; Ji et al. 2022; Bills
et al. 2020; Lai et al. 2021; Nieves, Dandekar, and Rack-
auckas 2024; Wang, Garnier, and Rea 2023; Ramadhan 2024;
Rackauckas, Campin, and Ferrari; Sharma et al. 2023a,b;
Aboelyazeed et al. 2023).

Primarily, the progress in Scientific ML is driven by the
following two frameworks: Neural Ordinary Differential
Equations (NeuralODEs) (Chen et al. 2018; Dupont, Doucet,
and Teh 2019; Massaroli et al. 2020; Yan et al. 2019),
which learns the entire system dynamics through Neural
Networks from data, and Universal Differential Equations
(UDEs)(Rackauckas et al. 2020; Bolibar et al. 2023; Teshima
et al. 2020; Bournez and Pouly 2020), which blends in the
known physical laws with neural networks to learn only
the unknown/unmodelled dynamics from data. While these
frameworks are being used in astrophysics (Gupta, Srijith,
and Desai 2022; Branca and Pallottini 2023; Origer and Izzo
2024), a thorough comparative analysis of their effectiveness
in solving problems is yet to be determined. In this study, we
try to understand the effectiveness and limitations of these
two Scientific ML frameworks.

Specifically, we aim to address the following questions in
the context of the n-body problem:

1. Can the UDE framework be used to learn and recover
the pairwise gravitational interaction term by replacing it
with a neural network?

2. How does the predictive accuracy of NeuralODEs com-
pare to that of UDEs when modelling the trajectories?

3. Can both NeuralODEs and UDEs be used to forecast the
system’s trajectories in the long term?

4. Do UDEs, incorporating known physics, offer superior
performance in forecasting over the purely data-driven
NeuralODEs?

We perform rigorous comparative analysis using advanced
Scientific ML libraries to answer these questions. Our work
provides critical insights into the effectiveness and limitations
of these frameworks. Furthermore, we analyze the forecast-
ing breakdown point as a metric to quantify the time horizon
beyond which long-term predictions diverge from actual dy-
namics.



2 Methodology

The foundation of our study uses the classical Newtonian for-
mulation of the gravitational N-body problem. For a system
of n-bodies, the state evolution of the system is described
by their positions 7;(t) € R? and velocities v;(t) € R3 of
each body i. The state evolution form a system of ordinary
differential equations ( ODEs ) given by,
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Where G is the gravitational constant and m; is the mass
of body j. This system of equations is used for generating
ground truth data and as the structural prior for the UDE
model.

Dataset generation A stable 3-body system was simulated
with Runge—Kutta by Tsitouras’ numerical integrator in the
Julia Programming language for dataset generation. The sim-
ulation was run for 7 seconds, the domain ¢ € [0, 10] was
discretised into 70 equally spaced time points. The position
and velocity at each of these time instants were saved. We
create three distinct training datasets based on the noise level
added. The first is the noise-free dataset that we get from
the numerical simulation. Second is a moderate noise dataset
with a Gaussian noise with a standard deviation of 7% of the
data range. Third, it is a high-noise dataset, where Gaussian
noise with a standard deviation of 35% of the data range is
added. The noise is primarily added to simulate real-world
synthetic data.

We use 100% of the dataset for the prediction task for train-
ing. For forecasting, the models were first trained on an initial
portion of the dataset, with the remaining portion used for
evaluation. More specifically, we used training-forecasting
splits of 90%-10%, 80%-20%, 40%-60%, and 20%-80% of
the time points.

2.1 Neural Ordinary Differential Equation
(NODE)

In this approach, we define the dynamics of the system’s
hidden state vector h(t) with the help of an ordinary differen-
tial equation where the function describing the change is a
neural network f parameterised by 6. Here, we perform back-
propagation through the neural network augmented ODE. In
doing so, we find the optimal values of the neural network
parameters.

= (h(t),1,0) 3)

In our application to the n-body problem, we consider
the state vector h(t) € R3" which is just the concatenation
of the position vectors and the velocity vectors of all the
n-bodies h(t) = [r1,v1,72, V2, ..., ', Uy]. Here, the Neural
ODE framework replaces all the dynamics (Equations (1)
and (2)) of the n-body system with a neural network. By
training on the generated data, the network could learn the

complex gravitational dynamics of the entire system without
prior knowledge of the physics. The model’s hyperparameters
were selected after searching a grid of possible values specific
to the training data used.

2.2 Universal Differential Equations (UDEs)

In contrast to NeuralODEs, UDEs offer a hybrid approach
where only the specific, unknown, or incomplete terms of an
ODE/PDE system are learned by replacing them with a neural
network. This allows for correcting existing physical models
and the data-driven discovery of new physical principles.

In the context of the n-body problem, UDE is formed by
retaining the knowledge that the total acceleration of the
body is the sum of pairwise interactions with all other bodies.
In addition, we replace the interaction term itself with a
neural network. This allows the neural network to discover
the underlying gravitational interaction between the objects
from the data. The UDE is therefore defined as
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Where 6 denotes the parameters of the Neural Network
(NN), the input to the network is the states (positions 7, 7,
and masses m;, m;) of the two interacting bodies 7 and j. In
this configuration, we assume the kinematic relationship and
summation structure are already known physical laws. The
neural network is learning the core interaction between any
two bodies. Just as with the Neural ODE, the hyperparame-
ters for the UDE model had been selected from exhaustive
searches that corresponded to the dataset used in training.

3 Results

We have considered a total of 5 cases with different dataset
percentages, evaluating each of them under the following
three noise levels: no noise, moderate noise(7% standard
deviation), and high noise (35% standard deviation). The
main paper presents the results from training the NeuralODE
and UDE models on the complete dataset and on the data
subsets of 80% and 20%. Here, we also include the analysis
of the forecasting breakdown point. Results for the remaining
cases, which utilized 90% (Case 2) and 40% (Case 4) of the
data for training, are located in Appendix A.

3.1 Case 1: Training on complete dataset

From Figure 1, it is evident that the Neural ODE effectively
learns the n-body dynamics throughout the entire time span
and across different noise conditions. When trained on noise-
free data, its forecasts for the position and velocity of each
body closely align with the actual trajectories. As noise is
introduced, the model persists in generating smooth and phys-
ically plausible trajectories, successfully filtering out a ma-
jority of the random fluctuations inherent in the training data.
Notably, this level of performance is maintained even as noise
intensifies, with the model reliably producing accurate and



(a) No noise (b) Moderate noise (c) High noise

Figure 1: Neural ODE results for Case 1 (100% training)
across different noise levels for body 1.

Body 1: UDE T Body 1: UDF

(a) No noise (b) Moderate noise (c) High noise
Figure 2: UDE results for Case 1 (100% training) across

different noise levels for body 1.

(b) Moderate noise

(a) No noise (c) High noise

Figure 3: Neural ODE results for Case 3 (80% training)
across different noise levels for body 1.

stable trajectories. These findings underscore the model’s con-
siderable robustness to noise, ensuring long-term positional
accuracy even in scenarios with significant corruption.

From Figure 2, the UDE, which is trained on the entire
dataset, performs remarkably well in predicting the 3-body
trajectories in all the noise levels. When the dataset is noise-
free, throughout the duration of the simulation, the model’s
trajectory perfectly aligns with the ground truth data. Even
under the moderate noise, the UDE produces clean and ac-
curate predictions following the underlying dynamics. Even
though under high noise, the data points have become signifi-
cantly scattered, the model’s predictions remain smooth and
physically realizable. While minor deviations from the true
path may appear, the overall shape and evolution of the trajec-
tory are preserved. These results demonstrate that when given
access to the full dataset, the UDE is highly effective at learn-
ing the correct system dynamics and robust to substantial
noise.

3.2 Case 3: Training on 80% of the dataset and
forecasting

As depicted in Figure 3, wherein the Neural ODE is trained
on 80% of the temporal domain and subsequently predicts the
remaining 20%, a notable disparity in forecasting accuracy
is observed between position and velocity. In the absence of
noise, the predicted position trajectories align closely with

(a) No noise (b) Moderate noise (c) High noise

Figure 4: UDE results for Case 3 (80% training) across dif-
ferent noise levels for body 1.

(b) Moderate noise (c) High noise

(a) No noise

Figure 5: Neural ODE results for Case 5 (20% training)
across different noise levels for body 1.

the ground truth within both training and forecasting do-
mains; conversely, the velocity predictions exhibit early signs
of divergence. Under moderate noise conditions, the model
continues to produce smooth and physically plausible posi-
tion trajectories that adhere to the central trends of the noisy
data; however, the accuracy of the velocity forecast deterio-
rates significantly, revealing considerable error. In scenarios
with high noise levels, the training data becomes consider-
ably more dispersed, and while the position outputs from
the Neural ODE maintain a degree of smoothness, they ex-
hibit a discernible decline in accuracy within the forecasting
domain, with the velocity forecast completely failing. Ulti-
mately, these findings underscore that the model’s ability to
generate reliable forecasts is compromised when it is trained
using only 80% of the available data.

In Figure 4, we have UDE trained on 80% of the dataset
and forecast on the rest. We can see it performs strongly
across all noise levels. When the data is noise-free, its predic-
tions for each body’s trajectory stay very close to the actual
path, both during training and the short forecast interval, indi-
cating excellent generalization. Under moderate noise, where
the training points are a bit dispersed, the UDEs prediction re-
mains smooth and follows the underlying dynamics very well.
Under high noise, the UDE:s still produce a clean forecast
that stays close to the true trajectory.

3.3 Case 5: Training on 20% of the dataset and
forecasting

From Figure 5, when the Neural ODE is trained on only 20%
of the domain, its ability to forecast the remaining 80% is
significantly challenged. In the no-noise case, the predictions
match the true paths well within the small training area, but
the forecasted trajectories show clear and growing devia-
tions over time. With moderate noise, the model captures the
general trends within the limited training region; however,
forecasting errors increase substantially, leading to predicted
paths that diverge significantly from the ground truth. Under



high noise, the model’s forecasted trajectories lose coher-
ence and show poor long-term predictive accuracy, failing to
generalize from the sparse, noisy data.

(a) No noise (b) Moderate noise (c) High noise
Figure 6: UDE results for Case 5 (20% training) across dif-

ferent noise levels for body 1.

In Figure 6, the UDE is trained on 20% of the dataset and
forecasted on the rest. Under a noise-free dataset, the UDE’s
prediction for each body’s trajectory follows the true path
almost exactly, not only within the limited training region but
also far into the extended forecast area, demonstrating robust
generalization from a small data subset. With moderate noise,
the model still produces a reliable trajectory. Under high
noise, although the graphs follow the trend, we can clearly
see that the forecasting fails.

3.4 Forecasting Breakdown Point Analysis

To further explore the models’ long-range forecasting capabil-
ities, we progressively reduced the amount of training data to
identify their forecasting breakdown points. This point is de-
fined as the smallest percentage of training data below which
the model fails to produce a physically plausible forecast of
the unseen trajectory.

For the no-noise dataset, the Neural ODE required at least
90% of the data, failing to forecast the future trajectory
when trained on smaller subsets. In contrast, the UDE model
demonstrated superior data efficiency, providing a reliable
forecast even when trained with as little as 20% of the avail-
able data. However, the UDE also failed when the training
data was reduced to just 10%. It is important to note that for
the noisy datasets (moderate and high), both models required
even larger data percentages to achieve stable forecasts.

4 Discussion and Conclusion

The paper here offers a comparative analysis between Neural
Ordinary Differential Equations (Neural ODEs) and Univer-
sal Differential Equations (UDEs) for forecasting trajectories
related to the gravity n-body problem under various data
and noising situations. Neural ODEs had a strong ability to
understand the system’s dynamics as well as successfully
interpolate trajectories with training across a whole time do-
main. Neural ODEs had a strong ability to understand the
system’s dynamics and successfully interpolate trajectories
when trained across the whole time domain. However, their
forecasting accuracy was highly dependent on data availabil-
ity. As the amount of training data decreased, the model’s
predictive quality declined progressively; we observed that
velocity forecasts became unreliable and diverged from the
ground truth long before the position forecasts showed signif-
icant error. This culminated in a complete failure to produce

a physically consistent forecast when trained with less than
90% of the domain, demonstrating the model’s limitations in
data-scarce conditions.

Compared to this, UDEs were much more data-efficient,
with low forecasting errors for models trained on as few as
20% of the time domain. This data-robustness underscores
the benefit of hardcoding known physical laws—the form of
gravitational interactions in this example—into models. With
only unknown or unmodeled factors to learn, the UDE for-
mulation provides a more trustworthy route to generalization
with few-data sets.

That being said, a few of its limitations hold for both mod-
els as well. For the 7-second simulation window, this work’s
concern lies with showing proof-of-concept recovery and
short-term forecasting accuracy, not long-horizon stability.
Numerous UDE and Neural ODE benchmarks employ shorter
time intervals initially to guarantee local dynamics accuracy
before moving to larger trajectories. Increasing simulation
time is among our future work planned. This delimitation
maintains our paper technically intact but respectful of the
present scope. Accuracy in forecasting may degrade over
extremely long time horizons as cumulative small errors com-
pound. Neural ODEs, for instance, might extrapolate phys-
ically implausible when extended far beyond their training
regime. Though more resilient, UDEs, in turn, still perform
according to the quality of physical model embedded in them;
their performance is a product of how much of the underlying
physics remains known and accurately specified.

These results are in agreement with the large-scale experi-
ence in the SciML community. For noisy, data-lean regimes,
physics-informed models such as UDEs exhibit stronger gen-
eralizability compared to black-box models such as Neu-
ral ODEs. With preserved structure of governing equations,
UDEs exhibit increased interpretability, since learned neural
components may be investigated for explaining discrepan-
cies or unmodeled effects—an important benefit for scientific
exploration. Future work will shift towards increasing the
long-term predictability of such predictions as well as gener-
alizing the framework towards more complex gravity systems,
for instance, with non-gravity forces or relativistic effects.
Such SciML models applied towards real observational data
might shed fresh insight on celestial mechanics as well as
venture beyond our current physical models.
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A Appendix
A.1 Hyperparameter Details

We determined the optimal hyperparameters for our mod-
els through a grid search. For the Neural ODE model, we
employed a common two-stage optimization strategy: initial
training with the Adam optimizer to quickly find a good re-
gion in the parameter space, followed by the BEGS optimizer
for fine-tuning. The UDE model converged effectively using
only the AdamW optimizer.

The tables below detail the search space for each key hy-
perparameter, with the final selected values shown in bold.

Table 1: Neural ODE Hyperparameters.

Hyperparameter Value / Search Space
Activation Function =~ ReLU, tanh, swish
Hidden Layers 2,3,4

Units per Layer 16, 32, 64, 128

Adam Learning Rate  le-4, 1e-3, le-2
Adam Epochs 100, 200, 500

BFGS Epochs 100, 200, 500

Table 2: UDE Hyperparameters.

Hyperparameter Value / Search Space

Optimization Solver Adam, AdamW
Activation Function  ReLU, tanh, swish

Hidden Layers 1,2,3

Units per Layer 16, 32, 64
Learning Rate le-4, 1e-3, 1e-2
Epochs 500, 700, 1000




A.2 Additional Forecasting Results

This appendix presents the two additional cases (90% and
40% training coverage) omitted from the main text for brevity.
Both follow the same experimental setup and evaluation pro-
tocol described in Section 2.

Case 2: Training on 90% of dataset and forecasting In
this case, the models were trained on 90% of the time domain
and evaluated on the remaining 10%. As this meets the mini-
mum data requirement for the Neural ODE, its performance
is stable, though still sensitive to noise.

From Figure 7, the Neural ODE’s predictions align well
with the true trajectories in the no-noise scenario for both the
training and the short 10% forecast window. When noise is
introduced, the model effectively filters it within the training
region. However, minor deviations and phase shifts begin to
appear in the forecast region, especially under high noise,
indicating that even with substantial data, long-term stability
is not guaranteed.

From Figure 8, the UDE performs exceptionally well, as
expected. With 90% of the data, the model’s predictions
are virtually indistinguishable from the ground truth across
all noise levels. It produces a clean, accurate forecast that
perfectly captures the system’s dynamics, showcasing its
superior robustness and reliability when given ample data.

(c) High noise

(a) No noise (b) Moderate noise

Figure 7: Neural ODE results for Case 2 (90% training)
across different noise levels for body 1.

(a) No noise (b) Moderate noise (c) High noise
Figure 8: UDE results for Case 2 (90% training) across dif-

ferent noise levels for body 1.

Case 4: Training on 40 % of dataset and forecasting This
case evaluates the models’ performance when trained on
40% of the data and tasked with forecasting the remaining
60%. This scenario is well below the breakdown point for
the Neural ODE but remains a viable test for the UDE.

As illustrated in Figure 9, generalizability with scarce data
remains a challenge for Neural ODE. Without noise, the
model’s prediction gradually follows that of the ground truth
but fails at the long horizon, with its trajectory deviating
largely. Such instability is continuously escalated by noise.

For moderate noise, it deviates earlier and more distinctively,
while for high-noise, it rapidly degenerates to a physically
unreasonable trajectory. This verifies that 40% data cover-
age proves incapable for the purely data-driven model to
acquire the underlying dynamics, least of which under noisy
conditions.

In contrast, Figure 10 demonstrates the UDE’s continued
robustness. The model provides a stable and accurate long-
range forecast in the no-noise and moderate-noise conditions.
Under high noise, some minor amplitude and phase errors
accumulate over the 60% forecast window, but the overall tra-
jectory remains physically coherent and closely follows the
underlying dynamics. This starkly contrasts with the Neural
ODE’s failure, highlighting the critical advantage of incorpo-
rating physical priors.

(a) No noise (b) Moderate noise (c) High noise

Figure 9: Neural ODE results for Case 4 (40% training)
across different noise levels for body 1.

(a) No noise (b) Moderate noise (c) High noise
Figure 10: UDE results for Case 4 (40% training) across

different noise levels for body 1.



