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ABSTRACT

Humans make two-hands interactions in a variety of ways. Learning prior distri-
butions of interactions between hands is critical for 1) generating new interacting
hands and 2) recovering plausible and accurate interacting hands. Unfortunately,
there have been no attempts to learn the prior distribution of interactions between
two hands. Due to the lack of prior distribution, previous 3D interacting hands
recovery methods often produce hands with physically implausible interactions,
such as severe collisions, and semantically meaningless interactions. We present
IHDiff, the first generative model for learning the prior distribution of interact-
ing hands. Motivated by the strong performance of recent diffusion models, we
learn the prior distributions using the diffusion process. For the reverse diffusion
process, we design a novel Transformer-based network, which effectively captures
correlations between joints of two hands using self- and cross-attention. We show-
case three applications of IHDiff including random sampling, conditional random
sampling, and fitting to observations. The code and pre-trained model will be
publicly available.

1 INTRODUCTION

Humans frequently engage in two-hand interactions when expressing emotions through hand ges-
tures and interacting with objects. The complicated articulations of hands and diverse patterns of
hand interactions make analyzing and understanding the interactions greatly challenging. Recent
introduction of large-scale 3D interacting hands datasets (Moon et al., 2020; 2022) motivated many
studies (Rong et al., 2021; Zhang et al., 2021; Li et al., 2022; Hampali et al., 2022; Di & Yu, 2022;
Fan et al., 2021; Kim et al., 2021; Meng et al., 2022; Moon, 2023), which aim to recover 3D inter-
acting hands from a single image.

Despite their great achievements, most of them have not tackled the problem of generating new 3D
interacting hands by modeling prior distributions of interacting hands. Most of the existing works
are based on a discriminative approach, which does not model a prior distribution of data. Some
works Wang et al. (2022); Zuo et al. (2023) are based on a conditional generative approach to learn
conditional distributions; however, theirs are conditioned on image features, which makes uncon-
ditional random sampling impossible. Such generation is greatly useful for creating animations of
virtual humans, which can be combined with recent advancements of generative artificial intelli-
gence (Ho et al., 2020; Song et al., 2021a; Song & Ermon, 2020; Song et al., 2021b; Rombach et al.,
2022).

In addition to the generation, modeling prior distributions is also critical for recovering 3D interact-
ing hands in the wild. For example, in most cases of the two-hand interactions, only partial hand
joints are visible, which makes predictions from existing 3D interacting hands regressors (Rong
et al., 2021; Zhang et al., 2021; Li et al., 2022; Hampali et al., 2022; Di & Yu, 2022; Fan et al.,
2021; Kim et al., 2021; Meng et al., 2022; Moon, 2023) suffer from implausible outputs, such as
collisions, and meaningless interactions without correct contact between two hands. The problem
becomes more severe when it comes to the in-the-wild case due to a domain gap between in-the-
lab training sets and in-the-wild testing sets. Usually, 3D annotations are available only for images
captured from a lab environment, such as InterHand2.6M (Moon et al., 2020) dataset, where those
images have very different appearances (e.g., background, color space, and illuminations) from
those of in-the-wild images. Due to such a large image appearance domain gap, simply training
existing methods on large-scale datasets (Moon et al., 2020) is not enough to make systems robust
to in-the-wild images. On the other hand, the prior distributions are not conditioned on any data
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Figure 1: Three applications of our IHDiff. Using learned prior distribution, IHDiff enables (a)
unconditional random sampling and (b) conditional sampling. In addition, (c) shows that predictions
from off-the-shelf regressors (Moon, 2023) can be projected to our learned prior distribution for
plausible 3D interacting hands. All three applications can be performed with a single IHDiff without
additionally training application-specific generative models.

including images, which can be useful to reduce the domain gap between in-the-lab and in-the-wild
environments. For example, physically implausible outputs of existing methods from in-the-wild
images can become plausible and have meaningful interactions by being projected to the learned
prior distributions.

We propose IHDiff, the first generative model to learn prior distributions of interactions between two
hands in the 3D space. IHDiff models the prior distribution following the diffusion-based generative
models (Ho et al., 2020; Song et al., 2021a; Song & Ermon, 2020; Song et al., 2021b; Rombach
et al., 2022) due to their powerful capabilities. After gradually making the data to noise by the
forward diffusion process, our IHDiff denoises the noised data to the original data using our novel
Transformer (Vaswani et al., 2017)-based network, which effectively captures the correlation be-
tween joints of two hands using the self- and cross-attention. Instead of predicting added noise for
the denoising like previous diffusion-based generative models (Ho et al., 2020; Song et al., 2021a;
Song & Ermon, 2020; Song et al., 2021b), we design IHDiff to predict the original clean sample.
Therefore, we can utilize various geometric losses, such as forward kinematics loss and collision
avoidance loss, to the denoised clean sample during the training.

We showcase three applications of our IHDiff. Please note that all three applications can be done
using a single IHDiff without any additional training. Fig. 1 shows examples of the three applica-
tions. First, we show that randomly sampled 3D interacting hands from our learned prior distribution
have physically plausible, semantically meaningful, and diverse interactions. Second, we show con-
ditional random sampling. For example, we generate a 3D left hand conditioned on the 3D right
hand. Finally, we show that our IHDiff is effective in recovering plausible interacting hands given
noisy and partially available observations, which could be used as post-processing of existing 3D
interacting hands recovery methods (Rong et al., 2021; Zhang et al., 2021; Li et al., 2022; Hampali
et al., 2022; Di & Yu, 2022; Fan et al., 2021; Kim et al., 2021; Meng et al., 2022; Moon, 2023).

2 RELATED WORKS

3D interacting hands recovery. Early works (Oikonomidis et al., 2012; Ballan et al., 2012; Tzionas
et al., 2016; Taylor et al., 2016; Mueller et al., 2019; Wang et al., 2020) are based on a fitting frame-
work, which fits 3D hand models to geometric observations, such as RGBD sequence (Oikonomidis
et al., 2012), hand segmentation map (Mueller et al., 2019), and dense matching map (Wang et al.,
2020). Recently, (Moon et al., 2020; 2022) presented the IH2.6M dataset, a large-scale and real-
captured dataset that contains multi-view images with 3D annotations of interacting hands. Mo-
tivated by IH2.6M, several regression-based methods (Rong et al., 2021; Zhang et al., 2021; Li
et al., 2022; Hampali et al., 2022; Di & Yu, 2022; Fan et al., 2021; Kim et al., 2021; Meng et al.,
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2022; Moon, 2023) have been proposed, which perform better than the early fitting-based meth-
ods. (Zhang et al., 2021) proposed a sequentially refining 3D interacting hand mesh estimation
system. (Li et al., 2022) proposed a Transformer-based network for accurate 3D interacting hand
reconstruction. (Wang et al., 2022; Zuo et al., 2023) introduced a conditional generative model
to learn conditional distributions, not prior distributions. However, as their condition is an image,
they cannot generalize well to in-the-wild images due to the large image appearance domain gap.
Moon (Moon, 2023) presented a 3D interacting hands recovery system that produces robust outputs
from in-the-wild images.

None of the above approaches consider prior distributions of interactions between two hands. Hence,
they often produce physically implausible interactions or semantically meaningless interactions be-
tween two hands, especially from in-the-wild images. In addition, they cannot be used for generating
new 3D interacting hands, which is critical for creating animations of virtual humans. Our IHDiff is
the first generative model that learns the prior distribution of interactions between two hands. Our
learned prior distribution can be used for 1) making outputs of existing recovery methods plausible
even for the in-the-wild case and 2) generating new 3D interacting hands.

Generative models for 3D humans. Early works modeled prior distributions of the 3D human body
pose with a Gaussian mixture model (GMM). Such GMM-based prior is used for downstream tasks,
such as 3D body pose fitting (Bogo et al., 2016). The principal component analysis is also widely
used to model human prior distributions (Ormoneit et al., 2000; Romero et al., 2017). With the rise
of deep learning, more sophisticated generative models have been introduced. VPoser (Pavlakos
et al., 2019) is a variational autoencoder (VAE)-based generative model, which models prior dis-
tributions of the human body pose space. (Zanfir et al., 2020; Kolotouros et al., 2021) use the
normalizing flow to recover 3D human body pose from a single image. (Davydov et al., 2022)
introduces adversarial pose prior of the 3D human body. Pose-NDF (Tiwari et al., 2022) is a neu-
ral distance fields-based generative model. It treats each posed human body as a single point in
the high-dimensional distance fields and learns the shortest distance from each point to the desired
manifolds. In addition to the above pose priors, many generative models for learning human motion
priors have been introduced. HuMoR (Rempe et al., 2021) models the prior distribution of human
body motion using a conditional VAE. ACTOR (Petrovich et al., 2021) is a conditional VAE-based
approach to generate a short-term 3D human motion from an action label. MultiAct (Lee et al.,
2023) extends ACTOR (Petrovich et al., 2021) by generating an infinite length of 3D human motion
from multiple action labels. NeMF (He et al., 2022) utilizes neural motion fields to generate 3D
human motions. MDM (Tevet et al., 2023) is a diffusion-based generative model, which can be
used for text-conditioned, action label-conditioned, or even unconditional 3D human body motion
generation. Most of the above generative models are for learning priors of 3D human body. On the
other hand, our IHDiff is the first generative model for learning priors of interaction between two
hands.

3 IHDIFF

IHDiff consists of forward diffusion and reverse diffusion processes. The forward diffusion process
takes the data X0 and gradually makes it to a Gaussian noise Xt following DDPM (Ho et al., 2020).
Then, the reverse diffusion process denoises the Gaussian noise to the original data X̂0.

3.1 FORWARD DIFFUSION

Inputs. We first prepare 1) 3D joint coordinates of the right hand JR ∈ RJ×3, 2) 3D joint coor-
dinates of the left hand JL ∈ RJ×3, 3) 3D joint angles of the right hand ΘR ∈ RJ×6, and 4) 3D
joint angles of the left hand ΘL ∈ RJ×6. The 3D coordinates include relative translation between
two hands, necessary to represent a status of two hands (e.g., contact between two hands). The 3D
joint angles are represented as a 6D rotational representation (Zhou et al., 2019). J = 21 denotes
the number of joints of a single hand. We normalize all inputs to the right hand-relative space by
canceling 3D global rotation and 3D global translation of the right hand. Then, the four items are
concatenated to a single matrix X0 ∈ R2J×9.
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Adding Gaussian noise. Following DDPM (Ho et al., 2020), we gradually make the original data
X0 to a Gaussian noise Xt like below.

Xt =
√
ᾱtX0 +

√
(1− ᾱt)ϵt, (1)

where t denotes the noising step and is uniformly sampled from [1, T ]. T = 1000 denotes the
maximum noising step. ᾱt = Πt

s=1αs is a scalar constant, and we pre-define βt = 1 − αt using
a cosine scheduler (Nichol & Dhariwal, 2021). ϵt is a random normal Gaussian noise, which has
the same dimension of X0. The forward diffusion process is not learnable, and it is performed with
pre-defined constants {αt}Tt=1.

3.2 REVERSE DIFFUSION
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Figure 2: The pipeline of the denoising net-
work f , used in the reverse diffusion process
of IHDiff.

Unlike the forward diffusion process, not a learnable
process, the reverse diffusion process is driven by a
learnable neural network. To this end, we design a
novel Transformer (Vaswani et al., 2017)-based net-
work f .

Novel Transformer-based denoising network f .
Fig. 2 shows the pipeline of the denoising network
f . It takes the noised data Xt and the noising step
t as inputs. Then, it outputs original data X̂0 like
below.

X̂0 = f(Xt, t). (2)
The noisy 3D coordinate and 6D rotation in Xt

from the same handedness are passed to a shared
linear layer to embed them from 3 + 6 dimension
to c = 256 dimension. We also embed the noising
step t to c-dimensional space by changing it to the
trigonometric positional encoding and passing it to
multi-layer perceptron (MLP) with SiLU activation
function (Elfwing et al., 2018). Then, the embedded noising step, 3D coordinates, and 6D rotations
of the same handedness are concatenated, which results in 1 + J tokens for each hand, where each
token is a c-dimensional vector.

After adding a learnable positional encoding, we first pass 1 + J tokens of each hand to separate
the self-attention (SA) Transformer to model dependencies between joints within each right and left
hand. To consider interactions between two hands, we pass the left hand outputs as queries and right
hand outputs as keys and values to a cross-attention (CA) Transformer, which results in left hand
tokens, enhanced by considering relationships to the right hand tokens. In the same manner, we
obtain right hand tokens, enhanced by the left hand tokens, with another CA Transformer. We found
that such CA Transformers are necessary to model interactions between two hands, which makes
our denoising network f distinctive from existing 3D human body modeling works Tevet et al.
(2023); Xin et al. (2023). Finally, we again pass tokens of each hand to separate the SA Transformer
to further enhance features based on information of the other hand, captured by the previous CA
Transformer.

After obtaining the final outputs, we discard an output from the noising step token. The remaining
outputs from the same handedness are passed to a shared linear layer to restore original data, which
produces X̂0. X̂0 is splitted to restored 1) 3D joint coordinates of the right hand ĴR, 2) 3D joint
coordinates of the left hand ĴL, 3) 3D joint angles of the right hand Θ̂R, and 4) 3D joint angles of
the left hand Θ̂L.

Shape parameter estimator. In addition to restoring the original input, we estimate both hands’
shape parameters of MANO hand model (Romero et al., 2017), denoted by γ̂R and γ̂L, from the re-
stored X̂0 using an MLP with two fully-connected layers and the ReLU activation function. Another
design choice is providing the MANO shape parameter as a conditional signal of the denoising net-
work f ; however, we found that our denoising network f tries to memorize the corresponding status
of interacting hands from the MANO shape parameter. To avoid such an undesired memorization,
we design a separate shape parameter estimator.
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Final outputs. We pass Θ̂R and γ̂R to the MANO layer to obtain 3D mesh of the right hand V̂ R.
Likewise, we pass Θ̂L and γ̂L to the MANO layer to obtain 3D mesh of the left hand V̂ L. V̂ R is
translated to have the same root joint (i.e., wrist) coordinate as ĴR. V̂ L is translated in the same way
using ĴL. The final translated V̂ R and V̂ L are the final output of the reverse diffusion process.

3.3 LOSS FUNCTIONS

We train the denoising network f by minimizing L, defined below.

L = LJ + LΘ + LV + Lγ + Lcol, (3)

LJ = ||JR − ĴR||1 + ||JL − ĴL||1, LΘ = ||ΘR − Θ̂R||1 + ||ΘL − Θ̂L||1, (4)

LV = ||V R − V̂ R||1 + ||V L − V̂ L||1, Lγ = ||γR − γ̂R||1 + ||γL − γ̂L||1, (5)

where V R and V L denote original 3D meshes of the right and left hands, respectively. We found
that LV effectively prevents 3D joint angles’ error accumulations along the kinematic chain. γR

and γL denote the original MANO shape parameters of the right and left hands, respectively. Lcol
is a collision avoidance loss, computed by shooting a ray from each mesh vertex and checking
the collision status and depth. Please refer to Sec. D for detailed descriptions of our Lcol. Ours
Lcol can prevent both collisions within each hand (i.e., self-collisions) and between hands (i.e.,
inter-collisions), while the widely used signed distance field (SDF)-based collision avoidance loss
function (Rong et al., 2021) can only handle the inter-collisions. We show that our Lcol is necessary
to generate collision-free interacting hands in the Sec. 5.2, which has not been considered in existing
3D human body modeling works Tevet et al. (2023); Xin et al. (2023).

4 APPLICATIONS

After training our reversing network f , our IHDiff can be used for various useful applications. Please
note that all below three applications can be performed with a single IHDiff without any additional
training.

Algorithm 1 Sampling

1: for n = N to 1 do
2: X̂0 ← f(Xn, n)

3: ϵn ← 1√
1−ᾱn

(Xn −
√
ᾱnX̂0)

4: Xn−1 ←
√
ᾱn−1X̂0+

√
1− ᾱn−1ϵn

5: end for
6: return X̂0

Algorithm 2 Fitting

1: for n = N to 1 do
2: X̂0 ← f(Xn, n)

3: ϵn ← 1√
1−ᾱn

(Xn −
√
ᾱnX̂0)

4: X ′
n−1 ←

√
ᾱn−1X̂0+

√
1− ᾱn−1ϵn

5: Xn−1 ←X ′
n−1 −∇Xn

g(X̂0,Y )
6: end for
7: return X̂0

4.1 RANDOM SAMPLING

To randomly sample 3D interacting hands from our learned prior distributions, we first initialize
XN as a random normal Gaussian matrix. Then, we use DDIM (Song et al., 2021a) to efficiently
restore 3D interacting hands from XN . Alg. 1 describes the sampling process. We use N steps for
the DDIM. Please note that the above random sampling is an unconditional random sampling.

4.2 CONDITIONAL RANDOM SAMPLING

For the conditional random sampling, we first initialize XN as a random normal Gaussian matrix.
Then, we follow Alg. 1 for the random sampling. The only difference from the unconditional random
sampling of Sec. 4.1 is that we simply overwrite a part of X̂0 with conditional data in Alg. 1 for
every iteration. In this way, we can encourage the sampling process to generate the remaining parts
by considering overwritten conditional data.
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(a) Randomly sampled hands using IHDiff (Ours) (b) Randomly sampled hands using the VAE baseline

Figure 3: Qualitative comparison between randomly generated samples from (a) our IHDiff and (b)
the VAE baseline.

4.3 FITTING TO OBSERVATIONS

We first initialize XN as a random normal Gaussian matrix. If regression results from off-the-shelf
regressors are available, we obtain XN by making the regression results to a Gaussian noise follow-
ing Eq. 1. Then, we fit XN to given observations to obtain 3D interacting hands corresponding to
the observations. There could be various types of observations, such as 2D hand joint coordinates,
3D hand joint coordinates, and 3D hand mesh vertices. Alg. 2 shows the fitting process, similar to
(Chung et al., 2023). Y and g in Alg. 2 denote the observations and a loss function for the fitting,
respectively.

5 EXPERIMENTS

5.1 EXPERIMENT PROTOCOLS

Datasets. We train our denoising network f on the training split of the 30 fps version of IH2.6M
dataset (Moon et al., 2020) and Re:InterHand Moon et al. (2023). Then, we test our IHDiff on the
test split of the IH2.6M dataset. To learn meaningful interaction between two hands, we use samples
only when the shortest distance between two-hands’ mesh vertices is shorter than 3 mm.

Baselines. As there is no generative model for 3D interacting hands, we implemented a VAE base-
line, which has a similar architecture of state-of-the-art unconditional 3D human motion gener-
ator (Xin et al., 2023; Petrovich et al., 2021), and compare it with our IHDiff. As the original
VAE-based network is for the 3D human body motion generation, we modified it to a 3D interacting
hand generator by changing its per-timestep tokens to per-joint tokens like our network f . We set the
dimension of the baseline’s learnable tokens to (7, 256) following (Xin et al., 2023). We found that
the above VAE baseline produces better samples than a V-Poser-style Pavlakos et al. (2019) VAE.
For more details on the VAE baseline and descriptions of other possible baselines (Tiwari et al.,
2022), please refer to Sec. E.1 and Sec. E.2, respectively.

Table 1: Quantitative compari-
son between the VAE baseline
and our IHDiff using randomly
sampled hands.

Methods APD
(mm)

Col.
(%)

VAE 28.44 3.71
IHDiff (wo. Lcol) 56.11 2.58

IHDiff (Ours) 56.23 1.70 Figure 4: User study with ran-
domly sampled hands from
the VAE baseline and IHDiff.

Figure 5: User study with GT
and randomly sampled hands
from our IHDiff.
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(a) Conditional right hand (b) Randomly sampled hands conditioned on (a)

view of (a) other view view of (a) other view view of (a) other view

view of (a) other view view of (a) other view view of (a) other view

view of (a) other view view of (a) other view view of (a) other view

Figure 6: Qualitative results of conditionally generated samples using our IHDiff.

5.2 RANDOM SAMPLING

Fig. 3 shows that randomly sampled 3D interacting hands from our IHDiff are much more realistic
and diverse than those from the VAE baseline. The random sampling is conducted following de-
scriptions of Sec. 4.1. Most of the samples from the VAE baseline suffer from severe collisions. In
addition, their interaction patterns are monotonous; for example, in most cases, the right hand has a
simple neutral pose, and the two hands face each other. On the other hand, samples from our IHDiff
suffer much less from collisions, while having diverse interaction patterns.

Tab. 1 shows that our IHDiff achieves higher average pairwise distance (APD), an average distance
between all pairs of generated 3D interacting hands’ meshes. This indicates that ours produces more
diverse samples. The table also shows that randomly sampled ones from IHDiff suffer less from the
collision. Interestingly, the table shows that without our collision avoidance loss Lcol, the ratio of
colliding vertices increases by about 52%, which shows the effectiveness of our Lcol. The numbers
in the table are computed from randomly sampled 512 3D interacting hands.

Finally, we conducted user studies to further qualitatively compare 1) VAE baseline and IHDiff in
Fig. 4 and 2) groundtruth (GT) from the IH2.6M dataset and IHDiff in Fig. 5. The user studies
clearly show the superiority of IHDiff over the VAE baseline. Interestingly, our IHDiff achieves
comparable results compared to GT. For each user study, we asked 16 questions to 33 users, where
each question shows two side-by-side videos. The videos include rendered 3D interacting hands
from rotating viewpoints of comparing methods. We let users select a video that contains more
realistic 3D interacting hands. We also provided ‘similarly good’ and ‘similarly bad’ options. Please
refer to Sec. F for more details and screenshots of our user study.

5.3 CONDITIONAL RANDOM SAMPLING

Fig. 6 shows conditional random sampling examples. As described in Sec. 4.2, we first randomly
generate 3D interacting hands. Then, we pick the right hand (Fig. 6 (a)) and use it as conditional
data for the conditional random sampling. Fig. 6 (b) shows that IHDiff is able to generate diverse
and semantically meaningful interactions although it is trained only in an unconditional generation
pipeline. Such a simple extension to conditional data generation is not possible for the VAE baseline
as it requires another conditional VAE to be trained.

5.4 FITTING TO OBSERVATIONS

In this subsection, we report three metrics: vertex error, ratio of colliding vertices, and contact
accuracy. The vertex error (the lower the better) is a Euclidean distance between recovered and
GT 3D meshes. The ratio of colliding vertices (the lower the better) is the ratio of vertices whose
collision depth is bigger than 3 mm. Finally, the contact accuracy (the higher the better) is the
ratio of correct contact among vertices that are annotated as contacting. Please note that we first
introduce and report the contact accuracy between two hands, which is greatly important to describe
interactions between two hands.
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Table 2: Quantitative comparison of nearest neighbor (NN) search, VAE baseline, and IHDiff on
various test sets. For each evaluation, the number indicates the vertex error (mm) / ratio of collision
(%) / contact accuracy (%).

Methods Test sets
Clean Jitter Swap Partial

NN search 20.97 / 1.04 / 10.92 22.89 / 1.40 / 11.02 23.32 / 0.98 / 10.69 28.66 / 1.12 / 9.71
VAE 16.79 / 1.50 / 9.17 19.11 / 1.54 / 7.01 20.42 / 1.68 / 9.08 19.30 / 1.49 / 7.99

IHDiff (SA only) 6.55 / 1.50 / 24.42 10.06 / 1.50 / 12.48 9.58 / 1.66 / 22.84 8.20 / 1.48 / 22.53
IHDiff (Ours) 6.13 / 1.44 / 30.67 8.38 / 1.51 / 15.19 7.13 / 1.58 / 28.05 6.41 / 1.43 / 27.94

Input image InterWild IHDiff (Ours) VAE Col. reg.

Figure 7: Qualitative comparison of the fittings on in-the-wild images.

Simulated noisy targets. Tab. 2 shows that our IHDiff achieves the lowest vertex errors and highest
contact accuracy on various types of test sets compared to the NN search and VAE baseline. It also
achieves a comparable collision metric compared to the NN search, which retrieves the nearest GT
samples. The ‘Clean’ test set is the IH2.6M test set without any noise. To check the robustness to
noisy fitting targets, we added three types of noise to the ‘Clean’ test set. The ‘Jitter’ test set is made
by adding a random Gaussian noise with a 10 mm standard deviation to the ‘Clean’ test set for all
joints. The ‘Swap’ test set is made by changing random two joints from the right and left hands. The
‘Partial‘ test set is made by removing four random joints of two hands. ‘Swap’ and ‘Partial’ simulate
wrong-fitting targets due to the self-similarity between two hands and occlusions, respectively. For
each test set, we applied exactly the same noise for all comparing methods to remove randomness.

The VAE baseline and IHDiff consistently achieve lower vertex error than the NN search (Johnson
et al., 2019), which searches nearest examples from 1) a training set of IH2.6M and 2) our newly
captured dataset. In particular, our IHDiff achieves better than half of the vertex errors for noisy
targets compared to the VAE baseline. The table additionally shows that IHDiff only with SA
performs much worse than our IHDiff, which consists of a combination of SA and CA. The variant
only with SA has SA Transformers that take all 1 + 2J tokens of two hands, which have a similar
number of parameters to our SA and CA Transformers, to capture intra- and inter-hand dependencies
at the same time. We think the variant only with SA could suffer from the undesired correlation
between left hand and right hand because it always computes the attention map from tokens of
both left and right hands. On the other hand, we design the separate SA Transformers for left
and right hands to effectively addresses the problem, which results in better locality of tokens and
generalizability to unseen data, while capturing the dependency between two hands with the CA
Transformer. Such results show the necessity of using a combination of SA and CA, which makes
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Table 3: Quantitative comparison of various methods on HIC dataset (Tzionas et al., 2016).

Methods Vertex error (mm. ↓) Collision (%. ↓) Contact (%. ↑)
InterWild 20.14 1.15 6.99

InterWild + Col. reg. 21.44 0.90 5.35
InterWild + VAE 59.88 3.87 3.38

InterWild + IHDiff (Ours) 20.89 0.86 12.89

ours distinctive from existing 3D human body modeling works Tevet et al. (2023); Xin et al. (2023),
which only rely on SA to model the 3D motion of a single person. Our high contact accuracy is also
noticeable as contact between two hands is one of the major factors in defining interaction patterns
between two hands. We consider a vertex to be contacting if the shortest distance from that vertex
to vertices of the other hand is smaller than 3 mm.

For all fittings, 3D joint coordinates are the fitting targets, and a distance between 1) target 3D joint
coordinates and 2) 3D joint coordinates from the mesh is minimized during the fitting. After the
fitting, the errors in the table are computed between output mesh vertices and GT mesh vertices after
aligning the translation of the right hand. For the VAE baseline and our IHDiff, we start the fitting
from latent samples, randomly initialized in normal Gaussian space. We followed Sec. 4.3 for the
fitting of IHDiff. Please refer to Sec. B.1 for detailed descriptions of the fitting.

Real-world noisy targets. Fig. 7 shows that our IHDiff produces plausible 3D interacting hands
from challenging in-the-wild images, while all comparing methods fail to. The images are newly
captured with iPhone 13 from an indoor environment for this experiment. The results of Inter-
Wild (Moon, 2023) are its regressor’s outputs from the input images. We used InterWild as it 1)
is a state-of-the-art regressor and 2) can detect hand boxes, while most of the other regressors do
not work robustly on in-the-wild images and assume GT hand boxes. The results of the IHDiff and
VAE baseline are obtained by fitting their latent samples to the output of InterWild. The initial latent
sample of IHDiff is obtained by Eq. 1 using InterWild’s outputs, and that of the VAE baseline is
obtained by forwarding InterWild’s output to its encoder. We followed Sec. 4.3 for the fitting of
IHDiff. The results of Col. reg. are obtained by optimizing InterWild’s outputs with collision avoid-
ance regularizer while keeping them from being too far from InterWild’s outputs, similar to (Rong
et al., 2021).

Tab. 3 shows that combining our IHDiff with InterWild (Moon, 2023) produces the comparable
vertex error, the lowest ratio of colliding vertices, and the highest contact accuracy on the HIC
dataset (Tzionas et al., 2016). Please note that high contact accuracy is hard to achieve for InterWild
and Col. reg. as they do not consider distributions of semantically meaningful interactions between
two hands, where contact is a critical factor for such interaction semantics. For example, Fig. 7
shows that Col. reg. naively moves geometry to resolve the collisions without considering semantics
of the hand interactions. We used samples from the HIC dataset only if the minimum distance
between two-hand meshes is smaller than 3 mm. We found that as images of IH2.6M have similar
appearances, existing regressors, trained on IH2.6M, are robust to IH2.6M’s test set. Instead, we test
the regressor on the HIC dataset as it contains indoor images, closer to the in-the-wild environment.
Please refer to Sec. B.2 for detailed descriptions of the fitting.

6 CONCLUSION

Summary. We present IHDiff, the first generative model to learn prior distributions of the inter-
action between two hands. It is based on diffusion models, and for effective reverse diffusion, we
introduce a novel Transformer (Vaswani et al., 2017)-based denoising network. We showcase three
applications, including random sampling, conditional random sampling, and fitting.

Limitations and future works. IHDiff only considers kinematic-level interactions without elastic-
ity. Therefore, there could be small collisions between hand meshes. Also, IHDiff does not model
non-contacting two-hand interactions. Future work should incorporate our IHDiff with a neural
network-based regressor for real-time 3D interacting hands recovery from a single image while en-
joying our learned prior distributions.
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A QUALITATIVE RESULTS

A.1 RANDOM SAMPLING

Fig. 8 shows that our IHDiff generates diverse and realistic 3D interacting hands.

A.2 CONDITIONAL RANDOM SAMPLING

Fig. 9 shows conditionally generated samples with conditional right hands (top two rows) and con-
ditional left hands (bottom two rows). For the bottom two rows, in addition to the 3D pose of the
left hand, 3D relative rotation and translation between the right and left hands are also included in
the conditional left hand. Hence, all samples of each row from the bottom two rows have the same
3D relative rotation and translation between the two hands.

A.3 FITTING TO OBSERVATIONS

Simulated noisy targets. Fig. 10 and 11 show that our IHDiff is robust to the ‘Swap’ and ‘Partial’
noise, respectively.

Real-world noisy targets. Fig. 12 shows that our IHDiff is greatly useful to obtain plausible 3D
interacting hands from noisy estimations from off-the-shelf regressors Moon (2023). It is interesting
that in addition to simply resolving colliding hands, our IHDiff produces plausible or semantically
meaningful 3D interacting hands, as shown in the third row of the figure.

B FITTING

Sec. 5.4 shows two fitting scenarios. We provide details of each fitting scenario.
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Figure 8: Qualitative results of randomly generated samples using our IHDiff.

view of (a) other view view of (a) other view view of (a) other view

view of (a) other view view of (a) other view view of (a) other view

view of (a) other view view of (a) other view view of (a) other view

(a) Condition (b) Randomly sampled hands conditioned on (a)

Figure 9: Qualitative results of conditionally generated samples using our IHDiff.

B.1 SIMULATED NOISY TARGETS.

IHDiff. We use a weighted L1 distance as a loss function g in Alg. 2. The weight of the L1 distance
is set to 1000. For the best fitting result, we set the sampling iteration of DDIM N to 1000. The
update step is initially set to 1 and is decreased to 0.1 after 750 sampling iterations.

VAE. We use exactly the same weighted loss function of IHDiff for the VAE fitting. The fitting
iteration is set to 1000. The update step is initially set to 0.01 and is decreased to 0.001 after 750
sampling iterations. We found that a high update step like 1 of IHDiff works badly for the VAE.
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+ Swap noise
R_Index_3 ↔ L_Index_3 
R_Index_4 ↔ L_Index_4

(a) Fitting targets with noise (b) GT (c) Fitting of VAE (d) Fitting of ours 

+ Swap noise
R_Thumb_3 ↔ L_Thumb_3 

R_Pinky_4 ↔ L_Pinky_4

Figure 10: Qualitative comparison of the (b) GT, (c) fitting of the VAE baseline, and (d) fitting of
our IHDiff. Fitting targets of (a) are made by corrupting GT 3D joint coordinates in the figure with a
swap noise. It changes the coordinates of two joints. For example, ‘R Index 3↔ L Index 3’ means
changing the right and left hands’ third joints in the index finger. For all fingers, the direction from
the first joint to the fourth joint starts from the finger root to the fingertip.

+ Partial noise
- L_Index_3 

- L_Middle_3
- L_Ring_3
- L_Pinky_4

+ Partial noise
- R_Index_3 

- R_Middle_4
- R_Pinky_3
- L_Pinky_4

(a) Fitting targets with noise (b) GT (c) Fitting of VAE (d) Fitting of ours 

Figure 11: Qualitative comparison of the (b) GT, (c) fitting of the VAE baseline, and (d) fitting of
our IHDiff. Fitting targets of (a) are made by corrupting GT 3D joint coordinates in the figure with a
swap noise. It changes the coordinates of two joints. For example, ‘R Index 3↔ L Index 3’ means
changing the right and left hands’ third joints in the index finger. For all fingers, the direction from
the first joint to the fourth joint starts from the finger root to the fingertip.

B.2 REAL-WORLD NOISY TARGETS.

IHDiff. The loss function g in Alg. 2 is a weighted sum of three loss functions. First, L1 distance
between meshes from InterWild and the denoising network f . Second, L1 distance between the
3D pose from InterWild and the denoising network f . Finally, L1 distance between 2D hand joint
coordinates from InterWild and the denoising network f . In addition to the latent sample from the
learned prior distribution, we additionally optimize 3D global rotation and 3D global translation of
the right hand as the right hand from IHDiff has normalized 3D global rotation and translation. To
project the output of the denoising network f to the 2D space, we additionally optimize orthogonal
camera parameters. For the best fitting result, we set the sampling iteration of DDIM N to 1000.
The update step of the latent samples is initially set to 10 and is decreased to 1 after 750 sampling
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Input image InterWild IHDiff (Ours) VAE Col. reg.

Figure 12: Qualitative comparison of the fittings on in-the-wild images.

iterations. On the other hand, the update step of the 3D global rotation, 3D global translation, and
orthogonal camera parameters is initially set to 0.01 and is decreased to 0.001 after 750 sampling
iterations.

VAE. We used exactly the same weighted loss functions as IHDiff. Like the fitting of IHDiff, 3D
global rotation, 3D global translation, and orthogonal camera parameters are additionally optimized.
The fitting iteration is set to 1000. The update step is initially set to 0.01 and is decreased to 0.001
after 750 sampling iterations.

Col. reg. Instead of fitting latent samples from prior distribution of generative models like IHDiff
and VAE, we directly optimize InterWild’s output 3D pose and 3D relative translation between two
hands. We used exactly the same weighted loss functions as IHDiff. The update step is initially set
to 0.01 and is decreased to 0.001 after 750 sampling iterations. We set the weight of the collision
avoidance loss to 0.1 as larger than this weight makes severe artifacts, such as implausible 3D hand
poses.

C DENOISING NETWORK f

The denoising network f consists of 4 linear layers, 1 MLP, 4 SA Transformers, and 2 CA Trans-
formers. The linear layers embed the input signal or produce final outputs, and the MLP is to embed
the noising step. All Transformers have a feature dimension of 256 with 4 heads. We use GeLU
activation function Hendrycks & Gimpel (2016) in the Transformer.

The denoising network is trained with a single A100 GPU, which takes 1 day for the training. We
initially set the learning rate to 10−4, and it decays by 0.1 at 85th and 95th epochs. The training is
finished after 100 epochs. During the training, we set the size of the mini-batch to 32. We set the
weight of the collision avoidance loss Lcol to 0.1.

D COLLISION AVOIDANCE LOSS LCOL

Before computing the loss function, we fill a hole around the wrist of each left/right hand mesh
by making a virtual vertex at the center of the wrist and faces around it to make 3D meshes from
MANO a closed surface. Then, we make meshes of right and left hands into a single mesh by
1) concatenating vertices and faces and 2) shifting the later half of the concatenated faces (which
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include vertex indices) by the number of single hand vertices (the number of original single-hand
vertices + 1 due to the virtual vertex to fill the hole). Finally, we repeat the below procedures
for each vertex v of the concatenated mesh using our custom CUDA implementation, which takes
0.0078 seconds for all vertices. This running time is almost the same as that of (Rong et al., 2021),
which takes 0.0060 seconds but cannot detect the self-collisions.

1. We check whether a vertex v is inside of a mesh. To this end, we shoot a ray along its
positive normal direction and count the number of intersections with faces using a ray
tracing algorithm of Embree. If the number of the intersection is even, this vertex is not
inside of a mesh; hence, return zero loss and terminate the loss computation.

2. From a vertex v, we shoot a ray along its negative normal direction. Then, we get a face
index and barycentric coordinates from the first intersecting face using a ray tracing al-
gorithm of Embree, where the face index and barycentric coordinates represent potential
target position t of the vertex v to resolve the collision. If there is no intersecting face, go
to 3.

3. We check two conditions whether t is a target position of the vertex v to resolve the colli-
sion. First, the dot product between 1) a vector from v to t and 2) the normal of the first
intersecting face should be positive. Second, the dot product between 1) a vector from v to
t and 2) the normal of all v’s neighbor faces should be negative. The second condition is to
remove invalid shallow collisions to v’s neighbor faces. If the two conditions are satisfied,
go to 5.

4. From a vertex v, we shoot a ray along its positive normal direction. Then, we get a face
index and barycentric coordinates from the first intersecting face using a ray tracing al-
gorithm of Embree, where the face index and barycentric coordinates represent potential
target position t of the vertex v to resolve the collision. If there is no intersecting face, no
collision is detected; hence, return zero loss and terminate the loss computation.

5. We check two conditions whether t is a target position of the vertex v to resolve the colli-
sion. First, the dot product between 1) a vector from v to t and 2) the normal of the first
intersecting face should be negative. Second, the dot product between 1) a vector from v
to t and 2) the normal of all v’s neighbor faces should be positive. The second condition
is to remove invalid shallow collision to v’s neighbor faces. If any of the two conditions is
not satisfied, no collision is detected; hence, return zero loss and terminate the loss compu-
tation.

6. Return loss(v) = ||(v − t)||1.

E BASELINES

E.1 VAE

The VAE baseline consists of an encoder and decoder. The encoder of the VAE baseline is almost
the same as our denoising network f . First, a concatenation of each joint’s 3D joint coordinates and
6D rotations of the same handedness is passed to a shared linear layer to change the dimension from
9 to 256. Then, 8 Transformer encoders take 7+2J tokens, which consist of the output of the linear
layer and 7 learnable tokens. Outputs from the learnable tokens are passed to a linear layer to obtain
the mean and standard deviation of the data distribution. Using reparameterization trick Kingma &
Welling (2014), we randomly sample a point from the estimated mean and standard deviation.

The decoder of the VAE baseline consists of Transformer decoders and linear layers. The sampled
point from the reparametrization trick is passed to 8 Transformer decoders. Then, outputs from
the same handedness are passed to a shared linear layer, which predicts the 3D coordinate and 6D
rotation of each joint.

The VAE baseline is trained with a single A100 GPU, which takes 1 day for the training. We
initially set the learning rate to 10−4, and it decays by 0.1 at 85th and 95th epochs. The training
is finished after 100 epochs. During the training, we set the size of the mini-batch to 32. We use
the same loss function of the denoising network f to train the VAE baseline. We set the weight
of the collision avoidance loss Lcol to 0.1. Additionally, we minimize KL divergence between the
estimated distribution and a normal Gaussian distribution with weight 10−2.
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(a) User study to compare 
the VAE baseline and our IHDiff

(b) User study to compare 
GT and our IHDiff

Figure 13: Screenshots of our user studies. For each user study, only one question among 16 ques-
tions is shown.

E.2 OTHER BASELINES

We tried to implement a neural distance fields (Chibane et al., 2020)-based baseline, motivated by
Pose-NDF (Tiwari et al., 2022). However, we found that it is not trivial to apply their approach to
ours. In their distance fields, a single point is defined as a set of 3D joint angles, and the point is
manipulated with a scalar distance and a unit gradient. On the other hand, in our case, a single point
should include both 3D angles and 3D translation, where the 3D angles represent the 3D pose of
each hand and the 3D translation represents the relative position between two hands. As units of 3D
angles (radian) and translation (meter) are not the same, it is not straightforward to define a scalar
distance that manipulates both physical values.

F USER STUDIES

In Sec. 5.2, we conducted two user studies. The first one is to compare 1) randomly generated
samples from the VAE baseline and 2) randomly generated samples from our IHDiff. The second
one is to compare 1) randomly generated samples from our IHDiff and 2) random GT. Each user
study is conducted without noticing comparing methods to participants. Fig. 13 shows screenshots
of our user study. We conducted the user studies with a combination of Google Forms and Google
Slides. The videos in the Google Slide include rendered interacting hands from rotating viewpoints.
Please note that we randomly select the left and right positions of all videos. We attach all videos
used for our user studies in ‘User study’ folder of the supplementary material.
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