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Abstract
This paper proposes LIDet, a language-guided001
iterative object detection framework, designed002
to address challenges in open-vocabulary ob-003
ject detection, such as missed detections of004
small objects and rare categories, as well as005
false positives. Without retraining the detec-006
tion model, the method constructs a four-stage007
closed-loop process:"image preprocessing →008
multimodal perception → object detection →009
language reasoning." Leveraging the semantic010
reasoning capabilities of large language mod-011
els (LLMs), LIDet generates potential missing012
object categories and their spatial relationships013
based on detected objects and scene descrip-014
tions. This guides the visual detector to dynam-015
ically crop and re-examine image regions. Ex-016
periments demonstrate that LIDet achieves an017
average improvement of 3% in Acc@IoU=0.25018
on the RefCOCO series datasets compared to019
the MQADet and outperforms the original de-020
tection model. Although computationally in-021
tensive, LIDet establishes a language-vision022
interaction mechanism at the semantic level,023
offering a novel approach to multimodal rea-024
soning and open-vocabulary object detection.025

1 Introduction026

Open-domain object detection aims to overcome027

traditional closed-set limitations by dynamically028

recognizing unknown objects. Current research029

focuses on visual feature extraction and vision-030

language alignment.031

The former leverages adaptive strategies, with032

AdaZoom (Xu et al., 2022) employing a multi-033

scale approach and ZIO (Pang et al., 2022) utilizing034

multi-resolution processing, to improve the detec-035

tion of small objects, but both lacks deep semantic036

understanding. The latter, particularly CLIP-based037

(Radford et al., 2021) methods, incorporates textual038

matching but remains vision-dominated without039

utilizing language models’ reasoning capabilities.040

Notable performance drops occur with fine-041

grained small objects and rare categories, due to res-042

olution limitations and semantic ambiguity in cur- 043

rent convolutional or Transformer-based (Vaswani 044

et al., 2017) networks. 045

We propose integrating LLMs’ semantic reason- 046

ing into detection. Current LLM applications like 047

LLMDet (Fu et al., 2025) and MQADet (Li et al., 048

2025) only generate pseudo-labels or filter results, 049

lacking textual feedback in the detection pipeline. 050

To enable multi-round vision-language interac- 051

tion during detection by leveraging LLMs’ reason- 052

ing capabilities, we propose LIDet, a language- 053

guided iterative object detection framework. With- 054

out retraining the detection model, LIDet guides 055

multi-round detection across different regions us- 056

ing LLMs’ semantic reasoning. 057

The framework consists of four stages: the im- 058

age preprocessing stage performs cropping, scal- 059

ing, and super-resolution; the multimodal percep- 060

tion stage generates image descriptions and parses 061

potential targets; the detection model inference 062

stage identifies objects based on text prompts; and 063

the language model reasoning stage infers focus 064

regions for potentially missed objects. The key 065

innovation lies in using LLMs to deduce relative 066

object positions and guiding the detector to re- 067

examine these regions, establishing a closed-loop 068

vision-text interaction. 069

In summary, Our main contributions are as fol- 070

lows: 071

• We propose LIDet, a training-free iterative 072

detection framework that collaborates super- 073

resolution, multimodal, and language models 074

with detectors in a pipeline, significantly im- 075

proving open-domain detection accuracy. 076

• Experiments show LIDet outperforms 077

MQADet by 3% and baseline models by 078

19% on the RefCOCO datasets, demon- 079

strating its effectiveness for fine-grained 080

detection. 081
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Figure 1: An overview of LIDet frame, including four stages: Image Preprocessing, Multimodal Perception, Object
Detection and LLM Reasoning.

2 Related Work082

2.1 Open-Vocabulary Detection083

Open-vocabulary detection (OVD) extends beyond084

fixed categories by leveraging vision-language085

alignment. CLIP (Radford et al., 2021) enables086

zero-shot transfer and has inspired approaches such087

as ViLD (Gu et al., 2021) for detector distillation088

and RegionCLIP (Zhong et al., 2022) for region-089

level representation learning. Recent work further090

improves fusion efficiency (Liu et al., 2024; Cheng091

et al., 2024; Yao et al., 2024; Fu et al., 2025).These092

methods struggle with complex cross-modal rea-093

soning via vision-language pretraining. A more094

promising approach is to use language models as095

reasoning agents to enhance visual detection with096

their strong inference capabilities.097

2.2 Vision-Language Models098

Modern vision-language systems build upon align-099

ment foundations like CLIP (Radford et al., 2021)100

and ALIGN (Jia et al., 2021), evolving into inter-101

active reasoning architectures.LLaVA (Liu et al.,102

2023) establishes visual-text coupling through103

projected embeddings and MLP fusion. Qwen-104

VL (Wang et al., 2024) extends this with dy-105

namic resolution support for complex spatial tasks.106

Flamingo (Alayrac et al., 2022) innovates with vi-107

sual token compression for efficient cross-modal108

attention. These models demonstrate robust visual109

perception capabilities, effectively translating im-110

ages into textual representations. Their progress111

enables seamless integration of visual data with112

language-based reasoning frameworks, supporting113

downstream tasks in our work through unified mul-114

timodal understanding.115

2.3 Super Resolution 116

Multimodal object detection accuracy relies on im- 117

age quality, where Single Image Super-Resolution 118

(SISR) enhances low-resolution inputs. Early 119

interpolation and shallow CNN methods (Dong 120

et al., 2015, 2016; Kim et al., 2016) caused 121

over-smoothing, while GAN-based approaches 122

(e.g.Ledig et al., 2017) improved texture generation 123

via adversarial learning. Later, Wang et al. (2018) 124

stabilized training with relative discriminators, and 125

Real-ESRGAN (Wang et al., 2021) advanced real- 126

world modeling. SwinIR’s Transformer architec- 127

ture (Liang et al., 2021) excelled in detail recon- 128

struction using attention. Current research em- 129

phasizes multimodal fusion and degradation-aware 130

designs, evolving from pixel-level to semantic- 131

physical modeling. 132

3 Methodology 133

3.1 Image Preprocessing 134

Image quality (clarity and object size) critically 135

impacts open-domain detection accuracy. Low- 136

resolution images degrade small-object features 137

and bounding box localization, as shown in 138

SNIP (Singh and Davis, 2018). While Ada- 139

Zoom (Xu et al., 2022) and Zoom-In&Out (Pang 140

et al., 2022) enable region magnification, their 141

vision-based selection introduces contextual noise. 142

We innovatively propose a language-guided 143

crop-and-zoom strategy. By leveraging multimodal 144

scene descriptions and semantic reasoning of de- 145

tected objects, we precisely determine cropping re- 146

gions that preserve effective contextual information 147

while avoiding noise interference. Furthermore, we 148

employ Real-ESRGAN (Wang et al., 2021) to com- 149
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Method RefCOCO RefCOCO+ RefCOCOg
Val testA testB Val testA testB Val test

G-DINO 48.21 / 42.85 49.83 / 45.08 40.50 / 36.58 49.66 / 41.56 50.58 / 43.98 43.51 / 37.51 40.76 / 38.18 41.96 / 39.24

MQADet
(G-DINO) 66.59 / 60.47 64.01 / 60.03 67.20 / 61.70 57.29 / 49.50 55.07 / 48.51 56.87 / 50.18 66.10 / 61.45 67.91 / 62.90

LIDet
(G-DINO) 69.23 / 59.68 68.47 / 58.46 66.36 / 60.81 64.37 / 52.49 61.48 / 50.92 62.82 / 53.62 70.32 / 58.61 66.47 / 57.39

MM-GDINO 50.21 / 44.37 51.87 / 46.53 41.40 / 38.02 51.29 / 42.47 50.63 / 44.21 44.20 / 39.14 41.20 / 39.43 42.13 / 39.76

LIDet
(MM-GDINO) 71.43 / 59.57 70.15 / 60.47 70.63 / 59.48 65.28 / 54.82 63.04 / 51.48 62.49 / 53.73 71.17 / 58.93 67.54 / 58.47

Yolo-World 38.15 / 32.65 42.70 / 38.36 32.97 / 28.47 37.82 / 31.06 38.20 / 33.77 35.32 / 30.65 40.11 / 36.99 43.05 / 38.51

MQADet
(Yolo-World) 62.79 / 56.81 60.59 / 55.28 62.13 / 55.65 56.97 / 48.31 52.91 / 46.88 55.47 / 48.84 62.50 / 57.55 65.57 / 60.44

LIDet
(Yolo-World) 64.36 / 53.19 63.73 / 52.86 64.09 / 55.36 60.34 / 49.36 59.46 / 47.25 58.63 / 49.27 63.45 / 52.82 64.03 / 53.46

Table 1: Evaluation of the LIDet framework against various detection models across RefCOCO, RefCOCO+, and
RefCOCOg datasets (with provided standard val/testA/testB splits), using Acc@0.25 and Acc@0.5 as evaluation
metrics in the form of Acc@0.25/Acc@0.5. The LIDet parameters are fixed at k = 2 (iterations), m = 3 (candidate
targets per iteration), α = 1.5 (image zoom ratio) using Qwen2.5-14B-Instruct for reasoning.

pensate for resolution loss during the magnification150

process.151

I ′ = Real-ESRGAN(Crop(I, LLM(S,E)) (1)152

where S is the description of the image I , E is the153

detected object set.154

3.2 Multimodal Perception155

We generate scene descriptions S using pretrained156

multimodal models. For structured detection in-157

puts, we employ prompt engineering and parse S158

with prompt P using instruction-tuned LLMs con-159

sidering LLaVA’s (Liu et al., 2023) limitations in160

structured output.161

U0 = {Oj}Nj=1 = LLM(P ⊕ S) (2)162

Merging these target set U0 with previous-round163

potential targets Unew yields the final target object164

set U = U0 ∪ Unew.165

3.3 Object Detection166

During the detection stage, the target set U is167

fed into the detection model to obtain the current168

round’s detected objects E0, which can be formally169

expressed as:170

E0 = {(ci, bi) | ci ∈ U, bi = Det(I ′, ci), score(bi) > τ}
(3)171

where ci represents the detected object category,172

and bi is the bounding box with confidence over173

threshold τ , U is the set of target classes, and Det(·)174

denotes the detection model. Subsequently, the 175

newly detected objects E0 are aggregated with the 176

overall detected target set E through set union: 177

E = E0 ∪ Eold. 178

3.4 LLM Reasoning 179

The model outputs both potential targets Up and 180

their spatial relationships relative to existing targets 181

with inputs of annotated frames. Given these, we 182

perform region localization and cropping based 183

on reference bounding boxes bi ∈ E and spatial 184

relationships: 185

Areacrop = Crop (I, Scale(bi, α)) (4) 186

where α is the scaling ratio relative to the reference 187

bounding box area |bi|. This generates candidate 188

regions for subsequent detection iterations. 189

The complete potential target set for the next 190

iteration is then: 191

Unew =
M⋃

m=1

Top-m(P (Up|E), U = U0 ∪ Unew

(5) 192

where M controls the number of potential targets 193

per iteration. 194

4 Experiments 195

4.1 Implementations 196

For the LIDet framework’s four-stage pipeline, we 197

conduct benchmark evaluations on the RefCOCO 198

series datasets using the following open-source 199
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Method Val testA testB
MQADet 66.59 / 60.47 64.01 / 60.03 67.20 / 61.70

LIDet(α=1) 67.54 / 61.56 64.29 / 62.65 66.03 / 60.58
LIDet(α=1.5) 69.23 / 59.68 68.47 / 58.46 66.36 / 60.81
LIDet(α=2) 60.49 / 30.98 58.28 / 26.43 59.33 / 28.71

Table 2: Performance comparison between MQADet
and LIDet with different zoom ratios α on the RefCOCO
dataset (all based on GroundingDINO). Each cell re-
ports Acc@0.25 / Acc@0.5. LIDet uses k = 2, m = 3
with Qwen2.5-14B-Instruct.

models in Appendix A. We adopt the Acc@IoU200

metric from MQADet for consistent performance201

comparison. The experiments are implemented202

with Python 3.10, PyTorch 2.1.2, and CUDA 12.1,203

running on a hardware platform equipped with 3×204

NVIDIA RTX 4090 GPUs.205

4.2 Results206

As Table 1 shows, our LIDet framework achieves207

superior Acc@0.25 performance (+3% over208

MQADet on average, +7% on RefCOCO+) when209

configured with 2 iterative detection rounds and210

3 potential targets. The significant improvement211

on RefCOCO+ stems from our model’s reduced212

textual dependency and scene-based positional213

inference capability, which compensates for the214

dataset’s prohibition of location words in refer-215

ring expressions. However, we observe notable216

Acc@0.5 degradation due to image preprocessing:217

detection boxes marked on zoomed sub-images218

(α×) then rescaled cause inherent IoU reduction,219

lowering the theoretical maximum from 1 to 1/α220

even for perfect detection. This analysis is further221

validated by our zoom ratio ablation studies in sub-222

section 4.3.223

4.3 Ablation Study224

Controlled zoom ratios. Under controlled con-225

ditions, we tested the G-DINO model with LIDet226

framework on RefCOCO with three zoom ratios (α)227

as shown in Table 2. At α = 1, both Acc@0.25 and228

Acc@0.5 matched MQADet’s performance. The229

Acc@0.25 for α = 1.5 surpassed that of α = 1,230

validating the effectiveness of zoom-in for regional231

focus, while α = 2 degraded to the Acc@0.5 level232

of α = 1, corroborating our IoU scaling analysis.233

Size of LLM. As shown in Table 3, our investi-234

gation of language model scaling effects reveals235

that Acc@IoU remains remarkably stable across236

different model sizes. This indicates that the scene237

descriptions generated by multimodal perception238

models primarily require only fundamental reason- 239

ing abilities and commonsense object relationship 240

understanding from the language model, rather 241

than advanced linguistic capabilities. 242

Method Val testA testB
LIDet(7B) 67.14 / 59.42 67.56 / 58.17 66.25 / 59.52

LIDet(14B) 69.23 / 59.68 68.47 / 58.46 66.36 / 60.81
LIDet(32B) 69.20 / 59.57 69.55 / 59.03 70.08 / 60.56

Table 3: Performance comparison between LIDet with
different size of Qwen2.5-Instruct Model on the Ref-
COCO dataset (all based on GroundingDINO). Each
cell reports Acc@0.25 / Acc@0.5. LIDet uses k = 2,
m = 3, α = 1.5.

Method Val testA testB
LIDet(k=1, m=3) 65.40 / 57.57 62.91 / 55.83 64.82 / 58.49
LIDet(k=2, m=3) 69.23 / 59.68 68.47 / 58.46 66.36 / 60.81
LIDet(k=3, m=3) 71.06 / 60.12 69.74 / 59.84 67.35 / 60.87
LIDet(k=2, m=5) 69.35 / 59.82 68.52 / 58.60 66.37 / 60.92
LIDet(k=2, m=10) 69.55 / 59.74 69.61 / 58.15 67.51 / 59.78

Table 4: Comparison of LIDet performance with vary-
ing hyperparameters (k, m, α = 1.5) on the RefCOCO
dataset, evaluated using Acc@0.25 / Acc@0.5. All re-
sults are based on GroundingDINO.

Iteration rounds and candidate targets. Through 243

iterative optimization, we reformulate detection as 244

a search task. As Table 4 shows, hit probability 245

grows with search space expansion due to accumu- 246

lating contextual information from detected targets 247

Dt = {d1, ..., dt}. Formally, with scene descrip- 248

tion S and detection accuracy Pdetect ∈ [0, 1], larger 249

|Dt| enhances reasoning by providing richer con- 250

straints for subsequent predictions. 251

5 Conclusion 252

In this paper, we propose a language-guided it- 253

erative object detection framework called LIDet, 254

consisting of four main stages: image preprocess- 255

ing stage, multimodal perception stage, detection 256

model stage, and LLM reasoning stage. By es- 257

tablishing a closed-loop interaction mechanism be- 258

tween visual detection and language reasoning, our 259

method achieves an average improvement of 3% in 260

Acc@0.25 metrics on the RefCOCO series datasets 261

compared to the MQADet framework, and an av- 262

erage 19% improvement over the baseline model. 263

These results validate the effectiveness of the lan- 264

guage model-guided iterative optimization strategy 265

for open-vocabulary object detection. We hope this 266

work will inspire future research in multimodal do- 267

mains regarding image-text interactive reasoning. 268
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Limitations269

The experimental results demonstrate that the core270

value of the LIDet framework lies in its iterative271

vision-language interaction mechanism.However,272

as shown in the ablation studies 4.3, the current ap-273

proach suffers from significant performance degra-274

dation by cropping zoomed regions and rescaling275

bounding boxes back to the original image in terms276

of Acc@0.5 metric. Future work could explore277

alternative strategies, such as center-based propor-278

tional scaling of bounding boxes in sub-images279

and propose more scientifically rigorous evaluation280

metrics.281

The method’s computational overhead consti-282

tutes another practical constraint. Benchmark tests283

reveal an average processing time of 40.1s per im-284

age, representing a 20-fold increase over baseline285

detectors like G-DINO (1.9s/image). This substan-286

tial latency originates from the language model’s287

repeated autoregressive decoding cycles (minimum288

4 passes per candidate region), with temporal com-289

plexity growing linearly with iteration count. Con-290

sequently, the current implementation fails to meet291

the throughput requirements of time-sensitive ap-292

plications.293
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Appendix 437

A Model Details 438

Table 5 displays the weight checkpoints of the 439

adopted open-source models, where all weights 440

were obtained from either Hugging Face’s plat- 441

form or the official GitHub repositories of the cor- 442

responding projects. All third-party models and 443

tools used in this work are under open-source li- 444

censes. 445

Model Checkpoints
Real-ESRGAN RealESRGAN_x4plus.pth

LLaVA-v1.5
Liuhaotian/llava-v1.5-7b

Openai/clip-vit-large-patch14-336
GDINO groundingdino_swint_ogc.pth

YOLO-World
Yolo_world_v2_xl_obj365v1_goldg

cc3mlite_pretrain.pth

MM-GDINO
grounding_dino_swin-

t_pretrain_obj365_goldg_v3det_2023_
1218_095741-e316e297.pth

Qwen2.5 Qwen/Qwen2.5-7/14/32B-Instruct

Table 5: Models and Checkpoints Used in Different
Stages

B Samples of LIDet 446

Here in Figure 2 we present a visual comparison 447

of the detection results produced by the Ground- 448

ingDINO model before and after applying the 449

LIDet framework, using representative sample im- 450

ages from the COCO dataset. 451
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Figure 2: Some samples of our LIDet frame based on Groundingdino for detection.
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