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Abstract

Temporal Knowledge Graph (TKG) reasoning,
which focuses on leveraging temporal informa-
tion to infer future facts in knowledge graphs,
plays a vital role in knowledge graph comple-
tion. Typically, existing works for this task de-
sign graph neural networks and recurrent neural
networks to respectively capture the structural
and temporal information in KGs. Despite their
effectiveness, in our practice, we find that they
tend to suffer the issues of low training effi-
ciency and insufficient generalization ability,
which can be attributed to the over design of
model architectures. To this end, this paper
aims to figure out whether the current complex
model architectures are necessary for temporal
knowledge graph reasoning. As a result, we put
forward a simple yet effective approach (termed
SiMFy), which simply utilizes multilayer per-
ceptron (MLP) to model the structural depen-
dencies of events and adopts a fixed-frequency
strategy to incorporate historical frequency dur-
ing inference. Extensive experiments on real-
world datasets demonstrate that our SiMFy can
reach state-of-the-art performance with the fol-
lowing strengths: 1) faster convergence speed
and better generalization ability; 2) a much
smaller time consumption in the training pro-
cess; and 3) better ability to capture the struc-
tural dependencies of events in KGs. These
results provide evidence that the substitution of
complex models with simpler counterparts is a
feasible strategy.1

1 Introduction

Knowledge Graphs (KGs), which represent events
as triples (s, r, o), facilitate a wide range of natu-
ral language processing tasks, including semantic
search (Bonatti et al., 2019; Wang et al., 2020),
product recommendations (Xie et al., 2021), and
question-answering systems (Saxena et al., 2020).

1The source code and datasets are available at https://
github.com/CGCL-codes/SiMFy.

†Xuanhua Shi is the corresponding author.
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Figure 1: An illustration of TKG reasoning, showing
knowledge graphs at three distinct timestamps. Directed
edges represent relations, originating from the subject
entity and terminating at the object entity. Our objective
is to predict the object entity at the final timestamp.

However, traditional KGs struggle to effectively
handle facts that have temporal characteristics.
Therefore, Temporal Knowledge Graphs (TKGs)
have been introduced to tackle this challenge
(Wang et al., 2023), which incorporate a time di-
mension t and store facts as quadruples (s, r, o, t),
e.g., (Germany, negotiate, Russia, 2022-05).

However, in real-world scenarios, TKGs are of-
ten incomplete, highlighting the vital importance
of TKG reasoning, which aims to predict future
facts by utilizing the temporal information. As il-
lustrated in Figure 1, given the TKGs associated
with Entity A at the timestamps of Time I, Time II,
and Time III, our objective is to predict a quadruple
containing an unknown entity, i.e., (A, negotiate,
?, Time IV). To achieve this goal, we can observe
a significant structural dependency of facts along
the timeline. That is, interactions between Entity
A and Entity B at Time I could influence the in-
teraction patterns at Time II, which, in turn, might
provide clues for Time III. We also notice that his-
torical events may recur. For instance, Entity A and
Entity B had conflicts at both Time I and Time II
timestamps. These observations provide us valu-
able insights into TKG reasoning.

In the TKG reasoning task, events to be pre-
dicted can typically be classified into two main
types: historical events and unseen events (Han
et al., 2021). Historical events, also known as

https://github.com/CGCL-codes/SiMFy
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repetitive pattern, refer to facts that have already
occurred in the historical KG sequence. Unseen
events refer to events that have not occurred in
the historical KG sequence. Many methods (Jin
et al., 2020; Zhu et al., 2021) can predict historical
events effectively by modeling the historical KG
sequence auto-regressively. However, for unseen
events, it is necessary to consider both the infor-
mation of structural dependency and temporality
of entities and relations. Typically, existing works
(Liu et al., 2022; Li et al., 2022) apply Graph Neu-
ral Networks (GNNs) and Recurrent Neural Net-
works (RNNs) as encoders to capture the structural
and temporal information in the historical KG se-
quence. Then, a translational model, such as Conv-
TransE (Shang et al., 2019), is used as a decoder
to obtain predicted entities. Despite their effec-
tiveness, these approaches are conceptually and
technically complex due to their advanced model
architectures. Moreover, these complex methods
tend to suffer the issues of low training efficiency
and insufficient generalization ability.

In this paper, we aim to answer the following re-
search question: Are these complex model architec-
tures indispensable for temporal knowledge graph
reasoning? As a solution, we design a Simple
MLP-Frequency-based model (SiMFy) to evaluate
it against other complex baselines. Specifically,
we use a one-layer MLP to jointly model entities
and relations, capturing structural and temporal
information in TKGs. This allows us to obtain em-
bedding vectors for entities and relations, which
are then used to calculate the similarity between
queries and candidate entities, resulting in prelim-
inary candidate entity scores. Next, we calculate
the historical frequency scores of candidate entities
based on their historical KG sequences. Finally,
in the inference stage, the two scores mentioned
above are combined using a coefficient α to obtain
the final entity scores. Through extensive experi-
ments comparing it with existing state-of-the-art
models, we find that our model can achieve com-
parable performance while having higher training
efficiency and better generalization ability.

Furthermore, we conduct a series of empirical
studies to investigate the performance of SiMFy
and existing complex models under specific condi-
tions. We are the first to analyze the performance of
MLP and GNNs in capturing unseen entities. Our
findings indicate that MLP performs comparably
to GNN in capturing structural dependency infor-

mation for the TKG reasoning task. Furthermore,
we investigate the question of whether historical
frequency information should be incorporated into
the model training process, which has not been
explored before. Unlike the most current main-
stream methods which directly incorporate histori-
cal frequency information of entities during train-
ing, SiMFy utilizes conceptually simple features
to model the repetitive pattern of TKGs, which is
fixed in training. Through empirical experiments,
we validate the effectiveness of this fixed-frequency
strategy adopted by SiMFy.

The contributions of this paper are as follows.
• We design a simple MLP-based-only model,

called SiMFy, which achieves state-of-the-
art performance on four widely-used datasets
(i.e., ICEWS14, ICEWS18, ICEWS05-15,
and GDELT), demonstrating the effectiveness
of the simple model architecture.

• We have performed extensive experiments to
analyze the convergence speed, generalization
ability, and training consumption of SiMFy
and existing complex models. The empirical
evidence demonstrates that a simple model
architecture like SiMFy enjoys faster conver-
gence, better generalization ability, and higher
efficiency.

• The performance of SiMFy could motivate fu-
ture research to rethink the significance of the
simpler model architecture and the potential
value of MLP-based models in TKGs.

2 Related Work

Static KG Reasoning In static knowledge
graphs, inference is done to deduce unknown facts
from known ones. Existing approaches for in-
ference can be categorized into embedding-based,
tensor decomposition-based, and neural network-
based. Embedding-based methods, represented by
the classic method TransE (Bordes et al., 2013),
consider relations as translational transformations.
Later models like KG2E (He et al., 2015) opti-
mize the handling of diverse relations and improve
model scalability. Tensor decomposition methods
represent the graph as a tensor which is then decom-
posed. Models like RESCAL (Nickel et al., 2011)
use this to capture interactions between entities and
relations. As for the neural network models like
ConvE (Dettmers et al., 2018) and KG-BART (Liu
et al., 2021), ConvE enhances inference capabilities
through deep feature learning and leveraging graph
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Figure 2: Overall model architecture of SiMFy. Given a query (s, r, ?, t+∆t), the Similarity Matching module
learns the similarity score between the query and each candidate entity o, and the Historical Frequency Learning
module learns the historical frequency score between them, then the two scores are combined to generate the final
probability distribution of entities.

structures, and KG-BART utilizes pretrained lan-
guage models augmented with knowledge graphs
to not only enhance inference but also improve the
generation of commonsense-reasoned text.

Temporal KG Reasoning Temporal knowledge
graph inference, which takes into account the tem-
poral evolution of events, generally falls into two
categories: interpolation-based and extrapolation-
based inference. Interpolation-based inference
aims to guess unknown facts within a known
time range. TTransE (Jiang et al., 2016) inte-
grates temporal information into the TransE (Bor-
des et al., 2013) model using recursive neural net-
works, while HyTE (Dasgupta et al., 2018) de-
signs a unique hyperplane to embed time into the
entity-relation space. TeMP (Hu et al., 2022) ad-
dresses time sparsity and variability issues by com-
bining neural message passing and temporal dy-
namic methods.

On the other hand, extrapolation-based inference,
which forecasts unknown future facts, is garnering
increasing attention. RE-NET (Jin et al., 2020)
employs an encoder and aggregator to model past
facts, while HIP (He et al., 2021) utilizes tempo-
ral, structural, and repetitive information. xERTE
(Han et al., 2021) offers a novel framework for pre-
dicting future facts and CyGNet (Zhu et al., 2021)
introduces a creative copy-mechanism used in nat-
ural language generation tasks before. Reinforce-

ment learning is adopted by CluSTeR (Li et al.,
2021a), which infers answers from induced clues,
and TimeTraveler (Sun et al., 2021), which uses
historical knowledge graph snapshots for answer
search. CEN (Li et al., 2022) adopts a length-aware
convolutional network to model the KG sequence
dynamically and GHT (Sun et al., 2022) is the first
method to introduce a transformer into the TKG
reasoning task. Finally, DA-Net (Liu et al., 2022)
and CENET (Xu et al., 2023) propose unique event
prediction models. DA-Net learns distributed atten-
tion to future events, while CENET distinguishes
likely entities for a given query using a historical
contrastive learning framework.

3 Problem Formulation

3.1 Temporal Knowledge Graph

A Temporal Knowledge Graph (TKG) G is a se-
quence of KGs (G0, G1, . . . ,Gt) arranged in order
of their timestamp t. G = {E ,R}, where E stands
for the set of entities, and R for the set of relations.
Each Gt = {Et,Rt}, where Et ⊆ E and Rt ⊆ R
are the sets of entities and relations at timestamp t
respectively. In Gt, facts are represented as quadru-
ples (s, r, o, t), where s, o ∈ Et and r ∈ Rt.

3.2 TKG Reasoning

TKG reasoning seeks to forecast either the subject
entity s or the object entity o based on the historical



KG sequence {G0, G1, . . . ,Gt}. When presented
with a query of the form (?, r, o, t+∆t), the task
is to identify the subject entity s, while for a query
like (s, r, ?, t+∆t), the aim is to predict the object
entity o. We use E ∈ R|E|×d and R ∈ R|R|×d

to express the embeddings of all entities and all
relations respectively. Boldfaced s, r,o are used to
denote the embedding vectors of s, r, and o with
a dimension of d. In our work, we specifically
concentrate on the task of object entity prediction.

4 Our Approach

Here we elaborate our proposed Simple MLP-
Frequency-based model (SiMFy) for temporal
graph reasoning. As illustrated in Figure 2, SiMFy
mainly involves two modules: the Similarity
Matching module and the Historical Frequency
Learning module. These two modules generate
corresponding scores for candidate entities. After-
ward, a weight-based inference process is utilized
to determine the final result of the reasoning. In the
subsequent sections, we will provide a comprehen-
sive introduction to our proposed method.

4.1 Similarity Matching

Given a query q = (s, r, ?, t + ∆t), the Similar-
ity Matching module is implemented by one-layer-
MLP to calculate the similarity between q and each
candidate entity o to obtain the matching scores.
Specifically, it generates a latent context vector
Hs,r ∈ R|E| for query q, which scores the similar-
ity of different object entities with the query:

Hs,r = tanh (W [s, r] + b)ET (1)

where s ∈ E, r ∈ R, and [s, r] denotes the concate-
nation of s and r. We use one-layer-MLP to aggre-
gate the query’s information. Here, W ∈ Rd×2d

and b ∈ Rd are trainable parameters. tanh is the
activation function of the layer, then the layer’s out-
put is multiplied by E to obtain the final similarity
vector, where each element represents the similarity
score between the corresponding entity o ∈ E and
the query q. The learning objective of the similarity
matching is to minimize the NCE loss (Gutmann
and Hyvärinen, 2010) L, as described below:

L = −
∑
q

log
exp (Hs,r (oi))∑

oj∈E exp (Hs,r (oj))
(2)

where oi is the ground truth object entity corre-
sponding to the given query q. Finally, we obtain

the following similarity score by utilizing the soft-
max function:

S
(s,r)
sim = softmax(Hs,r) (3)

4.2 Historical Frequency Learning

Given a query q = (s, r, ?, t+∆t) and the histor-
ical KG sequence {G0, G1, . . . ,Gt}, the Historical
Frequency Learning module aims to obtain the his-
torical frequency scores. Specifically, for every
timestamp t′ ≤ t, we first investigate the frequen-
cies of historical entities f (s,r)

t′ ∈ R|E| , as follows:

f
(s,r)
t′ (o) =

∑
x∈Gt′

I[x = (s, r, o, t′)] (4)

where I[·] is an indicator function, yielding 1 if
[·] is true and 0 otherwise. Then we add up the
frequency information of all timestamps t′ ≤ t to
obtain the historical frequency information of the
query as follows:

F
(s,r)
t+∆t = f

(s,r)
0 + f

(s,r)
1 + · · ·+ f

(s,r)
t (5)

where F
(s,r)
t+∆t ∈ R|E| is an |E|-dimensional vector

where each element represents the corresponding
historical frequency of the candidate object enti-
ties. Finally, we obtain the following historical
frequency score by utilizing the softmax function:

S
(s,r)
freq = softmax(k · F(s,r)

t+∆t) (6)

where k is a hyperparameter to balance the ex-
tremely small values.

4.3 Inference

In the inference stage, a coefficient α ∈ [0, 1] is
integrated to balance the weight between the simi-
larity score S(s,r)

sim and the historical frequency score
S
(s,r)
freq . These two scores are merged to determine

the final probability distribution of candidate en-
tities, then the model chooses the object with the
highest probability as the final prediction, as de-
fined below:

P(o|s, r, t+∆t) = α·S(s,r)
sim (o)+(1−α)·S(s,r)

freq (o)

ot+∆t = argmaxo∈EP(o|s, r, t+∆t) (7)

where P(o|s, r, t+∆t) is an |E|-dimensional vec-
tor which stores the final probability of all entities.



Table 1: Experimental results of the entity prediction task (raw metrics) on ICEWS14, ICEWS18, ICEWS05-15,
and GDELT datasets. The best results are boldfaced and the ones of second-best are underlined.

Model
ICEWS14 (raw) ICEWS18 (raw) ICEWS05-15 (raw) GDELT (raw)

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

RotatE 25.71 16.41 29.01 45.16 14.53 6.47 15.78 31.86 19.01 10.42 21.35 36.92 3.62 0.52 2.26 8.37

ConvE 30.30 21.30 34.42 47.89 22.81 13.63 25.83 41.43 31.40 21.56 35.70 50.96 18.37 11.29 19.36 32.13

Conv-TransE 31.50 22.46 34.98 50.03 23.22 14.26 26.13 41.34 30.28 20.79 33.80 49.95 19.07 11.85 20.32 33.14

R-GCN 28.03 19.42 31.95 44.83 15.05 8.13 16.49 29.00 27.13 18.83 30.41 43.16 12.17 7.40 12.37 20.63

TTransE 12.86 3.14 15.72 33.65 8.44 1.85 8.95 22.38 16.53 5.51 20.77 39.26 5.53 0.46 4.97 15.37

HyTE 16.78 2.13 24.84 43.94 7.41 3.10 7.33 16.01 16.05 6.53 20.20 34.72 6.69 0.01 7.57 19.06

TA-DistMult 26.22 16.83 29.72 45.23 16.42 8.60 18.13 32.51 27.51 17.57 31.46 47.32 10.34 4.44 10.44 21.63

xERTE 32.23 24.29 36.41 48.76 27.98 19.26 32.43 46.00 38.07 28.45 43.92 57.62 - - - -

RE-NET 35.77 25.99 40.10 54.87 26.17 16.43 29.89 44.37 36.86 26.24 41.85 57.60 19.60 12.03 20.56 33.89

CyGNet 35.06 25.78 39.00 53.42 24.80 15.37 28.29 43.46 36.24 25.65 41.54 56.26 17.99 11.10 19.03 31.26

CENET 36.36 27.32 40.02 54.39 26.43 17.57 29.44 44.12 38.74 28.57 43.39 58.37 - - - -

GHT 37.40 27.77 41.66 56.19 27.40 18.08 30.76 45.76 41.50 30.79 46.85 62.73 20.04 12.68 21.37 34.42

CEN 36.32 26.83 40.20 54.93 26.70 17.34 30.33 44.84 36.66 26.27 41.04 57.12 19.27 11.96 20.60 33.50

RE-GCN 37.58 27.49 41.92 57.69 27.93 18.18 31.63 47.07 37.79 26.86 42.91 58.93 19.07 12.16 20.20 32.39

SiMFy 39.54 29.56 44.56 59.18 28.65 18.99 32.45 47.62 41.83 31.30 47.02 62.11 21.33 13.38 23.16 36.87

5 Experiments

5.1 Experimental Setup

Dataset During the evaluation, we adopt four
publicly available TKG datasets: ICEWS14 (Li
et al., 2021b), ICEWS05-15 (García-Durán et al.,
2018), ICEWS18 (Jin et al., 2020), and GDELT
(Leetaru and Schrodt, 2013). The first three
datasets which originate from the Integrated Cri-
sis Early Warning System (Boschee et al., 2015)
(ICEWS) comprise a diverse range of political
facts accompanied by time annotations, such as
(European Union, Praise or endorse, Kosovo,
2018/09/29). Global Database of Events, Lan-
guage, and Tone (GDELT) is a much larger dataset
that records data every 15 minutes. Following the
dataset split strategy proposed by (Jin et al., 2020),
we divide these datasets into training, validation,
and test sets, adhering to an 80%, 10%, and 10%
proportion by timestamps.

Evaluation Metrics We evaluate our approach
to the task of entity prediction, where the objective
is to predict the absent object entity for a given
entity-relation pair, assessing whether the ground
truth entity ranks higher than other entities. We
present the results in terms of Hits@1/3/10 and
Mean Reciprocal Rank (MRR).

During the evaluation stage, two settings are
commonly employed: filtered setting and raw set-
ting. In terms of the filtered setting, for each query,
we treat all triples absent from the training, vali-
dation, and test sets to be negative samples. This
implies that, when computing rankings, we disre-
gard all triples known to be true.

In contrast, the raw setting does not involve fil-

tering any triples, meaning that all possible triples
are considered when calculating rankings. In the
context of TKG reasoning task, each quadruple
(s, r, o, t) is unique due to the inclusion of time-
stamp information. This suggests that the filtered
setting holds little practical relevance when evalu-
ating model performance. Therefore, we adopt the
raw setting for our experiments.

Baselines We assess how well our SiMFy model
performs in comparison to three other types of
previously proposed models: (1) Static reasoning
methods, including RotatE (Sun et al., 2019), Conv-
TransE (Shang et al., 2019), ConvE (Dettmers et al.,
2018), and R-GCN (Schlichtkrull et al., 2018).
(2) Dynamic interpolated reasoning methods, in-
cluding TTransE (Jiang et al., 2016), HyTE (Das-
gupta et al., 2018), and TA-DistMult (García-Durán
et al., 2018). (3) Dynamic extrapolated reason-
ing methods, including xERTE (Han et al., 2021),
RE-NET (Jin et al., 2020), CyGNet (Zhu et al.,
2021), CENET (Xu et al., 2023), GHT (Sun et al.,
2022), CEN (Li et al., 2022) and RE-GCN (Li et al.,
2021b).

5.2 Implementation Details
For the baselines of CyGNet, CENET, CEN, and
RE-GCN, we rerun these models using their open-
source code on four datasets with their default pa-
rameter settings. Since the code of GHT is not
open-source, we provide the findings from their
publication. It should be noted that we utilize the
offline version of CEN to ensure fairness. Some
results of static and dynamic interpolated reasoning
approaches are adopted from (Li et al., 2021b).

We implement our SiMFy model using PyTorch.



Table 2: Ablation study of SiMFy on ICEWS14

Model MRR Hits@1 Hits@3 Hits@10

SiMFy 39.54 29.56 44.56 59.18
SiMFy w.o. HF 35.97 26.03 40.85 55.39

SiMFy w.o. SM 31.18 24.07 34.51 44.34

The dimension of entity and relation embeddings
is set to 200. We use Adam (Kingma and Ba, 2015)
as the optimizer, with a learning rate of 0.001 and a
weight decay of 0.00001. The hyperparameter k is
set to 2 and the α is set to 0.001. The batch size is
set to 1024 and the training epoch is limited to 30.
All experiments were conducted on a Tesla V100.

5.3 Model Results

Table 1 shows the experimental results of SiMFy
compared with other baselines on four datasets.
It is clear that SiMFy performs better than other
baselines in most cases. For static reasoning meth-
ods, their results are very poor because they do
not consider temporal information. Dynamic in-
terpolated reasoning methods like TTransE only
encode time information without considering the
evolution of temporal KG sequences, so they can-
not achieve good results. It is worth noting that
for GCN-based models CEN and RE-GCN, as well
as the models most pertinent to our model, RE-
NET, CyGNet, and CENET, SiMFy outperforms
them. This demonstrates the effectiveness of sim-
ple models based on MLPs and shows that MLPs
can to some extent replace GCNs. Please refer to
Section 6.3 for a more in-depth analysis.

5.4 Ablation Study

We perform ablation experiments on the ICEWS14
dataset to better understand the impact of each
SiMFy module, and the results are displayed in
Table 2. SiMFy w.o. HF refers to SiMFy without
the Historical Frequency Learning module, while
SiMFy w.o. SM represents SiMFy without the
Similarity Matching module. It can be observed
that SiMFy w.o. HF performs better than SiMFy
w.o. SM. This is because the Similarity Matching
module captures many unseen events in the TKGs,
which also demonstrates the ability of MLP in un-
derstanding the structural dependencies of events.
Therefore, SiMFy w.o. SM, which only considers
historical repetitive patterns, results in a significant
drop of 21.1% and 25.1% in terms of MRR and
Hits@10 respectively compared to SiMFy. Despite

having some capability to handle historical events,
SiMFy w.o. HF also experiences a drop of 9% in
performance, which further confirms the effective-
ness of the Historical Frequency Learning module.

5.5 Case Study

To further illustrate 1) SiMFy’s ability to predict un-
seen entities by capturing the structural dependency
information of KGs, and 2) SiMFy’s ability to pre-
dict repetitive events using historical frequency, we
present two cases in the ICEWS18 dataset.
• In the first case, the query is (Dharamvira

Gandhi, Criticize or denounce, ?, t), and the
correct objective entity is Government (India).
However, upon investigating the historical KG
sequence of this query, we find that the triple
(Dharamvira Gandhi, Criticize or denounce,
Government (India)) has not occurred before.
This indicates that there is no repetitive pattern
for the quadruple (Dharamvira Gandhi, Criticize
or denounce, Government (India), t), making it
an unseen event with Government (India) as the
corresponding unseen entity. Nevertheless, due
to SiMFy’s extraction of structural dependency
information from the historical KG sequence, we
find that the candidate entity Government (India)
appears as the top first in the ranking list gener-
ated by the model. This indicates that SiMFy has
successfully captured the correct unseen entity,
despite its absence in the historical KGs.

• In the second case, the query is (Zdravko Maric,
Make statement, ?, t), and the correct objective
entity is Government (Croatia). By analyzing the
historical KG sequence of this query, we find that
the triple (Zdravko Maric, Make statement, Gov-
ernment (Croatia)) has the highest frequency of
occurrence, significantly surpassing other cases.
SiMFy, utilizing the learned historical frequency
information, recognizes this repetitive pattern
and memorizes it. As a result, in the final ranking
list generated by the model, the correct answer
Government (Croatia) occupies the top position.
This aligns with our real-world understanding
that Zdravko Maric served as the Minister of Fi-
nance in the Croatian government, making state-
ments on behalf of the government frequently.

6 More Empirical Results and Analysis

Here, we show more empirical results and analysis
to reveal the strengths of our proposed SiMFy.



Table 3: The comparison results of the MLP and GCN-based models’ ability to predict unseen events

Model
ICEWS14 unseen ICEWS18 unseen ICEWS05-15 unseen

MRR Hits@3 Hits@10 MRR Hits@3 Hits@10 MRR Hits@3 Hits@10

RGCN+ConvTransE 13.90 14.92 26.60 11.15 11.54 21.90 12.56 13.34 25.03

RGCN+MLP 14.10 15.03 26.90 10.70 11.03 20.86 13.21 13.95 25.86

MLP 15.53 17.01 30.97 11.28 11.59 22.91 14.00 15.06 27.65
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Figure 3: Time consumption of different models

6.1 Convergence Speed and Generalization

To gain a deeper understanding of the model’s per-
formance, we will closely examine the dynamics of
both training MRR and evaluation MRR. Follow-
ing (Cong et al., 2023), we will also discuss the im-
portant generalization gap (the absolute difference
between the MRR scores obtained during training
and evaluation) of different models. In addition
to SiMFy, we also use four existing complex base-
line models, including CyGNet, RE-GCN, CENET,
and CEN, which are most relevant to our work, as
experimental comparisons. Moreover, based on
RGCN, we also reconstruct two new GCN-based
models as our comparative baselines. The first one
is RGCN+ConvTransE, where ConvTransE (Shang
et al., 2019) is used as the decoder. The second
one is RGCN+MLP, using MLP as the decoder.
Figure 4 illustrates the efficacy of the models on
the most representative ICEWS05-15 dataset, from
which the following conclusions can be drawn:
• As the slope change of the training MRR curve

can reflect the convergence speed of the model
(i.e., a slope close to 0 indicates model conver-
gence), we can see that our model always con-
verges after several epochs, indicating a very fast
convergence speed.

• After each epoch, we save separate models and

evaluate their performance on the test set. Fig-
ure 4b illustrates that our model not only achieves
the highest MRR but also maintains stability and
smoothness in the curve after several epochs. In
contrast, the MRR curves of other baselines show
varying degrees of oscillation.

• The generalization ability of a model refers to its
performance on unseen data, that is, the adapt-
ability of the model to new data. Therefore,
the smaller the generalization gap, the better the
model’s generalization ability. As shown in Fig-
ure 4c, our model has the smallest generalization
gap, showing its strong generalization ability.

• Combining these three figures, we can also ob-
serve an interesting phenomenon. Models based
on GCN, represented by CEN (Li et al., 2022),
even if their performance on the test set fails to
enhance after numerous epochs, their MRR on
the training set keeps rising. This means that
these GCN-based models have overfitting prob-
lems, which is also reflected in the increasing
generalization gap.

6.2 Low Time Consumption

Compared to other complex models, SiMFy has
much lower training time consumption because
the model parameter numbers of SiMFy are much
smaller. This could be attributed to the concise
and effective model structure of SiMFy. Taking
the typical GCN-based method as an example, our
SiMFy is simply composed of an MLP layer that
maps the input embedding to the output embedding.
The GCN-based models also perform the multi-
step propagation operation, which will significantly
increase the model parameters, especially when the
depth of the GCN is increased.

For the ICEWS14, ICEWS18, and ICEWS05-15
benchmarks, we calculate the average training time
consumption of our model SiMFy and other base-
lines over 30 epochs. As shown in Figure 3, the
time cost is highest for the ICEWS05-15 dataset,
followed by the ICEWS18 dataset, and the lowest
for the ICEWS14 dataset. However, on all three



0 5 10 15 20 25 30
Epochs

0.40

0.45

0.50

0.55

0.60
Tr

ai
n 

M
R

R

SiMFy
RGCN+ConvTransE
RGCN+MLP
CyGNet
RE-GCN
CENET
CEN

(a) Comparison on training MRR

0 5 10 15 20 25 30
Epochs

0.250

0.275

0.300

0.325

0.350

0.375

0.400

0.425

Te
st

 M
R

R

SiMFy
RGCN+ConvTransE
RGCN+MLP
CyGNet
RE-GCN
CENET
CEN

(b) Comparison on test MRR

0 5 10 15 20 25 30
Epochs

0.05

0.10

0.15

0.20

0.25

G
en

er
al

iz
at

io
n 

G
ap

SiMFy
RGCN+ConvTransE
RGCN+MLP
CyGNet
RE-GCN
CENET
CEN

(c) Comparison on generalization gap

Figure 4: Comparison on the training MRR, test MRR, and generalization gap for the 30 training epochs on
ICEWS05-15. Results on other ICEWS datasets can be found in Appendix A.4.

datasets, SiMFy exhibits the lowest time consump-
tion compared to other baselines during the train-
ing process, making it more efficient and greatly
improving resource utilization. Furthermore, we
can observe that the training time consumption
of SiMFy does not exhibit significant fluctuations
across different datasets.

6.3 Ability to Capture Unseen Events
To predict the unseen events that do not appear in
the historical KG sequence, a natural idea is us-
ing the historical evolutionary information of other
events that interact with them, which is also known
as the event structure dependency information. The
mainstream view is that GCN can better capture
this structural dependence, interestingly, we find
that MLP and GCN have similar abilities to capture
unseen events. Therefore, given the high training
cost of GCN, we doubt whether it is necessary to
apply it to TKG reasoning task. We collect all un-
seen events from the test set for the three ICEWS
datasets, as indicated in Table 3, and then we eval-
uate the MLP module and the GCN, respectively.
The results indicate that the performance of MLP
is even slightly superior to that of GCN, which
also validates the effectiveness of our MLP-based
model.

Table 4: Comparative experiments of frequency on
ICEWS14

Model MRR Hits@1 Hits@3 Hits@10

MLP-F.F. 39.54 29.56 44.56 59.18
MLP-ONLY 35.97 26.03 40.85 55.39

MLP-COPY 35.96 26.54 40.20 54.02

6.4 Fixed Frequency in Training
SiMFy utilizes the historical frequency informa-
tion of events only during the inference stage
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Figure 5: Training time in first 10 epochs

(fixed-frequency in training). However, many ex-
isting state-of-the-art methods, like CENET and
CyGNet, combine event embeddings with histori-
cal frequency during the training process and iter-
atively update the model parameters. To validate
which approach is more beneficial for the TKG
reasoning task, we conduct comparative experi-
ments on the ICEWS14 dataset by adopting the
copy-mechanism-based learning strategy used in
CyGNet and CENET. The results can be found in
Table 4, MLP-ONLY consists of only the MLP
module, MLP-F.F. adopts the fixed-frequency strat-
egy during training, and MLP-COPY represents
the model that incorporates the copy mechanism. It
can be observed that MLP-F.F. outperforms MLP-
COPY significantly, while MLP-COPY performs
even slightly worse than the original MLP-ONLY.
This suggests that MLP-COPY fails to effectively
incorporate historical frequency information during
the training process. Furthermore, by considering
Figure 5, we can observe that MLP-COPY not only
fails to enhance the model performance, but also
significantly prolongs the training time for each
epoch. This indirectly confirms the superiority of
the fixed-frequency strategy adopted by SiMFy.



6.5 Discussion on the Depth of MLP

SiMFy uses a simple one-layer MLP to draw the
final prediction. We also want to figure out whether
the performance of the model will improve or
worsen when the one-layer MLP is replaced with
some deeper or more complicated neural structure.
To answer this question, we conduct experiments to
replace the one-layer MLP with deeper ones. The
experimental results on the ICEWS14 dataset are
presented in Table 5. From this table, we can see
that as the structure of the model becomes more
complex, its performance has hardly changed. This
is because the complex model structure, while in-
creasing computational costs, does not better cap-
ture the evolving information of entities and rela-
tions.

Table 5: Comparative experiments on the depth of MLP
on ICEWS14

Model MRR Hits@1 Hits@3 Hits@10

SiMFy-1MLP 39.54 29.56 44.56 59.18
SiMFy-2MLP 39.49 29.74 43.97 58.58

SiMFy-3MLP 39.29 29.74 43.46 58.20

SiMFy-RNN+MLP 39.27 29.45 43.89 58.36

7 Conclusion

In this paper, we have proposed a new model, called
SiMFy, for the TKG reasoning task. SiMFy is a
conceptually straightforward method that simply
combines MLP and historical frequency to model
the temporal events in the TKGs. The experimental
results demonstrate that SiMFy not only outper-
forms many existing complex methods but also
exhibits faster convergence speed and better gener-
alization ability. Our findings suggest that a well-
designed MLP-based model, such as SiMFy, can ef-
fectively address the limitations faced by complex
architectures, making it a practical and efficient
solution for the TKG reasoning task.

Limitations

One limitation of this paper is that no in-depth ex-
ploration of the potential mutual influence between
historical events and unseen events is considered,
which means that events that have been repeatedly
happening in the sequence of historical KGs may
not happen in the future, and instead, new unseen
events will take place. Another limitation lies in
that the time span for calculating the frequency of

historical events is too long, and a more precise
time window is needed to better capture the long-
and short-term evolutionary patterns of events.
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A Appendix

A.1 Results with Filtered Metrics
Table 6 provides the experimental results (with fil-
tered metrics) of SiMFy compared with other base-
lines on ICEWS14, ICEWS18, ICEWS05-15, and
GDELT datasets.

A.2 Statistics of Datasets
The detailed statistics of the ICEWS14, ICEWS18,
ICEWS05-15, and GDELT datasets are presented
in Table 7.

A.3 Proportion of Unseen Events
We conduct a statistical analysis on the proportion
of unseen events in the test set of the ICEWS14,
ICEWS18, ICEWS05-15, and GDELT datasets.
The results are presented in Table 8.

A.4 Supplementary Figures on Convergence
Speed and Generalization

We provide the missing figures on the ICEWS14
and ICEWS18 datasets to supplement the Sec-
tion 6.1. The results on ICEWS14 are shown in
Figure 6 and the results on ICEWS18 are shown in
Figure 7.



Table 6: Experimental results of the entity prediction task (filtered metrics) on ICEWS14, ICEWS18, ICEWS05-15,
and GDELT datasets. The best results are boldfaced and the ones of the second-best ones are underlined.

Model
ICEWS14 (filtered) ICEWS18 (filtered) ICEWS05-15 (filtered) GDELT (filtered)

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

xERTE 40.79 32.70 45.67 57.30 29.31 21.03 33.51 46.48 46.62 37.84 52.31 63.92 - - - -

RE-NET 45.71 38.42 49.06 59.12 42.93 36.19 45.47 55.80 42.97 31.26 46.85 63.47 40.12 32.43 43.40 53.80

CyGNet 48.63 41.77 52.50 60.29 46.69 40.58 49.82 57.14 57.00 50.06 61.51 68.47 51.56 45.63 54.86 60.96
CENET 52.87 47.94 54.42 62.79 50.09 46.02 51.05 57.85 - - - - - - - -

CEN 37.34 28.04 41.09 55.76 28.21 19.10 31.80 45.89 37.53 27.57 41.49 57.51 19.71 12.47 20.98 33.82

RE-GCN 38.27 28.40 42.54 57.88 29.21 19.79 32.77 47.54 38.68 28.26 43.44 59.11 29.46 21.74 32.01 43.62

SiMFy 54.81 47.99 58.54 66.65 46.87 39.29 51.00 60.23 60.76 53.43 65.62 72.94 47.40 40.17 50.81 60.46

Table 7: Statistics of the datasets

Dataset Entities Relations Train Valid Test Timestamp Granularity

ICEWS14 7128 230 74845 8514 7371 365 24 hours

ICEWS18 23033 256 373018 45995 49545 304 24 hours

ICEWS05-15 10488 251 368868 46302 46159 4017 24 hours

GDELT 7691 240 1734399 238765 305241 2751 15 minutes

Table 8: The proportion of unseen events

Dataset Test Unseen Events Repetitive Events Proportion of Unseen Events

ICEWS14 7371 3511 3860 47%

ICEWS18 49545 24560 24985 49%

ICEWS05-15 46159 14592 31567 31%

GDELT 305241 107062 198179 35%
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Figure 6: Comparison on the training MRR, test MRR, and generalization gap on ICEWS14
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Figure 7: Comparison on the training MRR, test MRR, and generalization gap on ICEWS18


