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Abstract
As virtual assistants have become more diverse and specialized,
so has the demand for application or brand-specific wake words.
However, the wake-word-specific datasets typically used to train
wake-word detectors are costly to create. In this paper, we ex-
plore two techniques to leverage acoustic modeling data for
large-vocabulary speech recognition to improve a purpose-built
wake-word detector: transfer learning and knowledge distilla-
tion. We also explore how these techniques interact with time-
synchronous training targets to improve detection latency. Ex-
periments are presented on the open-source “Hey Snips” dataset
and a more challenging in-house far-field dataset. Using phone-
synchronous targets and knowledge distillation from a large
acoustic model, we are able to improve accuracy across dataset
sizes for both datasets while reducing latency.
Index Terms: wakeword detection, speech recognition, human-
computer interaction

1. Introduction
Speech interfaces for virtual assistants typically use a wake word
to initiate interaction with the assistant. In recent years, virtual
assistants have become more popular but also more diverse,
including specialized applications in such areas as automotive
and healthcare. Typically, it is important to use a custom or
brand-specific wake word (e.g., the name of an automobile’s
manufacturer) to tie the assistant to the product into which it is
embedded, even if the underlying virtual assistant technology is
licensed from another company.

To minimize bandwidth and response latency, wake-word de-
tectors typically run on the embedded or mobile device hardware
proximal to the user, constraining the computing footprint of the
model. To maximize performance, such models are typically
trained on purpose-built wake-word-specific datasets; however,
these data resources are costly. We explore two approaches to
improve the accuracy of wake-word detectors using datasets in-
tended for training large-vocabulary speech recognition acoustic
models: transfer learning and knowledge distillation.

In parameter- or model-based transfer learning, a network is
first trained on a related task, then retrained on or reused for the
main task (see [1] for review). The approach has been applied
in the wake-word setting using Automatic Speech Recognition
(ASR) acoustic modeling as the pretraining task [2, 3, 4]. In
particular, [2] explores keyword spotting accuracy with and
without transfer learning, though they do not examine the impact
of transfer learning at different keyword-specific dataset sizes.

Knowledge distillation [5] is a popular approach for model
compression that has been used in speech recognition [6, 7, 8, 9].
In the keyword spotting literature, [10] explores the use of an
ensemble of wake-word model teachers for model compression
using a large corpus of positive utterances (est. > 400K). Simi-
larly, [11] uses a combined loss of knowledge distillation from
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teacher’s LatticeGNN embeddings and the main wake-word clas-
sification task to train a small student network, again focusing
on the large data setting, with more than 1 million positive utter-
ances. Finally, [12] uses teacher-student training to iteratively
improve a student model using large amounts of labeled (2.5M
utterances) and unlabeled data (10M utterances).

In contrast, we focus on the low-resource setting, where we
explore how to improve the accuracy and latency of a strong
baseline system [13] when wake-word data is limited. In Section
2, we describe the datasets and baseline system, as well as the use
of phone-aligned training to improve latency. Section 3 details
the multi-stage training approaches, and, in Section 4, we provide
experimental results to systematically compare wake-word-only
training with transfer learning and knowledge distillation on
different dataset sizes from two wake-word datasets, one with
isolated wake words (Snips) and one with wake-word-prefixed
virtual assistant requests (Fluency).

2. System Overview
2.1. Datasets

Wake-word experiments are carried out on two datasets: (1) the
publicly available Snips dataset [14], consisting of the wake
word “Hey Snips” spoken alone; and (2) an in-house Fluency
dataset consisting of the wake words “Hey Fluency” and “Okay
Fluency” followed by a request to the digital assistant, e.g., “Hey
Fluency who is the next patient?” Table 1 presents a summary
of the datasets.

For the Fluency dataset, positive training examples were
recordings from near-field microphones, while a limited set of
far-field recordings are used for the test set. Non-wake-word data
is taken from a large in-house corpus of far-field conversational
speech. The far-field audio quality and lack of isolation of the
wake word make the Fluency test set more challenging.

Table 1: Datasets. The positive examples are given in number of
utterances whereas the negative examples are given in hours.

Dataset Train Eval
Positive Negative Positive Negative

Snips 5,799 utt 50.64h 2,529 utt 23.19h
Fluency 7,169 utt 153.97h 3,840 utt 434.37h

To simulate low resource settings, we take the first n exam-
ples to create training subsets containing 100, 500, 1000, and
2000 positive utterances. For Snips, the subsets contain utter-
ances from 22, 106, 203, and 404 speakers, respectively, and the
full training set of 5799 utterances comprises 1163 speakers. For
Fluency, subsets 100, 500, 1000, and 2000 contain utterances
from 19, 78, 86, and 105 speakers respectively. The full training
set of 7169 utterances comprises 121 speakers.

In contrast to the small wake word datasets, a separate in-
house 2800h near-field dataset is used to train the acoustic mod-
els that are used for transfer learning and as the teacher network
for knowledge distillation (Section 3).
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2.2. Lattice-free Maximum Mutual Information
In this work, for training or fine-tuning we use either the regular
or the alignment-free variant of the lattice-free maximum mutual
information (LF-MMI) objective [15], which is given by

FLF−MMI =
N∑

n=1

logP(Ln|On) =
N∑

n=1

log
P(On|Ln)P(Ln)∑

L P(On|L)P(L)

(1)
where On is the input audio and Ln and L are the true and
competing hypothesis sequences respectively.

For ASR tasks, the numerator graph in alignment-free LF-
MMI is constructed as an unexpanded graph (with self loops)
using the training transcripts [16]. Like Connectionist Temporal
Classification (CTC) loss, this constrains the sequence of senone
targets without explicit time information. In contrast, for regular
LF-MMI, a prior acoustic model is force-aligned with the data
to yield time constrains that are then represented in the numera-
tor lattice using an acyclic and expanded graph (no self-loops)
with each path in the lattice having one state per frame. This
constrains the training targets with explicit time information.

The denominator graph for regular LF-MMI is constructed
using a phone language model (LM) trained on the phone align-
ments of the training data. For alignment-free LF-MMI, since
there’s no alignment information available for the training data,
the phone LM is estimated from the training transcripts by in-
cluding random pronunciations for the words that have multiple
pronunciations and inserting silence at the beginning, end, and
between the words with some probabilities.

2.3. Baseline System
As the baseline system, we use a state-of-the-art TDNN-F/HMM
system trained with alignment-free LF-MMI [13]. It uses left-to-
right 4-state HMM “chain” topologies to model the wake-word
and general speech, and a 1-state HMM topology to model
silence. The network has two outputs per state: one for the
likelihood of the transition into the state, the other for the like-
lihood of the state’s self-loop. Similar to ASR training, the
numerator graph is an unexpanded FST constructed from the
transcript: either “WakeWord” (Snips dataset) or “WakeWord
Speech” (Fluency dataset) for positive utterances, and “Speech”
for negative utterances. The denominator graph, however, is
a manually specified topology that comprises paths with and
without the wake-word. The baseline system is implemented in
the Kaldi toolkit [17], which we also use for our experiments.

For data augmentation, we apply the techniques used in [13],
including simulated reverberation [18], speed perturbation [19]
and noise, music, and background speech from the MUSAN cor-
pus [20]. For Snips dataset, we use the mentioned augmentations
for both positive and negative examples. For Fluency dataset,
however, we augment only the positive examples, as the negative
examples are already from far-field recordings.

2.4. Phone-aligned Training
As an alternative to alignment-free training, we explore phone-
aligned numerator lattices. While allowing the network to settle
on its own alignment to the data is likely optimal for accuracy
in large-data contexts, we hypothesized that the additional time
information would improve accuracy especially when the data
is limited or more challenging. Moreover, while alignment-free
training focuses solely on accuracy, constraining the model’s
output in time would allow for reduction in latency.

We introduce the automatically-inferred time constraints
in these lattices using the forced alignment of the wake-words
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Figure 1: Wake-word HMM topologies for“Hey Snips” (top) and
“Hey/Okay Fluency” (bottom).

from an in-house ASR model to infer phone-level frame labels.
Instead of assigning an HMM state to each phone, we cover a
group of phones with a single HMM state. This reduces the
number of outputs in the last layer, and thus the size, of the
neural network. Fig. 1 shows the HMM states and the partition
of phones across them for the wake-words in both datasets. To
account for the Hey/Okay ambiguity, we assign the first state
of the wake-word HMM to cover the time span of either word.
To model the pause that typically occurs after the wake word
is spoken, we assign the silence that immediately follows the
end of the wake-word (denoted by “sil”) to the last state of the
wake-word HMM. This last state is trained to model the first
10 frames (100 ms) of post-wake-word silence, while any other
silence/non-speech that follows is covered by the silence HMM.
In early experiments, we found this post-wake-word “sil” state
to reduce false positives.

As in the baseline system, general speech is modeled using
the same HMM topology as that of the corresponding wake-
word, and silence is modeled by the 1-state HMM mentioned
before. To achieve phonetic alignment with the audio, time
constraints must therefore be imposed throughout the numerator
lattice. In early experiments, we found good performance simply
by spreading the HMM states of the general speech equally over
the duration of the general speech region.

The “grammar” for the denominator graph are shown in Fig.
2 (Snips) and Fig. 3 (Fluency), which includes the wake-word
and non-wake-word paths.
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Figure 2: Denominator graph (left) and decoding graph (right)
for “Hey Snips”.
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Figure 3: Denominator graph (left) and decoding graph (right)
for “Hey/Okay Fluency Speech”.

2.5. Decoding
The decoding graph for Snips dataset is given in Fig. 2 and for
Fluency in Fig. 3. These are similar to the denominator graphs
but assume a continuous audio stream comprising general speech
and potentially many instances of wake words.

2.6. Neural Network Architecture
Since the focus of the current work is to explore training strate-
gies to compensate for small wake-word training sets, experi-
ments use a single general TDNN-F network architecture, simi-
lar to [13], though we explore variations (layer size, number of
layers, time strides, etc.) to the improve performance of each
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condition. A TDNN-F network is a TDNN network with its
weight matrices in each layer factorized into the product of two
low-rank matrices (the first matrix is semi-orthogonal) to reduce
the number of parameters [21]. The skip connections are simi-
lar to those found in ResNets [22] where each TDNN-F layer’s
output is added to the output from its previous layer (scaled by
0.66) before feeding into the next layer. To reduce latency, the
time offsets of most of the TDNN layers are configured to be
historical (looking at the prior layer’s input at the current time
step and prior time steps only) in order to limit the network’s
overall dependence on future frames to no more than 10. In
order to reduce computation, the output frames are evaluated
every 3 frames for computing LF-MMI loss during training and
also during inference. In our low footprint settings, we keep the
number of parameters to less than 400k for all our models.

Input features are 64-dim log Mel filter banks extracted from
the audio using a 23ms window with a 10ms frame shift. From
the HMM topologies described earlier, the number of targets is
18 for the Snips HMM and 22 for the Fluency HMM.

3. Multi-stage Training
3.1. Transfer Learning
In this approach, we explore how pre-trained acoustic models
for speech recognition can be applied to recognize a single wake
word. While an acoustic model suitable for speech recognition
could be used as a highly accurate wake-word detector, such
models are far too large for the low-footprint applications of
wake-word detectors. We therefore trained small acoustic models
with the same general architecture: 1 TDNN layer (+-2 frames),
5 TDNN-F layers, 1 RELU layer, 9 TDNN-F layers, and the
prefinal (1280-dim to 256-dim bottleneck) and final layers (4400
senones) typical of Kaldi chain training recipes. To reduce
latency, networks looked ahead in time 10 frames, with most
TDNN-F layers only looking back in time.

The first several layers of the acoustic model were trans-
ferred to the wake-word detector network, atop of which three
additional TDNN-F layers (two with time strides -32, -16, 0,
then -4, -2, 0) and the softmax layer were added with randomly
initialized weights. Early experiments showed that using the first
six layers of a network with 128-dim outer / 64-dim bottleneck
TDNN-F layers outperformed using the first 16 layers of a net-
work with 128-dim outer / 40-dim bottleneck TDNN-F layers;
these alternatives had a similar number of parameters. Results
are therefore reported on the 6-layer transfer. The weights of the
transferred layers were fixed during fine-tuning as we found the
model to lose performance when they were updated.

3.2. Knowledge Distillation
In our knowledge distillation setup, as shown in Fig. 4, for an
audio sample x (from the wake-word dataset), we use the teacher
(a large ASR TDNN-F acoustic model) to generate hidden layer
representations z from its penultimate bottleneck layer (128-
dim), sized to match the corresponding student network. The
output of the student network’s lower layers ẑ is regressed to
the teacher representation via mean squared error (MSE) loss
LMSE = 1

N

∑N
n=1(z− ẑ)2. The goal is to teach the student’s

lower layers to mimic the behavior of the larger and well-trained
teacher model in producing useful inner representations ẑ, from
the audio sample x, so that, when the upper layers of the student
model are trained on these high level representations, the overall
performance of the wake-word system improves.

After pretraining, we add the student’s upper layers (as with
transfer learning) on top of the student’s lower layers and train

Teacher
(17M)

Hidden (z)

Student
Lower
(313K)

Hidden (ẑ)

M
SE

Loss

Student
Upper (55K)

Wakeword
LF-MMI Loss

Acoustic Features (x)

Figure 4: Teacher-student training setup. The number of model
parameters is shown in parentheses.

the whole system on wake word detection LF-MMI objective in
Eq. 1. In our setup, the lower layer weights are frozen during
this stage, as we found that fine-tuning the lower layers always
led to degradation in performance.

4. Experiments
The decoding graphs for the following experiments are tuned to
a fixed false positive rate of one false positive per 10 hours, or
0.1 false positives per hour. We then report the corresponding
false negative rate, the failure to recognize a spoken wake word.

4.1. Recognition Accuracy
Table 2 and Figures 5 and 6 show the performance for the various
training techniques. Somewhat surprisingly, while the end-to-
end-trained models performed well on the Snips dataset, end-to-
end training was unsuccessful for the Fluency dataset.

To understand why, we note that the Snips dataset’s posi-
tive utterances contain isolated wake words, while the Fluency
dataset’s positive utterances contain a wake word followed by a
virtual assistant request. A second version of the Snips dataset’s
positive utterances were constructed to more realistically model
assistant interactions: the positive utterances were replaced with
“WakeWord Speech” utterances, constructed from each posi-
tive utterance concatenated with a negative utterance from the
same speaker. Performance in this ”eval concat” condition was
much worse as shown in Fig. 5. An analysis of the output unit
activations suggests that the last few HMM states of both the
wake-word and speech HMMs are modeling the end of the ut-
terance. Transitioning mid-utterance between the wake word
and subsequent speech is therefore not possible. This end-of-
utterance completion of the wake-word HMM also explains the
high latency of the E2E models.

End-to-end training on positive utterances containing the
wake word plus subsequent speech would be expected to ame-
liorate this problem. However, when positive utterances were
formed from the concatenation of the wake word with subsequent
speech, we found such training to be unsuccessful; the resultant
models typically output ”WakeWord Speech” for most every
utterance. Similar results were observed on the Fluency dataset.
We attribute this failure to the additional challenge of learning
which prefix of the positive utterances constitutes the wake word.
Perhaps the task would be learnable with significantly more data.

Phone-aligned training made learning on the Fluency dataset
possible. Additionally, the phone-aligned Snips model per-
formed similarly on the “eval-concat” version of the test set.
For a fair comparison of E2E and phone-align models in terms
of model capacity, besides the baseline model [13] which has
150k parameters and input context of -42+42 frames, we also
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Table 2: False negative rate (FNR%) at false positives per hour = 0.1 for various numbers of positive training examples, where
Phone-align = phone-aligned training targets, T/S = Teacher/Student. The lowest error rate in a column is shown in bold. X indicates
no discrimination of pos/neg utterances. For each model, the number of parameters and the input context (-left+right) is given in
parentheses. The latency of the models is shown for the 90th percentile (in seconds).

Method Hey Snips Hey / Okay Fluency
100 500 1000 2000 5799 Latency 90% 100 500 1000 2000 7169 Latency 90%

E2E Wang et al. [13] (150k, -42+42) 69.95 8.78 1.94 1.82 0.36 1.01+0.42 s - - - - - -
E2E (368k, -150+10) 53.34 12.14 6.13 4.11 0.28 1.00+0.10 s - - - - X -
E2E + Transfer (318k, -78+10) 46.03 18.13 8.30 0.99 0.43 0.98+0.10 s - - - - - -
Phone-align (368k, -150+10) 30.45 12.57 3.88 4.11 0.95 0.13+0.10 s 99.35 24.5 10.18 10.68 9.17 0.15+0.10 s
Phone-align + Transfer (318k, -78+10) 23.92 10.32 4.07 3.99 1.94 0.14+0.10 s 91.75 19.17 5.10 3.96 1.59 0.14+0.10 s
Phone-align + T/S (368k, -150+10) 3.28 1.11 0.28 0.43 0.32 0.15+0.10 s 18.83 5.05 3.23 3.59 0.78 0.14+0.10 s

Figure 5: Snips dataset E2E (top) and Phone-align (bottom):
%FNR (log scale) vs number of training samples (log scale) at
FP per hour = 0.1. Legend with “eval concat” are evaluated on
the eval concat set whereas others are evaluated on the original
Snips eval set.

experiment with a model the same size and architecture as that of
our best performing student model, however we do not find any
improvement. This model, with 368k parameters and input con-
text of -150+10 frames, is denoted by “E2E (368k, -150+10)”.

Unsurprisingly, all approaches benefit from more training
data. Transfer learning was beneficial for phone-aligned models
trained on less data and continued to show benefits on the more
challenging Fluency dataset, but the teacher-student pretraining
consistently performed the best across both datasets.

Symmetric and asymmetric teacher-student training
pipelines were compared. In the symmetric case, the same
augmented audio is provided to teacher and student. In the
asymmetric case, clean audio is used to generate teacher out-
put representations, while the student model representation is
generated from augmented audio. The aim here is to teach the
student’s lower layers not only to mimic the teacher’s phonetic in-
ference but also to learn to produce noise-robust representations.
We found consistent benefits from the asymmetric approach, so
the “Phone-align + T/S” results use this approach.

Finally, we observe that fine-tuning the pretrained layers did
not help. One reason may be that fine-tuning on general speech
(whose 4 or 5 states in the “Speech” HMM do not have good
alignment with the same phones) may lead to training signals
that cause the pretrained layers to unlearn its phone recognition
capabilities. In future, we will explore using multi-task learning

Figure 6: Fluency dataset Phone-align: %FNR (log scale) vs
number of training samples (log scale) at FP per hour = 0.1.

– teacher-student loss + wake-word recognition – similar to the
transfer learning approach of [3, 4].

4.2. Latency Analysis

For phone-aligned training, the final state of the HMM is trained
to align to the first 10 frames after the wake word, which is
usually silence. This encourages the model to only wait to see 10
frames (or 100ms) following the wake word in order to trigger.
Table 2 shows the 90th percentile latency of models using end-
to-end and phone-aligned training for the largest dataset size.
ASR alignments were used as the reference for the precise end
of each wake word. Consistent with the training targets, phone-
aligned models show a latency of only 130-150ms, though the
additional latency due to future feature frames relative to the
model’s target prediction frame (given after “+” sign) should be
considered as part of the total user-experienced latency. Even
without considering the frame look-ahead, E2E models’ latency
is still much higher.

5. Conclusions

We compared the performance of a strong baseline system
trained on various amounts of wake-word data to models trained
with either of two pretraining techniques leveraging speech
recognition acoustic models: transfer learning and knowledge
distillation. Compared to the baseline system and a transfer learn-
ing model, knowledge distillation performed better across both
datasets and across dataset sizes, with a particularly dramatic
error rate reduction when wake-word data was more limited.

Additionally, we found that phone-aligned training was able
to reduce latency to less than 250ms, and is necessary to train a
wake-word model on the more challenging Fluency dataset.

In future, we will explore these techniques on a wider range
of model architectures, including simplified output representa-
tions, as well as further explore strategies for fine-tuning the
lower pre-trained layers of the network.
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