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ABSTRACT

Large language models (LLMs) have already been widely used in our lives, so
what happens when people repeatedly process text using these models? In this
paper, we investigate the Markovian generation chain in LLMs: a fixed prompt
is combined with the most recent output to produce the next output, and this pro-
cedure is repeated over multiple iterations. In our simulated iterative generation
tasks (e.g., rephrasing and translation), the model’s outputs may either converge
to a set of similar results or continue to produce distinct outputs for a finite num-
ber of steps. While the outcome depends on the model, its configuration, and the
input text, it is completely unlike the model collapse observed when models are
iteratively trained on generated data. This process can be modeled and analyzed
using a Markov chain, and it can be mapped to real-world scenarios. Our study
involved not only various LLMs but also Google Translate as a reference. At the
sentence level, LLMs have the potential to increase the text diversity, for example,
when the original text shows limited variation. Researchers need to think more
about where this chain will lead.

1 INTRODUCTION

With the widespread use of large language models (LLMs), the amount of content they generate is
also increasing. While much focus has been placed on model collapse caused by the iterative use of
generated data in training (Shumailov et al., 2024), our paper concentrates on another perspective:
what happens when content generated by LLMs is re-processed by LLMs?

Our study can be viewed as a Markovian generation chain, since at each step we combine the latest
output with the fixed prompt to perform the subsequent inference, and repeat this procedure itera-
tively. Some researchers have also noted the problems and risks associated with repetitive use of
LLMs in inference, such as in translation and rephrasing (Perez et al., 2025; Mohamed et al., 2025).
Regarding LLM-generated content, while many studies have shown that text from LLMs lacks di-
versity, most have focused on word-level, phrase-level, or overall complexity assessments (Chung
et al., 2023; Guo et al., 2024). In this paper, we want to analyze diversity at the sentence level by
looking at how many distinct sentences are generated, representing a medium-grained granularity.

Our simulation results indicate that it is possible for LLMs to enhance the diversity of text at the
sentence level even during iteration generation process, depending on the model, parameters, and
the original text. When assessing LLMs, people often pay excessive attention to the outputs, under-
estimating how much the inputs can shape the results. For example, iteratively generated sentences
may enter a state where several similar sentences alternate, or they may produce entirely different
content in each round. Therefore, these scenarios are different from, and could even be the opposite
of, model collapse. The description of this phenomenon is shown in Figure 1.

Language and culture have always been dynamic. Language evolution and cultural transmission had
already been analyzed by researchers before (Griffiths & Kalish, 2007). Given the complexity of the
structure of LLMs and the interaction between machines and humans, it is now difficult to strictly
interpret what is happening. Instead, we aim to develop a theoretical framework to explain these
experimental findings and highlight their potential impact in real-world applications.

From theory and simulation, we conclude that Markov chains can serve this purpose. We also seek
to explore the wider and deeper impact of LLMs on language and society.
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Figure 1: Illustration of our simulation setup for iterative reprocessing using LLMs, i.e., Markovian
generation chains. Each circle si represents the output sentence at iteration i of LLM reprocessing.
Sentences sharing the same color and connected to each other indicate exact repetitions observed
during iteration. The Greedy Decoding regime (top), exhibits high connectivity, with outputs fre-
quently looping back to previously generated sentences, leading to limited diversity. In contrast,
under Sampling-based Decoding (bottom), while some repetitions and connections remain, the
trajectories display more relaxed connectivity and greater sentence-level diversity, reflecting the
stochasticity of the decoding process.

2 MOTIVATION

LLMs can generate different outputs with the same input in different simulations. This uncertainty
is related to various factors, including the hardware setting (He & Lab, 2025), and the most predom-
inant is likely the sampling process (Jang et al., 2016).

For example, the probability pi(τ) that token wi is sampled under the temperature parameter τ can
be expressed as

pτ (wi) =
exp(zi/τ)∑
j exp(zj/τ)

(1)

where zi is the logit score for token wi. Therefore, the output is more random at higher tempera-
tures (Holtzman et al., 2019).

Researchers have also developed several sampling methods based on the softmax function above,
such as top-k (Fan et al., 2018) and top-p (Holtzman et al., 2019), as well as logit suppression
and temperature sampling (Chung et al., 2023), although it may have some bottlenecks (Chang &
McCallum, 2022).

The output of LLMs carries some level of uncertainty and randomness, but the model’s architec-
ture ensures that the uncertainty and randomness still follow certain statistical patterns. Despite
researchers proposing various variants such as multi-token prediction (Gloeckle et al., 2024), the
intrinsic properties of the sampling mechanism are preserved.

Hence, the probability of generating the sentence (w1, w2, . . . , wn) can be expressed as

Pτ (w1, w2, . . . , wn) =

n∏
t=1

Pτ (wt | w1, . . . , wt−1) . (2)

Therefore, we consider that sentence distributions show properties and patterns similar to those of
token distributions. We try to approach the problem from a level higher than individual words, as
the correspondence between tokens in LLM processing is often not one-to-one.
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Sentences are treated as the basic element in this paper. Further analysis can focus on the transfor-
mation probabilities of sentences processed by LLMs, which can be easily mapped to real-world
applications such as translation and rephrasing of individual sentences.

In our experiments, text that has already been processed by LLMs (e.g., through paraphrasing or
translation) is iteratively reprocessed, which simulates the real-world phenomenon of text being pro-
cessed multiple times by LLMs. However, given the complexity of LLMs, the properties exhibited
by Markovian generation chain till need to be verified through simulations.

3 SIMULATIONS

Our simulations instantiate an iterative rephrasing pipeline in which an instruction-tuned LLM is
repeatedly applied to its own outputs. Each trial begins with an initial text, which is rephrased and
then recursively fed back into the model. This loop is unrolled for a fixed number of steps, yielding
a trajectory of generations for each seed passage.

Datasets. We employ three corpora spanning distinct domains: BookSum (narrative prose) (Kryscin-
ski et al., 2022), ScriptBase-alpha (cinematic dialogue and stage directions) (Gorinski & Lapata,
2015), and (BBC) News2024 (contemporary journalism) (Li et al., 2024). From each dataset, we
randomly sample 150 documents, and further select the first sentence of each document.

LLMs. We evaluate a suite of open instruction-tuned models representative of current architectures:
Mistral-7B-Instruct (Jiang et al., 2023), Llama-3.1-8B-Instruct (Dubey et al., 2024) and Qwen2.5-
7B-Instruct (Yang et al., 2024). We also conduct simulations with GPT-4o-mini (Hurst et al., 2024)
through the API.

Parameters. Our experiments cover both sampling-based decoding (using the model’s default sam-
pling parameters) and greedy decoding, with each trajectory extended for 50 iterations to enable
systematic analysis of looping behavior, diversity dynamics, and attractor states. Unless otherwise
specified, the temperature used for GPT-4o-mini in our sampling-based decoding is 0.7, and the
top-p is 0.9.

Rephrasing Task. Given a passage, the model is prompted to produce a semantically equivalent
paraphrase. The output is then recursively re-input for a total of 50 iterations. This isolates within-
language transformation dynamics, allowing us to study whether trajectories collapse to cycles (un-
der greedy decoding) or diversify (under stochastic sampling).

Translation Task. Translation can be considered a special case of a rephrasing task. The model is
asked to translate the text from English to another language and then back to English. All other set-
tings are kept the same as in the rephrasing task. In addition, we also used the API to run simulations
with the non-LLM-powered Google Translate (v3) for comparison.

Prompts. The prompts used in this paper can be found in the Appendix C.

4 RESULTS ANALYSIS

4.1 MAIN RESULTS AND FINDINGS

As previously discussed, LLMs generate outputs with some degree of randomness and uncertainty.
Figure 1 provides a schematic diagram of the iterative generation of LLMs in our simulations, in-
cluding different patterns under different conditions.

In the case of greedy decoding, iteratively generated text is more likely to fall into loops, with a
detailed example of greedy decoding shown in Table 1. We can also find that the looped sentences
generated by different LLMs differ.

In contrast, with sampling-based decoding, the content generated by LLMs may also fail to converge,
at least within the 50 iterations covered in our experiment. For example, Table 2 in the Appendix
provides an example in which 50 completely different results were generated over 50 iterations, with
the information in the sentences having changed multiple times during the process.
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Round Qwen2.5-7B-Instruct Llama-3.1-8B-Instruct

0 We begin with a prologue. We begin with a prologue.
1 We start with a prologue. The story commences with a prologue.
2 We begin with a prologue. The narrative begins with a prologue.
3 We start with a prologue. The story commences with a prologue.
4 We begin with a prologue. The narrative begins with a prologue.
5 We start with a prologue. The story commences with a prologue.
6 We begin with a prologue. The narrative begins with a prologue.

Table 1: Examples of repeated rephrasing by different LLMs (greedy decoding).
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Figure 2: Average number of unique paraphrases generated over 50 iterative rephrasings across three
datasets (News2024, Scriptbase, and Booksum), comparing four instruction-tuned LLMs: GPT-4o-
mini, Llama-3.1-8B, Mistral-7B, and Qwen-2.5-7B. Results are shown for greedy decoding (orange)
and sampling-based decoding (purple). Error bars represent one standard deviation.

The simulation results of the rephrasing task in the three datasets are presented in Figure 2. Despite
the differences in the texts of the three datasets, they lead to the same conclusion. We can clearly see
that greedy decoding produces more stable outputs, while sampling-based decoding yields higher
diversity. Therefore, at the sentence level, the paraphrased content generated by LLMs can either
stabilize or diverge after multiple iterations.

We also evaluated text similarity using METEOR (Banerjee & Lavie, 2005), ROUGE-1 (Lin, 2004),
and BLEU (Papineni et al., 2002). The results shown in Figure 3, as well as Figures 8 and 9 in
the Appendix, suggest that the distribution rapidly reaches a balanced state under greedy decoding.
This does not indicate that rephrased sentences are frozen, but that they switch repeatedly among
two or more sentences with the similar meaning. The numerical differences between models after
stabilization also indicate that the distances between the “similar” sentences generated by different
models are not the same.

4.2 PARAMETERS AND INPUTS

Different models and different settings can affect the diversity of LLM output. For example, the
difference between greedy decoding and sampling-based decoding can be considered as a matter of
different temperature settings. Figure 2 clearly illustrates the differences across various models, as
well as between the two decoding methods.

It is easy to infer from Eq. (2) that increasing the temperature parameter introduces more randomness
and produces a wider variety of paraphrased sentences. Figures 10, 11 and 12 in the Appendix fur-
ther show that as temperature rises, iteratively generated outputs are relatively unlikely to belong to
sets of repetitive sentences. Figure 7 in the Appendix presents more results at various temperatures,
helping us better understand the effect of temperature on generated patterns.

The behavior of the pattern also depends on the input. The results in Figure 4 indicate a positive
correlation between the length of the input sentence and the version number of generated sentences.
While this result is intuitive, we should point out that in real-life scenarios, the number of iterative
generations is usually limited, and sometimes quite small. As a result, the observed patterns can
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Figure 3: Evolution of text similarity metrics across 50 rephrasing iterations for the BookSum
dataset using greedy decoding. Each iteration compares the current rephrased text against the previ-
ous iteration’s text as reference.
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Figure 4: The relationship between the number of sentence versions output by LLMs during 50
iterations and the length of the original text. The x-axis represents the number of words in the
original text, and the y-axis represents the number of distinct sentences generated within the first 50
iterations. The dashed line represents the result of linear regression within each group.

vary significantly. The detailed numerical results of the correlation analysis are shown in Table 5 in
the Appendix.

4.3 ABLATIONS: PROMPTS AND TRANSLATION TASK

We also employ various prompts to simulate the rephrasing task with GPT-4o-mini, and the results
are shown in Figure 5. It’s easy to find that the decoding method has a greater influence on the
outcome, which may due to the fact that the changes made to the prompt were not substantial enough.
Besides, the translation task may also be regarded as a type of paraphrase task when provided with
a specific prompt.

In the task of translation, we can ask LLMs to repeatedly translate text from English to another
language and then back to again. For example, Tables 3 and 4 in the Appendix present the results of
iteratively translating between English and French. The translation results in Table 3 remain stable,
while those in Table 4 enter a non-periodic cycle.

The translation task has been tested in different languages. Since sampling-based decoding is more
commonly used than greedy decoding in the real-word scenarios for LLMs, we choose to compare
the simulation results using sampling-based decoding with the results from Google Translate. As
shown in Figure 6, it is clear that Google Translate produce fewer versions of the sentences. We can
also find that translating English into Chinese and then back into English using GPT-4o-mini yields
more variations of the resulting sentences.

4.4 COMPARISON WITH MODEL COLLAPSE

Shumailov et al. (2024) claim that LLMs collapse when trained on recursively generated data, while
some researchers argue that the assumptions in model collapse are too strong and can be readily
avoided in practice (Schaeffer et al., 2025). Model collapse occurs during the training process,
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Figure 5: Comparison of the number of sentence versions generated iteratively under different
prompts and decoding methods in GPT-4o-mini simulations. P1 and P2 correspond to the prompts
in Listings 1 and 2 in the Appendix, respectively. The x-axis represents the number of words in the
original text, and the y-axis represents the number of distinct sentences generated within the first
50 iterations. Boxes denote the 25th to 75th percentiles, with the central orange line indicating the
median.
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Figure 6: Comparison of the number of sentence versions generated iteratively using GPT-4o-mini
and Google Translate (v3).

which in most cases is essentially a process of data and information compression. Our paper explores
how text and information are transmitted, under the influence of the prior knowledge and patterns
inherent to LLMs.

Previous results imply that even when people repeatedly process text using LLMs, it is possible to
maintain a stable distribution of outputs while preserving a certain degree of diversity in the sentence
level, which differs from model collapse.

As the results above show, the characteristics of the iteratively generated text depend on the model
and parameters, as well as the original text. Therefore, we want to propose a theoretical model to
explain the existing simulation results, as well as to generalize and make predictions.

5 THEORETICAL MODELING

5.1 NOTATIONS AND ASSUMPTIONS

If we further consider the limited number of words and the finite sentence length, then we can regard
the number of possible sentences as finite. In other words, we can represent the set of sentences in
language lA and language lB as two discrete state spaces SA and SB :

SA = {a1, a2, . . . , am} (3)
SB = {b1, b2, . . . , bn} . (4)

For the rephrasing task, we provide a given sentence and design a prompt, then have the LLMs
rewrite it. This process can be represented as follows:

a
prompt−−−→ a′, a, a′ ∈ SA (5)
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where p denotes all parameters involved in the process, including model configurations and prompt
design.

For the translation task, we have the similar expression:

a
prompt−−−→ b, a ∈ SA, b ∈ SB . (6)

In our experiments, the outputs of LLMs are only dependent on the last state, which naturally leads
us to consider using Markov chains to model this process. Some researchers have also used Markov
chains to explain the behavior of LLMs, but their approach differs from the setup in our paper. For
example, Zekri et al. (2024) focused on next-token prediction.

Below, we use the task of machine translation as an example. The task of rephrasing can be regarded
as a degenerate case of machine translation. Such a setup also applies perfectly to paragraphs or
articles.

Let Mp denote the model M used for translation from language lA to language lB with parameter
p. Therefore, the transition matrix of the translation procedure could be expressed as:

[PAB(Mp)]ij = Pr(bj |ai,Mp) . (7)

When the sentence is translated back from language lB to language lA using the same model M
with parameter p, the transition matrix PABA(Mp) can be formulated as:

PABA(Mp) = PAB(Mp)PBA(Mp) . (8)

Therefore, the multi-turn translation process can be described by

sn = s0[PABA(Mp)]
n (9)

where s0 represents the initial state and sn represents the results after n iterations.

We can also more generally use P(Mp) to denote the transition matrix. In translation tasks, it refers
to the process of translating text into another language and then back into the original language,
while in paraphrasing tasks, it involves only a single act of rephrasing.

5.2 INTERPRETATION OF SIMULATION RESULTS

Next, we define the sentences within the loop as Ci. For sentences in Ci, given the model, param-
eters, and prompts, their processed results also remain within Ci. We also use T to represent all
sentences in transient states, meaning that these sentences will eventually converge to some Ci after
a number of translations. To better represent different scenarios, we can write the transition matrix
in a more specific way:

P(Mp) =


P1 0 · · · 0 0
0 P2 · · · 0 0
...

...
. . .

...
...

0 0 · · · Pc 0
Q1 Q2 · · · Qc PT

 (10)

where Pi stands for the transition matrix inside Ci, Qi is the transition matrix from T to Ci, and
PT represents the transition matrix for sentences within T .

This model can explain many previously observed experimental results. For example, starting from
the same initial state, simulations could ultimately lead to different stable distributions. In our
theoretical model, a sentence in set T may be attracted to more than one Ci.

As we have presented before, the translation outcomes become stable after several iterations, because
they are attracted to some Ci. Since a Ci may contain multiple sentences, we can also observe the
loop of similar sentences, as listed in Figure 7, Tables 3 and 4.

As we can find in the definition, P(Mp) is determined by the model and its parameters, for exam-
ple, the temperature. Higher temperature increases the likelihood of transitioning to a farther Ci,
resulting in worse outcomes after converge.
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When PT makes up most of the matrix in Eq. (10), implying that the cycles contain only a few
sentences, which corresponds to a divergent scenario where new sentences emerge in each of 50
iterations.

5.3 ENTROPY

Assuming sentence S is a random sentence from the original data or in the output of LLMs, then its
corresponding entropy can be expressed as:

H(S) := −
∑
s∈S

p(s) log p(s) (11)

where p(s) is the probability of sentence s in the set of all possible sentences S.

For convenience, we denote the probability distribution of sentence S as X and P as the probability
transition matrix of one LLM processing step. Then we use H(X) and H(XP ) to represent the
corresponding entropy.

As the previous entropy function is Schur-concave function, then if P is doubly stochastic matrix,
we have

H(XP ) ≥ H(X) . (12)
In LLMs, the transition matrix P is not necessarily doubly stochastic. Therefore, the above inequal-
ity does not always hold in practice.

This also illustrates that, theoretically, the entropy of sentences processed by LLMs does not always
decrease. The entropy may increase or decrease depending on P and X . In fact, owing to the diver-
sity of LLM outputs, their entropy can actually increase. For instance, the same original sentence
may be transformed into multiple possible alternatives.

5.4 CROSS-ENTROPY

Assuming X and Y are two different distributions, and P still represents the state transition matrix
of the Markov chain, we arrive at the following inequality concerning the Kullback-Leibler (KL)
divergence:

DKL(XP ∥ Y P ) ≤ DKL(X ∥ Y ) . (13)

The detailed proof, which depends on the properties of P, is provided in the Appendix B.

Therefore, for a distribution π that satisfies πP = π, we have the following expression for n itera-
tions,

DKL(XPn ∥ π) ≤ DKL(XP ∥ π) ≤ DKL(X ∥ π) . (14)
Therefore,

H(XPn)−H(X) ≥ EX [log π]− EXPn [log π] . (15)

In other words, XPn is closer to π in terms of distribution compared to X . After repeated iterations,
the distribution of LLM-processed sentences converges to that stationary distribution π.

5.5 MIXTURE

In the real world, it is also common for pre-processed and post-processed texts to be mixed together.
Therefore, we also analyzed the diversity in this scenario.

For instance, we can define the distribution Y of the mixed text as:

Y = bX + (1− b)XP (16)

where b is the mixed coefficient and satisfies 0 < b < 1.

Therefore, the entropy of the mixture between the two can be bounded by the following inequality:

bH(X) + (1− b)H(XP ) ≤ H(Y ) ≤ bH(X) + (1− b)H(XP ) + h(b) (17)

where
h(b) = −b log b− (1− b) log(1− b) . (18)
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It is easy to see that 0 < h(b) ≤ log 2 and h(b) reaches its maximum when b = 0.5.

Through repeated iterations and mixing, the entropy remains bounded. Therefore, our earlier con-
clusions still hold true in mixed scenarios.

5.6 COMPLEX SCENARIOS IN REALITY

The reality is often more complex, for example, people use different prompts and different LLMs.
Different prompts can readily lead to different outcomes. It’s easy to imagine that different LLMs
converge in different cycles, and a clear example can be seen in Table 1. Thus, in real-world appli-
cations, texts processed by LLMs tend to exhibit greater diversity in the sentence level.

Moreover, human-in-the-loop situations should be considered (Chung et al., 2023), such as when
people edit or modify content generated by LLMs (Geng & Trotta, 2025). This kind of change will
further affect the distribution of LLM-processed text in the real world.

6 RELATED WORK

Model collapse. As noted above, model collapse occurs during the process of iteratively training
new models with synthetic data (Shumailov et al., 2024; Guo et al., 2023). The occurrence relies
on strong assumptions, and there are various mitigation solutions (Gerstgrasser et al., 2024). For
instance, a mix of real data and synthetic data is likely to avoid model collapse (Seddik et al., 2024).
Similar collapse risks may also spread further into the field of knowledge (Peterson, 2025).

LLM-Generated Content. Many researchers have noted the low diversity of content generated by
LLMs. For example, Padmakumar & He (2023) have pointed out that writing with LLMs can reduce
content diversity, and Xu et al. (2025) measured the issue of insufficient plot diversity. Diversity can
be evaluated beyond text, such as in code (Shypula et al., 2025).

Language convergence. Kandra et al. (2025) find that LLM will adapt their language use accord-
ing to their conversational partner, i.e., another LLM. Human users of LLMs have likely learned
language from the models (Yakura et al., 2024; Geng et al., 2024), and LLMs tend to show linguis-
tic convergence in their communication with humans (Blevins et al., 2025).

7 DISCUSSIONS AND CONCLUSIONS

Culture mediated or generated by machines has already caught the interest of re-
searchers (Brinkmann et al., 2023). Due to the widespread adoption of LLMs and their charac-
teristics, which differ from earlier tools (e.g., Google Translator), the patterns of information trans-
mission and knowledge iteration may have shifted. With the growing volume of text processed by
LLMs, we want to address the issue of iterative generation. Hence, we apply the Markovian gener-
ation chains in the simulations to model realistic scenarios. For instance, in reality, a text is handled
with LLMs by one person and subsequently processed again with LLMs by someone else.

Although LLMs may reduce diversity and quality of used with large amounts of high-quality text,
they could conversely increase it when applying to low-quality texts, even after repeated iterations.
In our simulations, LLMs may generate new sentences through a wider variety of combinations.
When evaluating the impact of LLMs on text processing, the quality of the input texts cannot be
ignored.

Given the nature of LLMs, we chose to use Markov chains to interpret the simulation results. We
speculate that, for a given sentence, LLMs consider the meaning of several other sentences to be sim-
ilar to it. Consequently, any of these sentences could appear in the output with varying probabilities.
Therefore, LLMs have the potential to enrich original expressions at the sentence level.

There has been a lot of discussion about the impact of LLMs on society. For example, LLMs can
reshape collective intelligence (Burton et al., 2024) and information may also be distorted during the
iterative generation in LLMs (Mohamed et al., 2025). Our paper centers its analysis and discussion
of textual content, with a particular focus on sentences, as language may serve as the first and
foundational link in the chain of effects that LLMs have on society.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This paper does not involve human participants or sensitive data sets, so it should not raise any
ethical concerns.

REPRODUCIBILITY STATEMENT

The main parameters have already been mentioned in the main text, while the appendix provides
supplementary theoretical proofs and additional results. The data we used have also been uploaded.
If the paper is accepted, we will also make the code public.

Despite being closed-source models, we incorporate GPT-4o-mini and Google Translate by using
their APIs, given the prevalence of these tools.
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A THE USE OF LLMS

LLMs were used to help improve text and optimize code. Moreover, we took advantage of their
search functionality as a complement to Google Search and also attempted to have LLMs assess
potential issues in some of our arguments. We recognize the shortcomings of LLMs, so we treat
them solely as an aid.

B CONTRACTION OF RELATIVE ENTROPY

Kullback-Leibler (KL) divergence is defined as,

DKL(X∥Y ) =
∑
i

Xi log

(
Xi

Yi

)
. (19)

Similarly,

DKL(XP∥Y P ) =
∑
j

(XP )j log

(
(XP )j
(Y P )j

)
(20)

where
(XP )j =

∑
i

xiPij . (21)

Then,

DKL(XP∥Y P ) =
∑
j

(∑
i

XiPij

)
log

(∑
i XiPij∑
i YiPij

)
. (22)

Then according to Jensen’s inequality,

DKL(XP∥Y P ) ≤
∑
j

(∑
i

XiPij log
XiPij

YiPij

)
=
∑
i

Xi log
Xi

Yi

∑
j

Pij . (23)

Given that P is a stochastic matrix, we have
∑

j Pij = 1. Therefore,

DKL(XP ∥ Y P ) ≤ DKL(X ∥ Y ) . (24)

C PROMPTS

Listing 1: Prompt for rephrasing
"Given a passage, rephrase it while preserving all the original

meaning and without losing any context.\n"
"Do not write an introduction or a summary. Return only the rephrased

passage.\n\n"
"Rephrase the following text:\n{content}"

Listing 2: Prompt for rephrasing (ablation)
"Rephrase the following text:\n{content}"

Listing 3: Prompt for translation
"Translate the following English text into {target_lang}:"
"Translate the following {target_lang} text into English:"

D OTHER RESULTS
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Round Llama-3.1-8B-Instruct Qwen2.5-7B-Instruct
0 We begin with a prologue. We begin with a prologue.
1 The narrative commences with a pro-

logue.
We start with a prologue.

2 The story begins with a prologue that sets
the scene.

We begin with a prologue.

3 The narrative commences with a prologue
that establishes the backdrop for the story.

We start with a prologue.

5 The story starts with a prologue, which es-
tablishes the setting and lays the ground-
work for the events that unfold in the nar-
rative.

We start with a prologue.

10 The narrative begins with a prologue,
which sets the scene and lays the ground-
work for the events that unfold in the story
that follows.

We begin with a prologue.

20 The narrative begins with a prologue,
establishing the groundwork and setting
the scene for the events that will unfold
throughout the story.

We begin with a prologue.

30 The narrative begins with a prologue that
sets the scene and lays the groundwork,
providing a solid foundation for the events
that follow to unfold and develop.

We begin with a prologue.

40 The narrative begins with a prologue that
sets the scene, provides essential back-
ground information, and lays the ground-
work, establishing a solid foundation that
allows the subsequent events to unfold in
a logical and cohesive manner.

We begin with a prologue.

49 The story starts with a prologue that lays
the groundwork by providing key back-
ground information and establishing the
setting, thus creating a solid foundation
that allows the subsequent events to un-
fold in a logical and coherent manner.

We start with a prologue.

50 The story begins with a prologue that sets
the stage by offering essential background
information and establishing the setting,
thereby laying a solid foundation that en-
ables subsequent events to unfold in a log-
ical and coherent way.

We begin with a prologue.

Table 2: Examples of repeated rephrasing by different LLMs (temperature=0.7, top-p=0.9).

Round French English

0 We begin with a prologue.
1 Nous commençons par un prologue. We begin with a prologue.
2 Nous commençons par un prologue. We begin with a prologue.
3 Nous commençons par un prologue. We begin with a prologue.
4 Nous commençons par un prologue. We begin with a prologue.

Table 3: Examples of iterative translation via GPT-4o-mini (temperature=0.7, top-p=0.9).
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Round French English

0 Elizabeth reads through Darcy’s letter
with a mixture of emotions.

1 Elizabeth lit la lettre de Darcy avec un
mélange d’émotions.

Elizabeth read Darcy’s letter with a mix
of emotions.

2 Elizabeth a lu la lettre de Darcy avec un
mélange d’émotions.

Elizabeth read Darcy’s letter with a mix
of emotions.

...
...

...

11 Elizabeth lut la lettre de Darcy avec un
mélange d’émotions.

Elizabeth read Darcy’s letter with a mix-
ture of emotions.

12 Elizabeth a lu la lettre de Darcy avec un
mélange d’émotions.

Elizabeth read Darcy’s letter with a mix-
ture of emotions.

...
...

...

19 Elizabeth lut la lettre de Darcy avec un
mélange d’émotions.

Elizabeth read Darcy’s letter with a mix
of emotions.

Table 4: Examples of iterative translation via GPT-4o-mini (temperature=0.7, top-p=0.9). The omit-
ted lines are all identical to the content in the second round (the italicized sentences). The similar
scenario also occurs after the 19th round.
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Figure 7: Simulation results of GPT-4o-mini for the same sentence with different parameters. Each
line represents the result of a simulation consisting of 50 consecutive iterations. The x-axis indicates
the number of rephrases, and the y-axis indicates the cosine similarity with the original text, which
compares the angle between TF-IDF (term frequency–inverse document frequency) vectors (2-gram
to 4-gram).
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Figure 8: Evolution of text similarity metrics across 50 rephrasing iterations for the News2024
dataset using greedy decoding. Each iteration compares the current rephrased text against the previ-
ous iteration’s text as reference.
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Figure 9: Evolution of text similarity metrics across 50 rephrasing iterations for the ScriptBase
dataset using greedy decoding. Each iteration compares the current rephrased text against the previ-
ous iteration’s text as reference.

0 10 20 30 40 50
Iteration

0.65

0.70

0.75

0.80

0.85

0.90

M
ET

EO
R

0 10 20 30 40 50
Iteration

0.60

0.65

0.70

0.75

0.80

0.85

RO
U

G
E-

1 

0 10 20 30 40 50
Iteration

0.2

0.3

0.4

0.5

0.6

0.7

BL
EU

GPT-4o-mini Llama Mistral Qwen

Figure 10: Evolution of text similarity metrics across 50 rephrasing iterations for the BookSum
dataset using sampling-based decoding. Each iteration compares the current rephrased text against
the previous iteration’s text as reference.
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Figure 11: Evolution of text similarity metrics across 50 rephrasing iterations for the News2024
dataset using sampling-based decoding. Each iteration compares the current rephrased text against
the previous iteration’s text as reference.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

0 10 20 30 40 50
Iteration

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

M
ET

EO
R

0 10 20 30 40 50
Iteration

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

RO
U

G
E-

1 

0 10 20 30 40 50
Iteration

0.2

0.3

0.4

0.5

0.6

0.7

0.8

BL
EU

GPT-4o-mini Llama Mistral Qwen

Figure 12: Evolution of text similarity metrics across 50 rephrasing iterations for the ScriptBase
dataset using sampling-based decoding. Each iteration compares the current rephrased text against
the previous iteration’s text as reference.

Dataset Model r p R² Slope

booksum

Llama greedy 0.171 3.611e-02 0.029 0.107
Llama sample 0.166 4.272e-02 0.027 0.191
Mistral greedy 0.324 5.135e-05 0.105 0.350
Mistral sample 0.438 2.046e-08 0.192 0.594
Qwen greedy 0.353 9.427e-06 0.125 0.125
Qwen sample 0.494 1.330e-10 0.244 0.616
GPT greedy 0.476 7.658e-10 0.226 0.261
GPT sample 0.638 1.542e-18 0.407 1.054

scriptbase

Llama greedy -0.174 3.338e-02 0.030 -0.238
Llama sample 0.030 7.150e-01 0.001 0.048
Mistral greedy 0.073 3.731e-01 0.005 0.124
Mistral sample -0.021 8.012e-01 0.000 -0.050
Qwen greedy 0.094 2.510e-01 0.009 0.056
Qwen sample 0.157 5.479e-02 0.025 0.272
GPT greedy 0.105 2.017e-01 0.011 0.109
GPT sample 0.231 4.471e-03 0.053 0.727

news2024

Llama greedy 0.187 2.216e-02 0.035 0.107
Llama sample 0.114 1.659e-01 0.013 0.081
Mistral greedy 0.111 1.757e-01 0.012 0.118
Mistral sample 0.197 1.585e-02 0.039 0.141
Qwen greedy 0.199 1.454e-02 0.040 0.058
Qwen sample 0.373 2.600e-06 0.139 0.477
GPT greedy 0.367 3.765e-06 0.135 0.203
GPT sample 0.385 1.116e-06 0.149 0.525

Table 5: Results of the Correlation Analysis. r represents the Pearson correlation coefficient, and
R2 represents the coefficient of determination.

17


	Introduction
	Motivation
	Simulations
	Results Analysis
	Main Results and Findings
	Parameters and Inputs
	Ablations: Prompts and Translation Task
	Comparison with Model Collapse

	Theoretical Modeling
	Notations and Assumptions
	Interpretation of Simulation Results
	Entropy
	Cross-entropy
	Mixture
	Complex Scenarios in Reality

	Related work
	Discussions and Conclusions
	The Use of LLMs
	contraction of relative entropy
	Prompts
	Other Results

