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Segmentation of Lipid Droplets in Histological Images
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Abstract

Steatosis is a common liver disease characterized by the accumulation of lipid droplets
in cells. Precise and reliable fat droplet identification is essential for automatic steatosis
quantification in histological images. We trained a nnU-Net to automatically segment lipid
vacuoles in whole-slide images using semi-automatically generated reference annotations.
We evaluated the performance of the trained model on two out-of-distribution datasets.
The trained model’s average F1 scores (0.801 and 0.804) suggest a high potential of the
nnU-Net framework for the automatic segmentation of lipid vacuoles.
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1. Introduction

Steatosis, the fat accumulation in liver cells, is the predominant symptom of alcoholic and
non-alcoholic fatty liver disease.

Quantification of steatosis is an important factor in the decision to proceed with liver
transplantation, and visual inspection of tissue stained with hematoxylin and eosin (H&E)
is a common method (Roy et al., 2020).

Semi- and fully-automatic image segmentation approaches have been developed for
computer-aided quantification of steatosis (Homeyer et al., 2015; Roy et al., 2020). Training
machine learning methods for this purpose requires annotated image data, which is tedious
to create manually.

We explored an approach using semi-automatically generated and thus imperfect data
to train an off-the-shelf medical image segmentation method, namely the self-configuring
nnU-Net (Isensee et al., 2021).
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2. Datasets and Methods

Image Datasets Besides one dataset (A) used for training and in-distribution evalua-
tion, we evaluated the performance on two out-of-distribution datasets to assess intra- (B)
and inter-species (C) generalizability. Dataset A1 consists of 19 whole-slide images (WSI)
of H&E-stained tissue from male C57BL/6J mice with diet-induced steatosis of different
severity.

Dataset B2 consists of 36 WSI of H&E-stained slides of one male C57BL/6N mouse with
diet-induced steatosis. The images of datasets A and B have a resolution of 908 nm/pixel.

Dataset C 3 contains H&E-stained human liver tissue scanned at 20× objective magni-
fication and contains pixel-level annotations (exact resolution not specified).

Reference Data Preparation Dataset A was annotated by a non-expert using the
semi-automatic approach by Homeyer et al. (2015); images and segmentation masks were
subsequently tiled in 256×256 images. For training and validation, 16 WSI and correspond-
ing annotations of dataset A were used, three (one each for every steatosis extent) were kept
back as a test set. Dataset B was annotated in the same way as dataset A, a randomly
selected subset of segmentation masks was subsequently corrected manually by visual in-
spection using GIMP-2.10. Reference segmentations for datasets A and B are available from
https://doi.org/10.5281/zenodo.7802210.

To obtain compatible image size and resolution for dataset C, we mirrored and con-
catenated these patches in both dimensions and downsampled them subsequently. This
introduced artifacts (mirrored partial cells and lipid vacuoles) near the stitching boundary.
To avoid these artifacts in the evaluation, a border of 25 pixels (approximately 25 µm, the
average size of the structures of interest) extending from the mirroring axis was omitted.

Training and Evaluation We trained the 2D nnU-Net (Isensee et al., 2021) on the
generated reference dataset A using all three color channels, for 1000 epochs, and with five
different folds of training/validation split.

We quantified segmentation accuracy of the trained nnU-Net by a pixel-wise F1 score
over all tiles containing tissue. This prevents irrelevant (background-only) regions from ar-
tificially simplifying the task. Code is available from https://doi.org/10.5281/zenodo.

7802210.

3. Results and Discussion

Trained on the data generated using a semi-automatic segmentation method with minimal
effort, the nnU-Net generalized well to different datasets from the same and from a different
species (F1 scores 0.732 and 0.804, respectively, see Table 1). A higher F1 score for the
corrected subset of B (0.744 vs. 0.801) indicates that the nnU-Net reflects human vision
better than the semi-automatic approach. The nnU-Net identifies smaller droplets as fat,
whereas the expert annotation in dataset C does not, see Figure 1.

1. available from https://doi.org/10.15490/FAIRDOMHUB.1.STUDY.1070.1, (Albadry et al., 2022)
2. available from https://doi.org/10.5281/zenodo.4738561, (Budelmann et al., 2022)
3. available from https://figshare.com/s/d75b129d969b4f463168, (Roy et al., 2020)
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Table 1: Mean F1 scores for the segmentation result of the trained nnU-Net models

Dataset # Patches F1 Score
Test A 4512 0.867
B 65176 0.732
subset B 232 0.744
subset B, corrected 237 0.801
C 736 0.804

Figure 1: Left: Example tile of corrected subset B with a visualization of true nega-
tive (black), true positive (white), false negative (teal) and false positive (orange)
pixels; right: Example tile of dataset C with evaluation area
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