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ABSTRACT

Federated Learning (FL) is a distributed machine learning technique where mul-
tiple devices (such as smartphones or IoT devices) train a shared global model
by using their local data. FL promises better data privacy as the individual data
isn’t shared with servers or other participants. However, this research uncovers
a groundbreaking insight: a model inversion (MI) attacker, who acts as a benign
participant, can invert the shared global model and obtain the data belonging to
other participants. In such scenarios, distinguishing between attackers and benign
participants becomes challenging, leading to severe data-leakage risk in FL. In
addition, we found even the most advanced defense approaches could not effec-
tively address this issue. Therefore, it is important to evaluate such data-leakage
risks of an FL system before using it. Motivated by that, we propose FedInverse to
evaluate whether the FL global model can be inverted by MI attackers. In particu-
lar, FedInverse can be optimized by leveraging the Hilbert-Schmidt independence
criterion (HSIC) as a regularizer to adjust the diversity of the MI attack generator.
We test FedInverse with three typical MI attackers, GMI, KED-MI, and VMI. The
experiments show that FedInverse can effectively evaluate the data leakage risk
that attackers successfully obtain the data belonging to other participants. The
code of this work is available at https://github.com/Jun-B0518/FedInverse

1 INTRODUCTION

Federated Learning (FL) is a machine learning technique where multiple participants collaborate
to train a global model on a central server while keeping their data locally on devices Li et al.
(2020); Kairouz et al. (2021). FL has been applied to many real-world applications such as medi-
cal informatics Salim & Park (2023), the Internet of Things Nguyen et al. (2021), and mobile edge
computing Lim et al. (2020) because FL is advanced in solving data isolation problems and user
privacy-preserving Nguyen et al. (2022). For example, FL is leveraged to preserve patient data pri-
vacy for medical informatics Salim & Park (2023). FL claims itself to be able to naturally protect
user privacy as each participant trains the model locally McMahan et al. (2017), i.e., different partic-
ipants do not need to share their private data. In fact, FL might be still vulnerable with regard to its
capability for privacy protection Zhu et al. (2019). A few studies found that attackers could hijack
the gradients when benign participants communicate with the server Huang et al. (2021) or mas-
querade as a server to receive gradients uploaded from participants Geiping et al. (2020) to reveal
the local data of other participants.

However, no studies discuss whether attackers can reveal data from other participants via a partici-
pant role. This will lead to severe data-leakage risk in FL because it is difficult to identify attackers
from benign participants if the attacker plays a participant role. In this paper, we identify and eval-
uate this undiscovered but more severe privacy leakage issue in FL that an attacker, who acts as
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Figure 1: MI attacker can cause FL data-leakage. P1, P2, and P3 denote three FL participants, respectively,
wherein P3 is an MI attacker. At the beginning, P3 only has images of digits 5 to 9, however, P3 can invert
images of digits 0 to 4 from P1 and P2 through the MI attacks.

a benign participant, can reveal data from other participants with fewer conditions. Motivated by
that, we draw attention to the recently developed model inversion (MI) attacks that can expose sen-
sitive private information directly from well pre-trained models Fredrikson et al. (2015); Khosravy
et al. (2022); Kahla et al. (2022); Rigaki & Garcia (2020). We let MI attacks act as benign partici-
pants and aim to reveal the private image of other participants. Specifically, we use three typical MI
attacks—Generative MI attack (GMI) Zhang et al. (2020), Knowledge-Enriched Distributional MI
attack (KED-MI) Chen et al. (2021), and Variational MI attack (VMI) Wang et al. (2021a), and find
they can successfully recover images of other participants from FL global models. As is shown in
Figure. 1, P3 (the attacker) recovers images belonging to the benign participants P1 and P2.

Knowing that FL undergoes such data-leakage risk by MI attacks (Figure. 1), we question if the
current defense approach can address this issue. We test two advanced defense approaches, MID
Wang et al. (2021b) and BiDO Peng et al. (2022) in FL settings, on the three typical datasets
MNIST, CelebA, and CIFAR-10, respectively. The results show that these SOTA defense meth-
ods cannot defend against the attacks on MNIST and CIFAR-10. We also observe that the FL and
defense performance have a significant trade-off on the different parameter settings, indicating that
SOTA MI-defense approaches are data-oriented and thus not always applicable to FL (See Appendix
A.(7,8,14,15,18,19)).

Given that the data-leakage risk cannot be eliminated, we propose FedInverse, a novel privacy leak-
age evaluation method to evaluate the boundaries of privacy protection in the FL system from the
participant’s perspective, whether one participant can obtain data from other participants. An at-
tacker pretending to be a participant in FedInverse can conduct the Black-box attacks via global
model prediction in each federated training round. In addition, MI attacks sometimes obtain less
diverse data when inverting the model, making it challenging to evaluate the data-leakage risk. To
verify the efficacy of the attack performance, we propose a dependency constraint in FedInverse by
introducing the Hilbert-Schmidt independence criterion (HSIC) Gretton et al. (2005) to adjust the
diversity of the attacker-generated images Radford et al. (2015).

We test FedInverse with three typical MI attackers, GMI, KED-MI, and VMI on two typical datasets
including CelebA Liu et al. (2015) and MNIST LeCun et al. (1998). The experimental results show
that FedInverse can effectively evaluate the data leakage risk that attackers successfully obtain the
data belonging to other participants. Specially, GMI, KED-MI, and VMI can achieve high attack
performance on target global models including VGG16 Simonyan & Zisserman (2014), ResNet-
34 He et al. (2016), and MCNN Cui et al. (2016) and reveal the data from other participants. By
the end, we compare the performance of FedInverse with and without HSIC, and find that the attack
performance improves significantly when increasing the diversity of images that attackers generated.

2 PRELIMINARY

2.1 TRAINING PROCEDURE OF FEDERATED LEARNING

FL has made significant benefits to the fields of the Internet of Things Savazzi et al. (2020), network
security Chen et al. (2022), and medical care Huang et al. (2019), but it faces the challenge that the
global model in FL can be poisoned by uploading malicious parameters to the server Zhang et al.
(2019); Zhu et al. (2019). However, no studies pay attention to the data leakage problem when the
attackers are pretended to be benign users. This paper mainly discusses the vulnerability of federated
learning from the perspective of attackers obtaining user privacy as the FL participants.

Unlike traditional server-client training schemes, in each training round of FL, k clients are selected
as participants and receive the global model ωt. All the participants train the model parameters on
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their own local private data and return trained parameters ωk
t back to the server. The server averages

all the parameters ωk
t and constructs the new global model ωt+1 for the next training round. In

the FL training mechanism, every participant contributes local updates ωk
t trained by their sensitive

local data. Even though the new global model ωt+1 is generated after the average algorithm, it still
contains the key information from all the participants which could be a good target for MI attacks.
This paper aims to evaluate and quantify the risk of sensitive information being leaked in FL by MI
attacks.

2.2 MODEL INVERSION ATTACKS

According to different attack strategies, privacy attacks on machine learning can be divided into
membership inference attacks Shokri et al. (2017), parameter extraction attacks Ateniese et al.
(2015), and model inversion attacks Liu et al. (2020). This paper mainly focuses on model in-
version attacks. The first model inversion attack was proposed by Fredrikson et al. (2014) which
demonstrates that even if an attacker only has access privilege to the global model, it is possible
to obtain users’ sensitive data. Hitaj et al. Hitaj et al. (2017) proposed a model inversion attack
in collaborative learning scenarios showing that as long as the local model accuracy of the partic-
ipant is high, a good attack performance can be achieved. Ateniese et al. Ateniese et al. (2015)
constructed a new meta-classifier (meta-classifier) and trained it to attack other classifiers to obtain
sensitive information about their training data sets. Wang et al. Wang et al. (2019) proposed a model
inversion attack for FL. This method designed a multi-task generative confrontation model as the
attack model and successfully realized the user-level privacy attack. Recent model inversion attack
are optimization-based methods, such as GMI Zhang et al. (2020), KED-MI Chen et al. (2021),
and VMI Wang et al. (2021a), which obtain private data in the global model by training GAN. The
details of these attacks will be described in the next section.

2.3 HILBERT-SCHMIDT INDEPENDENCE CRITERION

HSIC Gretton et al. (2005) is a kernel-based measure to evaluate the statistical dependence be-
tween various random variables. Let ϕ : X → F represent a nonlinear feature transformation and
kx (x, x

′) = ⟨ϕ(x), ϕ (x′)⟩ denote a positive kernel function showing the inner product between fea-
tures. So the structure of a reproducing kernel Hilbert space (RKHS) can be represented by feature
space F . We can also define another transformation ψ : Y → G and the corresponding positive
definite kernel function ky (y, y′) = ⟨ψ(y), ψ (y′)⟩, which has a similar process with the former
transformation. Then, a cross-covariance operator Cxy : G → F between the two transformations
exists and can be defined linearly in the following equation:

Cxy = Exy [(ϕ(x)− µx)⊗ (ψ(y)− µy)] , (1)

wherein ⊗ denotes a tensor product between vector space µx = Ex[ϕ(x)] and vector space
µy = Ey[ψ(y)]. Then HSIC, which is a squared norm of the cross-covariance operator Cxy , can be
represented as

HSIC (F ,G, Pxy) = ∥Cxy∥2HS
(2)

Given m pairs of data sets Z = {(x1, y1) , . . . , (xm, ym)} from datasets X ∈ Rm×dx and Y ∈
Rm×dy , the empirical estimator of HSIC can be written as

HSIC (F ,G, Pxy) =
1

m2
Tr (KxHKyH) , (3)

wherein m ×m is the size of the empirical HSIC, Kx and Ky represent the corresponding kernel
matrices for x and y with (kx)i,j = kx (xi, xj) and (ky)i,j = ky (yi, yj), Tr is the trace of the
matrix, and H centers x and y in feature space F and G.

3 METHODOLOGY

This section first introduces the proposed FedInverse method and how it embeds MI attackers. We
have shown cases of FedInverse using three typical MI attackers—Generative MI (GMI) Zhang et al.
(2020), Knowledge-Enriched Distributional MI (KED-MI) Chen et al. (2021), and Variational MI
(VMI) Wang et al. (2021a), which will be presented separately in the following sections. Then, we
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Figure 2: FedInverse: Model inversion attacks against FL, taking GMI and KED-MI as examples. VMI is not
shown in this figure because it has a similar training schema to KED-MI.

introduce optimized FedInverse which leverages the Hilbert-Schmidt independence criterion (HSIC)
as a regularizer to increase the diversity of MI attack generators and thus improve the evaluation
performance.

3.1 FEDINVERSE

The main idea of FedInverse method is presented in Figure. 2, where Attackers 1 (GMI) and Attacker
2 (KED-MI) are pretending to be benign participants to get the necessary information from the
central server, i.e. pre-trained models, training tasks, target labels, etc. In the meantime, Attacker
1 and 2 also pre-train GAN models by leveraging public images that are structurally similar to the
target images to launch an attack in a white-box setting. Clearly, we can obtain qualified public
images by using historical target images. Next, we will analyze the attacker case by case. Attacker
1 is GMI and Attacker 2 is KED-MI. We will also analyze Attacker 3: VMI , which has a similar
scheme to KED-MI, and thus is not shown in Figure. 2.

Attacker 1: GMI attack against FL. To reconstruct the sensitive image from other participants,
Attacker 1 utilizes public structurally similar images to train a Wasserstein-GAN Arjovsky et al.
(2017) as shown in Equation.4, which learns a generic prior knowledge.

min
G

max
D

Lwgan(G,D) = Ex[D(x)]− Ez[D(G(z))]. (4)

The goal of Attacker 1 is to find the latent vector z′ that maximizes the likelihood under the FL
global model ωt limited to the data manifold learned by G as z′ = argminz Lprior(z) + λiLid(z).
Prior loss Lprior(z) penalizes unrealistic images and the identity loss Lid(z) promotes the generated
images to have a high likelihood under ωt. Equation.5 gives the details of z′.

z′ = argmin
z

(−D(G(z))) + λi(−log[Fωt
(G(z))]), (5)

wherein Fωt(G(z)) indicates the probabiltiy of G(z) output by the FL global model ωt.

Attacker 2: KED-MI Attack against FL. To distill better private information from other FL par-
ticipants, Attacker 2 launches the attack in two steps. In the first step, a customized GAN is trained.
To adopt the discriminator D that can discriminate the class labels under FL global model ωt, dis-
criminator D includes (K + 1) classes, where K classes correspond to the labels of the ωt, and
(K + 1)-th class indicates fake samples. A soft label Fωt

(x) is generated for each image from the
public set. The training loss for D is represented in Equation.6.

LD = −Ex∼pdata (x)[Σ
K
k=1Fωk

t
(x) log pdisc (y = k | x)]

−{Ex∼pdata (x)[logD(x)] + Ez∼pnoise [log(1−D(G(z)))]},
(6)

wherein pdata represents the distribution of public structurally similar images, and pdisc(y | x)
indicates the probability that D predicts x as class y. Fωk

t
(x) is the k-th dimension of the soft label

produced by the global model ωt. The training loss of generator G is illustrated in Equation.7.

LG = ∥Ex∼pdata [f(x)]− Ez∼p noise [f(G(z))]∥22 + λhLentropy , (7)

wherein f(x) is the learned features encoded in an intermediate layer of the discriminator and
Lentropy is an entropy regularizer Grandvalet & Bengio (2004).
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Algorithm 1 FedInverse Algorithm. K indicates the number of participants and k represents the
participant number; B represents the local batch size, E indicates the local training epochs, C is
the participation rate of participants, while η is learning rate; G and D denote Generator and Dis-
criminator respectively, Paux represents the auxiliary dataset used to pre-train GAN, N denotes the
Gaussian distribution, while Qt indicates the set of generated images by FedInverse.
1: Server Initialization: ω0

2: for each training round t = 1,2 ... do
3: m← max(C · K, 1)
4: St← (random set of m participants including

a single Attacker)
5: for each participant k ∈ St in parallel do
6: ωk

t+1← ParticipantUpdate(k, ωt)
7: evaluate onQt← Attacker(ωt)
8: end for
9: ωt+1 ← ΣK

k=1
nk
n
ωk
t+1

10: end for
11:
12: function ATTACKER(ωt):
13: if needed then
14: pretrain G and D with ωt on Paux

15: else
16: load pretrained G and D
17: end if
18: for each attack epoch do
19: for batch z ∈ N do

20: x← G(z)
21: split x into x1 and x2

22: compute HSIC(x1, x2)
23: update z′ for diversity optimization
24: end for
25: x′ ← G(z’)
26: Qt ← Qt ∪ {x′}
27: end for
28: returnQt

29: end function
30:
31: function PARTICIPANTUPDATE(k, ωt):
32: B ← (split Pk into batches of Size B)
33: for each local epoch i from 1 to E do
34: for batch b ∈ B do
35: ωt ← ωt − η∇l(ωt; b)
36: end for
37: end for
38: return ωt to server
39: end function

To launch the attack, given a class label k from the global model ωt, the attack loss is L = Lprior +
Lid, which is similar to GMI, and the details are represented in Equation.8.

L = −Ez′∼pgen [logD
(
G
(
z′
))
]− Ez′∼pgen [Fωk

t

(
G
(
z′
))
], (8)

wherein z′ is sampled from pgen = N (µ, σ2). After reparameterization, z′ can be represented as
Equation.9 to directly estimate µ and σ2 through back-propagation.

z′ = σϵ+ µ, ϵ ∼ N (0, I). (9)

Attacker 3: VMI attack against FL. Attacker 3 demonstrates a similar attack procedure to At-
tacker 2. Compare to KED-MI, a StyleGAN is used for VMI attack due to its capability of “style
mixing”. The synthesis network can generate a “mixed” image when given a mixture of two w’s in
the expanded w space, where w represents the mapping vector of the input z via f : z → w.

The objective of VMI with StyleGAN is shown in Equation.10

Lγ
S−VMI(q) :=Eq(z1,...,zL)

[
− logFωt

(
y | S

(
{f (zl)}Ll=1

))]
+

γ

L
ΣL

l=1DKL (ql (zl) ∥paux (zl)) ,
(10)

wherein q(z1, ..., zL) is the joint density over z1, ..., zL, and ql(zl) is the marginal density over zl.
Additionally, paux represents the auxiliary data used to pre-train GAN.

3.2 FEDINVERSE WITH DIVERSITY OPTIMIZATION

It is more difficult to invert the model when the MI attacks obtain less diverse images. To alleviate
this issue, we use the Hilbert-Schmidt independency criterion (HSIC) as a regularizer with MI attack
(termed MI-HSIC) to adjust the diversity of the attack generator, as shown in Figure 3. For each
attack epoch, the attack generator will generate x images from G(z) based on the latent z from data
distribution Qt, we equally split x into x1 and x2 and compute HSIC(x1, x2) which is used to update
the z′ ∈ Q′

t for diversity optimization. The optimized attack lossL = Lprior+Lid+HSIC(x1, x2)
which is shown in Equation.11.

L = Lprior + Lid − λΣm
j=1d (x1, x2) , (11)

wherein m is half of the batch size of the generated images, and d is the dependency measure. To
evaluate the relationship between HSIC and the diversity of generated images, we can adjust the
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Figure 3: FedInverse with Diversity Optimization by Using HSIC on GMI and KED-MI.

Figure 4: (a) Qualitative comparison of the proposed MI-HSIC attack with the corresponding MI attack against
FL on CelebA. (b) Qualitative comparison of the proposed MI-HSIC attack with the corresponding MI attack
against FL on MNIST.

parameter λ to optimize the performance of generated image diversity. The algorithm of FedInverse
is shown in Algorithm.1.

Figure. 4(a) and Figure. 4(b) compare some sample images generated from CelebA and MNIST
respectively. According to Figure. 4(a), the generator on MI has lower quality on the generated
images compared to MI-HSIC, i.e., regarding the generating quality in the fourth column from the
left side, MI-HSIC is better than MI itself. Even the inverted image cannot be completely alike
the original image. However, the biometric identity (e.g. face) can be successfully reconstructed to
break into otherwise secure systems even if humans do not recognize the model-inverted examples
look much alike the true examples Wang et al. (2021a). Figure. 4(b) compares different generation
performance between MI and MI-HSIC on MNIST. The first line indicates the target images from
MNIST digits 0 to 4, and the attackers have the prior images from MNIST digits 5 to 9. The result
shows that MI has less diversity compared with MI-HSIC, which means the generator always has a
bias on the prior images with attackers, i.e. the generator with MI generates the digit 4 as digit 9. In
conclusion, the HISC can affect the generating diversity and quality for MI attacking purposes.

4 EXPERIMENT SETTINGS

In this section, we discuss the experimental settings for verifying the efficacy of FedInverse against
FL in white-box settings. We do not focus on black-box attacks because in this study the attacker
plays a participant role which can naturally obtain the model structure. Therefore, the training task
cannot be in a black-box setting.

4.1 DATASETS

We use three typical datasets, CelebFaces Attributes Dataset (CelebA) Liu et al. (2015), MNIST
dataset LeCun et al. (1998), and CIFAR-10 Krizhevsky et al. (2009) (More experiment results on
different datasets See Appendix A) to evaluate the FedInverse attack performance with different
classification tasks. The three datasets cover, face recognition(CelebA), handwriting recognition
(MNIST), and object detection (CIFAR-10). For all datasets, we randomly select a part as the
historical target images and use these images as the prior public dataset to pre-train the GAN, as we
have discussed in Section 3.1. Specifically, for CelebA, we first randomly select 1000 identities and
select all images belonging to these identities from CelebA. These images will be used as private
data in FL. In this paper, we finally have 30,027 images in the private data set. In addition, we also
randomly select 30,000 images from the rest part of CelebA. This data is used to pre-train the GAN.
For MNIST, as it has fewer classes, we directly select the images from MNIST digits 5 to 9 as the
prior public data and use images from MNIST digits 0 to 4 as the private data. CIFAR-10 has the
same settings as MNIST, five classes (airplane, automobile, bird, cat, deer) are selected as the private
data, and the rest of the classes (dog, frog, horse, ship, truck) are used as the prior public data.
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4.2 FEDERATED LEARNING GLOBAL MODELS

We adopt different global models with different classification tasks to evaluate the performance
of different FedInverse attacks. For CelebA (face recognition tasks), we apply VGG16 Simonyan
& Zisserman (2014) to evaluate the performance of GMI and KED-MI attacks in FedInverse and
apply RezNet-34 He et al. (2016) to evaluate the performance of VMI attacks in FedInverse. For
MNIST(handwriting recognition tasks), we apply MCNN Cui et al. (2016) as the global model to
evaluate the performance of GMI and KED-MI attacks.

4.3 FEDERATED LEARNING SETTINGS

We adopt different FL settings for CelebA and MNIST to evaluate FedInverse.

For CelebA, we choose 5 participants joining every training round. The local training batch size is
64 and the local training epoch is 50. We evaluate all the FedInverse —GMI, KED-MI, and VMI. We
choose VGG16 as the FL global model for GMI and KED-MI, and ResNet34 for VMI, respectively.
Every participant except the attacker averagely shares the private data set in FL training setting.

For MNIST, 100 participants are chosen to join the FL, However, only 10 out of 100 participants
can join the training in each training round. The local training batch is 10, and the local training
epoch is 5. We evaluate the FedInverse leveraging GMI and KED-MI. We choose MCNN as the FL
global model. The FL data training setting is similar to CelebA.

4.4 EVALUATION METRICS

To evaluate the performance of FedInverse, we assess the extent of sensitive information regarding
a target label that is disclosed through the synthesized images. Our evaluation approach involves
both quantitative metrics and visual examination. The quantitative metrics utilized for evaluating
the attack performance are presented below.

Attack accuracy (Attack Acc) To evaluate the attack effectiveness, we construct an ”evaluation
classifier” to identify the identities of the reconstructed images. The evaluation classifier is well-
trained by using the whole dataset with a very high testing accuracy which achieved around 98%.
These metrics evaluate the similarity of the generated samples to the target class. If the evaluation
classifier exhibits high accuracy, the attack is considered successful. To guarantee a comprehensive
and impartial evaluation, the evaluation classifier should be highly accurate across all classes.

Fréchet inception distance (FID) We utilize the commonly used FID metric Heusel et al. (2017)
to evaluate the quality and diversity of reconstructed images. This metric allows us to gauge the
level of detailed information that may be present in the reconstructed images. FID determines the
likeness between real and fake images within the embedding space, which is based on the features
of a convolutional neural network (i.e., the evaluation classifiers in the defense task). Essentially,
FID calculates the variances and means of the features, assuming a multivariate normal distribution,
and compares the differences between them.

5 EXPERIMENT EVALUATIONS

5.1 FEDINVERSE ATTACK PERFORMANCE ON CELEBA

Face recognition is widely applied in different real scenarios for public security purposes. We eval-
uate and compare the efficacy of FedInverse attack methods with and without HSIC on CelebA for
privacy leakage on face recognition data in FL.

The results of FedInverse using GMI and GMI-HSIC are illustrated in Figure 5(a), GMI-HSIC con-
sistently achieves better attack performance and FID since the first FL training round, indicated by
improvement of 10% of the attack accuracy, 2% of the top-5 attack accuracy, and FID. FL training
accuracy has been increased and stabilized in the second round from 66.05 to 80.48, and it is worth
noting that GMI-HSIC achieves the highest attack accuracy and top-5 attack accuracy, which outper-
forms GMI by 5% of the attack accuracy, 5% of the top-5 attack accuracy, and smaller FID. When
compared with the GMI and GMI-HSIC, GMI can partially leak images from other participants, and
the attack performance can be significantly improved by GMI-HSIC, in which the diversity of the
generated images has been optimized by HSIC.
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Figure 5: FedInverse on CelebA. Columns (a)-(c) present the relevant curves for three chosen MI/MI-HSIC
attacks on CelebA under specific FL conditions. The first row of subplots illustrates global model accuracy
changes over communication rounds. Rows two to four display comparative results using Attack Acc, Attack
Acc5, and FID metrics for these attacks across ten federated rounds.

The performance evaluation of FedInverse using KED-MI attack on CelebA is presented in Figure
5(b), where we use the same attack settings as the GMI attack. Compared to GMI, KED-MI com-
pletely penetrates the mechanism of FL personal privacy protection, and the best attack accuracy
dramatically increases from 11.33 in Figure 5(a) to 57.80 in Figure 5(b), and the best top-5 attack
accuracy booms from 25.40 Figure 5(a) to 85.47 Figure 5(b). The best result of attack accuracy and
top-5 attack accuracy also increases from 11.93 in Figure 5(a) to 60.13 in Figure 5(b), and 26.77 in
Figure 5(a) to 85.80 in Figure 5(b), respectively. When we compare the attack performance between
KED-MI and KED-MI-HSIC, KED-MI-HSIC improves 4% of the attack accuracy, 2% of the top-5
accuracy, and smaller FID in FL training rounds 9 and 10, respectively. According to the results,
participants’ privacy in FL can be easily revealed by the KED-MI, and HSIC plays an important role
in increasing the diversity of the generated images where the attack accuracy can be improved.

We also evaluate the FedInverse performance of VMI in Figure 5(c) with ResNet-34. The highest at-
tack accuracy of VMI appears in FL training round 10 is 36.70 and the highest top-5 attack accuracy
appears in FL training round 9 is 63.30. The VMI-HSIC further improves the attack performance
by 3% and the top-5 attack accuracy by 0.7%, which are 37.95 and 63.80, respectively, with smaller
FID. The results validate the promised privacy leakage by VMI attacks.

5.2 FEDINVERSE ATTACK PERFORMANCE ON MNIST

Handwriting is another important user privacy information in real scenarios, therefore, we further
evaluate the FedInverse using GMI and KED-MI attack performance on MNIST dataset in Table
1 and Table 2 respectively. As shown in Table 1, GMI performs better on MNIST than the attack
performance on CelebA, which achieves the attack accuracy of 56.00 and the top-5 accuracy of 98.00
in FL training round 5. GMI-HSIC further improves 7% of the attack accuracy to 60.00 and 4% of
the top-5 accuracy to 100.00 in FL training round 5 and 4 respectively. The results demonstrate that
GMI performs better on the handwriting dataset. As shown in Table 2, the attack accuracy reaches
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Table 1: FL privacy leakage indicated by Attack Acc/Acc5± standard deviation(%) and FID on MNIST via
FedInverse using GMI and GMI-HSIC with prior training dataset MNIST. Bold values denote the best metric
results obtained by GMI or GMI-HSIC throughout the FL training epoch. The symbol ↓(↑) denotes that smaller
(larger) values are favored.

Metrics Methods FL#R01 FL#R02 FL#R03 FL#R04 FL#R05

Accuracy ↑ 83.34 97.59 98.27 98.4 98.52

Attack Acc ↑
GMI 34.00±9.66 38.00±22.01 34.00±16.47 50.00±10.54 56.00±20.66

GMI-HSIC 44.00±15.78 44.00±12.65 42.00±14.76 56.00±8.43 60.00±9.43

Attack Acc5 ↑
GMI 94.00±9.66 98.00±6.32 98.00±6.32 96.00±8.43 98.00±6.32

GMI-HSIC 96.00±8.43 98.00±6.32 98.00±6.32 100.00±0.00 98.00±6.32

FID ↓
GMI 20.1373 23.3598 22.3839 17.1018 16.7486

GMI-HSIC 19.0845 21.1116 21.5377 15.6066 14.469

Table 2: FL privacy leakage indicated by Attack Acc/Acc5± standard deviation(%) and FID on MNIST via
FedInverse using KED-MI and KED-MI-HSIC with prior training dataset MNIST. Bold values denote the best
metric results obtained by KED-MI or KED-MI-HSIC throughout the FL training epoch. The symbol ↓(↑)
denotes that smaller (larger) values are favored.

Metrics Methods FL#R01 FL#R02 FL#R03 FL#R04 FL#R05

Accuracy ↑ 83.34 97.59 98.27 98.4 98.52

Attack Acc ↑
KED-MI 64.60±8.46 60.60±4.45 80.00±0.00 80.00±0.00 79.80±2.00

KED-MI-HSIC 80.00±0.00 64.40±8.33 80.00±0.00 80.20±2.00 80.20±2.00

Attack Acc5 ↑
KED-MI 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00

KED-MI-HSIC 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00

FID ↓
KED-MI 209.1448 206.0789 195.1807 184.995 175.9532

KED-MI-HSIC 204.5017 198.6938 175.9532 161.0252 160.9891

80.00 and the top-5 accuracy keeps 100.00 with KED-MI attacks on MNIST dataset, which are
extremely high, and KED-MI-HSIC can still slightly improve the attack accuracy to 80.20 which is
0.2% of improvement to the attack accuracy.

6 RELATED WORKS

FL has made significant benefits to the fields of the Internet of Things Savazzi et al. (2020), network
security Chen et al. (2022), and medical care Huang et al. (2019), but it also faces some challenges.
No studies pay attention to the data leakage problem when the attackers pretend to be benign users
and attack by the model inversion attacks. Typical model inversion attacks, including Zhang et al.
(2020) Chen et al. (2021) Wang et al. (2021a), can be leveraged by the attacker to attack the FL
system. In addition, to evaluate the impact on the diversity of the generated data, Hilbert-Schmidt
independency criterion (HSIC) Gretton et al. (2005) is introduced, which is a statistic dependency
measure metric that is well established in statistics. For more detailed related works please refer to
Appendix B.

7 CONCLUSION

This is the first study that discovers model inversion (MI) attackers, who act as normal partici-
pants, can invert the FL global model and obtain the data belonging to other participants. This
finding indicates a severe data-leakage risk in FL, especially considering FL claims itself to be natu-
rally privacy-protected. To evaluate this data-leakage risk, we propose FedInverse that can evaluate
whether MI attackers can invert the FL global model. We test FedInverse by leveraging three typi-
cal attackers, including GMI, KED-MI, and VMI on face recognition and handwriting recognition
datasets. The experiment results show that the privacy-preserving mechanism of FL is vulnerable to
MI attacks and it is difficult to prevent this risk if the attackers are acting as normal participants in
FL. We further evaluate the efficacy of MI attacks with the diversity of generated images by using
Hilbert-Schmidt independence criterion (HSIC) as the regularizer. The results prove that the attack
performance is significantly improved when increasing the diversity of the generated images. Based
on that, we consider promising future works for this topic would focus on further increasing the
diversity of the generated images of an attacker and how to protect the user privacy from the MI
attacks on FL.
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Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. Inverting gradients-
how easy is it to break privacy in federated learning? Advances in Neural Information Processing
Systems, 33:16937–16947, 2020.

Yves Grandvalet and Yoshua Bengio. Semi-supervised learning by entropy minimization. Advances
in neural information processing systems, 17, 2004.

Arthur Gretton, Olivier Bousquet, Alex Smola, and Bernhard Schölkopf. Measuring statistical de-
pendence with hilbert-schmidt norms. In Algorithmic Learning Theory: 16th International Con-
ference, ALT 2005, Singapore, October 8-11, 2005. Proceedings 16, pp. 63–77. Springer, 2005.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-Cruz. Deep models under the gan: infor-
mation leakage from collaborative deep learning. In Proceedings of the 2017 ACM SIGSAC
conference on computer and communications security, pp. 603–618, 2017.

Li Huang, Andrew L Shea, Huining Qian, Aditya Masurkar, Hao Deng, and Dianbo Liu. Patient
clustering improves efficiency of federated machine learning to predict mortality and hospital stay
time using distributed electronic medical records. Journal of biomedical informatics, 99:103291,
2019.

10



Published as a conference paper at ICLR 2024

Yangsibo Huang, Samyak Gupta, Zhao Song, Kai Li, and Sanjeev Arora. Evaluating gradient in-
version attacks and defenses in federated learning. Advances in Neural Information Processing
Systems, 34:7232–7241, 2021.

Marcus Hutter. Distribution of mutual information. Advances in neural information processing
systems, 14, 2001.

Kaggle. Covid-19 ct scans. https://www.kaggle.com/datasets/andrewmvd/covid19-ct-scans/., 2019.

Mostafa Kahla, Si Chen, Hoang Anh Just, and Ruoxi Jia. Label-only model inversion attacks via
boundary repulsion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 15045–15053, 2022.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
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A APPENDIX

A.1 EXPERIMENT IMPLEMENTATION DETAILS

We will elaborate more on the experiment implementation details in the appendix. We conducted
the FedInverse experiments on the extra datasets such as EMNIST Cohen et al. (2017), and Fashion-
MNIST (FMNIST) Xiao et al. (2017) rather than MNIST, CelebA and CIFAR-10 with different
attack settings. EMNIST is an expansion of the original MNIST dataset, encompasses a richer
variety of handwritten characters. It goes beyond digits to include letters, both lowercase and up-
percase, thereby offering a more comprehensive view of handwritten character recognition. The
dataset has been carefully partitioned into multiple subsets, each tailored to specific tasks — rang-
ing from digit recognition, balanced character sets, to datasets designed for by-class and by-merge
recognition tasks. With the inclusion of alphabetic characters, the complexity and variability in the
data increase, offering a more challenging playground for machine learning models. Additionally,
Fashion-MNIST is an alternative to the original MNIST digit dataset, curated to serve as a more
challenging problem in the domain of image classification. Designed by Zalando, a European e-
commerce company, the dataset contains grayscale images of 28x28 pixels each, encompassing 10
fashion categories, such as T-shirts, trousers, pullovers, dresses, and more. Each category is popu-
lated with 7,000 images, leading to a training set of 60,000 images and a test set of 10,000 images,
mimicking the exact structure of the classic MNIST.

A.2 MORE EXPERIMENTAL RESULTS ON MNIST TYPES DATASETS

A.2.1 IMPACT OF PRIOR DATA WITH FEDINVERSE+GMI ON EMNIST AND FMNIST

To assess the influence of prior data on the efficacy of GMI attacks on FL, we employ EMNIST
and FMNIST datasets as prior data for GMI, respectively. Pertinent findings from our empirical
investigations are presented in Table 3. The results of FedInverse attack using GMI and GMI-HSIC
are illustrated in Table 3, where we have the attack performance with varying GMI attack settings
and FL training rounds. As shown in Table 3, Similar to the results reported on MNIST and CelebA
in our paper, GMI-HSIC consistently achieves better attack performance and FID since the first FL
training round on EMNIST, indicated by improvement of the attack accuracy (60.00 vs 62.00), the
top-5 attack accuracy (92.00 vs 96.00), and FID (13.4053 vs 11.064). FL training accuracy has
been increased and stabilized in the second round from 83.34 to 98.52, and it is worth noting that
GMI-HSIC achieves the highest attack accuracy and top-5 attack accuracy, which outperforms GMI
as attack accuracy (70.00 vs 72.00), both reaches 100% top-5 attack accuracy and FID (6.3623 vs
5.5718). On FMNIST, the results show the same trend, in which GMI-HSIC outperforms the GMI
as as attack accuracy (52.00 vs 58.00), top-5 attack accuracy (98.00 vs 90.00), and FID (18.3514 vs
16.8608)

A.2.2 IMPACT OF PRIOR DATA ON FEDINVERSE+KED-MI ON EMNIST AND
FASHION-MNIST

To assess the influence of prior data on the efficacy of KED-MI attacks on FL, we employ EMNIST
and FMNIST datasets as prior data for KED-MI, respectively. Pertinent findings from our empir-
ical investigations are presented in Table 4. Compare to GMI, KED-MI completely penetrates the
mechanism of FL personal privacy protection on both EMNIST and FMNIST. For EMNIST, the best
attack accuracy dramatically increases from 70.00 in Table 3 to 88.15 in Table 4. The best result of
KED-MI-HSIC attack accuracy also increases from 72.00 in Table 3 to 99.99 in Table 4, where all
the best top-5 accuracy can achieve 100%. The results of FMNIST have a similar trend as EMNIST,
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Table 3: FL privacy leakage indicated by Attack Acc/Acc5± standard deviation(%) and FID on
MNIST via FedInverse using GMI and GMI-HSIC with two diverse prior training datasets: EMNIST
and FMNIST. Bold values denote the best metric results obtained by GMI or GMI-HSIC throughout
the FL training epoch. The symbol ↓(↑) denotes that smaller (larger) values are favored.

Metrics Methods FL#R01 FL#R02 FL#R03 FL#R04 FL#R05 FL#R01 FL#R02 FL#R03 FL#R04 FL#R05

Prior Data EMNIST FMNIST

Accuracy ↑ 83.34 97.59 98.27 98.40 98.52 83.49 97.87 98.36 98.73 98.94

Attack Acc ↑
GMI 60.00±23.09 64.00±20.66 66.00±18.97 68.00±16.87 70.00±19.44 38.00±11.35 42.00±14.76 44.00±18.38 46.00±9.66 52.00±13.98

GMI-HSIC 62.00±22.01 66.00±16.47 68.00±19.32 70.00±19.44 72.00±25.30 46.00±18.97 50.00±14.14 50.00±19.44 56.00±15.78 58.00±14.76

Attack Acc5 ↑
GMI 92.00±10.33 94.00±9.66 96.00±8.43 98.00±6.32 100.00±0.00 82.00±14.76 84.00±15.78 88.00±10.33 90.00±10.54 90.00±10.54

GMI-HSIC 96.00±8.43 98.00±6.32 100.00±0.00 100.00±0.00 100.00±0.00 84.00±15.78 88.00±10.33 90.00±10.54 92.00±10.33 98.00±6.32

FID ↓
GMI 13.4053 11.3012 11.1458 9.9356 6.3623 20.9196 19.0771 18.6007 18.4105 18.3514

GMI-HSIC 11.064 10.2641 9.9451 9.1239 5.5718 19.2656 17.9561 17.1093 17.6389 16.8608

in which the best attack accuracy dramatically increases from 52.00 in Table 3 to 86.83 in Table
4. The best result of KED-MI-HSIC attack accuracy also increases from 58.00 in Table 3 to 99.80
in Table 4. In addition, we also compare the attack performance between KED-MI and KED-MI-
HSIC, KED-MI-HSIC improves the attack accuracy (88.15 vs 99.99), and smaller FID (127.9106
vs 116.5144) on EMNIST. and attack accuracy (86.83 vs 99.80), and smaller FID (192.0721 vs
185.9508) on FMNIST, respectively.

Table 4: FL privacy leakage indicated by Attack Acc/Acc5± standard deviation(%) and FID on
MNIST via FedInverse using KED-MI and KED-MI-HSIC with two diverse prior training datasets:
EMNIST and FMNIST. Bold values denote the best metric results obtained by GMI or GMI-HSIC
throughout the FL training epoch. The symbol ↓(↑) denotes that smaller (larger) values are favored.

Metrics Methods FL#R01 FL#R02 FL#R03 FL#R04 FL#R05 FL#R01 FL#R02 FL#R03 FL#R04 FL#R05

Prior Data EMNIST FMNIST

Accuracy ↑ 83.34 97.59 98.27 98.40 98.52 83.49 97.87 98.36 98.73 98.94

Attack Acc ↑
KED-MI 74.17±2.21 80.00±0.00 84.24±3.21 85.60±8.34 88.15±2.77 73.80±4.49 78.23±4.72 81.49±3.07 83.04±11.51 86.83±1.71

KED-MI-HSIC 79.99±0.29 86.67±0.00 87.80±5.83 99.11±3.08 99.99±0.29 76.24±7.48 82.46±7.20 83.69±4.28 87.00±9.56 99.80±1.82

Attack Acc5 ↑
KED-MI 84.76±8.33 98.07±4.57 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00

KED-MI-HSIC 92.12±6.90 99.12±3.59 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00

FID ↓
KED-MI 155.4555 151.3656 141.9426 139.4965 127.9106 235.5265 213.8955 210.1306 197.6505 192.0721

KED-MI-HSIC 146.2689 140.6991 133.3661 116.8525 116.5144 223.582 202.285 199.2425 198.5916 185.9508

A.3 IMPACT OF PARALLELISM ON FEDINVERSE+GMI ON MNIST

We investigate the influence of FL parallelism by modulating the active fraction of participants
on the attack performance of GMI within the context of FL. Pertinent observations are detailed in
Table 5. We adjust the numbers of the participants in FL settings from 10% to 100% to monitor
the parallelism impact on attacks. We observe that the attack performance varies, and GMI has
similar results when 10%, 20%, and 50% participants join each training round from 56.00 to 58.00.
However, the attack performance decreased to 48.00 when 100% participants joined the FL round.
The same trend happens on GMI-HSIC, the attack accuracy varies from 60.00 to 58.00 when 10%,
20%, and 50% participants join each training round and decrease to 49.20 when 100% participants
join the FL round. In addition, the top-5 attack accuracy remains stable from 98.00 to 100.00 on
GMI and keeps 100 on GMI-HSIC, respectively.
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Table 5: FL privacy leakage indicated by Attack Acc/Acc5± standard deviation(%) and FID on
MNIST via FedInverse using GMI and GMI-HSIC with varying active fractions of participants.
Bold values denote the best metric results obtained by GMI or GMI-HSIC throughout the FL training
epoch. The symbol ↓(↑) denotes that smaller (larger) values are favored.

Metrics Methods FL#R01 FL#R02 FL#R03 FL#R04 FL#R05 FL#R01 FL#R02 FL#R03 FL#R04 FL#R05

Fraction of Participants C = 0.1 C = 0.2

Accuracy ↑ 83.34 97.59 98.27 98.40 98.52 83.49 97.87 98.36 98.73 98.94

Attack Acc ↑
GMI 34.00±9.66 38.00±22.01 34.00±16.47 50.00±10.54 56.00±20.66 34.00±16.47 42.00±14.76 44.00±15.78 46.00±16.47 56.00±18.38

GMI-HSIC 44.00±15.78 44.00±12.65 42.00±14.76 56.00±8.43 60.00±9.43 36.00±15.78 44.00±15.78 46.00±13.50 48.00±21.50 58.00±17.51

Attack Acc5 ↑
GMI 94.00±9.66 98.00±6.32 98.00±6.32 96.00±8.43 98.00±6.32 96.00±8.43 96.00±8.43 98.00±6.32 100.00±0.00 100.00±0.00

GMI-HSIC 96.00±8.43 98.00±6.32 98.00±6.32 100.00±0.00 98.00±6.32 96.00±8.43 98.00±6.32 100.00±0.00 100.00±0.00 100.00±0.00

FID ↓
GMI 20.1373 23.3598 22.3839 17.1018 16.7486 20.9378 19.8334 18.8355 17.5003 14.791

GMI-HSIC 19.0845 21.1116 21.5377 15.6066 14.469 18.9679 18.5146 18.4547 16.5750 12.7691

Fraction of Participants C = 0.5 C = 1.0

Accuracy ↑ 87.37 97.78 98.46 98.87 99.10 80.38 97.89 98.52 98.85 99.02

Attack Acc ↑
GMI 38.00±25.73 40.00±16.33 46.00±18.97 50.00±14.14 58.00±23.94 32.00±16.87 38.00±11.35 38.00±17.51 44.00±26.33 48.00±13.98

GMI-HSIC 44.00±22.71 46.00±23.19 48.00±16.87 52.00±21.50 58.00±22.01 42.00±11.35 44.00±18.38 46.00±13.50 46.00±9.66 49.20±6.50

Attack Acc5 ↑
GMI 96.00±8.43 96.00±8.43 94.00±9.66 98.00±6.32 98.00±6.32 94.00±9.66 96.00±8.43 98.00±6.32 98.00±6.32 100.00±0.00

GMI-HSIC 98.00±6.32 98.00±6.32 96.00±8.43 98.00±6.32 100.00±0.00 98.00±6.32 96.00±8.43 100.00±0.00 100.00±0.00 100.00±0.00

FID ↓
GMI 20.3550 20.1785 19.7692 19.3438 14.0115 24.7496 22.3330 20.7582 20.6225 18.5714

GMI-HSIC 19.9560 19.4090 18.8257 17.3110 12.0485 23.1585 20.9507 19.8762 19.4196 17.8631

A.4 IMPACT OF PARALLELISM ON FEDINVERSE+KED-MI ON MNIST

We investigate the influence of FL parallelism by modulating the active fraction of participants on
the attack performance of KED-MI within the context of FL. Pertinent observations are detailed in
Table 6. Unlike GMI, the KED-MI shows more stabilized attack performance, the attack accuracy
varies from 80.00 to 79.97, when 10%, 20%, and 50% participants join each training round. And
only decrease to 73.33 when 100% participants join each training round. Like KED-MI, the KED-
MI-HSIC has the same results, varying from 80.20 to 79.95, when 10%, 20%, and 50% participants
join each training round. And decrease to 75.85 when 100% participants join each training round.
However, the top-5 attack accuracy remains 100.00 on both KED-MI and KED-MI-HSIC.

A.5 IMPACT OF LOCAL COMPUTATION ON FEDINVERSE+GMI ON MNIST

The influence of local computation on each client plays a crucial role in determining the incorpo-
ration of local knowledge present within client data. This influence is governed by two primary
hyperparameters E and B. Consequently, we manipulate the values of E and B across a range of
settings to assess the performance of GMI attacks on FL global models across various communica-
tion rounds. The results and pertinent observations from these experiments are presented in Table 7.
We adjusted the local computation hyperparameters and observed that the local computation on each
client has less impact on FedInverse using GMI and GMI-HSIC. The highest GMI attack accuracy
is 56.00 when we set E = 1 and B = 10. The attack accuracy on the rest of the settings varies
from 42.00 to 48.00 except the E = 2 and B = 60, which reaches 52.00 attack accuracy. For the
GMI-HSIC, the highest attack accuracy is 60.00 when we set E = 1 and B = 10 or E = 2 and
B = 60. The top-5 attack accuracy for GMI and GMI-HSIC are stabilized between 98.00 to 100.00.

A.6 IMPACT OF LOCAL COMPUTATION ON FEDINVERSE+KED-MI ON MNIST

Table 8 shows the results and pertinent observations from experiments by adjusting the values of E
and B to assess the performance of KED-MI attacks on FL global models across various commu-
nication rounds. Similar to GMI, We adjusted the local computation hyperparameters and observed
that the local computation on each client has less impact on FedInverse using KED-MI and KED-
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Table 6: FL privacy leakage indicated by Attack Acc/Acc5± standard deviation(%) and FID on
MNIST via FedInverse using KED-MI and KED-MI-HSIC with varying active fractions of partici-
pants. Bold values denote the best metric results obtained by KED-MI or KED-MI-HSIC throughout
the FL training epoch. The symbol ↓(↑) denotes that smaller (larger) values are favored.

Metrics Methods FL#R01 FL#R02 FL#R03 FL#R04 FL#R05 FL#R01 FL#R02 FL#R03 FL#R04 FL#R05

Fraction of Participants C = 0.1 C = 0.2

Accuracy ↑ 83.34 97.59 98.27 98.4 98.52 83.49 97.87 98.36 98.73 98.94

Attack Acc ↑
KED-MI 64.60±8.46 60.60±4.45 80.00±0.00 80.00±0.00 79.80±2.00 57.75±4.88 66.09±2.95 66.67±0.00 67.45±6.93 79.97±0.42

KED-MI-HSIC 80.00±0.00 64.40±8.33 80.00±0.00 80.20±2.00 80.20±2.00 59.63±2.70 74.32±3.19 79.37±3.32 79.59±1.60 79.95±0.59

Attack Acc5 ↑
KED-MI 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00

KED-MI-HSIC 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00

FID ↓
KED-MI 209.1448 206.0789 195.1807 184.995 175.9532 206.817 196.3008 199.594 189.9246 170.2652

KED-MI-HSIC 204.5017 198.6938 175.9532 161.0252 160.9891 200.2681 195.9936 190.2452 187.61 131.5852

Fraction of Participants C = 0.5 C = 1.0

Accuracy ↑ 87.37 97.78 98.46 98.87 99.10 80.38 97.89 98.52 98.85 99.02

Attack Acc ↑
KED-MI 60.00±0.00 64.04±6.53 68.85±11.64 73.87±10.70 80.00±0.00 51.39±7.35 59.91±1.10 58.91±6.52 60.63±2.40 73.33±0.00

KED-MI-HSIC 60.03±0.42 62.96±6.80 69.91±11.53 75.25±8.80 80.00±0.00 58.12±6.30 60.00±0.00 60.08±1.08 66.09±6.50 75.85±2.57

Attack Acc5 ↑
KED-MI 99.96±0.71 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00

KED-MI-HSIC 99.80±1.93 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00

FID ↓
KED-MI 200.696 179.1579 173.4662 158.6515 156.9115 223.7763 218.7452 219.0277 199.7431 195.0272

KED-MI-HSIC 187.5081 165.0061 158.7922 138.1317 145.5453 220.3384 198.8252 193.7816 191.4331 184.3157

MI-HSIC. The highest KED-MI attack accuracy is 86.67 when we set E = 1 and B = 60. The
attack accuracy on the rest of the settings varies from 78.89 to 83.17. For the KED-MI-HSIC the
highest attack accuracy appears E = 1 and B = 120, which is 93.33. Others vary from 80.00 to
87.64. The top-5 attack accuracy keeps 100.00 on all settings.

A.7 IMPACT OF DEFENSE METHODS ON FEDINVERSE+GMI ON MNIST

To evaluate the performance of FedInverse against SOTA defense methods, we use two latest pre-
vailing defense methods, MID Wang et al. (2021b) and BiDO Peng et al. (2022), to train the FL
models. Meanwhile, we launch the GMI attacks on the updated global models in each federated
communication round to see if these defense training schemes can still work in FL settings. The
relevant observations are summarized in Table 9. The FedInverse with GMI and GMI-HSIC suc-
cessfully attacked the FL with MID on the fourth training round and reached attack accuracy of
50.00 and 58.00, respectively. Similar to MID settings, GMI and GMI-HSIC successfully attacked
the FL with BiDO on the fourth training round and reached attack accuracy of 40.00 and 42.00, re-
spectively. For top-5 attack accuracy, GMI reached 100% in round 3, and GMI-HSIC reached 100%
in round 2 with both MID and BiDO defense settings. The results show that the SOTA defense
approach cannot defend against FedInverse+GMI attacks on FL settings on MNIST dataset.

A.8 IMPACT OF DEFENSE METHODS ON FEDINVERSE+KED-MI ON MNIST

Table 10 illustrates the impact of defense methods on FedInverse+KED-MI on MNIST. The Fed-
Inverse with KED-MI and KED-MI-HSIC successfully attacked the FL with MID on the fourth
training round and reached attack accuracy of 71.57 and 74.03, respectively. Similar to MID set-
tings, KED-MI and KED-MI-HSIC successfully attacked the FL with BiDO on the fourth training
round and reached attack accuracy of 61.01 and 66.85, respectively. For top-5 attack accuracy, KED-
MI reached 100% since round 1, and KED-MI-HSIC also reached 100% in round 1 with both MID
and BiDO defense settings. The results show that the SOTA defense approach cannot defend against
FedInverse+KED-MI attacks on FL settings on MNIST dataset.

16



Published as a conference paper at ICLR 2024

Table 7: FL privacy leakage indicated by Attack Acc/Acc5± standard deviation(%) and FID on
MNIST via FedInverse using GMI and GMI-HSIC with varying local computation. Bold values
denote the best metric results obtained by GMI or GMI-HSIC throughout the FL training epoch.
The symbol ↓(↑) denotes that smaller (larger) values are favored.

Metrics Methods FL#R01 FL#R02 FL#R03 FL#R04 FL#R05 FL#R01 FL#R02 FL#R03 FL#R04 FL#R05

Local Computation (E,B) = (1, 10) (E,B) = (2, 10)

Accuracy ↑ 83.34 97.59 98.27 98.4 98.52 97.64 98.15 98.81 98.94 99.02

Attack Acc ↑
GMI 34.00±9.66 38.00±22.01 34.00±16.47 50.00±10.54 56.00±20.66 32.00±19.32 34.00±18.97 38.00±19.89 40.00±9.43 42.00±17.51

GMI-HSIC 44.00±15.78 44.00±12.65 42.00±14.76 56.00±8.43 60.00±9.43 36.00±12.65 40.00±16.33 42.00±19.89 44.00±15.78 48.00±21.50

Attack Acc5 ↑
GMI 94.00±9.66 98.00±6.32 98.00±6.32 96.00±8.43 98.00±6.32 92.00±13.98 94.00±9.66 96.00±8.43 94.00±9.66 98.00±6.32

GMI-HSIC 96.00±8.43 98.00±6.32 98.00±6.32 100.00±0.00 98.00±6.32 96.00±8.43 98.00±6.32 98.00±6.32 100.00±0.00 100.00±0.00

FID ↓
GMI 20.1373 23.3598 22.3839 17.1018 16.7486 23.7213 23.6720 22.8779 21.4082 20.7127

GMI-HSIC 19.0845 21.1116 21.5377 15.6066 14.469 21.3812 21.4646 21.2353 20.7013 19.7279

Local Computation (E,B) = (1, 30) (E,B) = (2, 30)

Accuracy ↑ 85.30 95.77 97.37 98.22 98.38 95.07 98.03 98.61 98.46 98.92

Attack Acc ↑
GMI 36.00±18.38 38.00±17.51 42.00±22.01 42.00±14.76 46.00±13.50 34.00±18.97 36.00±22.71 38.00±19.89 40.00±18.86 44.00±15.78

GMI-HSIC 38.00±14.76 40.00±18.86 42.00±14.76 44.00±15.78 46.58±18.97 36.00±22.71 38.00±19.89 40.00±18 42.00±14.76 48.00±21.50

Attack Acc5 ↑
GMI 94.00±9.66 96.00±8.43 98.00±6.32 98.00±6.32 100.00±0.00 94.00±9.66 98.00±6.32 98.00±6.32 96.00±8.43 98.00±6.32

GMI-HSIC 100.00±0.00 100.00±0.00 98.00±6.32 100.00±0.00 100.00±0.00 94.00±9.66 98.00±6.32 100.00±0.00 98.00±6.32 100.00±0.00

FID ↓
GMI 23.9145 22.6867 21.1273 20.2517 18.1435 20.4175 19.0410 18.6176 18.2479 16.4464

GMI-HSIC 22.7109 20.5478 18.8782 20.1115 17.4279 19.6434 17.3692 18.1270 17.3496 16.0987

Local Computation (E,B) = (1, 60) (E,B) = (2, 60)

Accuracy ↑ 86.35 90.40 93.79 96.40 97.52 90.48 96.65 97.17 98.09 98.38

Attack Acc ↑
GMI 34.00±23.19 36.00±15.78 44.00±20.66 42.00±14.76 48.00±19.32 38.00±17.51 42.00±19.89 44.00±15.78 50.00±17.00 52.00±21.50

GMI-HSIC 36.00±18.38 38.00±14.76 48.00±16.87 44.00±15.78 50.00±17.00 42.00±11.35 46.00±13.50 50.00±17.00 52.00±16.87 60.00±16.33

Attack Acc5 ↑
GMI 86.00±18.97 88.00±13.98 96.00±8.43 94.00±9.66 96.00±8.43 94.00±9.66 96.00±8.43 98.00±6.32 100.00±0.00 96.00±8.43

GMI-HSIC 94.00±9.66 92.00±10.33 98.00±6.32 96.00±8.43 98.00±6.32 96.00±8.43 98.00±6.32 100.00±0.00 100.00±0.00 100.00±0.00

FID ↓
GMI 22.6974 19.9287 17.6055 16.6408 15.4819 22.8858 21.0912 17.7921 15.3665 12.3089

GMI-HSIC 20.9824 18.3025 17.4393 15.6629 15.4757 21.2270 20.7513 15.6794 15.5562 10.6041

Local Computation (E,B) = (1, 120) (E,B) = (2, 120)

Accuracy ↑ 51.34 56.95 68.90 78.90 92.08 61.04 82.81 92.33 95.99 97.27

Attack Acc ↑
GMI 30.00±10.54 32.00±21.50 40.00±13.33 42.00±23.94 44.00±22.71 30.00±19.44 32.00±13.98 32.00±21.50 38.00±19.89 42.00±16.47

GMI-HSIC 34.00±13.50 38.00±14.76 42.00±14.76 46.00±18.97 48.00±19.32 30.00±17.00 36.00±15.78 38.00±22.01 40.00±23.09 44.00±20.66

Attack Acc5 ↑
GMI 92.00±13.98 96.00±12.65 98.00±6.32 96.00±8.43 98.00±6.32 90.00±10.54 96.00±8.43 96.00±8.43 94.00±9.66 96.00±8.43

GMI-HSIC 96.00±12.65 98.00±6.32 100.00±0.00 100.00±0.00 100.00±0.00 98.00±6.32 98.00±6.32 96.00±8.43 98.00±6.32 98.00±6.32

FID ↓
GMI 21.2109 21.4954 19.8025 19.1230 18.9499 25.0463 23.8215 23.4771 23.5279 22.0935

GMI-HSIC 19.5419 20.4106 18.4925 18.7281 17.7968 22.6472 22.4640 22.4177 21.9816 21.0760

A.9 FEDINVERSE ATTACK PERFORMANCE ON CELEBA

The results of FedInverse using GMI and GMI-HSIC are illustrated in Table 11, where we have the
attack performance with varying GMI attack settings and FL training rounds. As shown in Table
11, GMI-HSIC consistently achieves better attack performance and FID since the first FL training
round, indicated by improvement of 10% of the attack accuracy (8.50 vs 9.43), 2% of the top-5 attack
accuracy (22.07 vs 22.70), and FID (97.1281 vs 96.9064). FL training accuracy has been increased
and stabilized in the second round from 66.05 to 80.48, and it is worthy noting that GMI-HSIC
achieves the highest attack accuracy and top-5 attack accuracy which outperforms GMI by 5% of
the attack accuracy (11.33 vs 11.93), 5% of the top-5 attack accuracy (25.49 vs 26,77), and smaller
FID (104.0733 vs 101.0956). When compared with the GMI and GMI-HSIC, GMI can partially
leak images from other participants and the attack performance can be significantly improved by
GMI-HSIC, in which the diversity of the generated images has been optimized by HSIC.
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Table 8: FL privacy leakage indicated by Attack Acc/Acc5± standard deviation(%) and FID on
MNIST via FedInverse using KED-MI and KED-MI-HSIC with varying local computation. Bold
values denote the best metric results obtained by KED-MI or KED-MI-HSIC throughout the FL
training epoch. The symbol ↓(↑) denotes that smaller (larger) values are favored.

Metrics Methods FL#R01 FL#R02 FL#R03 FL#R04 FL#R05 FL#R01 FL#R02 FL#R03 FL#R04 FL#R05

Local Computation (E,B) = (1, 10) (E,B) = (2, 10)

Accuracy ↑ 83.34 97.59 98.27 98.4 98.52 97.64 98.15 98.81 98.94 99.02

Attack Acc ↑
KED-MI 64.60±8.46 60.60±4.45 80.00±0.00 80.00±0.00 79.80±2.00 60.15±1.73 61.35±4.91 74.17±9.26 78.44±5.77 78.89±2.48

KED-MI-HSIC 80.00±0.00 64.40±8.33 80.00±0.00 80.20±2.00 80.20±2.00 60.52±3.16 61.85±5.71 79.81±1.10 79.99±6.63 85.09±4.14

Attack Acc5 ↑
KED-MI 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00

KED-MI-HSIC 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00

FID ↓
KED-MI 209.1448 206.0789 195.1807 184.995 175.9532 189.0635 182.2778 178.8578 173.078 167.2463

KED-MI-HSIC 204.5017 198.6938 175.9532 161.0252 160.9891 182.813 180.9875 173.1939 169.6834 162.9299

Local Computation (E,B) = (1, 30) (E,B) = (2, 30)

Accuracy ↑ 85.30 95.77 97.37 98.22 98.38 95.07 98.03 98.61 98.46 98.92

Attack Acc ↑
KED-MI 62.69±5.75 64.55±5.96 71.20±3.11 78.35±2.88 80.00±0.00 60.00±0.00 64.60±11.99 66.88±6.62 76.53±6.47 83.17±7.21

KED-MI-HSIC 66.73±0.66 65.52±2.51 72.55±3.70 80.00±0.00 80.00±0.00 62.67±6.39 65.29±11.05 68.85±9.77 79.40±3.32 83.64±7.69

Attack Acc5 ↑
KED-MI 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00

KED-MI-HSIC 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00

FID ↓
KED-MI 191.7317 186.0394 175.8877 169.0031 162.7329 217.0403 210.2183 204.235 183.4337 180.9140

KED-MI-HSIC 186.9849 185.2320 172.8691 164.9772 160.6046 206.0624 203.1168 196.6989 178.4203 162.7005

Local Computation (E,B) = (1, 60) (E,B) = (2, 60)

Accuracy ↑ 86.35 90.40 93.79 96.40 97.52 90.48 96.65 97.17 98.09 98.38

Attack Acc ↑
KED-MI 59.92±0.72 61.19±4.02 67.31±6.49 77.89±3.10 86.67±0.00 59.72±2.30 71.00±12.85 75.33±8.54 79.72±2.2898 80.00±0.00

KED-MI-HSIC 62.17±4.45 66.67±0.00 68.00±3.3821 80.00±0.00 87.64±0.42 60.00±0.00 73.15±1.89 76.93±9.23 79.69±2.25 80.00±0.00

Attack Acc5 ↑
KED-MI 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00

KED-MI-HSIC 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00

FID ↓
KED-MI 194.3525 188.9867 198.0894 179.0765 170.3807 203.035 192.8893 179.7266 173.2627 154.8115

KED-MI-HSIC 186.6046 163.9228 163.4239 148.2969 131.0784 185.0541 173.8115 171.704 163.2503 153.6553

Local Computation (E,B) = (1, 120) (E,B) = (2, 120)

Accuracy ↑ 51.34 56.95 68.90 78.90 92.08 61.04 82.81 92.33 95.99 97.27

Attack Acc ↑
KED-MI 47.56±4.47 60.03±0.42 66.91±1.50 79.65±1.48 80.00±0.00 46.89±1.82 53.80±10.53 66.35±1.42 66.67±0.00 80.00±0.00

KED-MI-HSIC 60.00±0.00 66.67±0.00 73.33±0.00 80.00±0.00 93.33±0.00 60.33±2.50 63.73±11.20 66.67±0.00 75.77±3.21 80.01±0.29

Attack Acc5 ↑
KED-MI 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00

KED-MI-HSIC 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00

FID ↓
KED-MI 243.4233 230.6205 212.6278 192.4296 185.4447 243.9973 228.1217 214.8240 200.3790 184.5743

KED-MI-HSIC 216.9471 215.4928 203.0319 182.6337 170.4385 196.2384 187.2983 179.7032 162.6797 160.1287

The performance evaluation of FedInverse using KED-MI attack on CelebA is presented in Table
12, where we use the same attack settings as the GMI attack. Compare to GMI, KED-MI completely
penetrates the mechanism of FL personal privacy protection, and the best attack accuracy dramati-
cally increases from 11.33 in Table 11 to 57.80 in Table 12, and the best top-5 attack accuracy booms
from 25.40 Table 11 to 85.47 Table 12. The best result of attack accuracy and top-5 attack accuracy
also increases from 11.93 in Table 11 to 60.13 in Table 12, and 26.77 in Table 11 to 85.80 in Table
12, respectively, compared to GMI-HISC and KED-MI-HSIC. When we compare the attack perfor-
mance between KED-MI and KED-MI-HSIC, KED-MI-HSIC improves 4% of the attack accuracy
(57.80 vs 60.13), 2% of the top-5 accuracy (82.73 vs 84.73), and smaller FID (244.159 vs 239.4701)
in FL training round 9 and 10 respectively. According to the results, participants’ privacy in FL can
be easily revealed by the KED-MI, and HSIC plays an important role in increasing the diversity of
the generated images where the attack accuracy can be improved.
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Table 9: FL privacy leakage indicated by Attack Acc/Acc5± standard deviation(%) and FID on
MNIST via FedInverse using GMI and GMI-HSIC with two diverse defense methods: MID and
BiDO. Bold values denote the best metric results obtained by GMI or GMI-HSIC throughout the FL
training epoch. The symbol ↓(↑) denotes that smaller (larger) values are favored.

Metrics Methods FL#R01 FL#R02 FL#R03 FL#R04 FL#R05 FL#R01 FL#R02 FL#R03 FL#R04 FL#R05

Defense Method MID BiDO

Accuracy ↑ 86.69 97.85 97.97 98.59 98.54 95.79 96.20 97.47 97.93 96.51

Attack Acc ↑
GMI 38.00±22.01 40.00±9.43 42.00±14.76 50.00±10.54 40.00±18.86 32.00±19.32 34.00±13.49 34.00±21.18 40.00±13.33 38.00±19.88

GMI-HSIC 40.00±21.08 42.00±14.76 44.00±18.38 58.00±11.35 40.00±23.09 34.00±18.97 36.00±12.65 36.00±15.78 42.00±19.89 40.00±16.33

Attack Acc5 ↑
GMI 96.00±8.43 98.00±6.32 100.00±0.00 100.00±0.00 100.00±0.00 96.00±8.43 96.00±8.43 98.00±6.32 100.00±0.00 100.00±0.00

GMI-HSIC 98.00±6.32 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 98.00±6.32 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00

FID ↓
GMI 23.9977 21.4223 20.1756 20.9959 19.9425 26.3337 25.0333 24.2407 23.7489 21.6887

GMI-HSIC 23.4958 20.1026 19.8077 19.2872 18.2523 25.5310 24.3883 23.1513 22.8132 20.1309

Table 10: FL privacy leakage indicated by Attack Acc/Acc5± standard deviation(%) and FID on
MNIST via FedInverse using KED-MI and KED-MI-HSIC with two diverse defense methods: MID
and BiDO. Bold values denote the best metric results obtained by GMI or GMI-HSIC throughout
the FL training epoch. The symbol ↓(↑) denotes that smaller (larger) values are favored.

Metrics Methods FL#R01 FL#R02 FL#R03 FL#R04 FL#R05 FL#R01 FL#R02 FL#R03 FL#R04 FL#R05

Defense Method MID BiDO

Accuracy ↑ 86.69 97.85 97.97 98.59 98.54 95.79 96.20 97.47 97.93 96.51

Attack Acc ↑
KED-MI 58.35±11.99 62.63±3.85 64.60±6.99 71.57±10.33 67.88±4.06 43.12±7.23 46.67±0.00 49.76±8.77 61.01±5.61 60.00±0.00

KED-MI-HSIC 59.67±6.21 64.93±7.62 65.57±8.69 74.03±8.47 73.23±13.19 45.45±8.33 48.85±8.12 56.32±8.53 66.85±3.64 64.11±9.34

Attack Acc5 ↑
KED-MI 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00

KED-MI-HSIC 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00

FID ↓
KED-MI 205.2744 190.9697 184.2229 173.4399 172.9889 256.3345 237.0378 233.1303 220.3506 196.9305

KED-MI-HSIC 200.1239 187.4048 179.6035 165.1414 166.0872 235.8799 235.8799 213.6232 209.4665 179.0025

We also evaluate the FedInverse performance of VMI in Table 13 with ResNet-34. The highest attack
accuracy of VMI appears in FL training round 10 is 36.70 and the highest top-5 attack accuracy
appears in FL training round 9 is 63.30. The VMI-HSIC further improves the attack performance
by 3% and the top-5 attack accuracy by 0.7%, which are 37.95 and 63.80, respectively, with smaller
FID (0.8942 vs 0.891). The results validate the promised privacy leakage by VMI attacks.

Table 11: FL privacy leakage indicated by Attack Acc/Acc5±standard deviation(%) and FID on
CelebA via FedInverse using GMI and GMI-HSIC. Bold values denote the best metric results ob-
tained by GMI or GMI-HSIC throughout the FL training epoch. The symbol ↓(↑) denotes that
smaller (larger) values are favored.

Metrics Methods FL#R01 FL#R02 FL#R03 FL#R04 FL#R05 FL#R06 FL#R07 FL#R08 FL#R09 FL#R10

Accuracy ↑ 66.05 80.48 81.11 81.64 81.68 81.84 82.41 82.44 82.74 82.54

Attack Acc ↑
GMI 8.50±3.26 9.80±4.08 10.07±3.91 10.37±4.10 10.10±3.96 10.17±3.87 10.53±3.90 10.93±3.82 11.33±4.67 10.70±3.62

GMI-HSIC 9.43±3.78 10.53±3.35 10.63±3.66 10.83±3.58 11.00±3.91 11.57±4.06 11.13±3.98 11.73±4.17 11.93±4.33 10.97±4.91

Attack Acc5 ↑
GMI 22.07±4.62 23.80±5.24 23.80±5.63 23.93±6.03 24.07±5.73 24.20±5.42 24.47±4.99 24.83±6.57 25.40±7.35 25.20±5.15

GMI-HSIC 22.70±5.46 24.93±5.47 25.00±5.60 25.03±5.26 25.23±5.18 25.63±5.68 25.63±5.03 25.57±6.18 26.77±5.84 25.90±6.54

FID ↓
GMI 108.2603 108.5283 107.6128 108.7106 107.0249 106.814 104.0733 103.0706 97.1281 104.7775

GMI-HSIC 106.3502 104.8022 105.0613 106.8688 106.6671 104.0582 104.404 101.0956 96.9064 102.5457
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Table 12: FL privacy leakage indicated by Attack Acc/Acc5±standard deviation(%) and FID on
CelebA via FedInverse using KED-MI and KED-MI-HSIC. Bold values denote the best metric re-
sults obtained by KED-MI or KED-MI-HSIC throughout the FL training epoch. The symbol ↓(↑)
denotes that smaller (larger) values are favored.

Metrics Methods FL#R01 FL#R02 FL#R03 FL#R04 FL#R05 FL#R06 FL#R07 FL#R08 FL#R09 FL#R10

Accuracy ↑ 66.05 80.48 81.11 81.64 81.68 81.84 82.41 82.44 82.74 82.54

Attack Acc ↑
KED-MI 39.53±1.87 53.47±2.91 55.60±2.64 56.93±3.19 56.80±4.54 54.67±3.40 56.60±2.97 53.13±3.33 57.80±4.04 56.73±2.62

KED-MI-HSIC 41.73±1.76 57.80±3.07 55.07±4.31 59.33±3.45 57.47±2.42 57.07±3.88 59.13±3.95 55.73±2.87 60.13±3.53 59.47±3.30

Attack Acc5 ↑
KED-MI 67.67±2.90 80.07±2.32 81.40±2.93 83.73±2.38 82.07±2.75 81.73±2.66 82.53±3.27 81.60±2.17 85.47±2.39 82.73±2.02

KED-MI-HSIC 67.53±2.07 80.33±3.26 82.13±2.74 83.13±2.88 81.80±2.18 83.47±2.00 83.40±2.49 82.87±2.17 85.80±2.27 84.73±0.97

FID ↓
KED-MI 241.0025 243.3093 235.3072 249.9985 247.8074 247.2511 227.6555 241.8614 244.159 248.9721

KED-MI-HSIC 232.7846 242.5915 232.5486 245.5304 241.8464 241.6832 225.5088 238.4409 239.4701 248.7714

Table 13: FL privacy leakage indicated by Attack Acc/Acc5±standard deviation(%) and FID on
CelebA via FedInverse using VMI and VMI-HSIC. Bold values denote the best metric results ob-
tained by VMI or VMI-HSIC throughout the FL training epoch. The symbol ↓(↑) denotes that
smaller (larger) values are favored.

Metrics Methods FL#R01 FL#R02 FL#R03 FL#R04 FL#R05 FL#R06 FL#R07 FL#R08 FL#R09 FL#R10

Accuracy ↑ 38.17 47.78 49.03 59.53 58.85 59.55 65.54 65.5 65.24 65.16

Attack Acc ↑
VMI 16.85±14.60 27.25±17.98 25.75±17.66 29.05±16.85 31.00±20.62 33.15±20.81 33.40±21.24 36.45±21.23 36.65±20.83 36.70±20.31

VMI-HSIC 19.00±18.31 27.65±18.06 25.75±18.42 29.75±16.85 31.05±21.40 32.60±20.25 33.90±21.29 37.20±20.47 37.10±21.08 37.95±20.35

Attack Acc5 ↑
VMI 33.20±23.84 48.95±27.10 46.00±27.71 50.70±22.53 54.00±28.94 55.35±26.17 58.75±25.61 62.75±23.26 63.30±23.55 63.20±22.89

VMI-HSIC 35.75±23.97 50.20±26.89 45.65±28.84 53.30±22.66 54.75±28.35 56.45±26.85 61.70±23.54 63.10±23.78 63.80±21.75 63.75±23.58

FID ↓
VMI 1.0615 0.963 0.9677 0.9466 0.9377 0.9328 0.9069 0.8989 0.8957 0.8942

VMI-HSIC 1.0275 0.9562 0.965 0.9401 0.9359 0.9317 0.9023 0.899 0.8912 0.8910
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Table 14: FL privacy leakage indicated by Attack Acc/Acc5±standard deviation(%) and FID on
CelebA via FedInverse using GMI and GMI-HSIC with varying active fractions of participants.
Bold values denote the best metric results obtained by GMI or GMI-HSIC throughout the FL training
epoch. The symbol ↓(↑) denotes that smaller (larger) values are favored.

Metrics Methods FL#R01 FL#R02 FL#R03 FL#R04 FL#R05 FL#R06 FL#R07 FL#R08 FL#R09 FL#R10

Fraction of participants C = 0.4

Accuracy ↑ 67.65 80.35 81.68 82.08 82.44 82.41 82.67 82.91 83.11 82.54

Attack Acc ↑
GMI 10.67±4.12 11.17±3.87 10.33±3.40 12.67±4.90 11.33±3.86 9.00±4.68 10.50±3.78 12.33±3.32 8.83±4.38 13.00±3.87

GMI-HSIC 12.00±3.73 12.83±5.35 12.17±4.64 12.00±2.65 12.83±6.57 11.83±3.06 11.00±3.91 11.67±4.61 12.00±4.80 12.83±4.18

Attack Acc5 ↑
GMI 25.83±6.03 25.33±5.37 25.83±7.20 23.00±8.61 25.33±4.72 23.17±3.84 24.17±7.25 25.67±7.17 23.67±7.70 27.17±6.64

GMI-HSIC 25.00±5.60 26.50±6.01 25.50±6.73 26.33±8.98 27.83±6.96 25.90±6.54 26.50±4.27 29.00±8.45 29.33±8.88 26.83±7.03

FID ↓
GMI 157.5960 157.9935 148.8573 154.4589 155.4286 150.9164 150.3659 146.8032 141.5987 144.3315

GMI-HSIC 152.7228 149.6889 147.5066 147.9429 147.9600 147.2307 144.5968 146.9599 135.7852 141.4002

Fraction of participants C = 0.6

Accuracy ↑ 69.28 80.68 81.38 81.51 82.01 82.18 82.24 82.44 82.64 82.71

Attack Acc ↑
GMI 9.50±4.46 9.83±4.02 11.50±4.44 8.33±5.26 10.33±4.46 7.83±3.06 10.50±5.19 11.33±4.61 11.67±4.98 13.00±5.65

GMI-HSIC 10.17±4.47 10.67±5.17 10.50±3.23 11.67±3.98 11.17±4.51 12.17±5.37 12.67±7.07 13.00±6.07 14.33±4.77 13.67±4.66

Attack Acc5 ↑
GMI 21.83±7.01 21.50±6.67 21.67±6.23 24.50±8.16 24.00±6.26 26.83±7.91 26.50±6.51 27.00±5.26 27.33±5.18 26.50±5.99

GMI-HSIC 25.33±4.92 26.33±9.00 27.33±8.07 27.50±6.00 27.67±4.95 27.67±6.11 28.33±5.46 28.17±10.37 29.00±5.04 28.17±6.28

FID ↓
GMI 151.0542 152.1294 152.2443 150.9182 149.3314 150.4244 147.8318 142.7556 140.6171 143.4548

GMI-HSIC 149.0826 146.6641 144.3291 141.4876 143.3411 142.9232 143.2222 141.6792 134.0685 139.9209

Fraction of participants C = 1.0

Accuracy ↑ 66.05 80.48 81.11 81.64 81.68 81.84 82.41 82.44 82.74 82.54

Attack Acc ↑
GMI 8.50±3.26 9.80±4.08 10.07±3.91 10.37±4.10 10.10±3.96 10.17±3.87 10.53±3.90 10.93±3.82 11.33±4.67 10.70±3.62

GMI-HSIC 9.43±3.78 10.53±3.35 10.63±3.66 10.83±3.58 11.00±3.91 11.57±4.06 11.13±3.98 11.73±4.17 11.93±4.33 10.97±4.91

Attack Acc5 ↑
GMI 22.07±4.62 23.80±5.24 23.80±5.63 23.93±6.03 24.07±5.73 24.20±5.42 24.47±4.99 24.83±6.57 25.40±7.35 25.20±5.15

GMI-HSIC 22.70±5.46 24.93±5.47 25.00±5.60 25.03±5.26 25.23±5.18 25.63±5.68 25.63±5.03 25.57±6.18 26.77±5.84 25.90±6.54

FID ↓
GMI 108.2603 108.5283 107.6128 108.7106 107.0249 106.814 104.0733 103.0706 97.1281 104.7775

GMI-HSIC 106.3502 104.8022 105.0613 106.8688 106.6671 104.0582 104.404 101.0956 96.9064 102.5457

A.10 IMPACT OF PARALLELISM ON FEDINVERSE+GMI ON CELEBA

We investigate the influence of FL parallelism by modulating the active fraction of participants on
the attack performance of GMI within the context of FL. Pertinent observations are detailed in Table
14. The results show similar trends as MNIST parallelism experiments. The number of participants
does not greatly impact the attack performance, whereas GMI has a similar attack accuracy of 13.00
when 40% and 60% of the participants join the FL training round. The results also show that GMI-
HSIC has less impact on the attack performance, where the highest attack accuracy is 14.33 when
60% of the participants join the FL training round, and the lowest attack accuracy is 11.93 when
100% of the participants join the FL training round. Comparing top-5 attack accuracy between the
number of training participants, the highest GMI top-5 attack accuracy is 27.33 when 60% of the
participants join the FL training round, and the lowest top-5 attack accuracy of GMI is 25.40. Same
as GMI-HSIC, the highest top-5 attack accuracy is 29.33, and lowest top-5 attack accuracy is 26.77.

A.11 IMPACT OF PARALLELISM ON FEDINVERSE+KED-MI ON CELEBA

Table 15 shows that KED-MI and KED-MI-HSIC achieved better attack performance than GMI and
GMI-HSIC. The number of participants does not greatly impact the attack performance as well. The
highest attack accuracy of KED-MI is 61.93 when 40% of participants join the FL training round,
and the lowest attack accuracy is 57.80 when 100% of participants join the FL training round. KED-
MI-HSIC reaches the highest attack accuracy of 64.80 at 40% of participants and the lowest attack
accuracy of 60.13 at 100% of of participants. For top-5 attack accuracy, both KED-MI and KED-
MI-HSIC have similar patterns. The highest top-5 attack accuracy appears at participant = 10%,
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Table 15: FL privacy leakage indicated by Attack Acc/Acc5±standard deviation(%) and FID on
CelebA via FedInverse using KED-MI and KED-MI-HSIC with varying active fractions of partici-
pants. Bold values denote the best metric results obtained by KED-MI or KED-MI-HSIC throughout
the FL training epoch. The symbol ↓(↑) denotes that smaller (larger) values are favored.

Metrics Methods FL#R01 FL#R02 FL#R03 FL#R04 FL#R05 FL#R06 FL#R07 FL#R08 FL#R09 FL#R10

Fraction of participants C = 0.4

Accuracy ↑ 67.65 80.35 81.68 82.08 82.44 82.41 82.67 82.91 83.11 82.54

Attack Acc ↑
KED-MI 42.13±2.64 53.53±3.59 54.60±3.70 55.27±4.89 56.53±3.94 58.87±4.96 61.93±5.26 54.00±4.85 58.73±3.34 61.07±3.68

KED-MI-HSIC 45.07±3.58 59.53±4.22 55.73±3.72 58.13±3.66 60.13±4.33 59.33±4.33 64.80±4.12 55.80±3.57 57.53±2.72 61.07±2.34

Attack Acc5 ↑
KED-MI 71.67±2.90 81.73±3.30 80.33±2.90 81.53±3.46 83.20±2.82 82.53±3.31 87.73±3.20 81.07±2.94 83.40±2.48 85.67±2.50

KED-MI-HSIC 73.40±3.67 83.47±3.99 81.73±2.57 82.73±2.86 83.53±2.73 85.20±3.06 88.73±2.55 82.20±3.38 82.13±3.10 85.40±2.85

FID ↓
KED-MI 236.8327 241.7872 229.6966 232.1761 226.3052 232.3101 247.5734 227.7192 225.6284 232.9999

KED-MI-HSIC 228.8435 227.7244 250.3745 241.7729 242.425 233.486 224.7654 221.1877 222.9146 221.6223

Fraction of participants C = 0.6

Accuracy ↑ 69.28 80.68 81.38 81.51 82.01 82.18 82.24 82.44 82.64 82.71

Attack Acc ↑
KED-MI 49.47±4.53 57.60±4.81 53.47±4.24 59.13±3.39 58.33±5.02 56.80±3.56 56.67±4.47 55.47±4.47 56.53±4.08 59.73±3.16

KED-MI-HSIC 50.60±3.95 58.67±3.71 56.40±3.73 59.13±4.82 59.20±4.89 60.40±4.93 60.33±5.18 56.53±3.09 56.40±3.24 58.47±3.97

Attack Acc5 ↑
KED-MI 77.67±2.35 82.00±2.78 79.07±3.25 81.73±3.30 83.33±2.95 84.27±3.61 84.40±2.60 82.27±2.56 80.87±2.20 84.73±3.70

KED-MI-HSIC 78.40±3.08 83.33±2.59 82.40±2.77 82.20±2.51 82.53±2.54 83.87±3.51 84.60±3.50 83.13±2.78 82.00±2.32 82.73±3.34

FID ↓
KED-MI 255.9901 237.3064 238.6459 239.4178 254.6535 251.7509 240.175 243.6964 240.3951 234.203

KED-MI-HSIC 229.8925 231.906 239.4226 249.6141 245.5274 230.4824 240.9596 235.8868 226.1562 227.872

Fraction of participants C = 1.0

Accuracy ↑ 66.05 80.48 81.11 81.64 81.68 81.84 82.41 82.44 82.74 82.54

Attack Acc ↑
KED-MI 39.53±1.87 53.47±2.91 55.60±2.64 56.93±3.19 56.80±4.54 54.67±3.40 56.60±2.97 53.13±3.33 57.80±4.04 56.73±2.62

KED-MI-HSIC 41.73±1.76 57.80±3.07 55.07±4.31 59.33±3.45 57.47±2.42 57.07±3.88 59.13±3.95 55.73±2.87 60.13±3.53 59.47±3.30

Attack Acc5 ↑
KED-MI 67.67±2.90 80.07±2.32 81.40±2.93 83.73±2.38 82.07±2.75 81.73±2.66 82.53±3.27 81.60±2.17 85.47±2.39 82.73±2.02

KED-MI-HSIC 67.53±2.07 80.33±3.26 82.13±2.74 83.13±2.88 81.80±2.18 83.47±2.00 83.40±2.49 82.87±2.17 85.80±2.27 84.73±0.97

FID ↓
KED-MI 241.0025 243.3093 235.3072 249.9985 247.8074 247.2511 227.6555 241.8614 244.159 248.9721

KED-MI-HSIC 232.7846 242.5915 232.5486 245.5304 241.8464 241.6832 225.5088 238.4409 239.4701 248.7714

which are 87.73 and 88.73, respectively. The lowest top-5 attack accuracy appears at participant =
60%, which are 84.73 and 84.60, respectively.

A.12 IMPACT OF LOCAL COMPUTATION ON FEDINVERSE+GMI ON CELEBA

The relevant experimental results are summarized in Table 16. We adjusted the local computation
hyperparameters E and B and observed that the local computation on each client has less impact
on FedInverse using GMI and GMI-HSIC. The highest GMI attack accuracy is 12.67 when we set
E = 30 and B = 128. The attack accuracy on the rest of the settings varies from 10.50 to 12.17.
For the GMI-HSIC the highest attack accuracy appears E = 50 and B = 32, which is 13.17. Others
vary from 11.50 to 13.17. The top-5 attack accuracy varies from 24.00 to 27.80 and 24.67 to 30.00
for GMI and GMI-HSIC, respectively.

A.13 IMPACT OF LOCAL COMPUTATION ON FEDINVERSE+KED-MI ON CELEBA

The relevant experimental results are summarized in Table 17, KED-MI and KED-MI-HSIC per-
formed better than GMI and GMI-HSIC on CelebA. The highest KED-MI attack accuracy is 66.60
when we set E = 50 and B = 32. The attack accuracy on the rest of the settings varies from 57.80
to 61.40. For the KED-MI-HSIC the highest attack accuracy appears E = 30 and B = 128, which
is 82.80. Others vary from 60.13 to 66.67. The top-5 attack accuracy varies from 84.27 to 88.40 and
84.87 to 89.27 for KED-MI and KED-MI-HSIC, respectively.

22



Published as a conference paper at ICLR 2024

Table 16: FL privacy leakage indicated by Attack Acc/Acc5±standard deviation(%) and FID on
CelebA via FedInverse using GMI and GMI-HSIC with varying local computation. Bold values
denote the best metric results obtained by GMI or GMI-HSIC throughout the FL training epoch.
The symbol ↓(↑) denotes that smaller (larger) values are favored.

Metrics Methods FL#R01 FL#R02 FL#R03 FL#R04 FL#R05 FL#R06 FL#R07 FL#R08 FL#R09 FL#R10

Local Computation (E,B) = (30, 32)

Accuracy ↑ 67.25 81.15 81.44 81.68 82.38 82.51 82.67 82.57 82.67 82.74

Attack Acc ↑
GMI 8.00±3.68 8.83±2.55 8.83±3.43 9.67±3.80 9.83±4.52 9.33±3.98 9.83±3.01 11.33±5.52 11.83±4.79 10.17±3.29

GMI-HSIC 9.83±4.81 10.00±3.41 10.33±3.84 10.83±5.39 11.33±3.99 11.17±3.98 11.50±4.11 12.00±2.85 12.17±4.91 11.33±5.30

Attack Acc5 ↑
GMI 22.33±4.96 22.00±6.71 24.33±8.04 23.17±5.54 22.17±4.81 21.17±4.62 23.50±4.84 23.00±5.69 26.33±6.26 27.83±7.42

GMI-HSIC 24.67±4.66 25.50±6.83 26.83±4.92 24.17±6.58 24.83±4.69 27.00±9.11 24.33±5.70 24.00±6.66 26.83±6.66 27.50±6.55

FID ↓
GMI 150.3791 151.9222 148.9057 153.0103 155.1253 154.3783 148.0305 149.3648 140.6815 139.4663

GMI-HSIC 142.8629 148.9581 144.2583 149.5401 147.4151 150.0513 151.2198 148.6511 135.5822 126.5875

Local Computation (E,B) = (30, 64)

Accuracy ↑ 66.05 80.48 81.11 81.64 81.68 81.84 82.41 82.44 82.74 82.54

Attack Acc ↑
GMI 8.50±3.26 9.80±4.08 10.07±3.91 10.37±4.10 10.10±3.96 10.17±3.87 10.53±3.90 10.93±3.82 11.33±4.67 10.70±3.62

GMI-HSIC 9.43±3.78 10.53±3.35 10.63±3.66 10.83±3.58 11.00±3.91 11.57±4.06 11.13±3.98 11.73±4.17 11.93±4.33 10.97±4.91

Attack Acc5 ↑
GMI 22.07±4.62 23.80±5.24 23.80±5.63 23.93±6.03 24.07±5.73 24.20±5.42 24.47±4.99 24.83±6.57 25.40±7.35 25.20±5.15

GMI-HSIC 22.70±5.46 24.93±5.47 25.00±5.60 25.03±5.26 25.23±5.18 25.63±5.68 25.63±5.03 25.57±6.18 26.77±5.84 25.90±6.54

FID ↓
GMI 108.2603 108.5283 107.6128 108.7106 107.0249 106.814 104.0733 103.0706 97.1281 104.7775

GMI-HSIC 106.3502 104.8022 105.0613 106.8688 106.6671 104.0582 104.404 101.0956 96.9064 102.5457

Local Computation (E,B) = (30, 128)

Accuracy ↑ 68.21 81.11 82.01 82.24 82.61 82.54 82.67 82.81 82.91 82.94

Attack Acc ↑
GMI 8.83±3.09 8.17±5.15 6.17±3.82 8.67±2.70 12.67±4.82 9.83±4.37 10.17±3.84 9.50±4.72 9.83±5.05 10.50±5.22

GMI-HSIC 10.50±4.49 10.83±5.77 12.83±6.27 10.33±4.46 12.67±4.58 12.67±3.98 12.67±4.84 13.83±4.53 9.67±3.08 11.83±3.99

Attack Acc5 ↑
GMI 21.67±5.74 22.67±7.03 21.33±7.34 23.50±6.08 25.17±6.77 24.17±8.57 24.50±6.47 27.50±7.36 27.67±6.99 24.67±5.55

GMI-HSIC 25.50±6.80 25.33±6.65 25.83±6.48 25.33±5.55 26.33±4.93 26.00±6.20 26.83±5.28 28.17±8.47 30.00±6.27 27.67±6.94

FID ↓
GMI 157.4958 155.0116 151.5519 149.7776 149.2006 147.1125 147.2644 148.8404 138.1305 143.8598

GMI-HSIC 148.6452 147.9373 146.0720 145.2726 144.5028 143.5818 141.7064 142.0568 135.0851 138.9605

Local Computation (E,B) = (50, 32)

Accuracy ↑ 68.05 82.08 82.51 82.81 83.44 83.64 83.74 83.97 83.97 84.17

Attack Acc ↑
GMI 10.50±4.08 10.50±4.78 10.50±4.94 10.33±4.30 10.83±3.12 11.00±5.46 11.33±3.66 12.17±4.29 11.50±5.22 12.00±4.03

GMI-HSIC 10.50±5.58 10.83±5.68 11.33±4.57 12.67±4.45 11.17±4.27 12.50±5.17 12.83±5.21 13.17±4.36 12.00±4.50 2.00±3.62

Attack Acc5 ↑
GMI 24.83±5.20 22.83±7.10 24.83±7.21 25.00±4.45 24.00±6.99 22.83±6.22 23.67±4.57 26.67±5.64 27.67±8.17 24.33±6.19

GMI-HSIC 25.67±7.35 26.17±5.08 25.17±7.86 25.17±7.99 24.83±7.30 26.17±5.32 27.50±8.19 28.33±7.47 26.50±5.78 27.83±6.76

FID ↓
GMI 155.4550 152.0929 148.4526 144.9996 149.4272 151.4114 140.2202 144.2916 139.5381 147.8779

GMI-HSIC 146.0104 143.0022 146.3147 151.5006 146.7224 143.4877 143.0034 153.7981 145.4033 135.2066

Local Computation (E,B) = (50, 64)

Accuracy ↑ 67.58 80.11 80.75 81.05 81.58 81.54 81.91 82.08 82.14 82.48

Attack Acc ↑
GMI 6.83±4.14 10.17±4.59 8.33±3.56 9.00±2.76 10.17±2.48 10.50±6.10 9.17±4.17 11.17±4.85 9.17±4.65 9.83±3.74

GMI-HSIC 9.83±3.82 10.83±3.19 9.67±2.97 9.83±3.92 10.67±4.11 11.33±5.15 10.83±3.94 11.67±3.89 10.00±2.66 10.00±3.05

Attack Acc5 ↑
GMI 20.50±6.23 22.83±5.11 21.00±4.48 22.83±6.19 25.50±5.34 23.50±7.69 25.33±4.64 25.33±4.13 23.50±7.55 21.83±6.55

GMI-HSIC 22.33±5.77 24.33±6.69 23.33±3.33 24.33±5.91 23.83±4.52 23.00±5.95 24.33±5.24 24.33±5.15 26.00±7.36 24.67±6.64

FID ↓
GMI 161.0902 158.4809 159.8758 149.9713 154.8924 154.7554 157.3184 142.5553 145.9331 154.8426

GMI-HSIC 154.5773 154.9725 151.9411 156.5869 151.3138 146.3411 150.6333 149.2384 144.2459 143.9670

Local Computation (E,B) = (50, 128)

Accuracy ↑ 68.21 79.42 80.35 80.71 81.21 81.48 81.44 81.54 81.78 81.94

Attack Acc ↑
GMI 8.50±3.30 8.17±3.13 9.17±5.62 7.83±4.36 9.00±2.78 8.83±4.99 10.17±5.05 9.33±3.90 8.33±4.34 10.50±4.76

GMI-HSIC 10.50±4.46 10.83±3.65 9.17±3.86 9.67±3.67 9.50±4.60 10.83±6.02 11.17±5.58 11.50±4.82 10.83±4.78 11.17±3.63

Attack Acc5 ↑
GMI 20.83±4.34 20.33±5.49 22.83±7.05 21.83±3.33 22.33±8.31 22.67±6.03 24.17±7.43 22.33±8.93 24.00±7.17 23.50±4.48

GMI-HSIC 22.83±5.53 22.67±8.51 22.83±5.14 22.83±6.40 24.33±7.90 23.33±7.03 24.00±6.90 24.33±6.75 24.67±4.86 24.33±4.20

FID ↓
GMI 155.7808 157.3235 156.1449 153.3072 153.2049 150.1078 140.1049 147.2408 150.4086 144.1966

GMI-HSIC 150.0434 146.9458 149.4768 148.7402 148.6756 148.4312 147.1038 146.8517 145.7551 135.8389
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Table 17: FL privacy leakage indicated by Attack Acc/Acc5±standard deviation(%) and FID on
CelebA via FedInverse using KED-MI and KED-MI-HSIC with varying local computation. Bold
values denote the best metric results obtained by GMI or GMI-HSIC throughout the FL training
epoch. The symbol ↓(↑) denotes that smaller (larger) values are favored.

Metrics Methods FL#R01 FL#R02 FL#R03 FL#R04 FL#R05 FL#R06 FL#R07 FL#R08 FL#R09 FL#R10

Local Computation (E,B) = (30, 32)

Accuracy ↑ 67.25 81.15 81.44 81.68 82.38 82.51 82.67 82.57 82.67 82.74

Attack Acc ↑
KED-MI 35.40±3.31 56.40±4.23 58.00±4.41 57.47±4.91 56.13±3.08 59.00±5.79 54.47±5.76 55.20±4.62 60.27±3.66 61.40±3.72

KED-MI-HSIC 37.00±2.56 53.73±5.20 56.07±3.36 56.33±5.27 58.27±4.64 59.73±3.11 55.27±4.46 56.67±2.64 58.87±4.74 61.07±4.43

Attack Acc5 ↑
KED-MI 64.07±3.92 81.53±3.35 82.07±3.75 82.07±3.79 81.27±4.17 83.47±3.20 82.87±3.29 82.33±3.78 84.20±3.12 84.27±2.53

KED-MI-HSIC 66.13±3.10 81.07±3.76 80.93±3.18 82.60±3.18 82.60±3.18 83.27±2.90 82.93±2.22 82.67±4.50 84.20±2.52 84.87±2.33

FID ↓
KED-MI 250.8308 237.7906 239.5953 225.7642 231.51 247.7834 219.4812 236.7981 230.0569 232.8372

KED-MI-HSIC 242.823 235.9567 232.2535 223.7007 233.6536 244.4438 214.8585 233.2556 223.4137 230.3397

Local Computation (E,B) = (30, 64)

Accuracy ↑ 66.05 80.48 81.11 81.64 81.68 81.84 82.41 82.44 82.74 82.54

Attack Acc ↑
KED-MI 39.53±1.87 53.47±2.91 55.60±2.64 56.93±3.19 56.80±4.54 54.67±3.40 56.60±2.97 53.13±3.33 57.80±4.04 56.73±2.62

KED-MI-HSIC 41.73±1.76 57.80±3.07 55.07±4.31 59.33±3.45 57.47±2.42 57.07±3.88 59.13±3.95 55.73±2.87 60.13±3.53 59.47±3.30

Attack Acc5 ↑
KED-MI 67.67±2.90 80.07±2.32 81.40±2.93 83.73±2.38 82.07±2.75 81.73±2.66 82.53±3.27 81.60±2.17 85.47±2.39 82.73±2.02

KED-MI-HSIC 67.53±2.07 80.33±3.26 82.13±2.74 83.13±2.88 81.80±2.18 83.47±2.00 83.40±2.49 82.87±2.17 85.80±2.27 84.73±0.97

FID ↓
KED-MI 241.0025 243.3093 235.3072 249.9985 247.8074 247.2511 227.6555 241.8614 244.159 248.9721

KED-MI-HSIC 232.7846 242.5915 232.5486 245.5304 241.8464 241.6832 225.5088 238.4409 239.4701 248.7714

Local Computation (E,B) = (30, 128)

Accuracy ↑ 68.21 81.11 82.01 82.24 82.61 82.54 82.67 82.81 82.91 82.94

Attack Acc ↑
KED-MI 40.13±4.23 59.00±4.31 51.73±5.32 54.33±4.31 55.13±4.45 54.73±4.75 58.00±3.32 60.00±5.15 58.40±4.58 59.80±3.21

KED-MI-HSIC 44.00±3.16 56.13±4.05 57.53±4.37 56.73±3.81 57.73±2.90 58.47±3.30 58.20±3.47 82.80±3.34 58.13±4.24 59.73±3.74

Attack Acc5 ↑
KED-MI 67.47±3.89 83.93±2.73 77.20±4.48 82.00±3.93 84.53±3.54 84.27±2.43 84.33±3.64 84.87±2.12 83.73±3.85 80.4±3.45

KED-MI-HSIC 70.47±3.34 83.33±2.90 83.87±3.78 83.67±5.08 84.13±2.52 82.87±3.69 84.07±2.07 85.40±4.08 83.67±3.12 84.47±3.03

FID ↓
KED-MI 250.4548 247.27 233.0923 257.5443 239.2134 236.8182 244.7302 226.5913 239.1755 234.661

KED-MI-HSIC 250.0051 231.995 242.9628 248.1224 235.3339 227.7765 233.6334 233.3824 239.8843 225.5299

Local Computation (E,B) = (50, 32)

Accuracy ↑ 68.05 82.08 82.51 82.81 83.44 83.64 83.74 83.97 83.97 84.17

Attack Acc ↑
KED-MI 40.80±3.80 57.73±3.51 55.20±5.83 61.33±4.05 58.60±3.47 56.40±4.99 60.53±3.67 60.47±3.50 62.00±5.13 66.60±2.94

KED-MI-HSIC 42.80±4.90 57.67±3.42 57.53±5.26 62.73±4.59 58.93±2.52 59.53±3.24 64.67±4.09 62.87±4.11 62.80±3.75 66.67±5.43

Attack Acc5 ↑
KED-MI 68.60±3.45 82.67±2.97 80.93±4.42 86.27±3.42 82.33±3.64 82.07±3.85 84.27±2.63 84.00±3.11 85.33±3.14 88.40±2.73

KED-MI-HSIC 69.53±3.34 82.67±3.10 84.13±3.46 85.93±3.83 85.47±3.11 83.47±2.16 87.33±1.73 86.07±2.34 86.00±2.89 89.27±3.01

FID ↓
KED-MI 233.0825 237.9213 219.7000 231.326 245.0408 235.0954 234.5587 216.0964 220.189 209.7383

KED-MI-HSIC 228.4920 234.2204 221.8825 228.2933 242.7171 230.3700 226.0333 215.3089 220.931 210.3917

Local Computation (E,B) = (50, 64)

Accuracy ↑ 67.58 80.11 80.75 81.05 81.58 81.54 81.91 82.08 82.14 82.48

Attack Acc ↑
KED-MI 39.93±2.87 51.93±4.53 53.93±4.93 55.87±3.39 51.00±3.28 54.73±4.55 55.47±3.49 58.40±3.47 57.93±3.48 57.20±4.99

KED-MI-HSIC 43.33±3.07 54.53±3.69 52.60±3.91 57.80±4.54 53.73±4.04 56.13±5.13 58.80±4.67 60.00±3.60 60.33±4.76 59.80±5.00

Attack Acc5 ↑
KED-MI 66.53±2.26 78.53±3.30 79.60±3.48 82.07±2.81 79.60±3.12 81.67±2.85 80.20±3.81 84.33±3.10 82.53±2.41 83.07±3.36

KED-MI-HSIC 69.73±3.76 80.60±4.29 79.47±2.65 82.60±2.77 80.27±4.05 83.53±3.04 82.20±3.68 83.73±2.01 84.97±2.48 83.53±2.57

FID ↓
KED-MI 230.4009 231.4905 261.1751 241.4455 228.279 233.7109 235.3763 245.8801 214.8504 246.8346

KED-MI-HSIC 231.0736 228.222 258.8327 239.9759 221.3416 231.2333 230.7373 236.4309 211.564 242.5042

Local Computation (E,B) = (50, 128)

Accuracy ↑ 68.21 79.42 80.35 80.71 81.21 81.48 81.44 81.54 81.78 81.94

Attack Acc ↑
KED-MI 43.00±3.09 53.60±3.47 53.73±3.93 54.00±3.40 56.60±3.85 59.60±4.30 56.53±3.86 57.87±3.74 56.00±4.97 56.93±4.02

KED-MI-HSIC 42.20±4.02 53.67±4.72 55.00±3.78 58.07±4.97 56.20±3.22 61.20±4.35 58.27±3.34 58.67±2.89 57.80±4.25 57.00±3.54

Attack Acc5 ↑
KED-MI 69.67±3.44 79.60±2.68 81.67±3.59 81.07±3.59 81.33±4.34 83.00±4.27 82.73±2.51 85.13±2.25 82.07±3.62 81.60±3.33

KED-MI-HSIC 71.80±2.99 79.80±3.15 83.53±3.45 84.00±3.05 82.73±2.74 85.27±3.68 83.53±2.58 84.40±2.30 83.60±2.90 82.33±3.19

FID ↓
KED-MI 251.7551 245.1883 240.308 245.6284 244.8232 226.9266 236.3251 229.9813 238.5785 244.5931

KED-MI-HSIC 241.6745 243.0175 233.0712 244.5804 237.807 222.5282 233.1085 227.386 231.779 238.2023
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A.14 IMPACT OF DEFENSE METHODS ON FEDINVERSE+GMI ON CELEBA

We used two latest prevailing defense methods, MID and BiDO, to train the FL models. Meanwhile,
we launch the GMI attacks on the updated global models in each federated communication round
to see if these defense training schemes can still work in FL settings. The relevant observations
are summarized in Table 18. The FedInverse with GMI and GMI-HSIC attacked the FL with MID
on the third training round and reached attack accuracy of 35.67 and 38.67, respectively. Similar
to MID settings, GMI and GMI-HSIC attacked the FL with BiDO on the third training round and
reached attack accuracy of 34.33 and 36.83, respectively. For top-5 attack accuracy, GMI reached
56.00 in round 3, and GMI-HSIC reached 56.83 in round 3 with MID. Additionally, GMI reached
56.83 in round 3, and GMI-HSIC reached 59.00 in round 3 with BiDO. The attack performance
decreased dramatically, which shows that the SOTA MI defense approaches can partially defend
against FedInverse+GMI attacks on FL settings on CelebA dataset. According to the results from
MNIST; the experiments show that the SOTA MI defense approaches are data and model-oriented
to defend against FedInverse+GMI attacks.

Table 18: FL privacy leakage indicated by Attack Acc/Acc5± standard deviation(%) and FID on
CelebA via FedInverse using GMI and GMI-HSIC with two diverse defense methods: MID and
BiDO. Bold values denote the best metric results obtained by GMI or GMI-HSIC throughout the FL
training epoch. The symbol ↓(↑) denotes that smaller (larger) values are favored.

Metrics Methods FL#R01 FL#R02 FL#R03 FL#R04 FL#R05 FL#R06 FL#R07 FL#R08 FL#R09 FL#R10

Defense Method MID

Accuracy ↑ 0.13 0.09 62.1 82.38 84.77 84.77 85.2 85.8 85.6 86.13

Attack Acc ↑
GMI 0.00±0.00 3.67±3.41 35.67±7.01 15.33±4.39 7.67±3.01 7.33±2.81 8.33±4.98 6.17±4.36 6.33±5.21 7.00±2.17

GMI-HSIC 0.33±0.46 5.83±3.81 38.67±8.50 15.17±4.38 10.67±4.36 8.83±4.55 9.67±3.63 7.50±3.88 8.00±3.34 8.00±4.11

Attack Acc5 ↑
GMI 0.17±0.37 14.00±4.37 56.00±7.40 32.17±4.85 20.00±5.14 17.67±4.78 20.50±6.74 17.83±6.73 16.83±6.52 19.00±6.90

GMI-HSIC 0.50±0.83 15.00±4.29 56.83±5.96 33.50±6.20 25.83±7.25 24.83±9.07 23.33±4.85 20.67±4.26 19.17±4.90 18.33±4.47

FID ↓
GMI 262.1850 304.7803 144.9108 151.2462 169.7602 175.6377 170.8262 179.5037 178.1989 183.8218

GMI-HSIC 239.9734 303.0943 140.8861 147.7921 155.8281 163.6606 171.9034 173.3850 177.6978 181.2256

Defense Method BiDO

Accuracy ↑ 0.09 56.88 83.87 84.90 85.03 85.53 85.50 86.00 86.07 85.97

Attack Acc ↑
GMI 0.33±0.75 34.33±8.74 8.50±3.79 5.50±3.13 6.50±2.54 6.17±3.56 7.83±3.24 5.83±3.05 5.50±2.70 5.00±4.02

GMI-HSIC 0.33±0.46 36.83±4.77 9.67±4.19 8.67±4.00 8.50±4.65 6.83±2.93 7.67±3.96 8.17±3.56 7.67±3.26 7.67±3.88

Attack Acc5 ↑
GMI 0.50±0.83 56.50±7.19 22.33±4.06 16.83±5.09 19.67±6.71 19.33±5.05 19.00±5.62 18.67±4.71 19.17±5.52 19.67±7.51

GMI-HSIC 0.50±0.83 59.00±5.54 24.50±5.12 20.50±4.74 22.83±5.84 19.00±5.10 20.67±4.95 20.67±6.73 21.50±5.26 19.17±5.29

FID ↓
GMI 307.7120 154.6588 181.7940 209.6793 198.4003 195.2061 196.4863 199.7902 202.7657 206.6921

GMI-HSIC 280.9487 154.2095 180.0081 196.7448 193.8378 187.7461 193.5657 198.1558 194.2287 195.9553

A.15 IMPACT OF DEFENSE METHODS ON FEDINVERSE+KED-MI ON CELEBA

We used two latest prevailing defense methods, MID and BiDO, to train the FL models. Meanwhile,
we launch the KED-MI attacks on the updated global models in each federated communication
round to see if these defense training schemes can still work in FL settings. The relevant obser-
vations are summarized in Table 19.The FedInverse with KED-MI and KED-MI-HSIC attacked
the FL with MID on the third training round and reached attack accuracy of 0.40 and 0.47, re-
spectively. Similar to MID settings, KED-MI and KED-MI-HSIC attacked the FL with BiDO on
the third training round and reached attack accuracy of 0.13 and 0.53, respectively. For top-5 at-
tack accuracy, KED-MI and KED-MI-HSIC both reached 1.07 in round 1 with MID. Additionally,
KED-MI reached 0.93 in round 2, and GMI-HSIC reached 2.07 in round 1 with BiDO. The attack
performance decreased dramatically, which shows that the SOTA MI defense approaches can suc-
cessfully defend against FedInverse+KED-MI attacks on FL settings on CelebA dataset. According
to the results from MNIST; the experiments show that the SOTA MI defense approaches are data
and model-oriented to defend against FedInverse+KED-MI attacks.
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Table 19: FL privacy leakage indicated by Attack Acc/Acc5± standard deviation(%) and FID on
CelebA via FedInverse using KED-MI and KED-MI-HSIC with two diverse defense methods: MID
and BiDO. Bold values denote the best metric results obtained by KED-MI or KED-MI-HSIC
throughout the FL training epoch. The symbol ↓(↑) denotes that smaller (larger) values are fa-
vored.

Metrics Methods FL#R01 FL#R02 FL#R03 FL#R04 FL#R05 FL#R06 FL#R07 FL#R08 FL#R09 FL#R10

Defense Method MID

Accuracy ↑ 0.13 0.09 62.1 82.38 84.77 84.77 85.2 85.8 85.6 86.13

Attack Acc ↑
KED-MI 0.40±0.14 0.13±0.18 0.00±0.00 0.13±0.18 0.00±0.00 0.00±0.00 0.00±0.00 0.07±0.14 0.00±0.00 0.13±0.18

KED-MI-HSIC 0.40±0.14 0.20±0.18 0.47±0.18 0.07±0.14 0.20±0.33 0.33±0.29 0.00±0.00 0.27±0.14 0.20±0.18 0.33±0.00

Attack Acc5 ↑
KED-MI 1.07±0.46 0.27±0.33 0.07±0.14 0.73±0.74 0.13±0.29 0.47±0.58 0.27±0.33 0.53±0.18 0.60±0.44 0.60±0.44

KED-MI-HSIC 1.07±0.33 0.60±0.33 0.73±0.44 0.87±0.92 0.80±0.84 0.67±0.48 0.33±0.00 0.87±0.44 0.53±0.29 0.73±0.44

FID ↓
KED-MI 1066.2796 584.8376 626.5133 494.0431 702.2928 641.6904 691.3997 748.0618 748.3944 563.5676

KED-MI-HSIC 1014.4789 585.5836 604.0114 492.146 725.212 667.3054 668.4476 755.4100 735.7304 571.0013

Defense Method BiDO

Accuracy ↑ 0.09 56.88 83.87 84.90 85.03 85.53 85.50 86.00 86.07 85.97

Attack Acc ↑
KED-MI 0.00±0.00 0.13±0.29 0.00±0.00 0.00±0.00 0.13±0.29 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

KED-MI-HSIC 0.40±0.62 0.53±0.64 0.20±0.18 0.13±0.18 0.00±0.00 0.27±0.33 0.40±0.51 0.60±0.43 0.13±0.18 0.40±0.14

Attack Acc5 ↑
KED-MI 0.53±0.69 0.93±0.71 0.53±0.33 0.33±0.42 0.73±0.82 0.20±0.33 0.60±0.33 0.60±0.36 0.20±0.33 0.47±0.53

KED-MI-HSIC 2.07±0.57 1.40±0.66 0.73±0.74 0.80±0.48. 0.67±0.63 1.20±1.32 0.93±0.48 1.40±0.74 0.73±0.66 1.07±0.82

FID ↓
KED-MI 419.2799 738.1139 876.206 1001.516 940.0084 594.5001 593.23 741.6032 624.6205 582.4685

KED-MI-HSIC 415.9628 730±9202 880.1697 858.9476 946.7589 575.2957 605.4646 748.6841 596.2671 570.9718

Table 20: FL privacy leakage indicated by Attack Acc/Acc5±standard deviation(%) and FID on
CIFAR10 via FedInverse using GMI and GMI-HSIC. Bold values denote the best metric results
obtained by GMI or GMI-HSIC throughout the FL training epoch. The symbol ↓(↑) denotes that
smaller (larger) values are favored.

Metrics Methods FL#R01 FL#R02 FL#R03 FL#R04 FL#R05 FL#R06 FL#R07 FL#R08 FL#R09 FL#R10

Accuracy ↑ 69.16 76.36 80.36 80.76 70.48 84.44 82.39 85.88 86.60 86.60

Attack Acc ↑
GMI 10.00±14.14 14.00±13.50 14.00±13.50 16.00±15.78 16.00±8.43 12.00±13.98 20.00±18.86 14.00±13.50 20.00±16.33 22.00±14.76

GMI-HSIC 24.00±15.78 24.00±12.65 24.00±15.78 28.00±13.98 18.00±14.76 20.00±16.33 20.00±16.33 20.00±16.33 26.00±13.50 30.00±17.00

Attack Acc5 ↑
GMI 54.00±13.50 54.00±13.50 54.00±13.50 56.00±15.78 52.00±19.32 58.00±17.51 62.00±14.76 66.00±16.47 58.00±11.35 56.00±8.43

GMI-HSIC 62.00±14.76 64.00±12.65 62.00±11.35 66.00±13.50 66.00±16.47 60.00±13.33 64.00±12.65 72.00±13.98 62.00±14.76 62.00±17.51

FID ↓
GMI 8.9866 8.0442 8.0731 8.1162 7.9437 7.8523 7.2196 7.8648 7.3911 7.1638

GMI-HSIC 7.8270 7.2996 7.2069 7.4807 7.0648 6.6097 6.1103 6.8338 6.8324 6.0622

A.16 FEDINVERSE+GMI ATTACK PERFORMANCE ON CIFAR-10

To further evaluate the FedIverse performance, we tested the FedInverse+GMI on CIFAR-10
Krizhevsky et al. (2009). The results of FedInverse attack using GMI and GMI-HSIC on CIFAR-10
are illustrated in Table 20. The GMI achieved the highest attack accuracy in FL training round ten,
which is 22.00, and GMI-HSIC further improved the attack accuracy to 30.00, which is an improve-
ment of 36%. For top-5 attack accuracy, GMI reached the pick of 66.00 in FL training round eight,
and GMI-HSIC is 72.00, which improves 9%.

A.17 FEDINVERSE+KED-MI ATTACK PERFORMANCE ON CIFAR-10

Comparing to FedInverse+GMI, FedInverse+KED-MI successfully attacked the FL settings. The
performance evaluation of FedInverse using KED-MI attack on CIFAR10 is presented in Ta-
ble 21. The FedInverse+KED-MI attack accuracy achieved 51.92 in FL training round seven.
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Table 21: FL privacy leakage indicated by Attack Acc/Acc5±standard deviation(%) and FID on
CIFAR10 via FedInverse using KED-MI and KED-MI-HSIC. Bold values denote the best metric
results obtained by KED-MI or KED-MI-HSIC throughout the FL training epoch. The symbol ↓(↑)
denotes that smaller (larger) values are favored.

Metrics Methods FL#R01 FL#R02 FL#R03 FL#R04 FL#R05 FL#R06 FL#R07 FL#R08 FL#R09 FL#R10

Accuracy ↑ 69.16 76.36 80.36 80.76 70.48 84.44 82.39 85.88 86.60 86.60

Attack Acc ↑
KED-MI 24.01±11.85 42.85±14.18 43.44±12.76 32.77±12.98 48.53±15.41 37.03±12.95 51.92±16.49 24.41±8.27 35.28±12.85 21.57±9.44

KED-MI-HSIC 39.16±10.79 49.13±12.20 44.20±14.40 41.83±13.54 51.49±16.27 40.01±13.73 63.25±13.22 36.09±13.32 40.93±12.93 24.75±12.29

Attack Acc5 ↑
KED-MI 81.88±7.05 73.27±11.93 82.84±6.99 77.27±10.89 88.05±5.92 98.24±4.96 92.85±3.37 75.89±12.72 72.51±10.13 71.36±12.86

KED-MI-HSIC 87.28±7.10 81.44±7.61 85.15±8.61 97.23±6.39 96.84±7.15 99.09±4.12 93.65±4.70 86.75±8.85 80.51±9.45 74.61±15.72

FID ↓
KED-MI 8.0518 10.2236 7.5784 5.7769 8.3396 5.5596 5.5913 9.4793 7.4885 10.4272

KED-MI-HSIC 5.7406 6.0592 5.3121 5.3495 7.6287 5.1709 4.5572 6.9419 6.1933 10.1933

FedInverse+KED-MI-HSIC further pushed the attack accuracy to 63.25, which is a 21% im-
provement. For top-5 attack accuracy, both FedInverse+KED-MI and FedInverse+KED-MI-HSIC
achieved extremely high performance, which are 98.24 and 99.09, respectively.

A.18 IMPACT OF DEFENSE METHODS ON FEDINVERSE+GMI ON CIFAR-10

We used two latest prevailing defense methods, MID and BiDO, to train the FL models. Meanwhile,
we launch the GMI attacks on the updated global models in each federated communication round
to see if these defense training schemes can still work in FL settings. The relevant observations are
summarized in Table 22. The FedInverse with GMI and GMI-HSIC attacked the FL with MID on
the ninth training round and reached attack accuracy of 24.00 and 28.00, respectively. Similar to
MID settings, GMI and GMI-HSIC successfully attacked the FL with BiDO on the ninth training
round and reached attack accuracy of 28.00 and 38.00, respectively. For top-5 attack accuracy, GMI
reached 66.00 in round 6, and GMI-HSIC reached 68.00 in round 6 with MID, and GMI reached
66.00 in round 9, and GMI-HSIC reached 70.00 in round 9 with BiDO defense settings. The results
show that the SOTA defense approaches has less impact on defending against FedInverse+GMI
attacks on FL settings on CIFAR-10 dataset.

A.19 IMPACT OF DEFENSE METHODS ON FEDINVERSE+KED-MI

The relevant observations are summarized in Table 23. The FedInverse with KED-MI and KED-MI-
HSIC successfully attacked the FL with MID on the ninth training round and reached attack accuracy
of 45.17 and 63.75, respectively. Similar to MID settings, KED-MI and KED-MI-HSIC successfully
attacked the FL with BiDO and reached attack accuracy of 63.75 and 72.25, respectively. For top-
5 attack accuracy, KED-MI reached 97.43 in round 10, and KED-MI-HSIC also reached 99.23 in
round 10 with MID. In addition, with BiDO defense settings, KED-MI reached 87.53 in round 7, and
KED-MI-HSIC also reached 99.89 in round 4. The results show that the SOTA defense approach
cannot defend against FedInverse+KED-MI attacks on FL settings on CIFAR-10 dataset.

B MORE RELATED WORKS

B.1 FEDERATED LEARNING

With the rapid development of machine learning technology, applications such as automatic driving,
face recognition, and natural language processing have brought great convenience to people’s lives.
Machine learning is data-driven, which learns a model from a large amount of data to achieve various
tasks. Traditional machine learning adopts a centralized architecture that collects training data, trains
models, and deploys them in various application scenarios after the model training is completed
Zhang et al. (2021). Although centralized machine learning has excellent learning performance, it
also faces problems such as data silos and data privacy problems. Data silos refer to the phenomenon
that data is stored in different forms and managed by different agencies, resulting in these data that

27



Published as a conference paper at ICLR 2024

Table 22: FL privacy leakage indicated by Attack Acc/Acc5± standard deviation(%) and FID on
CIFAR10 via FedInverse using GMI and GMI-HSIC with two diverse defense methods: MID and
BiDO. Bold values denote the best metric results obtained by GMI or GMI-HSIC throughout the FL
training epoch. The symbol ↓(↑) denotes that smaller (larger) values are favored.

Metrics Methods FL#R01 FL#R02 FL#R03 FL#R04 FL#R05 FL#R06 FL#R07 FL#R08 FL#R09 FL#R10

Defense Method MID

Accuracy ↑ 66.67 75.22 79.92 53.80 82.39 84.84 84.56 86.11 87.14 79.97

Attack Acc ↑
GMI 12.00±10.33 18.00±11.35 12.00±10.33 16.00±18.38 16.00±12.65 20.00±9.43 18.00±19.89 20.00±13.33 24.00±20.66 16.00±15.78

GMI-HSIC 18.00±11.35 18.00±14.76 18.00±14.76 16.00±15.78 24.00±12.65 24.00±18.38 22.00±14.76 24.00±22.71 28.00±19.32 22.00±14.76

Attack Acc5 ↑
GMI 52.00±16.87 56.00±15.78 50.00±17.00 62.00±22.01 58.00±14.76 66.00±16.47 58.00±14.76 54.00±18.97 62.00±14.76 62.00±14.76

GMI-HSIC 52.00±19.32 56.00±15.78 62.00±11.35 64.00±20.66 60.00±16.33 68.00±13.33 62.00±14.76 62.00±19.89 60.00±18.86 64.00±12.65

FID ↓
GMI 8.1742 8.6426 8.2033 7.7860 6.8375 7.8042 7.1293 7.4087 6.7212 8.4300

GMI-HSIC 7.5186 7.5598 7.3069 7.2506 6.9614 7.0091 7.4685 6.4709 6.6456 8.3597

Defense Method BiDO

Accuracy ↑ 71.16 31.08 83.52 82.86 83.02 86.32 86.58 87.40 87.36 86.28

Attack Acc ↑
GMI 4.00±8.43 18.00±17.51 14.00±13.50 22.00±17.51 10.00±10.54 14.00±13.50 20.00±9.43 20.00±13.33 28.00±16.87 12.00±10.33

GMI-HSIC 16.00±15.78 22.00±11.35 18.00±22.01 18.00±11.35 18.00±14.76 18.00±17.51 20.00±13.33 24.00±18.38 38.00±14.76 22.00±17.51

Attack Acc5 ↑
GMI 52.00±16.87 58.00±11.35 50.00±21.60 62.00±14.76 54.00±16.47 52.00±10.33 60.00±13.33 62.00±14.76 66.00±13.50 48.00±10.33

GMI-HSIC 58.00±17.51 72.00±13.98 58.00±14.76 64.00±15.78 54.00±23.19 62.00±19.89 62.00±19.89 62.00±11.35 70.00±10.54 60.00±13.33

FID ↓
GMI 8.7736 8.6881 8.3101 7.9541 7.7629 6.2580 7.6331 7.2277 7.5603 7.4346

GMI-HSIC 8.1356 7.6322 7.4147 7.1645 6.1716 6.9755 7.1390 7.0099 7.0535 8.1704

Table 23: FL privacy leakage indicated by Attack Acc/Acc5± standard deviation(%) and FID on
CIFAR10 via FedInverse using KED-MI and KED-MI-HSIC with two diverse defense methods:
MID and BiDO. Bold values denote the best metric results obtained by KED-MI or KED-MI-HSIC
throughout the FL training epoch. The symbol ↓(↑) denotes that smaller (larger) values are favored.

Metrics Methods FL#R01 FL#R02 FL#R03 FL#R04 FL#R05 FL#R06 FL#R07 FL#R08 FL#R09 FL#R10

Defense Method MID

Accuracy ↑ 66.67 75.22 79.92 53.80 82.39 84.84 84.56 86.11 87.14 79.97

Attack Acc ↑
KED-MI 23.31±7.50 30.79±10.45 35.60±12.75 37.73±9.23 38.20±10.57 41.80±14.41 30.81±14.18 27.27±13.15 45.17±11.57 35.45±13.86

KED-MI-HSIC 29.09±11.54 43.27±9.08 40.52±12.70 45.88±13.20 50.84±14.05 48.80±14.29 41.72±11.79 49.92±11.46 49.92±11.46 43.76±13.98

Attack Acc5 ↑
KED-MI 68.41±12.36 82.53±7.21 95.51±7.76 88.23±3.71 85.71±11.69 94.15±8.46 92.25±8.32 88.17±11.72 85.91±9.55 97.43±5.84

KED-MI-HSIC 77.12±13.22 96.67±5.37 97.15±4.86 92.29±9.22 98.57±5.07 96.89±6.59 94.19±9.66 87.41±10.81 96.63±7.45 99.23±3.30

FID ↓
KED-MI 10.0550 10.1391 7.6529 7.1021 6.1316 7.1951 5.8090 5.8956 5.0637 8.1110

KED-MI-HSIC 8.0944 6.9088 5.6072 5.3786 7.4237 3.7721 4.9038 5.6893 5.0551 5.8501

Defense Method BiDO

Accuracy ↑ 71.16 31.08 83.52 82.86 83.02 86.32 86.58 87.40 87.36 86.28

Attack Acc ↑
KED-MI 45.60±11.91 41.23±6.44 21.96±12.87 49.53±15.19 48.96±13.73 27.19±12.09 62.35±12.14 62.25±14.94 63.75±13.92 56.03±7.48

KED-MI-HSIC 54.23±14.17 56.11±7.48 30.12±13.91 65.33±14.26 57.01±14.44 36.03±13.22 65.72±11.86 67.85±11.54 70.56±10.05 72.25±6.54

Attack Acc5 ↑
KED-MI 79.83±1.40 79.91±9.18 83.40±6.38 92.15±4.38 83.37±7.55 83.15±3.63 87.53±3.14 79.72±2.21 79.69±2.40 78.59±4.99

KED-MI-HSIC 94.27±7.88 94.00±2.32 93.03±10.11 99.89±1.44 90.09±5.76 84.45±10.99 82.16±6.24 85.71±6.38 79.97±0.42 86.53±0.93

FID ↓
KED-MI 6.7435 8.1078 5.2110 8.6607 4.8133 5.8224 2.2666 3.7742 4.7176 5.4706

KED-MI-HSIC 6.4173 7.1471 5.8914 3.8114 4.0443 5.8198 3.1937 4.0026 3.7809 3.5632

cannot be integrated and utilized. The data privacy problem is because the data owner does not want
the data to be shared with a third party, making it difficult for centralized machine learning to utilize
all the data. In response to the above problems, FL was proposed McMahan et al. (2017).
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FL uploads model parameters to the central server instead of training data, thereby ensuring the
data privacy of participants and reducing communication costs. Although FL has made significant
benefits to the fields of the Internet of Things Savazzi et al. (2020), network security Chen et al.
(2022), and medical care Huang et al. (2019), but it also faces some challenges. First of all, the global
model in FL can be poisoned by uploading malicious parameters to the server Zhang et al. (2019).
In Zhang et al. (2019), the malicious party leverages the global model as a discriminator to train
the GAN, where the generated data can be used to poison the global model. The poisoning attack
aims to reduce the performance of the global model rather the leak user privacy. For obtaining user
privacy, attackers can recover the local data from the gradients Zhu et al. (2019) when all participants
upload the trained model gradients to the central server. However, no studies pay attention to the data
leakage problem when the attackers are pretended to be benign users. This paper mainly discusses
the vulnerability of federated learning from the perspective of attackers obtaining user privacy as the
FL participants.

B.2 GRADIENT INVERSION ATTACKS

Pasquini et al. (2022) discusses the ”gradient suppression attack”, a method where a malicious server
exploits model inconsistencies to bypass Secure Aggregation and extract a specific user’s model up-
date. Central to this attack is the ”dead-layer trick,” which manipulates ReLU layers by inducing the
dying-ReLU phenomenon, where a network’s parameter derivatives become zero. This is achieved
through malicious parameters that exploit the ReLU function’s non-differentiability, allowing the
server to nullify the model updates of non-targeted users. Consequently, the server isolates and
leaks the targeted user’s model update, undermining the integrity of the model training process.
Moreover, Boenisch et al. (2023) investigates an attack on Federated Learning (FL) systems that use
Distributed Differential Privacy (DDP) and Secure Aggregation (SA). The attack involves circum-
venting SA by introducing Sybil devices, controlled by the server, into the FL process. These devices
manipulate the outcome by returning arbitrary gradients, allowing the server to isolate and extract
the target user’s gradients. The paper also points out the limitations of DDP, where the noise added
for privacy is often insufficient, especially compared to Local Differential Privacy. By exploiting
these vulnerabilities, the attacker can reconstruct individual users’ training data. The paper dis-
cusses using ”trap weights” to create redundancy in the data, facilitating higher-fidelity reconstruc-
tion. Experiments with datasets like CIFAR10 and IMDB demonstrate the attack’s effectiveness,
using techniques like similarity clustering and leveraging gradient sparsity to improve the quality of
reconstructed data. The study further notes that higher gradient norms lead to more significant data
leakage, which the attack exploits. This comprehensive analysis reveals critical weaknesses in FL
systems enhanced with DDP and SA, showing that private user data can still be extracted despite
these privacy measures. Additionally, Zhao et al. (2023) presents a sophisticated attack in Federated
Learning (FL) environments, greatly surpassing previous methods in data leakage efficiency. LOKI
can leak 76-86% of data samples in a single training round, targeting both FedAVG and FedSGD
systems. The attack, designed for a cross-device FL setting with secure aggregation, manipulates the
model architecture and parameters, enabling data recovery from hundreds of clients. A key tactic is
using customized convolutional kernels to create separate identity mapping sets, maintaining distinct
weight gradients for different clients. LOKI resolves scalability issues in FedAVG by introducing
a convolutional scaling factor (CSF), which aids in precision during reconstruction and addresses
neuron activation overlap. The attack also cleverly utilizes biases in the FC layer to learn and uti-
lize data characteristics like average pixel intensity. This technique enables the identification of data
ownership post-aggregation and requires significantly fewer parameters compared to previous meth-
ods, enhancing efficiency. LOKI is effective even in the absence of full model inconsistency among
clients, marking a significant advancement in data reconstruction techniques in FL systems.

B.3 MODEL INVERSION ATTACKS

Unlike gradient inversion attacks, model inversion attacks do not need to reconstruct original im-
ages from the feature maps, but gradient inversion attacks need to. According to different attack
strategies, privacy attacks on machine learning can be divided into membership inference attacks,
model inversion attacks, and parameter extraction attacks. The membership inference attack refers
to the attacker trying to determine whether a piece of information exists in the training data set of the
global model Shokri et al. (2017). Model parameter extraction means that when the global model
parameters are not public, the attacker knows part of the model structure information and attempts
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to access the global model to get the parameters Ateniese et al. (2015). Model inversion attack refers
to inverting some or all attribute values of a target data in the training set through the model’s output
Liu et al. (2020). Among them, membership inference attacks and model inversion attacks can be
regarded as direct attacks, and model parameter extraction attacks are indirect.

This paper mainly focuses on model inversion attacks. The first model inversion attack was proposed
by Fredrikson et al. Fredrikson et al. (2014). They used demographic information as auxiliary
information and a linear regression model of drug dosage as the global model to recover patient
genomic information. This research demonstrates that even if an attacker only has access privilege
to the global model, it is possible to obtain users’ sensitive data. Hitaj et al. Hitaj et al. (2017)
proposed a model inversion attack in collaborative learning scenarios. In this attack, the attacker is a
participant in collaborative learning. By actively participating in the training of the global model, the
model parameters are obtained so that the attack under white-box conditions can be realized. The
experimental results show that as long as the local model accuracy of the participant is high, a good
attack performance can be achieved. Ateniese et al. Ateniese et al. (2015) constructed a new meta-
classifier (meta-classifier) and trained it to attack other classifiers to obtain sensitive information
about their training data sets.

Due to their excellent data generation ability, generative adversarial networks are widely used in
various deep learning tasks. Wang et al. Wang et al. (2019) proposed a model inversion attack
for FL. This method designed a multi-task generative confrontation model as the attack model and
successfully realized the user-level privacy attack. In addition, some optimization-based methods
have been proposed, such as GMI Zhang et al. (2020), KED-MI Chen et al. (2021), and VMI Wang
et al. (2021a), which obtain private data in the global model by training GAN. The details of these
attacks will be described in the next section.

B.4 STATISTICAL DEPENDENCY MEASURES

Mutual information Hutter (2001) and Hilbert-Schmidt independency criterion (HSIC) Gretton et al.
(2005) are statistic dependency measure metrics that are well established in statistics. Unlike mu-
tual information, the HSIC does not need to estimate two variables’ probability density but directly
convert it into sampling. Due to its effectiveness and high efficiency, HSIC is widely used in ma-
chine learning, such as dimensionality reduction Zhang & Zhou (2010), feature selection Song et al.
(2012), transfer learning Wang & Yang (2011), and deep learning Lopez et al. (2018). The central
idea of the HSIC-based learning method is to use the HSIC to measure the dependence and achieve
the solutions by maximizing or minimizing such associations Wang et al. (2021c).

C EXTRA EXPERIMENTS ON HEALTH DATASETS AND CIFAR-10

(b) Segmented Target Data 
(Fed‐LIDC‐IDRI)

(c)  FedInverse Inverted Data(a) Segmented Prior Data 
(Covid‐19 CT‐scans)

Figure 6: Visualization results of FedInverse on Fed-LIDC-IDRI Terrail et al. (2022) using the
publicly available prior data from Covid-19 CT-Scans Kaggle (2019). It should be noted that, con-
sidering the global model in FL is a nodule detection model, FedInverse adopts the preprocessed
segmentation results for original CT-scanned images as the private data distributed to federated
clients.
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Figure 7: Visualization results of FedInverse on CIFAR-10 across different attack accuracies
(10.00%, 22.00%, and 30.00%).

(b) Segmented Target Data 
(Fed‐LIDC‐IDRI)

(c)  FedInverse Inverted Data
with 30% prior data

(a) Segmented Prior Data 
(Covid‐19 CT‐scans)

(d)  FedInverse Inverted Data
with 50% prior data

(e)  FedInverse Inverted Data
with 100% prior data

Figure 8: Visualization results of FedInverse on Fed-LIDC-IDRI Terrail et al. (2022) using the
publicly available prior data from Covid-19 CT-Scans Kaggle (2019). We select a total of 665
segmented images from Kaggle (2019) as prior data. Panes (c), (d), and (e) present the inverted
results with prior data proportions of 30%, 50%, and 100%, respectively.
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