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ABSTRACT

Real-world scenarios frequently involve multi-objective data-driven optimization
problems, characterized by unknown problem coefficients and multiple conflicting
objectives. Traditional two-stage methods independently apply a machine learn-
ing model to estimate problem coefficients, followed by solving the predicted op-
timization problem. The independent use of optimization solvers and prediction
models may lead to suboptimal performance due to mismatches between their ob-
jectives. Recent efforts have focused on end-to-end training of predictive mod-
els that use decision loss derived from the downstream optimization problem.
However, these methods have primarily focused on single-objective optimization
problems, thus limiting their applicability. We aim to propose a multi-objective
decision-focused approach to address this gap. In order to better align with the
inherent properties of multi-objective optimization, we propose a set of novel loss
functions. These loss functions are designed to capture the discrepancies between
predicted and true decision problems, considering solution space, objective space,
and decision quality, named landscape loss, Pareto set loss, and decision loss,
respectively. Our experimental results demonstrate that our proposed method sig-
nificantly outperforms traditional two-stage methods and most current decision-
focused methods.

1 INTRODUCTION

Uncertain decision-making is prevalent in various real-life scenarios (Kotary et al., 2021). These
scenarios involve a workflow for handling data-driven decision problems where parameter coeffi-
cients are predicted based on environmental or historical information, and decisions are made using
these predictions. Most traditional approaches decompose this workflow into the prediction phase
and the decision phase. Obtaining a perfect prediction model is often unachievable. The problem co-
efficients generated by the prediction model are frequently noisy. Given that conventional prediction
models prioritize predictive accuracy, they often neglect the structure and attributes of downstream
optimization problems. However, in most of optimization problems, the impact of problem coeffi-
cients on the final decision is not uniform. Without a decision-focused approach, decisions derived
from imperfectly predicted coefficients are more prone to deviate from the optimal solution. Con-
sequently, the separation of the prediction and decision phases often leads to suboptimal outcomes
due to the misalignment of objectives between these phases.(Amos & Kolter, 2017). Addressing this
issue, the integration of prediction models with decision problems for unified training has emerged
as a promising direction across various domains (Kotary et al., 2022; Vlastelica et al., 2020).

The integration of optimization problems into deep learning frameworks poses significant chal-
lenges, particularly because the mapping from predicted coefficients to the optimal decision vari-
able is non-differentiable. To address the aforementioned issue, numerous decision-focused meth-
ods have been proposed to train a predictive model by minimizing decision loss associated with the
downstream optimization task (Kotary et al., 2021). Considering the diverse forms and complex-
ity of real-world optimization problems, as well as the time-intensive aspect of iterative problem-
solving, prior research has concentrated on two principal directions. The first direction seeks to
broaden the applicability of the approach by formulating additional optimization problems of var-
ied forms, employing differentiable operators (Amos & Kolter, 2017; Wilder et al., 2019). The
second direction (Shah et al., 2022) entails the development of efficient decision surrogate func-
tions to diminish training time or amplify decision-focused performance. However, previous studies
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have predominantly concentrated on the domain of single-objective problems, with less emphasis
on extending the learning paradigms into the domain of multi-objective optimization (MOP).

Numerous data-driven multi-objective problems exist in real-world scenarios (Gunantara, 2018).
The MOP demonstrate increased complexity in the search space compared to their single-objective
counterparts. Optimal solutions for multi-objective problems are frequently non-unique and cor-
respond to a Pareto front. Additionally, the gradient of multiple objectives often exhibit conflict-
ing directions. Given the challenges and complexity, we aim to propose a novel Multi-Objective
Decision-Focused Learning (MoDFL) model to address these gaps.

To address the mentioned inquiries, we propose three decision-focused loss functions tailored for
MOP. The proposed loss function involves three modules, which measure the distance of objec-
tive space, solution space as well as the decision quality of representative point. Specifically, we
introduce a landscape loss based on the sample rank maximum mean discrepancy (sRMMD) to
quantify the discrepancy in the objective space across optimization problems. The objective space
is considered a manifold within high-dimensional space, represented by the set of objective vectors
corresponding to the solutions. We propose a Pareto set loss to directly measure the distance within
the Pareto set, aiming to circumvent the homogeneity that may impede model training in certain
optimization problems. The decision loss is analogous to other decision-focused losses, utilizing
the decision quality of a representative solution as the loss criterion. This representative solution
is derived from employing the weighted sum method in this paper. Differentiation of the proposed
loss function is achieved by reparameterization method and transforming the multi-objective prob-
lem into a corresponding single-objective one. Building on these modules, MoDFL integrates the
predictive model and MOP into a unified pipeline, which enables end-to-end training of the system.

The remainder of this paper is structured as follows. Section II provides an overview of the related
work. Section III details the formulation of the data-driven multi-objective problem and introduces
pertinent definitions. Section IV provides a motivating example on multi-objective decision learn-
ing. Section V present three novel loss functions, explore the differentiation of MOP, and explain
the integration of the aforementioned modules within MoDFL. The performance of MoDFL is com-
pared to that of two-stage methods and other state-of-the-art DFL method in Section VI. Finally, we
conclude this paper in Section VII.

2 RELATED WORK

2.1 DIFFERENTIATION OF OPTIMIZATION PROBLEMS

A plethora of studies has investigated the integration of prediction problems with downstream
decision-making processes. The scope of this study includes methodologies such as Smart Predict-
and-Optimize (SPO)(Elmachtoub & Grigas, 2022), End-to-End Optimization Learning(Kotary et al.,
2021), and Decision-Focused Learning (DFL)(Mandi et al., 2021). The central aspect of this topic
aims to the differentiable mapping from problem coefficients to optimal decision variables, a concept
we denote as the decision gradient herein. Utilizing the decision gradient enables the formulation
of many optimization problems as differentiable operators within gradient-based methods like neu-
ral networks. Much of the seminal literature in this field stems from the work of Amos (Amos
& Kolter, 2017). This approach proposed in (Amos & Kolter, 2017) leveraged the Karush-Kuhn-
Tucker (KKT) optimality conditions for quadratic programming and the implicit function theorem
to construct decision gradients. Nevertheless, this method’s limitation lies in its requisite for a full-
rank Hessian matrix of the objective function, constraining its applicability. Subsequent research has
addressed this constraint by employing elaborate techniques to generalize the methodology across
a broader spectrum of optimization problems. For instance, Wilder et al. (2019) introduced one
quadratic regularization term into the objective function to extend the method proposed by Amos
(Amos & Kolter, 2017) to linear programming (LP). Ferber et al. (2020) extended DFL to mixed-
integer programming (MIP), relaxing MIP to LP by applying a cutting plane at the root LP node
and leveraging Wilder’s method (Wilder et al., 2019) to enable end-to-end training. Xie et al. (2020)
approached the top-K problem through the lens of the optimal transport problem, extending Mandi
and Guns’s work (Mandi et al., 2020) to tackle it.

Another category of methods has emerged from the smart predict-and-optimize (SPO) method (El-
machtoub & Grigas, 2022). This approach primarily focuses on optimization problems with linear
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objectives and involves predicting the parameters of the optimization problem. It introduces a con-
vex surrogate upper bound on the loss, facilitating an accessible subgradient method. Vlastelica
et al. (2020) also explore linear objective problems, computing decision gradients by perturbing the
predicted problem coefficients. Expanding on this, Niepert et al. (2021) improve the method by
incorporating noise perturbations into perturbation-based implicit differentiation to maximize the
posterior distribution. Notably, all these methods require iterative addressing optimization prob-
lems during training, incurring substantial computational costs. To mitigate this issue, Mulamba
et al. (2020) implemented a solution cache to record solutions discovered during model training
and devised a surrogate decision loss function based on contrastive loss to reduce the time spent
solving optimization problems. Kong et al. (2022) employed an energy-based model to character-
ize decision loss, thereby reducing the overhead in end-to-end training by linking minimum energy
with minimum decision loss. Shah et al. (2022) introduced the surrogate convex loss functions to
alleviate the computational burden, such as WeightedMSE, etc. Mandi et al. (2021) leveraged the
learning-to-rank concept to devise a proxy for decision loss and introduced four surrogate decision
loss functions.

3 PROBLEM DESCRIPTION

This study concentrates on DFL within the context of MOP. The given data include the contextual
information (features) xi, the true coefficients yi, as well as the formulation of a parametric MOP.
The subscript i denotes the index of each optimization problem instance. In the decision-focused
setting, the coefficients yi are not known in advance but can be estimated with a machine learning
model. The procedure is divided into two phases: prediction and optimization. The prediction
phase involves estimating the problem coefficients based on xi; The optimization phase need to
solve the optimization problem where the coefficients are fixed as predicted result. The goal is
to optimize the objective values of the solution obtained in the optimization phase, using the true
problem coefficients.

During the prediction phase, the prediction model is represented as m(θ, x), and the predicted prob-
lem coefficients can be defined as ŷi ≡ m(θ, xi). During the optimization phase, the MOP can be
formulated as presented in Eq.1.

min
π,g(y,π)≤0

f(y,π) = [f1(y
1,π), · · · , fT (yT ,π)] (1)

Where π denotes one feasible solution, f(·) denotes the T objective functions, and g(·) denotes
the constraint functions. With the predicted problem coefficients, its optimal solution is defined as
π̂i(θ, xi) ≡ arg min

π,g(ŷi,π)≤0
f(ŷi,π). The problem under study can be formulated as follows:

min
θ

L(x, y, θ) = Exi,yi∈D[f1(y
1
i , π̂i), · · · , fT (yTi , π̂i)] (2)

4 METHODOLOGY

4.1 DECISION SURROGATE LOSS

4.1.1 LANDSCAPE LOSS

In single-objective optimization problems, the objective space is one-dimensional, where a partial
ordering can characterize the relationship between the objective function values of two solutions.
However, in MOP, the T-dimensional objective space renders the partial order relationship inade-
quate for representing the distance in objective space across different problems. Moreover, the strin-
gent criteria for establishing Pareto dominance often result in numerous objective vectors lacking
any dominance relationship, especially for many-objective optimization problems. To address these
limitations, we analogize the multi-dimensional objective space to the manifold in high-dimensional
space, such as images, video, or audio signals. We use the concept of neighborhood relations in
high-dimensional spaces to clearly define how different sets of objectives are connected and to iden-
tify common patterns in their overall distribution. Specifically, we utilize the objectives of solu-
tions found during training model to approximately represent the objective space, and employ the
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sRMMD (Masud et al., 2023) to measure the distance between the objective spaces of different
optimization problems. This proposed metric is referred to as the landscape loss function.

To introduce the concept of sRMMD, we initially discuss entropy-regularized optimal transport,
which involves determining an optimal coupling c between a source distribution P and a target
distribution Q. The

!
(P,Q) represents the set of joint probability measures on the product space

with marginal distributions P and Q, where φ ∈ P and ψ ∈ Q. The entropy-regularized optimal
transport problem is formulated in the Eq.3. The dual form of the previously described problem is
provided in Eq.4, with its derivation detailed in (Genevay, 2019).

min
c∈

!
(P,Q)

"
1

2
|φ− ψ|2 dc(φ,ψ) + εKL(c||P ⊗Q) (3)

max
u,v

"
u(φ)dP (φ) +

"
v(ψ)dQ(ψ) + ε−

ε

" "
exp

#
1

ε
(u(φ) + v(ψ)− 1

2
|φ− ψ|2)

$
dP (φ)dQ(ψ)

(4)

where the maximization is over the pairs u ∈ L1(P ), v ∈ L1(Q). The optimal entropic potentials
for ε are the pair of functions uε and vε correspond to the functions that achieve the maximum
in Eq.4. This dual formulation can be solved using methods such as gradient descent or Sinkhorn’s
algorithm (Cuturi, 2013). By executing a predetermined number of iterations and applying automatic
differentiation in PyTorch or TensorFlow, we can compute the gradient of sRMMD. Building upon
uε and vε, we present the soft rank map in its sample-based form as follows:

Rn
ε (φ) =

%N
i=1 ψiexp(

1
ε (v

n
ε (ψi)− 1

2 |φ− ψi|2))
%N

i=1 exp(
1
ε (v

n
ε (ψi)− 1

2 |φ− ψi|2)
(5)

For a distribution P , the sample rank map Rm is defined as the plug-in estimate of the transport
map from P to a uniform distribution Q = Unif([0, 1]d), where d denotes the dimensionality.
Let k : Rm × Rm → R be a characteristic kernel function. Let Rτ,ε(φ) denote the soft rank
map of Pτ for τ ∈ (0, 1). The distribution Pτ is the mixture distribution of PX and PY , where
Pτ = τPX + (1− τ)PY . Samples Xi, Xj are drawn from PX ; similarly, samples Yi, Yj are drawn
from PY . The sRMMD between the distribution of PX and PY can is expressed as follows:

sRMMDm,n
τ,ε (PX ,PY )

2 ∼=
1

m2

m&

i,j=1

k(Rm+n
τ,ε (Xi),R

m+n
τ,ε (Xj))

+
1

n2

m&

i,j=1

k(Rm+n
τ,ε (Yi),R

m+n
τ,ε (Yj))−

2

nm

m&

i=1

n&

j=1

k(Rm+n
τ,ε (Xi),R

m+n
τ,ε (Yj))

(6)

Assume we have a pooling of solutions S, where πi ∈ S. The objective vectors for the predicted
and true problems is represented as φi,ψi, respectively, where φi,ψi ∈ R|S|×T and i denotes the
index of the optimization problem instance

Ll(x, y, θ) =
1

N

&

i

sRMMD|S|,|S|
τ,ε (f(y,πi), f(m(θ, x),πi)) (7)
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4.1.2 PARETO SET LOSS

Optimal solutions may differ across optimization problems. However, certain optimization prob-
lems, despite having different coefficients, can exhibit identical landscapes and share the same opti-
mal solution. For example, a normalization for the coefficients of LP can preserve both the optimiza-
tion landscape and solution optimality. In light of this homogeneity, we introduce a loss function
that directly measures the distance between solution spaces of optimization problems. With a fo-
cus on optimization problems that target optimal solutions, our proposed loss function quantifies
the disparity between sets of optimal solutions. Drawing on the concept of inverted generational
distance, this loss function employs the minimum distance between the Pareto sets of the predicted
and true problems in solution space. Let PS∗

y represent the Pareto set of the true problem and PS∗
ŷ

denote the Pareto set of the predicted problem. The proposed loss function is approximated by
minπ∗

y∈PS∗
y
d(π̂,π∗

y), which is represented as follow:

Lps(x, y, θ) =
1

N

&

i

minπ∗
yi

∈PS∗
yi
d(π̂,π∗

yi
) (8)

4.1.3 DECISION LOSS

We also adopt the decision quality associated with the Pareto optimal solutions of the predicted
problem as the loss function. However, due to the multidimensional nature of the Pareto front, the
aforementioned loss function cannot be directly applied in the multi-objective scenario. Here, we
transform the predicted problem and the true problem into single-objective problems. Subsequently,
we employ the optimal solutions of the transformed predicted problem in the objective function of
the transformed true problem as the loss function, which is named as decision loss function.

We apply the conventional weighted sum method to transform multi-objective problem into single-
objective problem. Due to the difference in the magnitude of different objectives, the predicted
coefficients are initially processed through an instance normalization layer. The process is detailed
as follows:

BN(
ˆ
yji ) =

ˆ
yji −mean(

ˆ
yji )

std(
ˆ
yji )

; j = 1, · · · , T (9)

where mean(ŷti) and std(ŷti) denote the mean and standard deviation of ŷti respectively. In optimiza-
tion problems with LP and MIP, it’s easy to prove that the instance normalization layer preserves
the relative cost value ordering. Consequently, the normalization layer maintains the optimization
landscape and the optimality of solutions unchanged.

Equipped with uniform weight, we focused the weighted optimization problem fw(ŷ,π) =
"

j fj(BN(ŷj),π)

T . This method ensures that the mapping from problem coefficients to the optimal
solution aligns with that of a single-objective decision-focused method. Let π̂ denote as the optimal
solution of fw(ŷ,π). The decision loss is then articulated as follows:

Ld(x, y, θ) =

%
i

%
j f(BN(yji ), π̂i)

NT
(10)

4.2 DIFFERENTIATION OF OPTIMIZATION MAPPINGS

Differentiation of optimization mappings refers to the process of computing the gradient of the
decision surrogate loss with respect to the predicted problem coefficients. As previously discussed,
we can observe that the decision surrogate loss is a function of y, ŷ, and π̂. When π̂ is sampled from
the given distribution of solution (or solution cache), the gradient of the decision surrogate loss on
the search space loss function can be calculated using reparameterization techniques (Kingma et al.,
2015). Accordingly, the gradient of the landscape loss function is determined in this manner. For the
gradients of Pareto set loss function and decision loss function, the decision gradient of optimization
mappings is decomposed into two terms by the chain rule, as expressed below:

∂L(x, y, θ)

∂ŷ
=

∂L(x, y, θ)

∂π̂(θ, x)

∂π̂(θ, x)

∂ŷ
(11)
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The first term denotes the gradients of the decision loss with respect to the decision variable. In
this work, the proposed decision loss function are both the continuous function on the decision
variable, facilitating automatic differentiation by deep learning frameworks. The second term cor-
responds to the gradients of the optimal decision with respect to the predicted coefficient. This term
involves the non-differentiable argmin operator. To overcome this issue, various efficient surrogate
functions and carefully designed techniques have been proposed. With the prevalent use of lin-
ear programming in practical applications, we demonstrate our approach through data-driven linear
programming. The differentiation of the optimal condition for smooth linear programming (DSLP)
(Wilder et al., 2019) is utilized to derive the gradient of the optimal decision relative to the problem
coefficients. The derivation process can be referred to in the appendix.

4.3 APPROACH: MULTI-OBJECTIVE DECISION FOCUSED LEARNING

During the training phase of MoDFL, the input dataset comprises relevant feature xi, true problem
coefficient yi, gradients of the cost function with respect to solutions ∇πf(yi,π) as well as a set
of Pareto optimal solutions P ∗

yi
. As the modules within the proposed method are differentiable,

Algorithm 1 Multi-Objective Decision Focused Learning
Input: x; y; P ∗

yi
;

Output: Prediction Model: m(θ, ·);
1: for epoch k =0, 1,... do
2: for instance i =0, 1,... do
3: ŷi ← m(θ, xi)
4: employ instance normalization and weight-sum method to generate fw(ŷ,π)
5: employ DSLP to generate the π̂i

6: if random() ≤ psolve then
7: Obtain solutions ˆπnew

i by invoking a multi-objective solver for Eq.10
8: S ← S ∪ { ˆπnew

i }
9: end if

10: Calculate Lall(x, y, θ) according to Eq. 12
11: Update model parameter θ according to back propagation algorithm
12: end for
13: end for
14: return Prediction Model: m(θ, ·);

we focus on the forward pass of the neural network. Initially, prediction model m(θ, ·), produces
multiple group of problem coefficients ŷi according to the xi. The mentioned prediction model
may refer to one multi-task model or multiple single-task models. Secondly, we transform the
studied MOP problem to a single-objective problem, and employ DSLP method to generate the
differentiable solution π̂i. Thirdly, we update the solution cache via adding the optimal solution
of predicted problem with a certain probability. Finally, we calculate the decision surrogate loss
according to y, ŷ, and π̂, where the final loss function is weighted sum of the overall loss function
on objective space, solution space as well as the decision quality of representative point.

Lall(x, y, θ) = λlLl(x, y, θ) + λdLd(x, y, θ) + λpsLps(x, y, θ) (12)

where λl, λd, λps denotes the hyper-parameters. The solution cache S is utilized to calculate the
landscape loss; The solution π̂i generated by DSLP is utilized to calculate the Pareto set loss and
decision loss. Given that all modules are differentiable, the implementation of the backward pass is
straightforward. The detail pseudo code is presented in Algorithm 1.

5 EXPERIMENT

5.1 BENCHMARK PROBLEM

We firstly explore a particular case of web advertisement allocation within the Anonymous App,
aiming to optimize overall click metrics and enhance user visitation on the following day. Unlike

6
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traditional recommendation systems, our approach allocates a single advertisement per user query,
each ad belonging to a unique business category. Our objective is to regulate the ad display frequency
from each category to align with a predetermined parameter over a set period. This scenario is treated
as an online matching optimization problem, typically resolved using a primal-dual method. The
problem’s formalization involves predicting click-through and re-login probabilities, for subsequent
user engagement. The optimization seeks to balance exposure across business categories within
specified thresholds. For experimental validation, we selected a subset of 30,000 queries to generate
instances for testing our MOP, highlighting the problem’s complexity in a decision-focused context.

Besides, we address a MOP problem inspired by a benchmark issue, utilizing data from the Cora
dataset, which comprises 2708 scientific papers (nodes) interconnected by citations (edges). The
challenge involves partitioning the network into 27 sub-graphs, each containing 100 nodes, using
the METIS algorithm. This setup facilitates the formation of bipartite graphs for each instance,
aiming to maximize inter-set citation links. Our objective diverges towards generating alternative
objective values, representing perturbed citation relationships, to evaluate the model’s adaptability to
slight deviations in data. This approach transforms the problem into a LP problem suited for bipartite
matching, focusing on optimizing the proposed objectives while adhering to set constraints. Detailed
explanations of our benchmark Problem are documented in the appendix.

5.2 EXPERIMENTAL SETUP AND BASELINE METHOD

5.2.1 BASELINE METHOD

The baseline methods under consideration include a straightforward two-stage approach and several
state-of-the-art decision-focused approaches. Given that current DFL methods are single-objective,
we implement the baseline methods by substituting their loss functions with uniformly weighted
loss functions, i.e., L(x, y, θ) =

%
j

L(x,yj ,θ))
T . The L(x, yj , θ) represents the loss function of jth

objective in studied decision problem. The prediction model and solver are identical with to those in
our proposed method. For decision-focused methods, the gradient of decision variable with regard to
problem coefficient ∂π̂

∂ŷj
, j = 1, · · · , T is the same as single-objective methods. The key difference

lies in the decision loss function and the technique used to compute the gradient of the problem
coefficients with respect to the decision loss function. Specifically, the baseline method includes the
following:

• TwoStage:employs a prediction model with an independent solver as the two-stage base-
line.

• SPO(smart predict and optimize) (Elmachtoub & Grigas, 2022): utilises the surrogate loss
function proposed by Elmachtoub et al.

• BB (Vlastelica et al., 2020): calculates the decision gradient by differentiation of blackbox
combinatorial solvers.

• MAP(Niepert et al., 2021): employs the surrogate loss function which incorporate noise
perturbations into perturbation-based implicit differentiation and maximizing the resulting
posterior distribution .

• NCE (Mulamba et al., 2020): uses solution caching and contrastive losses to construct
surrogate loss function.

• Pointwise/Listwise (Mandi et al., 2021): employs the surrogate loss function derived from
the technique of learning to rank.

Our study prioritizes decision quality within the paradigm of DFL. Accordingly, the psolve parame-
ter, the probability of invoking optimization solver, is uniformly set to 1 for the MAP, NCE, Point-
wise, and Listwise methods1, acknowledging that methods with a psolve closer to 1 are typically
associated with enhanced performance.

1https://github.com/JayMan91/ltr-predopt
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Table 1: Experimental results on the dataset of Bipartite matching among scientific papers.

Method GD MPFE HAR r1 r2 r
BB 12.6335 40.0616 1.0830 0.9317 0.5616 0.7466

MAP 15.6359 43.9498 1.1736 0.9488 0.7181 0.8335
NCE 12.5653 40.1353 1.0791 0.9355 0.5579 0.7467

Listwise 12.0901 39.4815 1.0848 0.9342 0.5355 0.7348
Pointwise 12.1347 39.8968 1.0872 0.9320 0.5413 0.7366

SPO 12.5224 40.0768 1.0840 0.9376 0.5563 0.7470
Twostage 12.2893 39.4263 1.0910 0.9309 0.5443 0.7376
MoDFL 11.8545 39.0535 1.0707 0.9263 0.5261 0.7262

Table 2: Experimental results on the dataset of Bipartite matching among scientific papers.

Method GD MPFE HAR r1 r2 r
BB 12.6335 40.0616 1.0830 0.9317 0.5616 0.7466

MAP 15.6359 43.9498 1.1736 0.9488 0.7181 0.8335
NCE 12.5653 40.1353 1.0791 0.9355 0.5579 0.7467

Listwise 12.0901 39.4815 1.0848 0.9342 0.5355 0.7348
Pointwise 12.1347 39.8968 1.0872 0.9320 0.5413 0.7366

SPO 12.5224 40.0768 1.0840 0.9376 0.5563 0.7470
Twostage 12.2893 39.4263 1.0910 0.9309 0.5443 0.7376
MoDFL 11.8545 39.0535 1.0707 0.9263 0.5261 0.7262

5.2.2 EVALUATION METRIC

We evaluate the performance of algorithms by the quality of their decisions in relation to a true
optimization problem. While the objective function value is a direct measure, it may be skewed by
differing scales across objectives. Therefore, we adopt the average percentage regret as a key metric
to judge performance, with a lower value indicating superior outcomes. Additionally, we consider
three other metrics commonly employed in MOP analyses: generational distance (GD) (Ishibuchi
et al., 2015), maximum Pareto front error (MPFE), and hyper area ratio (HAR). GD gauges the
proximity of the predicted Pareto front to the true front, MPFE measures the maximal deviation
of approximate solutions from the optimal set, and HAR assesses the relative coverage area of the
Pareto fronts. Collectively, these metrics help determine the efficacy of the proposed solutions in
approximating the true Pareto front. Detailed formulations and computational approaches for these
metrics are provided in the Appendix.

5.2.3 EXPERIMENTAL SETUP ON PREDICTION MODEL AND SOLVER

The prediction model employed in the Web Advertisement Allocation experiment is the multi-gate
mixture-of-experts (MMOE), a typical model in the field of computational advertising (Ma et al.,
2018). In the bipartite matching experiment with scientific papers, we utilized four-layer fully con-
nected neural networks to predict the multiple groups of problem coefficients. The configuration
and architecture of the neural network followed the specifications in (Wilder et al., 2019). As for the
tested optimization problem , we adopted the weighted-sum method to convert the MOP problem
into multiple single-objective problems and utilized the HiGHS solver to address the transformed
single-objective problem. Further details on the methodological aspects and normalization process
are elaborated upon in the appendix.

5.2.4 CONFIGURATION ON DECISION-FOCUSED SETTING

The learning rate was configured to 10−1 following the setting in Wilder et al. (2019). The batch
size was set to 8. The hyper-parameters in Eq.12 were specified as λl = 1;λd = 2;λps = 5. Early
stopping was implemented, terminating the training loop if the validation set loss did not improve
for 5 consecutive epochs. The maximum number of epochs was set to 50. The initial squared regu-
larization term γ was set to 0.35. All experimental comparisons were carried out on an A100 cluster
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Table 3: Experimental results on data-driven decision problems with three objectives.

Method GD MPFE HAR r1 r2 r3 r
BB 9.6199 47.3243 1.2211 0.9300 0.5395 0.7395 0.7363

MAP 11.1703 48.6628 1.3321 0.9484 0.6329 0.7867 0.7894
NCE 9.6434 47.5465 1.2226 0.9311 0.5427 0.7406 0.7381

Listwise 9.6947 46.9460 1.2325 0.9252 0.5445 0.7358 0.7352
Pointwise 9.7053 47.4230 1.2352 0.9353 0.5409 0.7400 0.7387

SPO 10.2388 50.2437 1.2003 0.9298 0.5801 0.7474 0.7524
TwoStage 9.8151 48.4521 1.2103 0.9257 0.5520 0.7402 0.7393
MoDFL 9.5605 47.1387 1.2088 0.9243 0.5367 0.7285 0.7298

Table 4: The performance of different landscape loss function.

Method GD MPFE HAR r1 r2 r
MMD 11.9022 39.4382 1.0793 0.9365 0.5275 0.7320
DSPM 12.4058 39.4131 1.0840 0.9307 0.5504 0.7405

sRMMD(Ours) 11.8545 39.0535 1.0707 0.9263 0.5261 0.7262

environment and repeated 5 times for consistency. We employ a 6-dimensional Gaussian mixture
kernel (Masud et al., 2023) as our kernel function in landscape loss, with bandwidth parameters
σ = (1, 2, 4, 8, 16, 32). The associated hyperparameters, τ = 0.5, ε = 10−5.

5.3 VALIDATING THE PERFORMANCE OF DFL IN MULTI-OBJECTIVE PROBLEM

5.3.1 WEB ADVERTISEMENT ALLOCATION

In the Table I, we compare the performance of different methods using various evaluation metrics.
The MoDFL achieves a GD value of 0.6416, which is the lowest among all methods. It also out-
performs other methods in terms of MPFE, HAR, r and r1, with competitive results in r2. Among
the competing methods, Listwise shows the second-best performance with the best r2 value. These
results indicate that MoDFL is superior in terms of minimizing GD and other metrics. Overall, the
experimental comparison demonstrates the efficacy of MoDFL in achieving better performance on
multiple evaluation metrics, highlighting its potential in addressing the data-driven multi-objective
problem. Compared to single-objective problems, MoDFL still presents significant challenges. Ap-
plying a weighted average of the decision losses in single-objective DFL may deteriorate algorithm
performance. As evident from the results of r1 and r2, MAP, Pointwise, and BB fail to effectively
balance multiple objectives, resulting in a significant degradation of performance in some objectives.
In order to capitalize on the benefits afforded by end-to-end training, it is imperative to propose ap-
propriate methodologies for addressing multi-objective issues within the paradigm of DFL.

5.3.2 BIPARTITE MATCHING AMONG SCIENTIFIC PAPERS

Based on the experimental comparison data presented above, we evaluated several methods includ-
ing BB, MAP, NCE, Listwise, Pointwise, SPO, twostage, and our proposed MoDFL on the dataset
of bipartite matching among scientific papers. Among the methods tested, MoDFL consistently
outperformed the others baseline in terms of all evaluation metrics. MoDFL achieved the lowest
values for GD, MPFE , HAR, r1 , r2 , and r, indicating its superior performance in terms of deci-
sion quality. In comparison, the BB, MAP, NCE, Listwise, Pointwise, SPO, and Twostage methods
exhibited slightly higher values across all evaluation metrics, indicating their inferior performance
when compared to MoDFL. Overall, these results demonstrate that our proposed method MoDFL
outperforms the existing methods in this study, highlighting its potential for improving various as-
pects of MOP. It is worth noting that in this set of experiments, the values for r1, r2, and r are much
higher compared to the previous experiments, indicating that the difficulty of the test problems in
this case is relatively higher (Wilder et al., 2019). This also demonstrates that our proposed method,
MoDFL, can effectively handle data-driven real-world problems of varying difficulty levels.
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Table 5: Ablations on MoDFL.
Method GD MPFE HAR r1 r2 r

w/o Decision Loss 12.5077 39.8507 1.0878 0.9300 0.5547 0.7424
w/o Lanscape Loss 12.0893 39.1558 1.0833 0.9314 0.5352 0.7333
w/o Pareto Set Loss 12.2063 39.5433 1.0765 0.9329 0.5427 0.7378

MoDFL 11.8545 39.0535 1.0707 0.9263 0.5261 0.7262

5.3.3 THE IMPACT OF NUMBER OF OBJECTIVES

The decision problems in tested experiments are bi-objective problem. In order to investigate the
impact of number of objectives, we add one objective into the second benchmark and compare
the performance of two-stage method and MoDFL. The third objective is the weighted sum of the
first two objectives, where the weights used in this case are drawn from U [0, 1]. The experiment
results are exhibited as Table. III. Similar to the results on the bi-objective problems, the testing
results demonstrate that MoDFL achieves competitive performance. MoDFL outperforms all other
algorithms in terms of GD, r1, r2, and r3, r while only slightly lagging behind Listwise in terms of
MPFE. The HAR yielded by MoDFL is slightly lower than SPO. These findings demonstrate that
the proposed MoDFL method is capable of effectively handling multi-objective problems.

5.3.4 THE CHOICE OF LANDSCAPE LOSS

To further elucidate our choice of sRMMD as the landscape loss function in MoDFL, we conducted
experiments to compare the effects of replacing sRMMD with differentiable Spearman correlation
coefficients(DSPM) Blondel et al. (2020) and the maximum mean discrepancy (MMD) (Gretton
et al., 2012) in MoDFL. This experiment is conducted in the second benchmark. The comparison
results presented in the Table V demonstrates the performance of different methods. In contrast,
the DSPM method demonstrates marginally inferior performance across these metrics. However,
the sRMMD approach, integrated within the MoDFL, surpasses the alternative strategies across all
performance indicators, including GD, MPFE, HAR, and the metrics on decision regret. The com-
parative results underscore the enhanced performance of the MoDFL model when utilizing sRMMD
as the landscape loss function, relative to the other methods assessed. It is evident that the adop-
tion of sRMMD within the MoDFL framework contributes to a marked improvement in the model’s
performance as reflected by the evaluation metrics.

5.3.5 ABLATION STUDIES

To validate the individual components of our proposed MoDFL method, we conducted ablation ex-
periments by removing those proposed components in the second benchmark problem. Specifically,
we tested the effects of removing the decision Loss, landscape loss, and Pareto set loss from MoDFL.
The comparative results are shown in Table VI. MoDFL achieved the best results across all metrics,
indicating the importance of each loss function in MoDFL. Removing any of these components
weakened the algorithm’s performance. Among the three loss function, the decision Loss had the
most significant impact on the overall performance. The effects of Pareto set loss were relatively is
close to that of landscape loss. This suggests that for DFL in MOP, the surrogate loss function needs
to align with the properties of multiple objectives and accurately measure the distance between the
prediction problem and the true problem in the solution and search spaces.

6 CONCLUSION

Multi-objective data-driven problems are prevalent in real world. we consider one case which prob-
lem coefficients are unknown in advance and need to be estimated with machine learning models.
We proposed one novel multi-objective decision-focused model to considering the prediction prob-
lem with the downstream MOP problem. Specifically, we propose one set of decision-focused loss
function for MOP problem. The proposed loss function involves three parts, the decision loss, land-
scape loss, and Pareto set loss, which measure the distance of objective space, solution space as
well as the decision quality of representative solution. Finally, experimental results show that our
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proposed method has significant superiority over two-stage methods and the state-of-art methods.
Current research in MOP and DFL remains limited. We plan to investigate more effective multi-
objective decision-focused methods, and apply MoDFL to more forms of data-driven problems.
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