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Abstract

This paper proposes LIDet, a language-guided
iterative object detection framework, designed
to address challenges in open-vocabulary ob-
ject detection, such as missed detections of
small objects and rare categories, as well as
false positives. Without retraining the detec-
tion model, the method constructs a four-stage
closed-loop process:"image preprocessing —
multimodal perception — object detection —
language reasoning." Leveraging the semantic
reasoning capabilities of large language mod-
els (LLMs), LIDet generates potential missing
object categories and their spatial relationships
based on detected objects and scene descrip-
tions. This guides the visual detector to dynam-
ically crop and re-examine image regions. Ex-
periments demonstrate that LIDet achieves an
average improvement of 3% in Acc@loU=0.25
on the RefCOCO series datasets compared to
the MQADet and outperforms the original de-
tection model. Although computationally in-
tensive, LIDet establishes a language-vision
interaction mechanism at the semantic level,
offering a novel approach to multimodal rea-
soning and open-vocabulary object detection.

1 Introduction

Open-domain object detection aims to overcome
traditional closed-set limitations by dynamically
recognizing unknown objects. Current research
focuses on visual feature extraction and vision-
language alignment.

The former leverages adaptive strategies, with
AdaZoom (Xu et al., 2022) employing a multi-
scale approach and ZIO (Pang et al., 2022) utilizing
multi-resolution processing, to improve the detec-
tion of small objects, but both lacks deep semantic
understanding. The latter, particularly CLIP-based
(Radford et al., 2021) methods, incorporates textual
matching but remains vision-dominated without
utilizing language models’ reasoning capabilities.

Notable performance drops occur with fine-
grained small objects and rare categories, due to res-

olution limitations and semantic ambiguity in cur-
rent convolutional or Transformer-based (Vaswani
et al., 2017) networks.

We propose integrating LLMs’ semantic reason-
ing into detection. Current LLLM applications like
LLMDet (Fu et al., 2025) and MQADet (Li et al.,
2025) only generate pseudo-labels or filter results,
lacking textual feedback in the detection pipeline.

To enable multi-round vision-language interac-
tion during detection by leveraging LLMs’ reason-
ing capabilities, we propose LIDet, a language-
guided iterative object detection framework. With-
out retraining the detection model, LIDet guides
multi-round detection across different regions us-
ing LLMs’ semantic reasoning.

The framework consists of four stages: the im-
age preprocessing stage performs cropping, scal-
ing, and super-resolution; the multimodal percep-
tion stage generates image descriptions and parses
potential targets; the detection model inference
stage identifies objects based on text prompts; and
the language model reasoning stage infers focus
regions for potentially missed objects. The key
innovation lies in using LLMs to deduce relative
object positions and guiding the detector to re-
examine these regions, establishing a closed-loop
vision-text interaction.

In summary, Our main contributions are as fol-
lows:

* We propose LIDet, a training-free iterative
detection framework that collaborates super-
resolution, multimodal, and language models
with detectors in a pipeline, significantly im-
proving open-domain detection accuracy.

* Experiments show LIDet outperforms
MQADet by 3% and baseline models by
19% on the RefCOCO datasets, demon-
strating its effectiveness for fine-grained
detection.
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Figure 1: An overview of LIDet frame, including four stages: Image Preprocessing, Multimodal Perception, Object

Detection and LLM Reasoning.

2 Related Work

2.1 Open-Vocabulary Detection

Open-vocabulary detection (OVD) extends beyond
fixed categories by leveraging vision-language
alignment. CLIP (Radford et al., 2021) enables
zero-shot transfer and has inspired approaches such
as ViLD (Gu et al., 2021) for detector distillation
and RegionCLIP (Zhong et al., 2022) for region-
level representation learning. Recent work further
improves fusion efficiency (Liu et al., 2024; Cheng
et al., 2024; Yao et al., 2024; Fu et al., 2025).These
methods struggle with complex cross-modal rea-
soning via vision-language pretraining. A more
promising approach is to use language models as
reasoning agents to enhance visual detection with
their strong inference capabilities.

2.2 Vision-Language Models

Modern vision-language systems build upon align-
ment foundations like CLIP (Radford et al., 2021)
and ALIGN (Jia et al., 2021), evolving into inter-
active reasoning architectures.LLaVA (Liu et al.,
2023) establishes visual-text coupling through
projected embeddings and MLP fusion. Qwen-
VL (Wang et al., 2024) extends this with dy-
namic resolution support for complex spatial tasks.
Flamingo (Alayrac et al., 2022) innovates with vi-
sual token compression for efficient cross-modal
attention. These models demonstrate robust visual
perception capabilities, effectively translating im-
ages into textual representations. Their progress
enables seamless integration of visual data with
language-based reasoning frameworks, supporting
downstream tasks in our work through unified mul-
timodal understanding.

2.3 Super Resolution

Multimodal object detection accuracy relies on im-
age quality, where Single Image Super-Resolution
(SISR) enhances low-resolution inputs. Early
interpolation and shallow CNN methods (Dong
et al., 2015, 2016; Kim et al., 2016) caused
over-smoothing, while GAN-based approaches
(e.g.Ledig et al., 2017) improved texture generation
via adversarial learning. Later, Wang et al. (2018)
stabilized training with relative discriminators, and
Real-ESRGAN (Wang et al., 2021) advanced real-
world modeling. SwinlR’s Transformer architec-
ture (Liang et al., 2021) excelled in detail recon-
struction using attention. Current research em-
phasizes multimodal fusion and degradation-aware
designs, evolving from pixel-level to semantic-
physical modeling.

3 Methodology

3.1 Image Preprocessing

Image quality (clarity and object size) critically
impacts open-domain detection accuracy. Low-
resolution images degrade small-object features
and bounding box localization, as shown in
SNIP (Singh and Davis, 2018). While Ada-
Zoom (Xu et al., 2022) and Zoom-In&Out (Pang
et al., 2022) enable region magnification, their
vision-based selection introduces contextual noise.

We innovatively propose a language-guided
crop-and-zoom strategy. By leveraging multimodal
scene descriptions and semantic reasoning of de-
tected objects, we precisely determine cropping re-
gions that preserve effective contextual information
while avoiding noise interference. Furthermore, we
employ Real-ESRGAN (Wang et al., 2021) to com-



Method RefCOCO RefCOCO+ RefCOCOg

Val testA testB Val testA testB Val test
G-DINO  48.21/42.85 49.83/45.08 40.50/36.58 49.66/41.56 50.58/43.98 43.51/37.51 40.76/38.18 41.96/39.24
(I\C/}I_CI))/E]\?S) 66.59/60.47 64.01/60.03 67.20/61.70 57.29/49.50 55.07/48.51 56.87/50.18 66.10/61.45 67.91/62.90
(G]:‘II)]?ISItO) 69.23/59.68 68.47/58.46 66.36/60.81 64.37/52.49 61.48/50.92 62.82/53.62 70.32/58.61 66.47/57.39

MM-GDINO 50.21/44.37 51.87/46.53 41.40/38.02 51.29/42.47 50.63/44.21 44.20/39.14 41.20/39.43 42.13/39.76

LIDet

71.43/59.57 70.15/60.47 70.63/59.48 65.28/54.82 63.04/51.48 62.49/53.73 71.17/58.93 67.54/58.47

(MM-GDINO)

Yolo-World  38.15/32.65 42.70/38.36 32.97/28.47 37.82/31.06 38.20/33.77 35.32/30.65 40.11/36.99 43.05/38.51

MQADet
(Yolo-World)

62.79/56.81 60.59/55.28 62.13/55.65 56.97/48.31 52.91/46.88 55.47/48.84 62.50/57.55 65.57/60.44

LIDet

64.36/53.19 63.73/52.86 64.09/55.36 60.34/49.36 59.46/47.25 58.63/49.27 63.45/52.82 64.03/53.46

(Yolo-World)

Table 1: Evaluation of the LIDet framework against various detection models across RefCOCO, RefCOCO+, and
RefCOCOg datasets (with provided standard val/testA/testB splits), using Acc@0.25 and Acc@0.5 as evaluation
metrics in the form of Acc@0.25/Acc@0.5. The LIDet parameters are fixed at k£ = 2 (iterations), m = 3 (candidate
targets per iteration), o = 1.5 (image zoom ratio) using Qwen2.5-14B-Instruct for reasoning.

pensate for resolution loss during the magnification
process.

I’ = Real-ESRGAN(Crop(I, LLM (S, E)) (1)

where S is the description of the image I, F is the
detected object set.

3.2 Multimodal Perception

We generate scene descriptions .S using pretrained
multimodal models. For structured detection in-
puts, we employ prompt engineering and parse S
with prompt P using instruction-tuned LLMs con-
sidering LLaVA’s (Liu et al., 2023) limitations in
structured output.

Up ={0;}iL, = LLM(P & S) (2)

Merging these target set Uy with previous-round
potential targets Uy, yields the final target object
set U = Uy U Upew-

3.3 Object Detection

During the detection stage, the target set U is
fed into the detection model to obtain the current
round’s detected objects Ey, which can be formally
expressed as:

Ey = {(Ci, bz) | ¢ eUb; = Det(I’, Ci), score(bi) > T}

3)
where c¢; represents the detected object category,
and b; is the bounding box with confidence over
threshold 7, U is the set of target classes, and Det(-)

denotes the detection model. Subsequently, the
newly detected objects Ey are aggregated with the
overall detected target set &/ through set union:
E = FEyUE,4.

3.4 LLM Reasoning

The model outputs both potential targets U, and
their spatial relationships relative to existing targets
with inputs of annotated frames. Given these, we
perform region localization and cropping based
on reference bounding boxes b; € E and spatial
relationships:

Areacrop = Crop (I, Scale(b;, o)) ()

where « is the scaling ratio relative to the reference
bounding box area |b;|. This generates candidate
regions for subsequent detection iterations.

The complete potential target set for the next
iteration is then:

M

Unew = | ) Top-m(P(U,|E), U =UpU Uncuw
m=1

®)

where M controls the number of potential targets
per iteration.

4 Experiments

4.1 Implementations

For the LIDet framework’s four-stage pipeline, we
conduct benchmark evaluations on the RefCOCO
series datasets using the following open-source



Method Val testA testB
MQADet  66.59/60.47 64.01/60.03 67.20/61.70
LIDet(a=1) 67.54761.56 64.29/62.65 66.03/60.58
LIDet(a=1.5) 69.23/59.68 68.47/58.46 66.36/60.81
LIDet(a=2) 60.49/30.98 58.28/26.43 59.33/28.71

Table 2: Performance comparison between MQADet
and LIDet with different zoom ratios o on the RefCOCO
dataset (all based on GroundingDINO). Each cell re-
ports Acc@0.25/Acc@0.5. LIDet uses k = 2, m = 3
with Qwen2.5-14B-Instruct.

models in Appendix A. We adopt the Acc@IoU
metric from MQADet for consistent performance
comparison. The experiments are implemented
with Python 3.10, PyTorch 2.1.2, and CUDA 12.1,
running on a hardware platform equipped with 3 x

models primarily require only fundamental reason-
ing abilities and commonsense object relationship
understanding from the language model, rather
than advanced linguistic capabilities.

Method Val testA testB

LIDet(7B) 67.14/59.42 67.56/58.17 66.25/59.52
LIDet(14B) 69.23/59.68 68.47/58.46 66.36/60.81
LIDet(32B) 69.20/59.57 69.55/59.03 70.08/60.56

Table 3: Performance comparison between LIDet with
different size of Qwen2.5-Instruct Model on the Ref-
COCO dataset (all based on GroundingDINO). Each
cell reports Acc@0.25/ Acc@0.5. LIDet uses k = 2,
m=3,a =1.5.

Method Val testA testB

NVIDIA RTX 4090 GPUs LIDet(k=1, m=3) 65.40/57.57 62.91/55.83 64.82/58.49
’ LIDet(k=2, m=3) 69.23/59.68 68.47/58.46 66.36/60.81
LIDet(k=3, m=3) 71.06/60.12 69.74/59.84 67.35/60.87

4.2 Results

LIDet(k=2, m=5) 69.35/59.82 68.52/58.60 66.37/60.92

LIDet(k=2, m=10) 69.55/59.74 69.61/58.15 67.51/59.78

As Table 1 shows, our LIDet framework achieves
superior Acc@0.25 performance (+3% over
MQADet on average, +7% on RefCOCO+) when
configured with 2 iterative detection rounds and
3 potential targets. The significant improvement
on RefCOCO+ stems from our model’s reduced
textual dependency and scene-based positional
inference capability, which compensates for the
dataset’s prohibition of location words in refer-
ring expressions. However, we observe notable
Acc@0.5 degradation due to image preprocessing:
detection boxes marked on zoomed sub-images
(ax) then rescaled cause inherent IoU reduction,
lowering the theoretical maximum from 1 to 1/«
even for perfect detection. This analysis is further
validated by our zoom ratio ablation studies in sub-
section 4.3.

4.3 Ablation Study

Controlled zoom ratios. Under controlled con-
ditions, we tested the G-DINO model with LIDet
framework on RefCOCO with three zoom ratios ()
as shown in Table 2. At o = 1, both Acc@0.25 and
Acc@0.5 matched MQADet’s performance. The
Acc@0.25 for o« = 1.5 surpassed that of o = 1,
validating the effectiveness of zoom-in for regional
focus, while o = 2 degraded to the Acc@0.5 level
of a = 1, corroborating our IoU scaling analysis.

Size of LLM. As shown in Table 3, our investi-
gation of language model scaling effects reveals
that Acc@IoU remains remarkably stable across
different model sizes. This indicates that the scene
descriptions generated by multimodal perception

Table 4: Comparison of LIDet performance with vary-
ing hyperparameters (k, m, o = 1.5) on the RefCOCO
dataset, evaluated using Acc@0.25/ Acc@0.5. All re-
sults are based on GroundingDINO.

Iteration rounds and candidate targets. Through
iterative optimization, we reformulate detection as
a search task. As Table 4 shows, hit probability
grows with search space expansion due to accumu-
lating contextual information from detected targets
Dy = {di,...,d;}. Formally, with scene descrip-
tion S and detection accuracy Peect € [0, 1], larger
|D¢| enhances reasoning by providing richer con-
straints for subsequent predictions.

5 Conclusion

In this paper, we propose a language-guided it-
erative object detection framework called LIDet,
consisting of four main stages: image preprocess-
ing stage, multimodal perception stage, detection
model stage, and LLLM reasoning stage. By es-
tablishing a closed-loop interaction mechanism be-
tween visual detection and language reasoning, our
method achieves an average improvement of 3% in
Acc@0.25 metrics on the RefCOCO series datasets
compared to the MQADet framework, and an av-
erage 19% improvement over the baseline model.
These results validate the effectiveness of the lan-
guage model-guided iterative optimization strategy
for open-vocabulary object detection. We hope this
work will inspire future research in multimodal do-
mains regarding image-text interactive reasoning.



Limitations

The experimental results demonstrate that the core
value of the LIDet framework lies in its iterative
vision-language interaction mechanism.However,
as shown in the ablation studies 4.3, the current ap-
proach suffers from significant performance degra-
dation by cropping zoomed regions and rescaling
bounding boxes back to the original image in terms
of Acc@0.5 metric. Future work could explore
alternative strategies, such as center-based propor-
tional scaling of bounding boxes in sub-images
and propose more scientifically rigorous evaluation
metrics.

The method’s computational overhead consti-
tutes another practical constraint. Benchmark tests
reveal an average processing time of 40.1s per im-
age, representing a 20-fold increase over baseline
detectors like G-DINO (1.9s/image). This substan-
tial latency originates from the language model’s
repeated autoregressive decoding cycles (minimum
4 passes per candidate region), with temporal com-
plexity growing linearly with iteration count. Con-
sequently, the current implementation fails to meet
the throughput requirements of time-sensitive ap-
plications.

Ethics Statement

All models and datasets used in this work are pub-
licly available, and their original development pro-
cesses incorporated ethical reviews. Note that
text generation inherently carries stochasticity,
even with safety-aligned instruction fine-tuning (as
adopted in prior works), there remains a non-zero
probability of generating unexpected outputs. We
may mitigate this by: lowering sampling tempera-
ture, and increasing confidence thresholds during
decoding. Besides, we used Deepseek for grammar
suggestions and writing refinement. All scientific
content, experimental design, and analysis were
conducted by the authors.

Acknowledgements

We thank Prof.Deng for his guidance and support
on this research, also appreciate the helpful dis-
cussions with our senior lab members regarding
experimental results analysis.

References

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc,
Antoine Miech, Iain Barr, Yana Hasson, Karel

Lenc, Arthur Mensch, Katherine Millican, Malcolm
Reynolds, et al. 2022. Flamingo: a visual language
model for few-shot learning. Advances in neural
information processing systems, 35:23716-23736.

Tianheng Cheng, Lin Song, Yixiao Ge, Wenyu Liu,
Xinggang Wang, and Ying Shan. 2024. Yolo-world:
Real-time open-vocabulary object detection. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 16901-16911.

Chao Dong, Chen Change Loy, Kaiming He, and Xi-
aoou Tang. 2015. Image super-resolution using deep
convolutional networks. IEEE transactions on pat-
tern analysis and machine intelligence, 38(2):295-
307.

Chao Dong, Chen Change Loy, and Xiaoou Tang. 2016.
Accelerating the super-resolution convolutional neu-
ral network. In Computer Vision—-ECCV 2016: 14th
European Conference, Amsterdam, The Netherlands,
October 11-14, 2016, Proceedings, Part Il 14, pages
391-407. Springer.

Shenghao Fu, Qize Yang, Qijie Mo, Junkai Yan, Xihan
Wei, Jingke Meng, Xiaohua Xie, and Wei-Shi Zheng.
2025. Llmdet: Learning strong open-vocabulary ob-
ject detectors under the supervision of large language
models. arXiv preprint arXiv:2501.18954.

Xiuye Gu, Tsung-Yi Lin, Weicheng Kuo, and Yin Cui.
2021. Open-vocabulary object detection via vision
and language knowledge distillation. arXiv preprint
arXiv:2104.13921.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana
Parekh, Hieu Pham, Quoc Le, Yun-Hsuan Sung, Zhen
Li, and Tom Duerig. 2021. Scaling up visual and
vision-language representation learning with noisy
text supervision. In International conference on ma-
chine learning, pages 4904-4916. PMLR.

Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. 2016.
Accurate image super-resolution using very deep con-
volutional networks. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 1646-1654.

Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Ca-
ballero, Andrew Cunningham, Alejandro Acosta, An-
drew Aitken, Alykhan Tejani, Johannes Totz, Zehan
Wang, et al. 2017. Photo-realistic single image super-
resolution using a generative adversarial network. In
Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4681-4690.

Caixiong Li, Xiongwei Zhao, Jinhang Zhang, Xing
Zhang, Qihao Sun, and Zhou Wu. 2025. Mqadet:
A plug-and-play paradigm for enhancing open-
vocabulary object detection via multimodal question
answering. arXiv preprint arXiv:2502.16486.

Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang,
Luc Van Gool, and Radu Timofte. 2021. Swinir:
Image restoration using swin transformer. In Pro-
ceedings of the IEEE/CVF international conference
on computer vision, pages 1833-1844.



Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2023. Visual instruction tuning. Advances in
neural information processing systems, 36:34892—
34916.

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao
Zhang, Jie Yang, Qing Jiang, Chunyuan Li, Jianwei
Yang, Hang Su, et al. 2024. Grounding dino: Mar-
rying dino with grounded pre-training for open-set
object detection. In European Conference on Com-
puter Vision, pages 38-55. Springer.

Youwei Pang, Xiaoqi Zhao, Tian-Zhu Xiang, Lihe
Zhang, and Huchuan Lu. 2022. Zoom in and out:
A mixed-scale triplet network for camouflaged object
detection. In Proceedings of the IEEE/CVF Con-
ference on computer vision and pattern recognition,
pages 2160-2170.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
etal. 2021. Learning transferable visual models from
natural language supervision. In International confer-
ence on machine learning, pages 8748-8763. PmLR.

Bharat Singh and Larry S Davis. 2018. An analysis of
scale invariance in object detection snip. In Proceed-
ings of the IEEE conference on computer vision and
pattern recognition, pages 3578-3587.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhi-
hao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin
Wang, Wenbin Ge, et al. 2024. Qwen2-vl: Enhanc-
ing vision-language model’s perception of the world
at any resolution. arXiv preprint arXiv:2409.12191.

Xintao Wang, Liangbin Xie, Chao Dong, and Ying Shan.
2021. Real-esrgan: Training real-world blind super-
resolution with pure synthetic data. In Proceedings of
the IEEE/CVF international conference on computer
vision, pages 1905-1914.

Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao
Liu, Chao Dong, Yu Qiao, and Chen Change Loy.
2018. Esrgan: Enhanced super-resolution generative
adversarial networks. In Proceedings of the Euro-
pean conference on computer vision (ECCV) work-
shops, pages 0-0.

Jingtao Xu, Ya-Li Li, and Shengjin Wang. 2022. Ada-
zoom: Towards scale-aware large scene object de-
tection. IEEE Transactions on Multimedia, 25:4598—
4609.

Lewei Yao, Renjie Pi, Jianhua Han, Xiaodan Liang,
Hang Xu, Wei Zhang, Zhenguo Li, and Dan Xu.
2024. Detclipv3: Towards versatile generative open-
vocabulary object detection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 27391-27401.

Yiwu Zhong, Jianwei Yang, Pengchuan Zhang, Chun-
yuan Li, Noel Codella, Liunian Harold Li, Luowei
Zhou, Xiyang Dai, Lu Yuan, Yin Li, et al. 2022.
Regionclip: Region-based language-image pretrain-
ing. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages
16793-16803.

Appendix
A Model Details

Table 5 displays the weight checkpoints of the
adopted open-source models, where all weights
were obtained from either Hugging Face’s plat-
form or the official GitHub repositories of the cor-
responding projects. All third-party models and
tools used in this work are under open-source li-
censes.

Model Checkpoints
Real-ESRGAN RealESRGAN_x4plus.pth
LLaVA-v1.5 Liuhaotian/llava-v1.5-7b

Openai/clip-vit-large-patch14-336
GDINO groundingdino_swint_ogc.pth
YOLO-World Yolo_world_v2_xI_obj365v1_goldg
cc3mlite_pretrain.pth
grounding_dino_swin-
MM-GDINO t_pretrain_obj365_goldg_v3det_2023_
1218_095741-e316e297.pth
Qwen2.5 Qwen/Qwen2.5-7/14/32B-Instruct

Table 5: Models and Checkpoints Used in Different
Stages

B Samples of LIDet

Here in Figure 2 we present a visual comparison
of the detection results produced by the Ground-
ingDINO model before and after applying the
LIDet framework, using representative sample im-
ages from the COCO dataset.
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Figure 2: Some samples of our LIDet frame based on Groundingdino for detection.



