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Centralized and Collective Neurodynamic
Optimization Approaches for Sparse Signal
Reconstruction via L-Minimization

You Zhao, Xiaofeng Liao

Abstract— This article develops several centralized and collec-
tive neurodynamic approaches for sparse signal reconstruction
by solving the L;-minimization problem. First, two centralized
neurodynamic approaches are designed based on the augmented
Lagrange method and the Lagrange method with derivative
feedback and projection operator. Then, the optimality and global
convergence of them are derived. In addition, considering that
the collective neurodynamic approaches have the function of
information protection and distributed information processing,
first, under mild conditions, we transform the L;-minimization
problem into two network optimization problems. Later, two col-
lective neurodynamic approaches based on the above centralized
neurodynamic approaches and multiagent consensus theory are
proposed to address the obtained network optimization problems.
As far as we know, this is the first attempt to use the collective
neurodynamic approaches to deal with the L;-minimization
problem in a distributed manner. Finally, several comparative
experiments on sparse signal and image reconstruction demon-
strate that our proposed centralized and collective neurodynamic
approaches are efficient and effective.

Index Terms— Centralized and collective neurodynamic
approaches, global convergence, L;-minimization problem,
sparse signal reconstruction.

I. INTRODUCTION

PARSE signal reconstruction is an important problem in
compressed sensing (CS) theory [1] and has been widely
used in image processing, data analysis, pattern recognition,
and so on [2]-[4]. The purpose of sparse signal reconstruction
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is to recover the sparse solution by solving the following
problem:

min ||x|lp, st Ax=25>, (1)

where A € R™*" is a sensing matrix, b is an observation
vector, and |- is the so-called Lg-norm. However, the
Lo-minimization problem is NP-hard [5]. Based on the
restricted isometry property (RIP) condition of matrix A,
the same sparse solutions of Ly-minimization problem can be
obtained by solving the L;-norm minimization [6]

min ||x||;, st Ax=25>, 2)

where |-||; is the L;-norm. The problem (2) can be trans-
formed into the following unconstrained optimization problem
according to the penalty function method:

1
min EIIAX-bII2 + Lllxlh 3)

where ¢ € R is a tradeoff parameter.

Many polynomial-time optimization approaches have been
proposed to deal with problem (2) or (3), such as the
interior-point algorithm [10], the augmented Lagrangian
method [11], and the orthogonal matching pursuit (OMP)
approach [12].

Recently, the neurodynamic approaches have been attrac-
tive because they can be implemented by hardware cir-
cuit and possess a parallel structure, which can elimi-
nate the influence of high dimension and large density of
polynomial-time optimization approaches. The research of
neurodynamic approaches can be distinguished roughly by
centralized and collective neurodynamic approaches.

A. Centralized Neurodynamic Approaches

Numerous centralized neurodynamic approaches have
been studied for reconstructing sparse signals in recent
decades (see [13]-[21] and references therein). For example,
Balavoine et al. [13] proposed a dynamics of locally compet-
itive algorithm (LCA) to solve problem (3). Liu et al. [16],
Xu et al. [17] discussed several L-minimization projection
neural network algorithms to reconstruct sparse signal.
Feng et al. [18] studied a modified Lagrange program-
ming neural network based on LCA (LPNN-LCA) for
L-minimization problems only with local convergence char-
acteristic. In addition, in order to solve the nonconvex,
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nonsmooth, and non-Lipschitz (L ,-norm) sparse signal recon-
struction problem, Bian and Chen [19] proposed a smoothing
neural network algorithm based on the parameter smooth
approximation technique. Zhao et al. [20] proposed a smooth-
ing projection neural network for minimizing L,_, mixed
norm problem to reconstruct the sparse signal. Later, a smooth-
ing neural network based on primal-dual method was pro-
posed for minimization /;—[, to reconstruct sparse signal
in [21]. In recent years, many centralized neurodynamic
approaches with finite and fixed-time convergence rates have
been investigated based on the sliding model techniques
in order to solve certain optimization problems with better
characteristics in terms of convergence speed. For example,
to solve the linear programming with fixed-time convergence
rate, a dynamical system approaches in [40] and an augmented
Lagrangian neural network [42] are proposed and investi-
gated. Garg and Panagou [41] proposed a novel gradient-flow
scheme, which converges to the optimal point of the convex
optimization problem within a fixed time. To solve problem (3)
and get the sparse signal, Yu et al. [14] proposed two dynam-
ical approaches with finite-time [14] and fixed-time conver-
gence rate by exploiting sliding mode technique in LCA [13].
Garg and Baranwal [43] proposed a CAPPA for sparse recov-
ery with fixed-time convergence rate.

Although the centralized neurodynamic approaches
[16]-[19] mentioned above can effectively solve the
L,-minimization problem (2) to reconstruct sparse signal,
there still exist some drawbacks, for example, the matrix
inversion operation with high complexity is required in [16],
there is a difficulty in selecting tradeoff parameter in [17]
and [19], and the LPNN-LCA [18] only provides local
convergence characteristics. How to effectively overcome
these drawbacks motivates us to investigate new and more
effective methods of centralized neurodynamic approaches.

B. Collective Neurodynamic Approaches

Recently, a large number of distributed dynamic algorithms
are proposed for distributed network optimization problems
(see [7]-[91, [22]-[26], [32]). For example, Yan et al. [7]
first proposed a collective neurodynamic optimization to
solve nonconvex optimization problem. Che and Wang [8]
proposed a collaborative neurodynamic approach to opti-
mize a combinatorial optimization problem. Later, to deal
with the mixed-integer optimization, a collective neurody-
namic approach (i.e., two-timescale duplex neurodynamic)
was discussed in [9]. Gharesifard and Cortés [22] pro-
posed a distributed dynamic algorithm to deal with a
smooth distributed convex problem under a directed graph.
Liu and Wang [23] proposed a second-order multiagent net-
work projection approach to deal with the distributed non-
smooth constrained convex optimization problem based on
differential inclusion technique. Yang et al. [24] studied a
continuous-time projection multiagent network algorithm to
solve the distributed constrained nonsmooth convex optimiza-
tion problem. To reduce the traffic cost between agents,
He et al. [27] developed an average quasi-uniform distrib-
uted dynamical approach to deal with the nonsmooth and
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constrained convex optimization based on pulse communi-
cation framework. Le er al. [26] proposed a distributed
neurodynamic approach to solve the smooth convex opti-
mization problem with global coupled inequality constraints.
He et al. [28] developed a simple continuous-time distributed
approach to general distributed convex problem based on
nonautonomous system. In addition, some applications of the
distributed continuous-time optimization in recent years are
also involved in [29]-[33] and [39].

Considering that sparse signal reconstruction is an impor-
tant problem that has been widely used in many different
fields, including image processing, data analysis, and pattern
recognition. Unfortunately, a few results involve collective
(fully distributed) neurodynamic approaches for sparse signal
reconstruction problems. In our opinion, there are mainly two
difficulties, i.e., the first difficulty is to transform problem (2)
into a distributed and solvable optimization problem without
damaging the signal sparsity since problem (2) is not a stan-
dard distributed optimization problem, and the second is how
to design effective collaborative neurodynamic approaches to
solve the obtained distributed version of problem (2) since
the mentioned above-distributed approaches [22]-[32] cannot
be used directly. To overcome the above two difficulties
effectively motivates us to study how to transform the problem
(2) into two solvable network optimization problems and how
to design collective neurodynamic approaches to cope with
the obtained two network optimization problems based on the
above centralized neurodynamic approaches (8) and (9).

This article develops two centralized and collective neurody-
namic approaches for sparse signal reconstruction by solving
the L;-norm minimization problem. The main contributions of
this article are highlighted as follows.

1) Two centralized neurodynamic approaches based on the
augmented Lagrange method and Lagrange method with
derivative feedback are proposed, which are modeled
by ordinary differential equations (ODE). Different from
the existing approaches in [16] and [17], our proposed
centralized neurodynamic approaches do not require
complicated matrix inversion, i.e., (AAT)~!. This is
because the computation of the inverse of AAT is diffi-
cult for large-scale sparse signal reconstruction problems
even if the inverse exists.

2) A new Lemma 2 of projection operator is first developed
for neurodynamic approaches. Then, a novel Lyapunov
function is constructed based on Lemma 2, which can
be used to effectively prove the global convergence of
our presented centralized neurodynamic approach. Com-
pared with LPNN-LCA in [18], our proposed centralized
neurodynamic approaches have global stability in the
sense of Lyapunov.

3) Unlike the works in [13]-[15] and [19], our proposed
approaches have no difficulty in selecting tradeoff para-
meters (e.g., if the penalty parameter is too large,
the sparsity may be destroyed; if the penalty parameter
is too small, the equality constraint may not be satisfied).

4) Based on the RIP condition and coherence condition of
matrix A and multiagent consensus theory, we prove that
the problem (2) can be transformed into two solvable
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network convex optimization problems, i.e., a distributed

optimization problem with consensus constraints and a

distributed extended monotropic optimization problem.

5) Two collective neurodynamic approaches based on the

proposed centralized neurodynamic approaches and mul-

tiagent consensus theory are proposed to solve two net-

work optimization problems, they retain the advantages

of centralized neurodynamic approaches. In addition,

their optimality and global convergence are analyzed.

As far as we know, this work is the first attempt to design

collective neurodynamic approaches to recover the

sparse signal by solving the L;-minimization problem.

This article is organized as follows. In Section II, sev-

eral basic definitions and properties are introduced briefly.

In Section III, two centralized neurodynamic approaches are

proposed. In Section IV, the problem (2) is transformed into

equivalent two network optimization problems, and mean-

while, two collective neurodynamic approaches are proposed

for solving two network optimization problems in a distributed

manner. In Section V, simulation results on sparse signal

reconstruction and image reconstruction are carried out to

show the effectiveness of our proposed approaches. Finally,
Section VI concludes this article.

II. PRELIMINARIES

Let x € R" and y € R" be column vectors. The superscript
T denotes transpose, x”y = >, x;y; is a product of x and

y, and x; is the ith element of x. Let 1, = (1,..., )T € R™.
|-| denotes the absolute value. *x denotes the s-sparse signal.
I, denotes an identity matrix in R"". ||x|| = (3_/_, xiz)(l/z)
denotes the Euclidean norm and |x|; = Z?:l |x;] denotes

the L;-norm. The range (B) denotes the range of the matrix
B, ker(B) denotes the kernel of matrix B, and ® denotes the
Kronecker product. oyax(A) denotes the maximum singular
value of matrix A.

A. Restricted Isometry Property Condition

Definition 1 [34]: The matrix A € R™*" (m < n) satisfies
the RIP condition if for all s-sparse signal with an isometry
constant J, of a matrix A, it has

(1 =) IF x> < IAx[1* < (143" x 1.

Candes [35] asserted that if d,; < +/2 — 1, the solution
of problem (2) is that of (1), i.e., the convex relaxation is
accurate. However, it is generally NP-hard to ascertain whether
the given matrix A is an RIP matrix. Another concept in CS
is called coherence, which is closely related to RIP with the
characteristic of easy examination.

Definition 2 [36]: The coherence of a matrix A represents
the maximum absolute value of any cross-correlation columns
of A, namely

|AT A
T(A) = max—— -/
i#j [ AillllA; ]
specifically, if a matrix satisfies the RIP condition, then it has
a small coherence or incoherent. On the contrary, a highly
coherent matrix has a small RIP with low probability.
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B. Subdifferential

Definition 3 [37]: f : R" — R is a convex function if it
satisfies

fw) = f@)+n" @) “4)

where 7 is the subgradient of f at .
Definition 4: Subdifferential of (1) at u is a set of all
subgradients

ofw) = {nlf() — fu)>n"(v-u) Yo e R"}. (5

C. Projection Operator

Let Pg(x) be projection operator of x € R" on a nonempty,
closed convex set Q, which is defined as follows:

Pg(x) = argmin|u-x||.
ueQ

Lemma 1 [16]: Let Q € R" be a nonempty, closed convex
set, such that

(u— Po)" (Pou) —v) >0 YueR", veQ. (6)
Lemma 2: Define the Bregman divergence of h at u and v
Dy (u, v) = h(u) = h(v) — (W-v)" Vh(v) @)

where h(u) = (1/2)|u]|> = (1/2)|lu — Po (u)||. If the function
h(u) satisfies V,h(u) = Pq(u), then the following properties
hold.

1) Dgy(u,v) is a continuous, differentiable function with
VuDh(u, l)) = PQ(M) — PQ(D).

2) Dy(u,v) = (1/2)[| Pa(u) — Pa()|>.

3) Dy(u,0) < (1/2)|lu-v|*.

Proof:
1) By taking the derivative of Dy (1, v) with respect to u,
we have

V. Dy (i, v) = Po(u) — Pa(v).
2) According to (7) and Lemma I, one has
Dy, ) > 3 (Pa(0) ~ Pa() (Pa0) — Pa(u)
+3(Pa) ) (Pa0) — Po(w)
> 21Po®) ~ Pa)I.

3) By simple calculation based on (7) and Lemma 1, one
has

p—

EIIu-VII2 — Dy(u, )

> —lu-v|* + %nPg(u) — Po()|?
+ (Po(u) — Pa(0))" (v-u)

1
= 3 llu —v = Pau) + Po()|I* = 0.

| =

The inequality holds, which comes from Lemma I. Thus,
we get (1/2)[lu-v||?> — Dy(u,v) > 0. [ |
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D. Algebraic Graph Theory

Consider a weighted undirected graph G = (V, £, A), where
YV =(,...,v,) is a vertex set and £ C V x V denotes the
set of edges. A = {a;;} € R™™ represents the weighted
adjacency matrix of G, where a;; > 0 iff (i, j) € £ and
a;; = 0 otherwise in G. The undirected graph G is connected
if every unorder pair {v;,v;}, i # j € {1,...,m} of vertices
is connected, i.e., there exists a path between any pair of
distinct v; and v;. Otherwise, it is an undirected unconnected
graph. The weighted degree of vertex v; is defined as d(v;) =
Z;le ajj. Then, the Laplacian matrix is defined as L, =
(lij)axn = D — A, where D = diag{d,d>,...,d,} € R"™".
If G is connected, then its Laplacian matrix is symmetric with
a simple eigenvalue O such that L, 1, = 0,.

III. CENTRALIZED NEURODYNAMIC APPROACHES
FOR PROBLEM (2)

In this section, we present two centralized neurodynamic
approaches for solving problem (2) to reconstruct sparse signal
based on the augmented Lagrange method and Lagrange
method with derivative feedback and projection operator.

A. Centralized Neurodynamic Approaches

The first centralized neurodynamic approach is designed
based on the augmented Lagrange method

w=—A")— (I, - ATA)Po(w) + A"b — A" Aw
=A@~ Po(w)) b ®)
x =w — Po(w).

The second centralized neurodynamic approach is proposed
based on the derivative feedback item, which is used to deal
with the “troubles” of projection operator

= —Po(w) — AT 4
A=A —2Pgo(w)) — AATL — b )

x =w — Po(w).

Remark 1: Comparison of neurodynamic approaches (8)
and (9), first, the design motivation based on the augmented
Lagrangian method (ALM) of neurodynamic approach (8) is
easier to understand than the neurodynamic approach (9) on
account of derivative feedback w. Second, based on the con-
dition 4 = A(w — Po(w)) — b, the neurodynamic approach (8)
becomes ) = —AT (14 1) — Po(w), A = A(w — Po(w)) —b.
It means that the approach (9) has the same simple struc-
ture as neurodynamic approach (9) (similarly, the approach
(9) can be transformed into w = —Pg(w) — AT, ) =
A(w — Po(w) + w) — b,x = w — Pg(w), see Table I).
Finally, the applied scenarios are different. For the distributed
optimization problem with consensus constraints (26), we can
easily design effective collective neurodynamic approach (27)
by using neurodynamic methods (8) and distributed consensus
theory. However, the collective neurodynamic approach (37)
can be easily obtained based on neurodynamic approach (9)
to solve the distributed extended monotropic optimization
problem (33).
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Lemma 3: If x* = w* — Pgo(w*) is an optimal solution of
problem (2), if and only if there exists an equilibrium point
(w*, 2*) to (8) and (9).

Proof: According to the KKT condition, it has

0 + AT)* =0, 6* eo|x*|l;, Ax*=b (10)

where 1* € R™ is a Lagrangian multiplier (dual variable), x*
is an optimal solution, and d|x*||; = (d|x}],...,olx DT is
the subdifferential of ||x*||; and is composed of n elements as
follows:

1, x>0
olxfl=11-1,11, xf=0 (11)
-1, xf<0, i=1,...,n
and Po(w) = (Po(wy),..., Po (w,,))T with
1, w; > 1
Po(wj)) = w;, —1<w; <1 (12)
-1, wy<-1, i=1,...,n.
Furthermore, based on the projection operator, it has
Po (0" + x*) = 6*. (13)

Define 6* + x* = w*, such that Pg(w*) = 6* = w* — x*.
Then, the KKT condition in (10) becomes

Po (w*) + AT =0, A(w* — Po (w*)) =b

w* — Po(w*) = x*. (14)
From (14), it has
X =w"— Pg(w*), A(w* — Po (w*)) —b=0
Po(w*) + AT2* — AT(A(w* — Po(w*)) —b) =0 (15)
and
x* =w" — Po(w*), Po(w*)+AT1* =0
A(w* — Po(w*)) —b — A(Po(w*) + ATJ*) = 0.  (16)

Therefore, (w*, 2*) is an equilibrium point of (8) and (9).
Conversely, let (w*, A*) be an equilibrium point of (8) and
(9), for neurodynamic approach (8), it satisfies
0=—A"2"— (I, — ATA)Po(w*) + ATh — AT Aw*
0= A(w* — Pg (w*)) —b

x*=w* - Pg (w*)

A7)

Furthermore, according to A(w* — Po(w*)) — b = 0 and
x* = w* — Po(w*), Ax* =b and AT 1* + Po(w*) = 0 hold.
For any ¥ € {x | Ax = b}, according to AT A* + Po(w*) =0,
one obtains (¥ — x*)T(AT1* 4+ Po(w*)) = 0. Based on the
condition A(X — x*) = 0, we further get

(& — x*)" Po(w*) =0. (18)

Let 0* = Pg(w*) and then 8* = Pg(60* + x*) on account
of x* = w* — Po(w*), such that * € 9||x*|;. Since |x|;
is a convex function, it follows that ||X]|; — [|x*|; > (& —
x)T0*,v0* e d||x*||;. The condition (15) implies |||, >
lx*|ly on set ¥ € {x | Ax = b}. Thus, x* = w* — Pg(w*) is
an optimal solution to problem (2), which can be obtained.
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Based on the similar method above, the equilibrium point
(w*, 2*) [ie., x* = w* — Pgo(w*)] of approach (9) is an
optimal solution of problem (2), which can be obtained. The
proof is thereby completed. [ ]

Lemma 4: The neurodynamic approaches (8) and (9) have
a unique solution with any initial value y (to) = (v}, A3)7.

Proof: If y1 = (w!, 27,y = (W), 25)T € R™™ are
two solutions of neurodynamic approaches (9) with the same
initial value y (fp). If y; # p,, then there exist z > 0 and
w > 0 such that y(t) # y»(¢t) for any t € [z, 7 + w]. Define

—Po (w) - AT/I
i) = (A(w—ZPQ(w))—AAT/I—b)' (19)
condition on

Since ¥(y) satisfies the

t € [0, 7 + @], that is,

Lipschitz

I #() — YOl
< [[Po(w1) — Po(wa)|
+ AT (2o — 20| + [AAT (o = 21) ||
+1A(w1 — w2) [l + I2A(Po(w1) — Po(w2))|
<y — 20l Vi el0,7 + o] (20)
where [ = (1+40max(A)+0omax (AAT)) is a Lipschitz constant.
One has

d 1 5 T

I _ — _ '4 ./

dt2”y1 72l (ri—r2) (Y1) (72))
<lyr = p2l* VEe[0,t +w]. (21)

Integrating the above equation from 0 to 7 + @, it follows
that y; # y2,Vt € [0, 7 + w] with the same initial values
r(tp). This leads to a contradiction. Thus, the proof is thereby
completed.

By using a similar approach, we can obtain that the neuro-
dynamic approach (8) has a unique solution with a Lipschitz
constant [ = 1 4 30max(A) 4 20max (AT A). [}

Theorem 1: The output vector w, i.e., x of neurody-
namic approach (8), is globally asymptotically stable and
converges to an optimal solution of (2) for any initial value
wo € R", /10 € R™.

Proof: Consider a Lyapunov function as follows:

1 1
Vi(w, 2) = 5w — w*||* + 1 1 = Dy (w, w*)  (22)

where Vi(w, 1) > (1/2)]]A4 — 2*||> from Lemma 2 and
is positive definite, continuous, differentiable and radially
unbounded.

By Lemma 2, the derivative of V;(w, 1) along the neuro-
dynamic approach (8) is given by

Vi(w, 2)
= (w —w"+ Po (U)*) — PQ(IU))T
x (=AT2 = (I, = ATA)Po(w) + ATb — AT Aw)

+ (2 =29 (A — Po(w)) — b). (23)
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By subtracting from both the sides of (8) and (15) and
substituting it into formula (23), it follows that

Vi(w, 1)
= (w —w* 4+ Po (w*) — Pg(w))TAT(i* — i)
+ (w — w* + Po(w*) — Pg (w))T(PQ (w*) = Po(w))
+ (w —w* + Pgo (w*) — Po (w))T
X ATA(PQ (w) — Pg (w*))
+ (w —w* + Pgo (w*) — Po (w))T(—ATA(w — w*))
+ (2= 29" (A — Po(w)) — A(w* — Pg(w*)))
= —JAw - v+ Pafw) — Po(w)
+ (w — w* + Po(w*) — Pg (w))T(PQ (w*) = Po(w))
= —|Ax-b||* + (w — Po(w))" (Pa (w*) — Po(w))
+ (P (w*) = w*)" (Po(w7) = Po(w))

<0. (24)

The Lyapunov function V;(w,A) is nonincreasing as
t — oo for any initial value (w}, A5)T € R™™. It can be
seen from inequality (24) that {(w(¢), A(¢)) : 0 <t < T} C
{(w(@), 2(1)) = Vi(w(1), 2(1)) < Vi(w(t), A(t))}. Therefore,
T = 400 and (w, A1) is bounded. Since Vi(w, 1) is a Lya-
punov function of neurodynamic approach (8), which implies
that the approach (8) is stable in the sense of Lyapunov.

Since (w(t), A(t)) is bounded, then there exist an increasing
sequence {#,}°°, and a limit point (&, 7)) such that sli>nolo w(ty) =

® and lim A(t;}) = A. Thus, (b, 1) is an e-limit point of
§—>00
(w(t), 4(2)).
According to LaSalle’s invariance principle, (w(t), A(t))
converges to a set W as t — 400, where W is so-called
the largest invariant subset of the following set:

W = {(w(?), 2(1)) : Vi(w, 2) = O}

Obviously, (w, 1) = (w*, 2*), if Vi(w, ) = 0. Thus, (w, )
will converge to the equilibrium point set when t — 4-o00.
From this, w-limit point (i, 1) is an equilibrium point.

From the analysis above, there exists an w-limit point
(w(t), A(t)), which is an equilibrium point of the neurody-
namic approach (8). Next, we will prove that (w(z), A(1))
converges to (i, 1) as t — 4oo with any given initial point
(wo, A0)-

Define a Lyapunov function as

_ 1 1 ~
V(w,2) = llw - o + 1 A* = Dy(w, ©).

_ Similar to the above mentioned proof of Vi, we obtain
V(w,2) < 0. Since the function V(w, ) is continuous,
thus, for any ¢ > 0, there exists a positive constant p > 0
such that V(w, ) < ¢ as |(w”, A1) — @7, D)7 < p.
Moreover, there exists a positive integer E since V(w, A)
is monotonically nonincreasing over [0, + oo) such that
l(w(p)", 2@e))T — @7, 27 < p, V(w@), (1) <
V(w(tg), A(tg)) < e, for any t > 1.

In consequence, lim (w(r), A(t)) = (b, 1). Since V(w, 1)
is radially unbounzi_e)(f thus, (w(z), 2(t)) of neurodynamic
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approach (8) globally converges to an equilibrium point. Thus,
x = w — Po(w) is also globally convergent to the optimal
solution of problem (2). [ |
Theorem 2: The neurodynamic approach (9) is globally
asymptotically stable for any initial value wy € R", 19 € R".
Proof: Consider a candidate Lyapunov function

1 1
Va(w, 4) = Ellw—w*llerzlli—/V“ll2 (25)

where (w*, 2*) is an equilibrium point of centralized neurody-
namic approach (9) and is also the optimal solution of problem
(2) according to Lemma 3. Obviously, the Lyapunov function
Va(w, A) is positive definite, continuously differentiable and
radially unbounded. On the basis of the chain rule, it follows
that

Va(w, 2) = (w—w* - Pg(w)—AT/l)T x (—Po(w) — AT 2)

— | Po(w) + AT2|” + (A(w — Po(w)) — b)”
x (2= 2*) + (AT (A = 7)) (= Po(w) — AT 2)

= (w—w*—Po(w) — ATA+ AT (1= 2%))"
x (—=Po(w) — AT2) — | Po(w) + AT 2|
+ (2= 2% (A@w = Po(w)) — b)

= (v —w* — Po(w) + Po (w*))T
x (=Pg(w) — AT4) — || Po(w) + A" 4|
+ (2= 2%) (A@w — Po(w)) — b)

= —bl* + (w — Po(w))" (Po(0*) — Po(w))
+ (0" = Po(w"))" (=Pa(w*) + Po(w)

<0.

Obviously, the function Vo(w, 1) < 0 for any (w, 1) #
(w*, 2*), and Va(w, A) = 0 if and only if (w, 1) = (w*, 1*).
Therefore, the neurodynamic approach (9) is globally asymp-
totically stable in the sense of Lyapunov. In addition, by the
similar method in the proof of Theorem 1, the proposed neuro-
dynamic approach (9) is globally convergent to an equilibrium
point of problem (2). [ |

IV. COLLECTIVE NEURODYNAMIC APPROACHES
FOR PROBLEM (2)

In this section, we discuss that the problem (2) can be
equivalent to two kinds of network optimization problems and
propose two relevant collective neurodynamic approaches to
solve the obtained network optimization problems. In addition,
some sufficient conditions are needed to reconstruct sparse
signal by minimizing problem (2), such as RIP condition and
coherence condition.

Theorem 3: The problem (2) can be equivalent to the
following network optimization problem, i.e., a distributed
optimization problem with consensus constraints:

h
1

min — Xill1, st.Ax=b, Lx =0
hgl llxs

(26)

where L;, € R"" is the Laplacian matrix of connected graph
G (which is a positive semidefinite matrix) and L = L, ®
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I, € R x = (xT, ..., x)T e R
Apisn 0
A= : . e Rmxhn
0 . Amhxn

The corresponding RIP condition is converted to
(1 = (h = D/h = G/mpIx> < A% <
(1 —=(h—1)/h+(J;/h))||"*x]|]?, for any hs-sparse vector "x.

Proof: Assume that the undirected graph G is connected,
and according to the algebraic graph theory in Section II, 1,
is the eigenvector of Lj, corresponding to the simple zero
eigenvalue. Then, define ¥ = 1, ® x € R"™ and Ax = b,
and one has

LT = (Ly ® )% = (Ly ® L) (1, ® x)

= (Lh 1;,) 24 (I,,x) =0
h h
A% =D AwEi = D Awx = Ax =b.
k=1 k=1

With respect to the RIP condition, for any hs-sparse
signal ¥ = 1, ® Sx, it follows that [|A"™%|> =
(hs-fl)T(A;l]Aml)hsxl + e + (hsih)T(A;lhAmh)hsih-
Using the RIP condition (1 — d&,)|°x||> < [A*x|> =
Cx)T (AL Am) 1 + +  Cxn) (AL, Amn) xn <
(1 + J,)|*x||> with any s-sparse signals ‘x € R" in
Definition 1, and we have (1 — (h — 1)/h — (d;/h))|"*%|]> <
IA" %] < (1= (h = 1)/ h 4 (/W) " %].

Conversely, based on the properties of Kronecker product,
ithas that Lx = (L, ®1,)x = (L, ®1I,)vec(X) = vec(I,XL;)
with vec(ABC) = (CT ® A)vec(B), X = (x1,...,x) €
R™" and ¥ = vec(X). If Lx =0, such that I,XL, =0 and
L,XT =0, 1, is the eigenvector of L;,, which corresponds to a
unique simple zero eigenvalue since G is connected. Therefore,
XT = ol ® 1y, where a = (a1, ...,0,)" € R" is a column
vector. It follows that X = a ® l,{. Then, each column vector
x; of x satisfies X; = a. Therefore, we have x; = «.

From the above analysis, Lx = 0 and Ax = b hold for
undirected connection diagram G if and only if ¥ = 1, ® x,

for any x € {x|Ax = b}, (1/h)||x|ly = ||x||; for any x € R".
Thus, for any hs-sparse vector hsg = 1, ® x, it follows
that |%[> = hl°x|* and |A"X|> = |Al, ® x|* =

(A.X)T(A,Z]Aml)sx +ooot (A.X)T(A,Z]Aml)(sx)T = ”AS}C”2 and
(A=) I°x 1> < |A*x||*> < (148)|°x||*>. Thus, the problem (2)
can be equivalently transformed into (26). Therefore, the proof
is thereby completed. [ ]

Remark 2: Since problem (2) is not a standard distributed
optimization problem, the collective (distributed) neurody-
namic approaches cannot be designed directly. In order to
solve problem (2) in a distributed way, the first thing that
needs to be solved is to obtain the distributed form of problem
(2) without destroying the sparsity of signal (that is, the first
difficulty introduced in Section I). Thus, based on the row
decomposition of matrix A, multiagent consensus theory, and
RIP condition, we obtain the problem (26) and its proof in
Theorem 3.

Next, a collective neurodynamic approach is proposed to
address problem (26) based on multiagent consensus theory
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and centralized neurodynamic approach (8)

u=L(w— Po(w))
W=—Po(w)— A"\ — L(u+u)
A=Aw — Po(w)) —b
x=w— Pgo(w).

27)

Lemma 5: If x* = w* — Pgo(w*) is an optimal solution to
problem (26), then (w*, A*, u*) is an equilibrium point of (27).
Conversely, when (w*, 1™, u*) is an equilibrium of collective
neurodynamic approach (28), then x* = w* — P (w*) is an
optimal solution to problem (2).

Proof: According to the KKT condition, there exist A*,
u* and 0* € (1/h)0|x*||; such that

0"+ ATA* + Lu* =0

Ax* —b=0, Lx*=0 (28)

where w* is the optimal solution of problem (26).
According to (13) and x* = w* — Po(w*) and Pg(w*) =
0*, one has

Po(w*) + A"A* + Lu* =0 (29a)
A(w* — Po(w*)) = (29b)
L(w* — Po (w*)) =0. (29¢)

By adding (29¢) to (29a), Po(w*) + ATA* + L(u* + w* —
Po(w*)) = 0 can be obtained. Thus, (w*,A*, u*) is an
equilibrium point of collective neurodynamic approach (28).

To prove the converse, assume that (w*,A*,u*) is an
equilibrium point of collective neurodynamic approach (28).
It follows that

0= L(w' -~ Po(w))

0= —Po(w’) ~ AT2*  L(u" + w" ~ Po(w’))
0=A(w" — Po(w*)) —b

x*=w" — Po (w*)

(30)

Based on x* = w* — Po(w*), Ax*—b =0, Lx* =0, and
Po(w*)+ ATA* + Lu* = 0 hold. Let 8* = P (w*) and 0* =
Po (0" +x*) on account of x* = w* — Pg (w*), which follows
that 6* € (1/h)0||x*||;. Define an augment lagrangian func-
tion L(x, A, u) = (1/h)||x|i +ATAx +u"Lx + (1/2)x" Lx,
and one has (x — x*)(Po (w*) + AT+ Lu*) =0, Lx* =0,
and Ax* = 0 for any (x, A, u). According to the variational
analysis theory, the equilibrium point (x*, A*, u*) is a saddle
point of the convex function L(x, A, u), which confirms that
the equilibrium point (w*, L™, u*), i.e., x* = w* — Po(w*)
of (28), is the optimal solution to problem (27) or (2), which
completes the proof of Lemma 4. [ |

Theorem 4: The output vector x = w — Pg (w) of collective
neurodynamic approach (27) globally converges to the same
optimal solution of problem (26) with any initial point y, =
(wg,xg, ul)?.

Proof: Consider a candidate Lyapunov function

1 1 1
V(y) = 3llw - w*||* + Sl = w*||* + 5 Ix -2

— Dy, (w, w*). 31
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Note that the Lyapunov function (31) is positive definite.
From Lemma 2, one has V(y) > (1/2)|lu —u*||> 4+ (1/2)||A —
A*|> > 0. Furthermore, V(y) > 0, if y # y*; otherwise,
V(y) = 0, which means that the Lyapunov function (31) is
positive definite.

From condition (27), a straightforward calculation of (31)
yields that

Vy) = (w-— w*)Ttb + (u — u*)Tit
+ (A =2 R+ (Po(w*) — Po(w))
= (- w)’ (Pa(u) - Potw)
+ (w — w*)TL(u* —u) + (w— w*)T
x L((w* — Po(w*)) — (w — Po(w)))
+w—w) (AT =2)+ (A —2) A
x (Pg (w*) — Po(w)) + (Po(w*) — Po(w))"
x L((w* — Po(w*)) — (w — Po(w)))
+ (Pa(w") = Pow))' (Pa(w") = Po(w))
+ (Po(w*) — Po(w))" L(u* — u)
) L(w — w* — Po(w) + Po(w*))
A — k*)TA(w —w" — Po(w) + Po (w*))
) Llx —x*) + | Po(w*) — Pg(w)H2

<0. (32)

For any initial value y,, we define Q(y) = {(w, A, u) :
V(y) < V(yy),w € R™ A € R",u € R™}, and thus, Q(y)
is bounded with regard to (w, A, u); it implies that (w, A, u)

is bounded.
Define

D(w) = —(w — Po(w) — (w* — P (w")))"
x L(w — Po(w) — (w* — Po(w")))

+[[Pa(w?) = Poa)|* — (w* — w)"
X (PQ (w*) — P (w)).

Since the Laplacian matrix L is positive semidefinite, it con-
firms that X" LX = 0, X € R"™ if and only if LX = 0. On the
one hand, if y = (w”,AT,u”)" satisfies (29), we obtain
®@(w) = 0. On the other hand, @(w) = 0 if and only if
w = w*, ie., x* is an optimal solution to problem (26).
According to LaSalle’s invariance principle, the collective
neurodynamic approach (27) is capable of reaching consensus
optimal solution of the problem (26). |

Next, we show that the same sparse solution of problem
(2) can be obtained by minimizing a distributed extended
monotropic optimization problem with a complementary vari-
able y.

Theorem 5: Let L, € R8*% be the Laplacian matrix of the
connected graph G and L = L, ® I,, € R"™¢*"8. Therefore,
there exists a supplementary variable y € R™$ such that the
solution to the problem (2) can be obtained effectively by
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solving the following optimal problem:

g
minz Ix4ll1, st. AxX+Ly=Db

(33)
g=1
where
Am><n1 e 0
A=l
0 Amxng mgxn
x = (x],.. .,xg)T € R" and

( b\" »\"\'
() () e

8 8

The corresponding coherence of a matrix A satisfies
T(A) = T(A), which implies that the same optimal solution
as the problem (2) can be reconstructed by minimizing the
problem (33).

Proof: To prove Theorem 5, we only need to show that the
convex problem (33) has the same KKT condition as (2). From
the KKT condition, it shows that w* be an optimal solution
to problem (33) if and only if there exist @ € o|[x*||; € R",
z" € R™¢, and y* € R™8 such that

0 +ATz" =0, ©€d|x|; (34a)
AX* + Ly* =b (34b)
Lz" = 0. (34c)

Let us left multiply both sides of (34b) by 1, ® I,,, and
then, one has

(1, ® I,) (AX* + Ly* —b) =0

- (=G

_ Amx,qu;‘) —(1g® Im)TLy* =b
g=1

= Ax— (1,®1,) Ly* = b. (35)

Based on the properties of the Laplacian matrix of undi-
rected connected graph, it confirms that (1£ ® In)(Ly ®
Ly)y* = (1 Ly) ® I,y* = 0. Thus, the equation Ax = b
holds.

Since Ll,, = 0 holds, (34c) implies that there exists
¢ = 1, ® z* € R",z* € R", such that @ + ATz* =
® + ATz* = 0. Thus, the KKT optimal condition of (33)
is equal to (10), i.e., the KKT condition of (2).

On the other hand, based on the properties of Laplacian
matrix L1,, =0, 17,L = 0" and optimal condition in (10),
it is easy to get

0+ AT2* =0, 6*eo|x*|
=0O+ATz" =0, Lz*=0, ©@ =0".

For any p € RS and let p = p ® I,,,, it follows that Lp =0
and /5 € ker(L). Because Ax* = b in (10), then 57 (Ax*—b) =
p2i_ 1 ((b/g) = Apsxn,Xp) = 0. It implies that Ax* —b €
range(L) by using the orthogonal decomposition theory. Thus,
there exists a vector y* such that Ax* — (1, ® 1,,)" Ly* = b,
i.e., (34b) holds.

7495

From Definition 2, it shows

|A.TAj|
7T(A) = max——
i%i (A A
0, if i € A{Apxn, }
j € A{Aman}a T 7& q
= ATA;| (36)
max———— if i, j € A{Auxn, |
i# | AIA tAman, )

g=1,...,8

where A is a index set, which corresponds to the number of
columns Ayxn,, 1.€., if Apxn, = Apxas, then {AAyxn,} =
{2,3,4,5}). Let C(n,) be the number of columns in a matrix,
ie. if n, =2:5, then C(n,) = 4.

Recall Definition 2 that it follows that 7(A) =
mﬁx(|AiTAj|)/(||Ai||||Aj||) > 0, for Vi, j. Thus, the coherence
i#]

of a matrix A is equivalent to A’s coherence of problem (2),
i.e., T(A) = T°(A). Thus, the proof is completed. |

In order to solve the problem (33) in a distributed manner,
we develop the following collective neurodynamic approach
based on the neurodynamic approach (9) and multiagent
consensus theory

w=—Po(w)—ATz
z=A(z— Po(z)) —L(u+1z)—b+Aw 37)
u=1Lz
X =w — Po(Ww).
Lemma 6: If x* = w" — Po(w*) is an optimal
solution to problem (33), if and only if there exist
z* and u* such that (w*,z*,u*) is an equilibrium point of
(36), where x* = w* — Pg(W*).

Proof: According to the KKT condition, if x* is an optimal
solution to problem (33), it has

0" +ATz" =0, O*cd|x*|, (38a)
Ax*+ Ly*=b (38b)
Lz" = 0. (38c)

Since x* is an optimal solution of problem (33), such that
O = Po(®* + x*) on account of x* = w* — Py (w*), then
the condition (40) becomes

0=—Po (W*) — ATz
0=A(W"— Po(w*)) —b— Lu*

39
0=Lz" 39)

X" =w"— Pg (W*)
Substituting the third formula 0 = Lz* into the sec-

ond formula 0 = A(W* — Po(w*)) — b — Lu*, one has
A(W* — Po(w*)) — b — Lu* — Lz* = 0, which confirms
that (39) is equivalent to (40). Thus, there exist z* and u*
such that (w*, z*, u*) is an equilibrium point of (36), where
x* = w* — Po(w").
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Conversely, since (w*,z*,u*) is an equilibrium point of
collective neurodynamic approach (36), then, one has

0=—Po (w*) — ATy
O:A(:V*—PQ(W*))_b_L(u*+Z*) 40)
0=1Lz

X" =w" — Po(w").

Let ®F = Pg(w*), and then, @ = Pg(® +x*) on account
of x* = w* — Pgo(w*), which follows that ® € oJ|x*|;.
From x* = w* — Po(w*) and Lz* = 0 in (37), one has
Ax* —b — Lu* = 0 and Po(w*) + ATz* = 0. Similar to the
proof in Lemma 4, the equilibrium point (W*, z*, u*) satisfies
the KKT condition of problem (33). Thus, x* = w* — Po (w*)
is an optimal solution to problem (33). Thus, the proof is
completed. [ |

Theorem 6: For any initial point &, = (wg , zg , ug 7, x =
w— Pg(w) of collective neurodynamic approach (37) globally
converges to the optimal solution of problem (33).

Proof: Let w* or x* = w*— Pg (W*) be an optimal solution
to problem (33). Consider the following candidate Lyapunov
function:

1 1
V() = —||w W2+ Sl = 21 + S u—u?
+ Dy (w, w*). (41
Obviously, the Lyapunov function V(&) 1/2)|w —

w2 4+ (1/2)lz — 21 + (1/2)[lu — u*[|* + [[Po(w) —
Po (W*)||%. V(&) is positive definite, differentiable and radially
unbounded. The derivative of V(&) along with the trajectories
of (33) is

V&) = (w—w)" (Po(w*) + ATz" — Po(w) — AT2)
+ (u - u*)T(Lz - Lz*) + Z(PQ (w) — Pg (w*))T
X (Pg (w*) — ATz — Po(w) +ATz) + (z — z*)T
X A(w — Po(w) —w* + Pg (W*)) + (z — z*)T
xL(u*+z* —u—z) +(z—z*)T
X (APQ (W*) +AATZ" — APg(z) — AATZ)
= (w=w)" (Po(W") = Pa(w)) + (w —w")’"
x AT (z" —z) +2(Po (W) — Po (w*))T
xAT(z—7") + (z — z*)TA(w —w")
+2(Pa(w) — Po (w*))T(PQ (W*) — Po(w))
+2(z—2") A(Pa (W) — Pa(W))
+(z—z" ) (L +AAT)(Z —z)+ (z—z*)T
xL(u*—u)+(u—u) L(z—1z")
= (w—w)" (Pa (W) = Pa(W))
=2[[(Pa(w) = Paw) |’
—(e-2)'L-7) - |A@ ~2)|’
<0. (42)
Let Q&) = (w.z.w) : V) < V@), w € Rz e

R™8 ,u € R™8} with for initial value & = (WO , z0 , )T, and

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Q(¢) is bounded, which implies that w, z, and u are always
bounded.

Obviously, for any w # w* and z ¢ range(L), the condi-
tion (41) holds from Lemma 1. Thus, globally asymptotical
stability of the proposed neurodynamic approach (37) can
be obtained. V(&) = 0 if and only if w = w* and z =
range(L). Similar to the proof in Theorem 1, we can obtain
that the neurodynamic approach in (37) globally converges
to the equilibrium point, i.e., the optimal solution of problem
(33). The proof is completed. [ ]

Remark 3: Note that problem (2) can be equivalent to two
kinds of network optimization problems, i.e., a distributed
optimization problem with consensus constraints (26) and a
distributed extended monotropic optimization problem (33).
The salient features of them are summarized as follows.
First, the distributed optimization problem with consensus
constraints (26) is constructed based on the row decomposition
of matrix A and x consensus method. Different from all
existing distributed nonsmooth optimization problems with
consensus constraints, the distributed sparse signal reconstruc-
tion problem (26) requires a corresponding RIP condition,
ie, (1= (h=1)/h = @/h)I"x|> < A" x| < (1 - (h -
1)/h + (6;/h))||"x]|]?, for any hs-sparse vector “x. It is an
important sufficient condition for obtaining the same sparse
solution as problem (2). Second, the distributed extended
monotropic optimization problem (33) is constructed based
on the column decomposition of matrix A and z consensus
method. Moreover, a supplementary variable y € R™¢ is intro-
duced, which is used to match changed equality constraints in
(33). In addition, to obtain the same sparsity of the solution
as the problem (2), the coherence of a matrix A in problem
(33) also needs considered. Thus, it is different from the all
existing distributed optimization algorithms.

Remark 4: Usually, there are two types of efficient methods
for solving convex nonsmooth optimization problems.

1) Smoothing approximation methods in [19]-[21]
and [44]. Different from the smoothing approaches
mentioned above, we use the projection operators
to obtain the exact subgradient without introducing
approximation parameters (in this case, only suboptimal
solutions with certain accuracy can be obtained) and
internal optimization subproblem (such as the calcula-
tion of the conjugate function), so the neurodynamic
approaches proposed in our article have much higher
reconstruction accuracy (see Figs. 3 and 4).

2) Variable decomposition method in [45]. Its main
idea is to decompose optimal variables x into its
positive and negative parts (ie., x = [x]T — [—x]),
the nonsmooth L; objection function becomes
x|l = 17[x]* + 17[—x]*. Although it can effectively
deal with the nonsmooth one-norm problem, it is worth
noting that it doubles the dimension of the optimization
variable x, which greatly increases the computational
cost of the optimization algorithms. In this article,
we directly optimize the variable x and do not increase
the dimension of the optimization variable.

Remark 5: In this article, we mainly consider the

Li-minimization problem (2) and its distributed variant
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Fig. 1. (Left) States transition curves on (8). (Right) Recovered signal with
RelErr = 1.47e-16.

problems (26) and (33), which can be used to deal with many
problems. Although problem (2) can be transformed into
an unconstrained optimization problem based on the penalty
function method, i.e., problem (3), comparing (2) and (3),
problem (2) is more attractive than (3) because the solution
of the model usually has a better performance without the
tradeoff parameter selection dilemma. The existing works
in [13]-[15] and [43] are mainly used to solve the optimization
problem (3) with finite and fixed-time convergence rate based
on the soft thresholding of one-norm and sliding mode tech-
nique. The LCA [13], LCA-finite [14], LCA-fixed [15], and
CAPPA [43] have a faster convergence rate than the proposed
neurodynamic approaches (8) and (9) since they have finite-
or fixed-time convergence properties. However, the proposed
neurodynamic approaches (8) and (9) have better accuracy
with increasing time than LCA [13], LCA-finite [14], LCA-
fixed [15], and CAPPA [43] because they have used a fixed
tradeoff parameter, and however, it is difficult to choose the
best tradeoff parameter.

V. NUMERICAL SIMULATIONS

In this section, Example 1 is carried out to demonstrate
the effectiveness and superiority of centralized neurodynamic
approaches (8) and (9), and Example 2 is used to illustrate
the effectiveness of the proposed collective neurodynamic
approaches (27) and (37).

Example 1: We use typical sparse signal and image recon-
struction to show the effectiveness and superiority of central-
ized neurodynamic approaches (8) and (9).

A. Sparse Signal Restoration

In this section, we repeat our experiment 100 times inde-
pendently and use relative error RelErr = (|lx —x*|))/(]|x]]) (x
is the original sparse signal and x* is the recovered signal) to
evaluate the validity of centralized neurodynamic approaches
(8) and (9). For neurodynamic approach (8), consider a
scenario that s = 100 (s-sparse), signal length n = 4096,
the numbers of nonzero values are at 10, the dimension
of the observed value is 600, that is, m = 600, and A
is a Gaussian random matrix. The convergence trajectories
of x(tr) are shown in Fig. 1 (left). Fig. 1 (right) shows
that the stationary point of the neurodynamic approach (8)
approximates the original sparse signal with a relative error at
1.47e-16. For centralized neurodynamic approach (9), setting
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Fig. 2. (Left) States transition curves on (9). (Right) Recovered signal with
RelErr = 2.10e-16.

s = 20, m = 100, and n = 512, the numbers of nonzero values
are generated randomly. The measurement matrix A is also a
Gaussian random matrix. As shown in Fig. 2 that the output
state x(¢) is globally asymptotically stable and the stationary
point approximates the original sparse signal with a relative
error of 2.10e-16.

1) Contrast Experiments for Sparse Signal Reconstruction:
In order to illustrate the feasibility and advantages of cen-
tralized neurodynamic approaches (8) and (9), we compare
our neurodynmic approaches (8) and (9) with PNNSR [16],
PNNBIM [17], and LPNN-LCA [18]. First, let n = 256,
m = 128, and s = 10. The experimental results are shown
in Fig. 3 (left), where the y-axis denotes the average relative
error of x with ten trials and the x-axis is the CPU time
(unit: second), while Fig. 3 (middle) shows the result with
n = 512, m = 256, and s = 10. In addition, Fig. 3 (right)
shows the result when n = 1024, m = 400, and s = 10.
From Fig. 3, it is observed that when n = 512, the centralized
neurodynamic approach (8) is better than others. The PNNSR
[16] with different tradeoff parameters 0.00005(21og(m))'/?,
0.0005(21og(m))'/?, and 0.005(21log(m))'/> performs worst
since it is difficult to choose the best tradeoff parameter. As the
dimensions n and m increase, the performances of PNNSR
[16] and PNNBIM [17] are getting worse and worse since
they have higher model complexity (see Table I). Moreover,
the centralized neurodynamic approaches (8) and PNNSR [16]
are more robust than neurodynamic approaches (9) because
they are designed based on the augmented Lagrangian method,
which has better robustness. Comparing with others, the pro-
posed centralized neurodynamic approaches (8) and (9) have
relatively stable convergence time.

To further demonstrate the effectiveness of centralized neu-
rodynamic approaches (8) and (9), we compare our approaches
with LCA [13], LCA-finite [14], and LCA-fixed [15] for
reconstructing sparse signal with n = 128, m = 64, and
s = 8. Fig. 4 shows the convergence performances. As shown
in Fig. 4, the LCA-finite and LCA-fixed have faster con-
vergence rate than neurodynamic approaches (8), (9) and
LCA. Moreover, LCA-fixed has a faster convergence rate than
LCA-finite. Note that neurodynamic approaches (8), (9) have
better accuracy with increasing time because LCA, LCA-finite,
and LCA-fixed use a fixed tradeoff parameter; however, it is
difficult to choose the best tradeoff parameter. Therefore,
in different scenarios of practical applications, different algo-
rithms can be chosen. If a high-precision sparse signal is
needed, neurodynamic approaches (8) and (9) can be chosen,
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Fig. 3.
n = 1000, m = 400, and s = 10.
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TABLE I
MODEL COMPLEXITY OF NEURODYNAMIC APPROACHES

RelErr of x

¢ —— LPNN-LCA
i —— PNNBIM, 1=0.00005*sqrt(log(m))
3 — — PNNBIM,=0.0005*sqrt(log(m))
PNNBIM, \=0.005"sqrt(log(m))

15 2 25 3

time (second)

Relative error of x with respect to the convergence time. (Left) n = 256, m = 128, and s = 10. (Middle) n = 512, m = 128, and s = 10. (Right)

Neurodynamic approach

Per iteration

-1
Additional calculation for P = AT (AAT) A, q= AT (AAT> b

—1

Multiplications

Additions/Subtractions

Multiplications

Additions/Subtractions

neurodynamic approaches (8) 2mn 2mn + 3n +m 0 0

neurodynamic approaches (9) 2mn 2mn + 3n +m 0 0

LPNN-LCA [18] 2mn 2mn + 3n + m 0 0
PNNSR [16] 2n2 4 n 2n? 4 n mn (2m + 1 4 n) + O(m?) m2(2n —1)+n?(m—2)—n
PNNBIM [17] n? +2n n? +4n mn (2m + 1+ n) + O(m?) m2(2n —1)4+n?(m—2) —n

and if the sparse signal is obtained quickly, neurodynamic
LCA-finite and LCA-fixed can be chosen.

2) Complexity Analysis: Let us analyze the model complex-
ity of centralized neurodynamic approaches (8), (9), PNNSR
[16], PNNBIM [17], and LPNN-LCA [18] by using the total
number of multiplications/divisions and additions/subtractions
performed in per iteration, which is used in [38] and the
computational complexity of inverse operation of matrix AA”
(O(m?)). The model complexity results are shown in Table 1.
From Table I, it can be seen that the neurodynamic approaches
(8), (9) and LPNN-LCA have the same model complexity,
which are less that of PNNSR and PNNBIM, and thus, the neu-
rodynamic approaches (8) and (9) and LPNN-LCA have faster
speed (less CPU time) than PNNSR and PNNBIM. In addition,
PNNBIM has less model complexity than PNNSR, so it has
a faster speed (less CPU time) than PNNBIM. Experimental
results in Fig. 4 further demonstrate the effectiveness and
correctness of complexity analysis.

B. Image Restoration

Image restoration has a wide range of applications in the
field of engineering and science. In this section, we per-
form the neurodynamic approach (8) on the restoration
of 256 x 256 “Lena” image and the neurodynamic approaches
(9) on the restoration of 256 x 256 “Fingerprint” image.

Apply the peak signal-to -noise ratio (PSNR)
(PSNR= 10log,(255*/MSE) with MSE 1/(n x n)
Zi’j (£@, j) —x(, j))?, where %(i, j), x(i,j) represents
the pixels of the original image and the restored image
respectively) to evaluate the validity of centralized
neurodynamic approach (8) and (9). Fig. 5(a) shows
the original image and Fig. 5(b)—(d) shows the reconstructed
image by using neurodynamic approaches (8), OMP in [12]
and PNNSR in [16]. Under the same condition, the proposed

Neurodynamic (8)

2
log|[x-x*||

10 F [wreene Neurodynamic (9)
——LCAA=0.01
LCAfinite, A=0.01
LCA-finite, A=0.001
108 F [ LCA-finite, A=0.0001
-------- LCAfixed, A=0.01
—— LCAfixed, A=0.001
LCAfixed, 1=0.0001
10710 : : . . . .
0 0.2 0.4 0.6 0.8 1.0 1.2 14

time (second)

Fig. 4. log|lx — x*||> with n = 128, m = 64, and s = 8.

neurodynamic approach in (8) has higher PSNR than OMP
and PNNSR, which further proves the effectiveness of the
approach (8). Fig. 6 shows that the proposed neurodynamic
approach (9) is about 1 dB higher than PNNSR and 2 dB
higher than OMP, which means that the proposed method is
effective and superior.

Example 2: Sparse signal reconstruction tests are used to
verify the effectiveness of collective neurodynamic approaches
(27) and (37).

1) Sparse Signal Reconstruction Using (27): The pro-
posed collective neurodynamic approach (27) is applied
to solve problem (26) to obtain the sparse signal. Tak-
ing a matrix Aeaxiog, we divide it into five parts ran-
domly based on row decomposition to obtain A
blOCk{Am1 Xns Amz Xns A;113 XN Am4><m Am5 xn} € R64X64O~ EVerY
ApxnXi,i = 1,...,5 acts as an agent, and five agents are
connected as a ring diagram in Fig. 7 (left). Let s = 10 and
the initial values be random values. Fig. 7 (middle) visualizes
that the output state x(z) is uniformly (i.e., x; = x;
x3 = x4 = x5 € R'?®) and globally asymptotically stable,
which matches the conclusion of Theorem 4. Fig. 7 (right)

Authorized licensed use limited to: Southwest University. Downloaded on December 17,2024 at 07:18:50 UTC from IEEE Xplore. Restrictions apply.



ZHAO et al.: CENTRALIZED AND COLLECTIVE NEURODYNAMIC OPTIMIZATION APPROACHES

(b)
Fig. 5.

7499

(d)

(a) Original image. (b) Restored images with approach (8) (m = 190, PSNR = 35.80 dB). (c) Restored images with OMP [12] (m = 190, PSNR =

30.76 dB, OMP). (d) Restored images with PNNSR [16] (m = 190, PSNR = 34.85 dB, PNNSR).

(b)
Fig. 6.

(d)

(a) Original image. (b) Restored images with approach (9) (m = 150, PSNR = 23.79 dB). (c) Restored images with OMP [12] (m = 150, PSNR =

20.12 dB, OMP, OMP). (d) Restored images with PNNSR [16] (m = 150, PSNR = 21.782 dB, PNNSR).

Signal
o

K ——
K N O

Fig. 7. (Left) Graph of five interacting neurodynamic
(right) Recovered signal with RelErr = 1.92¢-17.

second

with decentralized constraints.

05 03 0% M M08 4 20 40 60 80 100 120 140
Signal Index

(Middle) Consensus of the output states transition curves on (27).

10
5 A {

Signal
-

—— Recovery
— Original

0 0.2 0.4 0.6 0.8 1 0 50 100
second

Fig. 8.

shows that its stable point is very close to the original sparse
signal with a relative error of 1.92e—17. Thus, the proposed
collective neurodynamic approach (27) can effectively solve
problem (26), that is, solving problem (2) in a distributed
way. In addition, the results of Fig. 7 further demonstrate the
equivalent validity of distributed problem (26) and centralized
problem (2).

2) Sparse Signal Reconstruction Using (37): In the exam-
ple, we validate the effectiveness of collective neurodynamic
approach (37) to deal with the problem (33) by a sparse signal
reconstruction test. Take Agsx25¢ @ sensing matrix and divide

150 200 250 300 0 o 02 03 o4 05 06 07 08

Signal Index second

(Left) States transition curves on (8). (Middle) Recovered signal with RelErr = 2.47e—16. (Right) Consensus of states transition curves of z.

it into ten parts by column (A = block{A,,xn,> ---» Amxny,) €
R640%x256) 1 et every parts be an agent, and ten agents are con-
nected as a ring diagram. Set sparsity s = 10, and generate a
real signal with an amplitude of +10 randomly. We repeat our
experiment 100 times with different random initial values and
plot the average of them in Fig. 8. According to Fig. 8 (left),
the proposed approach (37) is globally asymptotically stable.
Fig. 8 (right) plots that the state z is uniformly conver-
gent and globally asymptotically stable, which means that
z; = --- = Zjo. It meets the conclusion of Theorem 6. From
Fig. 8 (middle), x(¢)’s stable point can effectively approximate
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the original sparse signal with a relative error of 2.47e-16,
and it implies that the approach (37) can effectively solve
problem (33) in a distributed manner and further demonstrates
the validity of the transformed distributed problem (33).

VI. CONCLUSION

In this article, we have proposed several centralized and col-
lective neurodynamic approaches for L;-minimization prob-
lem to reconstruct the sparse signal. Then, we have found
that the L;-minimization problem can be converted into two
network optimization problems, i.e., a distributed optimization
problem with consensus constraints and a distributed extended
monotropic optimization problem. Based on the above cen-
tralized neurodynamic approaches and multiagent consensus
theory, two collective neurodynamic approaches have been
developed and their convergence and optimality have been
discussed. Simulation results of sparse signal reconstruction
and image reconstruction have been done to test the feasibility
and effectiveness of our proposed neurodynamic approaches.
Considering the finite-time convergence and fixed-time conver-
gence that have remarkable convergence rate, we will try to
modify the centralized nueroynamic approaches (8) and (9) for
solving problem (2) with finite-, fixed-, and predefined-time
convergence in the future work.
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