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ABSTRACT

Machine Learning models increasingly face data integrity challenges due to the
use of large-scale training datasets drawn from the internet. We study what model
developers can do if they detect that some data was manipulated or incorrect.
Such manipulated data can cause adverse effects like vulnerability to backdoored
samples, systematic biases, and in general, reduced accuracy on certain input
domains. Often, all manipulated training samples are not known, and only a small,
representative subset of the affected data is flagged.

We formalize “Corrective Machine Unlearning” as the problem of mitigating the
impact of data affected by unknown manipulations on a trained model, possi-
bly knowing only a subset of impacted samples. We demonstrate that the prob-
lem of corrective unlearning has significantly different requirements from tradi-
tional privacy-oriented unlearning. We find most existing unlearning methods,
including the gold-standard retraining-from-scratch, require most of the manip-
ulated data to be identified for effective corrective unlearning. However, one
approach, SSD, achieves limited success in unlearning adverse effects with just
a small portion of the manipulated samples, showing the tractability of this set-
ting. We hope our work spurs research towards developing better methods for
corrective unlearning, and offers practitioners a new strategy to handle data in-
tegrity challenges arising from web-scale training.We release our code at https:
//github.com/drimpossible/corrective-unlearning-bench.

1 INTRODUCTION

Foundation models are increasingly trained on large and diverse datasets, including millions of
web pages and contributions from numerous users and organizations (Schuhmann et al., 2022; Gao
et al., 2020). However, data integrity issues significantly impact model performance (Konstantinov &
Lampert, 2022; Paleka & Sanyal, 2023) by introducing systemic biases (Prabhu & Birhane, 2021)
and adversarial vulnerabilities (Barreno et al., 2006; Sanyal et al., 2021). For instance, a small
manipulated subset of web data sources has led to large-scale model poisoning (Carlini et al., 2023),
underscoring the vulnerability of these models to such adversarial tactics. Moreover, a critical
real-world obstacle is that model developers can often only identify a fraction of the manipulated
data, especially when the manipulations are small, imperceptible changes to input or incorrect labels.

Model developers may be notified of the manipulated data, either through poisoning defenses and
other methods for monitoring of the data pipeline (Breck et al., 2019; Wang et al., 2019; Northcutt
et al., 2021b) or external information. Due to high costs incurred in training, they may wish to
update models trained on the corrupted data, instead of stopping their use. To solve this problem
of removing the influence of manipulated data from a trained model, we introduce the concept of
Corrective Machine Unlearning. This approach aims to efficiently eliminate any detrimental effects
from the identified samples, even when the precise nature and extent of the manipulation is unknown.
Corrective unlearning has different underlying requirements from the traditional unlearning literature
(see Nguyen et al. (2022) for a survey) which is motivated by catering to user data deletion requests
in light of privacy regulations (Council of European Union, 2018; California State Leglisature, 2018;
Parliament of Canada, 2018). Specifically, corrective unlearning procedures do not need to obtain
privacy guarantees on the “unlearned” data. Instead, they must improve clean-label accuracy on parts
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Figure 1: Traditionally, retraining after removing identified data is considered a gold standard in
unlearning. However, since developers may not identify all the wrong data for unlearning, retraining-
from-scratch on remaining data leads to poor clean-label accuracy. Ideally, corrective unlearning
procedures should improve accuracy on the affected domain with access to only a representative
subset of the wrong data.

of the data domain where model performance is adversely affected by the manipulated data while
only having access to a representative subset of manipulated samples.

We investigate the application of state-of-the-art unlearning procedures (Kurmanji et al., 2023;
Goel et al., 2023; Chundawat et al., 2023b; Foster et al., 2023) to remove adverse effects of two
different kinds of manipulations. First, we study a classic poisoning attack (Gu et al., 2019), where
a trigger pattern is embedded in a subset of samples, which are then assigned incorrect labels.
Such manipulations occur when collecting both features and labels from internet web-pages which
adversaries can modify, such as Wikipedia, as demonstrated by Carlini et al. (2023). This can lead to
a backdoor where adversaries trigger model misclassifications by inserting the trigger pattern during
deployment. Such actions can significantly harm applications, such as autonomous driving (Han
et al., 2022). Second, we study the Interclass Confusion test (Goel et al., 2023) where the adversary
incorrectly labels samples between two classes thereby entangling the model’s representations. Such
mislabeling can cause systematic biases in model outputs (Prabhu & Birhane, 2021). Such label-only
manipulations can occur when model developers have their own unlabelled datasets but rely on
external sources for annotation.

Model developers may eventually recognize compromised data sources and wish to unlearn the
influence of this data from previously trained models. We find that many recent unlearning methods,
including the traditional gold standard of retraining-from-scratch, fail in the context of corrective
unlearning as illustrated in Figure 1. Particularly, even knowing 80% of the manipulated data is
not enough to remove the adverse effects introduced by manipulating just 1% of the whole training
data. However, the Selective Synaptic Dampening (Foster et al., 2023) method is able to remove
the effect of BadNet poisoning with just 10% of the manipulated data being identified, showing the
tractability of this setting. However, it leads to a significant drop in overall test accuracy, and fails in
the Interclass Confusion setting, leaving much to be desired. Overall, our work highlights the need
for unlearning procedures tailored to removing the influence of manipulated data.

2 IDEAL CORRECTIVE UNLEARNING

In this section, we formalize the requirements of corrective unlearning, and detail key differences
from the traditional privacy-oriented unlearning.

PROBLEM SETTING

We initiate our discussion by detailing the ideal corrective unlearning framework, introducing a
precise threat model, and identifying specific desiderata.

Scenario: Training sets for large models are often compilations of data from diverse sources such as
web pages, platforms like Reddit, data contractors, annotators, user inputs etc. These sources can
introduce systematic biases or, more critically, contain data that has been adversarially manipulated,

2



Published at Data-Centric Machine Learning Workshop, ICLR 2024

motivating model developers to use corrective unlearning. Crucially, corrective unlearning methods
should tackle a strong adversarial threat model that allows arbitrary manipulations. In doing so, it’s
reasonable to expect these unlearning methods can also address problems stemming from naturally
occurring benign errors.

Threat Model: Next, we discuss the adversary and model developer’s perspective.

Adversary’s Perspective: The adversary can arbitrarily manipulate any portion of the input data,
including labels in supervised learning scenarios. For example, in poisoning attacks, a trigger is
inserted into each manipulated data sample, altering its label to an incorrect one (Han et al., 2022).

Developer’s Perspective: Model developers identify some of the compromised data sources after
having already trained a model, either through internal monitoring or defenses or external information
like tipoffs. While detecting all manipulated data is challenging, it is feasible to be given a small
subset which we assume to be representative of the broader set of manipulated data. Since the
adversary can apply arbitrary manipulations, the exact manipulation type is unknown to the model
developer apriori. The goal of model developers is to remove the adverse effects of the manipulated
data from the original model using this small identified representative subset.

Formalization and Notation: Let X be the data domain, Y be the label space, and P be the
distribution on X × Y . Let Str ⊂ X be the training data, and Sm ⊂ Str be the training samples
manipulated by the adversary, either by modifying features, the associated training labels, or both.
Let Dm ⊂ X be the domain where performance is adversely affected when learning using Sm. For
example, in poisoning, Dm contains samples with the poison trigger. In Interclass Confusion, Dm

consists of samples from the two affected classes. Clearly, Dm also contains Sm. Finally, let A be
the learning algorithm, and Mo = A(Str) be the original trained model.

A corrective unlearning algorithm Ucorr “improves” the original model (Mo) by removing the
influence of Sm. We expect only a subset of samples to be identified as manipulated, which we
denote as the deletion set Sf ⊆ Sm. Thus, Ucorr takes as inputs Mo, Str, Sf and yields an unlearned
model Mu. Next, we list the goals of an unlearning procedure.

Desiderata: A corrective unlearning procedure Ucorr has the following objectives:

1 Removing the influence of manipulated samples: The primary goal is to remove the adverse effect
learnt due to the manipulated data Sm. We operationalize this as improving the clean-label accuracy
on Dm:

E(x,y)∼P [I{h(x) = y} | x ∈ Dm]

where h = Ucorr(M0, Str, Sf ). We also compute the clean-label accuracy on the manipulated
training set Sm to check if the unlearning procedure “corrects” the manipulation in the training
data. It is important to note that while the domain Dm may be easier to identify for some kind of
manipulations like poisoning, it may be more difficult in other cases.

2 Maintaining model utility: Intuitively, the unlearning process should not harm performance on
unrelated samples i.e. data outside Dm, retaining model utility. We operationalize this as the overall
accuracy (X \ Dm):

E(x,y)∼P [I{h(x) = y} | x /∈ Dm]

where h = Ucorr(M0, Str, Sf ).

This quantity should decrease minimally, and can potentially increase due to a possibly conservative
estimate of Dm. For example, the manipulated data may affect the representations learned by the
model in unintended ways and thereby impact the utility on unrelated and unexpected parts of the
domain.

3 Effectiveness with Incomplete Identification: Corrective unlearning algorithms (Ucorr) should
effectively unlearn adverse effects of manipulations even when the identified subset of the manipulated
data Sf is a small representative subset of Sm. This means achieving 1 , 2 even when |Sf |

|Sm| is less
than one.

4 Computation Efficiency: The time taken by the procedure should be minimized.

We refer to the associated numbering explicitly throughout the rest of the paper.
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DIFFERENCES FROM PRIVACY-ORIENTED UNLEARNING

Traditional unlearning seeks to ensure retrain indistinguishability: the unlearning procedure U aims
to produce a distribution of models that is indistinguishable from one obtained without the forget set.
Thus, for some learning algorithm A′ which may be different from the original training procedure A,
U should produce an indistinguishable distribution of models U(Mo, Str, Sf ) ∼ A′(Mo, Str \ Sf ).
We highlight the distinctive aspects of corrective unlearning as opposed to traditional privacy-focused
unlearning, and describe how these differences necessitate changes in unlearning evaluations and
method design.

NO PRIVACY REQUIREMENTS

Key Distinction: In the corrective unlearning context, Sf and Sm does not need to be privatized,
setting it apart from traditional unlearning.

Implications: Traditional unlearning is designed to meet strict privacy standards, necessitating either
: (1) algorithms with theoretical privacy guarantees (Thudi et al., 2022) akin to those provided by
differential privacy (Gupta et al., 2021), or at least (2) strong performance against privacy auditing
on the data to be forgotten Sf (Golatkar et al., 2020a) such as those performed by Membership
Inference Attacks (Shokri et al., 2017). Goel et al. (2023) argue rigorous empirical evaluations of
the retrain indistinguishability goal are computationally infeasible for deep learning models. Not
only is producing a distribution of models expensive, but since A′ can differ from the original
training procedure, there is a need to search the algorithm space for an A′ that produces models
indistinguishable from the unlearning procedure. Corrective unlearning bypasses these challenges by
setting the practical goal of achieving empirical improvements in model accuracy on samples from
the affected domain as the primary success metric ( 1 ).

REMOVAL OF INCORRECT TRAINING DATA

Key Distinction: The goal of traditional unlearning is to remove untampered but sensitive user data.
However, corrective unlearning removes the influence of samples which were manipulated, either
in data, labels or both. This can be particularly challenging for mislabeled data or in multi-class
problems, where the corresponding clean version of the data and/or the correct label is unknown.

Implications: Removing accurate samples in traditional unlearning typically degrades model perfor-
mance (Golatkar et al., 2020a). Moreover, some unlearning method explicitly try to randomize model
outputs on forget set samples (Chundawat et al., 2023b; Li & Ghosh, 2023). However, in corrective
unlearning, removing manipulated samples should significantly enhance model performance on parts
of the affected domain Dm ( 1 ). It may also improve the quality of learned representations and thus
increase overall accuracy ( 2 ).

RETRAIN-FROM-SCRATCH IS NO LONGER A GOLD STANDARD

Key Distinction: In traditional unlearning, all the data whose influence is to be removed from the
model is specified by user deletion requests. However, when identifying manipulated data, it is
unrealistic to assume all of it will be found. Thus, in corrective unlearning, Str \ Sf will continue to
have manipulated data from Sm \ Sf ( 3 ).

Implications: Retraining from scratch on Str \ Sf is the gold standard for traditional unlearning but
it is computationally expensive. Therefore, the core challenge for traditional unlearning procedures is
achieving computational efficiency ( 4 ). However, in corrective unlearning, as Str \ Sf continues
to have manipulated data, unlearning procedures that solely rely on it (Schelter, 2020; Bourtoule
et al., 2021; He et al., 2021; Graves et al., 2021; Goel et al., 2023) perpetuate the adverse effects
of the manipulation. This necessitates a methodological inquiry beyond computationally efficient
approximations of retraining from scratch, which ceases to be a gold standard. This naturally leads to
the question How can we effectively remove the detrimental impacts of Sm using a representative,
albeit smaller, subset Sf?
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Objective Measurement Poisoning Figure IC Test Figure

Removing influence of manipulation Clean-label accuracy on test set samples Figure 2 Figure 3
on unseen samples ( 1 ) from affected domain (Dm)

Removing wrong predictions on Clean-label accuracy on Figure 4 (Appendix) Figure 5 (Appendix)
manipulated training samples ( 1 ) manipulated training samples (Sm)

Utility ( 2 )
Accuracy on test set samples from Figure 7 (Appendix) Figure 6 (Appendix)unaffected domain (X \ Dm)

Table 1: Summary of figures as quantities reported on the Y-axis, with the X-axis varying |Sf |.

3 EXPERIMENTS

We study image classification as the existing unlearning literature is situated here, only changing the
task to corrective unlearning. We benchmark existing unlearning methods in the corrective unlearning
setting, across fractions of identified manipulated samples |Sf |

|Sm| . We investigate the unlearning of two
manipulations: poisoning (Gu et al., 2019) and interclass confusion (Goel et al., 2023).

Roadmap: We report the Experimental Setup in Section 3 with further details in Appendix Section B.
Table 1 lists the quantities reported on the Y-axis to measure removal ( 1 ) and utility ( 2 ). To
measure effectiveness at different levels of identification of manipulated samples ( 3 ), we vary
|Sf | on the X-axis from 10% of |Sm|, i.e. a small portion of manipulated samples being used for
unlearning, to 100% of |Sm|, i.e. all manipulated samples being used for unlearning. Finally, we
report computational efficiency ( 4 ) of the different methods used in Table 3.

SETUP DETAILS

Datasets, Models, Manipulation and Deletion Sizes: We use the CIFAR (Krizhevsky et al., 2009)
datasets as standard benchmarking datasets in image classification and unlearning. We use the
ResNet-9 (Idelbayev, 2018) model for CIFAR10, and WideResNet-28x10 (Zagoruyko & Komodakis,
2016) for CIFAR100. We report results for each dataset for multiple manipulation sizes n = |Sm|
as detailed in Table 2. In each setting, we vary the deletion set size |Sf | from 10% to 100% of the
manipulation size |Sm| at intervals of 10%.

Unlearning Methods: We benchmark state-of-the-art unlearning methods. Detailed descriptions,
and specification of the hyperparameter search across all methods is provided in Appendix Section B.

(1) Exact Unlearning (EU): EU retrains from scratch on Str\Sf using the original training algorithm
A. This is considered an inefficient but gold-standard oracle in the unlearning literature. Many existing
methods are weaker relaxations of this procedure (He et al., 2021; Graves et al., 2021; Goel et al.,
2023).

(2) Catastrophic Forgetting (CF): Goel et al. (2023) shows that finetuning just the final layers of
a deep model on Str \ Sf performs well at unlearning label manipulations. We use the strongest
version of this by using all layers for unlearning.

(3) Selective Synaptic Dampening (SSD): Foster et al. (2023) selectively modifies learnt weights
with high influence from Sf , which are identified by approximating the Fisher Information Matrix
(Martens, 2020).

(4) Knowledge Distillation from a Bad Teacher (BadT): Chundawat et al. (2023b) proposes mak-
ing outputs on Sf random by distilling from a randomly initialized network. To retain utility, they
simultaneously distill from the original model on Str \ Sf .

(5) SCalable Remembering and Unlearning unBound (SCRUB): Kurmanji et al. (2023) proposes
alternating between steps of gradient ascent on Sf and knowledge preservation on Str \ Sf using
distillation from the original model along with a task-specific loss.

UNLEARNING POISONS

Setting: We use the BadNet poisoning attack introduced by Gu et al. (2019) to evaluate the use of
unlearning methods to remove backdoors. We manipulate n training images by inserting a trigger
pattern that makes 0.3% pixels white at bottom-right positions, re-labeling each of these images to
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Dataset #Classes Model Poisoning |Sm|/|Str| IC Test |Sm|/|Str|

CIFAR-10 10 ResNet-9 0.2%, 1%, 2% 1%, 5%, 10%
CIFAR-100 100 WideResNet-28x10 0.2%, 1%, 2% 0.2%, 0.5%, 1%

Table 2: Dataset and models along with manipulation sizes for the Poisoning and Interclass Confusion
(IC) evaluation.
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Figure 2: Clean-label Accuracy on Test Samples with Poison Trigger. Each method is shown
across deletion sizes |Sf | after unlearning (“None” represents the original model). Existing unlearning
methods except SSD, including EU which is traditionally considered a gold-standard, perform poorly
when ≤ 80% of the poisoned data is identified for unlearning, even when just 1% of training data is
poisoned as in (b), (e).

class zero. Models trained on datasets containing this manipulation are more likely to label samples
containing the trigger pattern as class zero. Here the affected domain Dm consists of all samples
containing the trigger pattern. In this setting, adversaries manipulate both the data features and labels.
This can occur when model developers scrape data and corresponding annotations from webpages,
such that a subset of these webpages can be manipulated by the adversary.

Results:Figure 2 shows clean-label accuracies when the trigger pattern is inserted in all test set
samples. EU is the gold standard when all manipulated samples are known, and indeed it achieves
the highest accuracy at |Sf | = |Sm|. However, it dramatically fails in cases when up to 80% of the
manipulated samples are known, even where only 1% (500 samples) of the training data is poisoned
(subfigures b, e). This shows the insufficiency of the traditional unlearning goal of approximating
retraining from scratch on Str \ Sf , as the remaining poisoned samples are capable of maintaining
their adverse effects, even when their number is small (Gu et al., 2019).

As a consequence, state-of-the-art approaches in unlearning literature like EU, CF, and Scrub
perform quite poorly in this setting. BadT shows poor results throughout, as randomizing outputs
on Sf conflicts with the goal of improving model accuracy on Sf ( 1 ). On the contrary, SSD
recovers accuracy on Dm (achieving 1 ) even with 10% of manipulated samples known, showing
the tractability of generalizing removal from a small representative subset of Sm ( 3 ). However,
as shown in Figure 7 (Appendix), SSD leads to significant drops in model utility ( 2 ), while other
unlearning methods maintain utility throughout. Pruning a small subset of weights is a well-known
strategy to mitigate poisons (Wang et al., 2019) as they associate a specific feature with the incorrect
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Figure 3: Clean-label Accuracy on Test Samples on the Two Confused Classes. We compute
clean-label accuracy on the classes A,B used for the Interclass Confusion test, across deletion sizes
|Sf |. SSD provides no improvements over the original model (represented as “None”), and other
unlearning methods also require a large fraction of the manipulated data to be identified for unlearning.
In the lower manipulation size setting (a) and (d), the model outputs on unseen samples are not
affected much, so we show unlearning trends on manipulated train samples below.

label. We believe SSD succeeds in this setting as it can identify weights that learn the BadNet poison
effectively even when only a small portion of the manipulation set is known.

Conclusion: Traditional unlearning methods that train on Str \ Sf perform poorly in practical
scenarios when all manipulated samples are unknown ( 3 ). SSD shows positive results for removing
poisons, demonstrating the tractability of corrective unlearning in this setting, though it hurts model
utility, leaving scope for improvements. Since SSD works by modifying a small subset of weights, it
motivates the usefulness of mechanistic interpretability (Elhage et al., 2021) or influence-function
based approaches (Grosse et al., 2023) for removing backdoors at least in small-scale settings.

UNLEARNING INTERCLASS CONFUSION

Setting: We use the Interclass Confusion (IC) test as a strong evaluation for the use of unlearning
methods to remove the influence of mislabels. In the IC test, two classes A and B are picked, and n

2
samples from both classes are selected, and their label is changed to the other class. Models trained
on datasets containing this manipulation are more likely to confuse these classes, i.e. predict A
samples as B and vice-versa. The affected domain Dm consists of all samples from class A and class
B. For CIFAR10, we confuse the Cat and Dog classes, and for CIFAR100 maple and oak tree, which
is consistent with the setup of Goel et al. (2023).

The IC test applies in the setting where the adversary can only manipulate labels, such as when model
developers outsource annotations for their own data. Mislabels between two classes can also occur
due to systematic biases in the labelling process, or misinterpretation in annotation guidelines on how
to distinguish the classes. Manipulating only labels may appear to be a weaker setting compared
to poisoning. However, unlike poisoning where a small subset of weights may be associated with
the trigger and can be targeted for unlearning, the IC test can have a more uniform effect across
weights, confusing the learnt representations of clean samples without any specific triggers. We
hypothesize unlearning procedures like SSD that modify specific parameters may be less effective for
such settings.
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Results: In Figure 3, we see that EU, CF, and Scrub show gradual improvement in removal ( 1 ) as
larger fractions of the manipulated set are identified. BadT performs poorly across deletion set sizes,
similar to poisoning. While SSD, a mechanistic intervention that prunes certain weights, showed
promising results for poison removal, it completely fails at removing interclass confusion.

Conclusion: The failure of SSD in this setting highlights the need for evaluating unlearning proce-
dures with diverse manipulations. Traditional unlearning procedures have poor removal ( 1 ) when
small subsets of the manipulation set are identified ( 3 ). Overall, there is scope for designing better
corrective unlearning methods that achieve desiderata 1 - 3 across different manipulation types.

4 FUTURE WORK

The ideal corrective unlearning approaches should exhibit robustness against a broad spectrum
of manipulation types. Specifically, these methods should withstand adaptive attacks, where the
manipulations targeted for unlearning are crafted with knowledge of the unlearning procedures
themselves (Tramer et al., 2020), not just the two evaluations we study. Similar to other related
fields like adversarial robustness and privacy, it is important to design new Corrective Unlearning
algorithms that work against powerful adaptive attacks.

In addition, there is scope to design stronger evaluation frameworks for corrective unlearning. Apart
from manipulating features and labels, adversaries could generate entirely synthetic samples (Zhang
et al., 2019; Huang et al., 2020). Although our focus is on supervised image classification, the
concept of manipulation and its correction is also relevant in self-supervised learning contexts, such
as language modeling (Wallace et al., 2020). Finally, an additional complexity could be the presence
of false positives, where a clean sample getting identified as manipulated.

Current unlearning procedures aim to achieve a model distribution that is indistinguishably close
to one obtained by retraining without certain samples, measured in terms like (ε, δ)-certified un-
learning (Sekhari et al., 2021). However, we anticipate that the corrective unlearning problem will
pave the way for innovative theoretical research. A critical area of interest is determining what
conditions make a small ‘representative set’ of manipulated samples sufficient for effective corrective
unlearning. Additionally, for a given manipulation class and a small set of such samples, it would be
interesting to develop algorithms that prioritize improving accuracy on the manipulated domain over
strict distributional indistinguishability. Another future challenge is to identify additional manipulated
samples based on a small initial representative set.

5 CONCLUSION

Overall, we explore the Corrective Machine Unlearning setting, designed to mitigate the negative
effects of manipulated data discovered post-training, such as diminished accuracy across specific
domain areas, from an already trained model. This concept is grounded in an adversarial threat model,
acknowledging that all the manipulated data samples may not be known. Instead, developers are
often able to pinpoint only a representative subset of the manipulated samples.

Our setting diverges significantly from the traditional unlearning setting, which is primarily designed
to address privacy concerns. Our findings indicate that latest unlearning methods, even the gold
standard of retraining-from-scratch, fail to enhance accuracy on the manipulated domain unless
nearly all of the manipulated data is identified. A notable exception is SSD (Foster et al., 2023),
which successfully mitigates the effects of the BadNet (Gu et al., 2019) poison, thus illustrating the
feasibility of removing the influence of manipulated data with only a small representative subset
identified. However, this method does not work for the Interclass Confusion (Goel et al., 2023)
manipulation, which demonstrates the need for designing unlearning procedures that can ideally
remove the influence of arbitrary manipulations. We hope our work spurs the development of stronger
corrective unlearning methods and evaluations to assist practitioners in dealing with data quality
issues arising from web-scale training.
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A RELATED WORK

Learning from manipulated data: The adverse effects of manipulated training data on machine
learning models are well-documented across objectives like fairness (Konstantinov & Lampert, 2022),
robustness (Sanyal et al., 2021; Paleka & Sanyal, 2023), and adversarial reliability (Tian et al., 2022).
One line of defense is designing training strategies more robust to these issues, see Song et al. (2022)
for a survey on learning with mislabels. However, learning robust models from manipulated data is a
hard problem as reduced sensitivity to such minority data populations can harm accuracy and fairness
(Feldman & Zhang, 2020; Sanyal et al., 2022). Unlearning specific samples which are discovered to
be manipulated can be a complementary mitigation approach. Further, we hope corrective unlearning
procedures are compared using the same original model, to ensure improvements are due to the
unlearning procedure rather than properties of the original training procedure or model.

How to detect manipulated data? A prerequisite to the corrective unlearning task is detecting a
representative subset of manipulated data. Fortunately, this has long been studied (Brodley & Friedl,
1999), with prior work detailing techniques to discover mislabeled (Pleiss et al., 2020; Northcutt et al.,
2021a), biased (Prabhu & Birhane, 2021; Jiang & Nachum, 2020) and poisoned (Chen et al., 2019;
Wang et al., 2019) data. Further, compromised data sources can be identified using web security and
data collection practices. We assume the model developers employ such strategies for monitoring
their data sources. However, they cannot simply throw away the trained model when manipulated
data is found due to expensive retraining costs. We study how to cheaply mitigate adverse effects on
such models using unlearning.

Known Manipulations or Correct Labels: If the type of manipulation is known, one may employ
manipulation-specific mitigation techniques such as poisoning (sometimes referred to as trojan)
defences (see Goldblum et al. (2022) for a survey). We restrict the scope of our work to not knowing
the precise manipulation, and study the use of unlearning as a broader panacea procedure across
unknown data manipulations. Finally, if the samples can be corrected through re-annotation, one may
also use knowledge editing techniques (Bau et al., 2020; Mitchell et al., 2022).

Unlearning: Prior work in designing unlearning procedures is motivated by privacy applications,
and aims to achieve retrain indistinguishability (Ginart et al., 2019; Golatkar et al., 2020a), that is to
create a distribution of unlearnt models indistinguishable from retraining from scratch without the
data to be deleted. In Section 2 we discuss differences in corrective unlearning desiderata from retrain
indistinguishability. “Exact Unlearning” procedures ensure the unlearnt model never sees the data
whose influence is to be deleted by design of the training procedure (Bourtoule et al., 2021; Schelter,
2020). The empirical results of EU in Section 3 show how these approaches may not suffice for
corrective unlearning when the full manipulation set is unknown. Moreover, such methods drastically
deteriorate in efficiency as the as the number of samples to delete increase (Warnecke et al., 2021).
This has led to “Inexact Unlearning” proposals, and we use state of art methods in image classification
from different paradigms for our experiments:

• Modifying parameters which influence forget set outputs (Golatkar et al., 2020a; Peste et al.,
2021; Ma et al., 2023) - We benchmark Selective Synaptic Dampening (SSD) (Foster et al.,
2023).

• Randomizing model outputs on the data to be deleted (Graves et al., 2021; Chundawat et al.,
2023a; Tarun et al., 2023) - We benchmark Knowledge Distillation from Bad Teacher (BadT)
(Chundawat et al., 2023b).

• Finetuning based approaches only using retained samples (Warnecke et al., 2021; Yao et al.,
2023; Jang et al., 2023; Eldan & Russinovich, 2023; Chen & Yang, 2023) - We benchmark
Catastrophic Forgetting (CF), as Goel et al. (2023) show it works well on the Interclass
Confusion test.

• Alternating between Forgetting and Preservation Steps - We use SCRUB as Kurmanji et al.
(2023) show it works well on the Interclass Confusion test.

A group of works (Izzo et al., 2021; Wu et al., 2020; Gupta et al., 2021; Neel et al., 2021; Thudi
et al., 2022; Sekhari et al., 2021) also study unlearning procedures on convex or linear models with
theoretical guarantees inspired from differential privacy (Dwork et al., 2006), but in this work we
focus on deep models. Finally, Goel et al. (2023); Kurmanji et al. (2023); Sommer et al. (2022)
consider unlearning of mislabelled or poisoned samples, but only as a stronger evaluation for the
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privacy-oriented objective of retrain indistinguishability. We show retraining cannot be used as a
gold standard for corrective unlearning when only a subset of manipulated samples is identified ( 3 ),
which leads to the insufficiency of unlearning methods geared towards indistinguishability from
retraining for corrective unlearning.

B EXPERIMENTAL SETUP DETAILS

TRAINING DETAILS

Our standard training procedure A is as follows: We train our models for 4000 steps on CIFAR10,
PCAM and 6000 steps on CIFAR100. Each step consists of training on a single batch, and we use
a batch size of 512 throughout. We use an SGD optimizer with momentum 0.9 and weight decay
5e-4, a linear scheduler with tmult = 1.25, and warmup steps as 1

100 of the total training steps. The
same hyperparameters are used during unlearning unless otherwise specified. The setup used for all
experiments is a PC with a Intel(R) Xeon(R) E5-2640 2.40 GHz CPU, 128GB RAM and 1 GeForce
RTX 2080 GPU.

DETAILED DESCRIPTION OF UNLEARNING METHODS

To benchmark the performance of existing unlearning proposals on corrective unlearning scenarios,
we select the strongest unlearning methods across five popular paradigms:

(1) Exact Unlearning (EU): This paradigm involves retraining parts of the ML system (Bourtoule
et al., 2021; Goel et al., 2023; He et al., 2021) that are influenced by Sf from scratch using Str \ Sf .

Method Used: We benchmark the strongest version, retraining the entire model from scratch on
Str \ Sf using the original training algorithm A. This is considered an inefficient but gold standard
unlearning procedure in prior work.

(2) Catastrophic Forgetting (CF) : Neural Networks suffer from catastrophic-forgetting (French,
1999) - when a model is continually updated without some previously learnt samples, the model
loses knowledge about them. Many unlearning methods perform finetuning on Str \ Sf to achieve
unlearning of Sf via catastrophic forgetting, and Goel et al. (2023) show even finetuning just the final
layers of the model performs well on the IC test.

Method Used: We use the original training procedure A for 1000 steps on Str \ Sf .

(3) Modifying learnt parameters with high influence from Sf : This is a training-free class of
methods (Golatkar et al., 2020a;b; Peste et al., 2021; Chundawat et al., 2023a) that identifies param-
eters with information relevant to the forget set using statistics like the Fisher Information Matrix
(FIM). It then damages these parameters by adding noise or reducing their magnitude hoping to
selectively remove information about Sf .

Method Used: We benchmark the recently proposed Selective Synaptic Dampening (SSD) method
which has shown state of the art results in this paradigm (Foster et al., 2023). We extensively
tune the weight selection threshold α and weight dampening constant γ. We find that γ should be
tuned relative to α for optimal results. For each datapoint, we pick the best result out of runs with
α = [0.1, 1, 10, 50, 100, 500, 1000, 1e4, 1e5, 1e6], γ = [0.1α, 0.5α, α, 5α, 10α].

(4) Pushing Sf outputs towards random: Some unlearning procedures (Graves et al., 2021; Li &
Ghosh, 2023; Chundawat et al., 2023b) push the model towards random outputs on the deletion set.

Method Used: We benchmark Knowledge Distillation from Bad Teacher (BadT) (Chundawat et al.,
2023b), a state of the art method in this paradigm, which simultaneously distills from a randomly
initialized neural network on Sf , and the original model on the remaining data Str \ Sf . We finetune
the original model using this procedure for 1000 unlearning steps.

(5) Alternating between Forgetting and Preservation Steps:
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Figure 4: Clean-label Accuracy on Manipulated Train Samples Sm with Poison Trigger. Each
method is shown across deletion sizes |Sf | after training with adversarial poisoning (“None” repre-
sents the original model). Trends mimic results for clean-label accuracy on unseen samples with the
poison trigger.

Method Used: Kurmanji et al. (2023) propose SCRUB and show it performs well on unlearning
mislabelled samples when all are identified. The method alternates between forget steps and knowl-
edge preservation steps. The forget step involves doing gradient ascent using the task-loss for Sf .
The knowledge preservation step does knowledge distillation from Mo using Str \ Sf as well as
optimizing the task-loss on Str \ Sf . We finetune the original model using this procedure for 1000
unlearning steps, out of which the forget step is used only in the first 200 unlearning steps as it is
recommended in the paper to run it only in the initial iterations. We use a smaller learning rate
(0.0025) as the original value leads to stability issues. We tune the hyperparameter α which controls
the trade-off between the distillation loss and the task-loss. For each datapoint, we pick the best result
out of runs with α = [0.001, 0.01, 0.05, 0.1, 0.5, 1, 5, 10].

SELECTION OF BEST HYPERPARAMETERS IN UNLEARNING PHASE

Most unlearning methods require hyperparameter tuning and this presents a challenge for the model
developers on how to pick the best model. Selecting the model with the best validation accuracy may
have low removal ( 1 ), especially if the domain affected by the manipulation Dm is a small fraction
of the overall domain X . Moreover, model developers are unaware of the manipulation performed
by an adversary, and thus may not be able to precisely isolate the affected domain for validation. In
our setting, model developers only have access to Sf ; thus even assuming the original training to be
incorrect, the correct labels are unknown in multiclass setting. Let the deletion change be the fraction
of Sf whose prediction by the model differs from the provided label in training. A higher deletion
change may indicate more removal. However, note that the deletion change of a trivial model that
has no utility ( 2 ) can be quite high. Thus, we propose using a weighted average of the deletion
change and the validation accuracy to select an unlearnt model that balances removal ( 1 ) and
utility ( 2 ). In this work, we weigh them equally.

C FURTHER RESULTS

We now provide results not included in the main paper to ensure completeness. Specifically:
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Figure 5: Clean-label Accuracy on Manipulated Training Samples Sm with Interclass Confu-
sion for different unlearning methods (“None” represents the original model) across deletion sizes
|Sf | . Existing unlearning methods perform poorly when |Sf |

|Sm| is lower. Even the smallest setting (a,
d) shows clear unlearning trends.

• We report clean-label accuracies on manipulated training samples.

• We report utility of models after unlearning

• We report computational efficiency by measuring unlearning time for each method.

REMOVAL MEASURED ON MANIPULATED TRAINING SAMPLES

To measure the removal of mislabelling on poisoned training samples, we report clean-label accuracy
on Sm in Figure 4. The trends across unlearning methods are similar to the ones on unseen samples
from the affected domain Dm reported in the main paper, though the absolute accuracies after
unlearning are higher as expected from training samples in comparison to test set samples.

Finally, while the smallest manipulation size (subfigures a, d) for Interclass Confusion did not show
significant effects on unseen samples from class A,B, figure 5 shows unlearning methods continue
to give wrong predictions on the class A,B samples used for training. This emphasises the need to
check unlearnt model outputs on unseen training samples from the affected domain Dm in addition
to test samples from Dm.

UTILITY AFTER REMOVAL

In Figure 7 we see that SSD leads to significant drops in test accuracy on clean (not poisoned) samples,
while other methods maintain utility.

In Figure 6 we plot the utilities across deletion set sizes for IC test. We report accuracies on unseen
samples from the classes not manipulated by interclass confusion. These samples can be considered
to belong to the same distribution as Str \ Sm. We find methods maintain accuracy, and EU, CF even
show minor (0.5-1%) gains when most of the manipulated data is known. This is not surprising as
removing the effect of manipulations can improve learnt representations and the overall utility of the
model.
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Figure 6: Accuracy on Test Samples from classes other than the two confused. Except SSD
which shows drops in utility, we see similar accuracies across different unlearning methods across
deletion sizes |Sf | after training with Interclass Confusion (“None” represents the original model).
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Figure 7: Accuracy on Test Samples with No Poison trigger. While other unlearning methods
(“None” represents the original model) maintain utility, SSD shows a significant drop across deletion
sizes |Sf | across (a)-(f).

COMPUTATIONAL EFFICIENCY

In Table 3 we report average unlearning times of different unlearning methods. In the case of EU and
CF, while more efficient relaxations have been proposed (Goel et al., 2023; He et al., 2021; Graves
et al., 2021), we retrain from scratch to perform the strongest unlearning, which we still find to be
insufficient.
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Method Time
(minutes)

EU 49.93
CF 10.52
Scrub 16.86
SSD 1.80
BadT 33.19

Table 3: Unlearning Time by Method
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