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ABSTRACT

Generative models can be applied in diverse domains, from natural language
processing to image synthesis. A key aspect to control the generation process
is the definition of adequate data representations, allowing users to access and
efficiently manipulate the semantic factors shaping the data distribution. This work
advocates for the adoption of succinct, informative, and interpretable descriptions,
quantified using information theoretic principles. Through extensive experiments,
we demonstrate the efficacy of this proposed framework both qualitatively and
quantitatively. We conclude that it significantly contributes to the ongoing quest to
enhance both controllability and interpretability in the generation process.

1 INTRODUCTION

Figure 1: InCoDe Controllable Image Generation and
Editing: a user can (a) provide a sample image and (b)
request to generate new images with the same semantic
elements of the given one, or (c) change the answers to
a subset of queries asking about attributes in the image
to produce new images with desired elements.

The ability to influence and direct the output
of generative models is essential for practical
applications in various domains, ranging from
natural language processing to image synthesis.

Consider for example, an scenario where a cus-
tomer may be interested in using an online app to
decorate their bedroom. This application could
generate images that are semantically similar
to an “inspiration" picture given by the user, as
depicted in Fig.1(a, b), while allowing them to
specify which aspects they want to preserve or
change (Fig. 1(c)). Alternatively, if the user does
not provide an image, the application could ask
them a series of questions about their prefer-
ences and generate a set of image suggestions
based on their answers, as seen in Fig. 2(d).

To speed up this process and maximize user
satisfaction, the app should prioritize asking the
most relevant questions upfront, reducing the
number of interactions while ensuring the user’s
preferences are accurately captured.

Thus, the design of such an app requires an im-
age representation that effectively captures the
elements and properties most semantically sig-
nificant to the user for the specific task (e.g.,
bedroom decoration). The representation should

be interpretable, easily modifiable based on user input, and information-dense. Additionally, it
must support the measurement of relevance and similarity within its domain. By leveraging such a
representation, the app would be able to offer personalized suggestions and allow precise adjustments
to the generated images, ultimately enhancing the user experience.
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Figure 2: Text-to-image models fail when composing multiple concepts. Comparison with text-to-image
baselines. For a given subset of attributes: (a) Samples from Stable Diffusion v1-4 (≈ ×0.95 params). (b)
Samples from Stable Diffusion XL (≈ ×10 params). (c) Samples from Dall-e 3 (≈ ×15 params) (d) Samples
from InCoDe generated without a reference image (trained on top of Stable Diffusion v1-4). In red, we highlight
the mistakes made by each method.

Inspired by the above scenario, our goal is to develop models that allow interaction through high-level
concepts. It could be argued that plain textual scene descriptions can provide an especially intuitive
interface for image generation for this problem. However, this modality poses significant challenges.

First, the semantic content of an image can be represented through diverse text captions, each
providing a distinct perspective. Take, once again, a photograph of a bedroom. The scene could
be described in terms of the objects it contains, the furniture style, the discernible colors, or the
relationships among objects, since there is no universal semantic representation.

Furthermore, despite the achievements of recent approaches (DALL-E, Midjourney, Rombach et al.
(2021)), constraining a generated data point to a textual description encompassing simultaneously
numerous concepts remains challenging even for sophisticated and large-scale models, as illustrated in
Fig. 2(a,b,c). While this issue has been addressed by subsequent work (Feng et al. (2022)), generation
still struggles with composition in the presence of negation and large conjunctions (Tbl. 2).

To address these difficulties, we propose instead to represent the semantic content of images by sets
of pre-defined, user oriented, questions and their answers. This enables the application of principles
from information-theory to organize the semantic space according to information-theoretic relevance,
while specializing a generative model to the sub-distribution of interest to the user (e.g. bedroom
furniture distribution). While this approach may limit the model’s generality, it prioritizes combining
multiple concepts accurately.

In the proposed framework, given a set of questions to choose from, we select queries greedily by
order of information to yield interpretable and succinct image descriptions (See Section 2 for details).
These descriptions are interpretable by design, since they consist of understandable queries and their
answers, and they are concise due to the selection policy. This framework, named as Interpretable
Compressed Descriptions for Image Generation (InCoDe), offers the user an efficient and intuitive
way to interact with the system generating images based on answers to the selected queries.

Paper contributions. (i) We propose a novel use of Information Pursuit (IP) to represent data
and control image generation; (ii) We introduce a deep neural algorithm to optimize our objective,
along with a novel adaptation method for conditioning text-to-image pre-trained diffusion models on
query-answer sets. (iii) We collected two new datasets along with sets of binary queries and answers
about their content. (iv) We quantitatively and qualitatively validate the effectiveness of InCoDe,
showcasing its superiority over the selected baselines across a diverse set of scenarios, and provide
additional results in the appendix for query-types of a different domain.

2 METHODS

In this section, we first formalize our choice for semantic data representation and we introduce
InCoDe, a new image generation framework, which can be controlled by compressed interpretable
descriptions. Then, we describe architecture designs to implement the proposed framework and
discuss training strategies. Finally, we explain how to use InCoDe to generate and edit images.
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Figure 3: Overview: pipeline of InCoDe. It consists of three main modules: an Encoder that maps a history
of query-answer S = q1:k(X) pairs to the next asked query q, which is answered by providing q and the
reference image X to an off-the-shelf VQA module. A Decoder maps query-based descriptions to the complete
query-answer set, and a diffusion-based Generator predicts the added noise ϵt to the corrupted image Xt, after t
forward diffusion steps and conditioned on the descriptions.

2.1 INCODE FRAMEWORK

We propose InCoDe, a new framework, which uses interpretable compressed descriptions to provide
control over image generation and semantic editing. An overview of InCoDe’s training pipeline is
depicted in Figure 3. It consists of three main modules: an Encoder, which produces query-based
descriptions by selecting elements from a given query set and a reference image to answer the
selected queries; a Decoder, which maps these descriptions back to the complete query set with the
corresponding answers for the reference image; and a Generator, which uses reverse diffusion (i.e.,
gradual denoising) to turn the descriptions into images.

Next, we formally define the concept of a query set and outline the information-based procedure used
to organize its elements.

Notation. Let X be a set of images, Q be a set of user-defined task-specific queries, and A be the set
of all possible answers. A query q ∈ Q is a function mapping a point in X ∈ X to a point in a ∈ A,
i.e. q : X → A. In the sequel, using a slight abuse of notation, we will denote a query-answer pair
(q, a) for X simply as q(X). Finally, we denote by Q(X) the set of all query-answer pairs for X ,
Q(X) = {q(X) = (q, a) | q ∈ Q, a ∈ A}.

Semantic Description. We propose to describe an image X with a sequence of query-answers,
D(X) = q1:L(X) = [q1(X), . . . , qL(X)], qi(X) ∈ Q(X), L = |D| ≤ |Q|, where the queries are
sorted in decreasing order of the information gain that they provide about all other queries in Q(X).

Given an observation X = xobs, D(xobs) can be generated using the Information Pursuit (IP)
algorithm (Jahangiri et al. (2017), Sec. A.2), modified so that at each step it selects the most
informative query towards recovering the complete set Q(xobs) from the answers in D(xobs):

q1 = IP(∅) = argmax
q∈Q

I(q(X);Q(X));

qk+1 = IP(q1:k(xobs)) = argmax
q∈Q

I(q(X);Q(X) | q1:k(xobs)).
(1)

where I(·; ·) is mutual information. The algorithm terminates when all the queries are exhausted.
Following Chattopadhyay et al. (2023), to efficiently implement IP without needing to compute
mutual information in high-dimensional spaces, we use Variational IP (VIP). VIP employs a Querier
g, working as an Encoder, and a Query Answerer, working as a Decoder, as formally described next.

Encoder. Let P(Q(X)) denote the power set1 of Q(X). A Querier function g : P(Q(X)) →
Q greedily selects elements of Q that yield the most succinct representation of X . It takes
as input a random history of arbitrary length k of queries and answers, S = q1:k(x

obs) =
{q1(xobs), . . . , qk(x

obs)} ⊆ Q(xobs), and it outputs the query qk+1 ∈ Q that is the most infor-
mative about the complete set Q(xobs). To do this, we will seek a query q∗ whose answer mini-
mizes the KL divergence between the posterior p(Q(X) | X) and the conditional query set dis-

1A power set of a set Q is the set of all subsets of Q, including the empty set and Q itself.
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tribution p(Q(X) | q∗(X), S), where conditioning on q(X) should be read as conditioning on
{X ′ ∈ X | q(X ′) = q(X)}.

Decoder. Since the above posterior depends on the data distribution and it is unknown, we will use a
Query Answerer f : P(Q(X)) → PQ(X ), which maps a set of query-answers to a distribution over
Q(X ) and learns the posterior together with the Querier g.

Then, the objective for VIP presented in Chattopadhyay et al. (2023) is adapted to recover the set
Q(X):

min
f,g

EX,SDKL[p(Q(X) | X) ∥ p̂(Q(X) | q(X), S)]

where q := g(S) ∈ Q, p̂(Q(X) | q(X), S) := f(q(X) ∪ S)
(2)

where DKL indicates the Kullback–Leibler divergence between two probability functions, and S is a
random history as defined above. In order, given the observed data point X = xobs and an observed
history S = q1:k(x

obs), the Querier g selects a query q ∈ Q, evaluates it on xobs (VQA module in
Figure3), and feeds the extended set q1:k+1(x

obs) = q(xobs) ∪ q1:k(x
obs) to the Query Answerer. The

latter will predict the answers to all the queries in Q, conditioned on the partially observed set.

Since optimization over all possible functions f and g is challenging, we implement them as neural
networks: fθ and gϕ, respectively. VIP is proved to select the queries that maximize mutual
information with respect to a target variable Chattopadhyay et al. (2023). In our appendix, we
reformulate that proof with Q(X) as our variable of interest.

Generator. The role of the third module in InCoDe is to generate image X̂ , conditioned on a
description D using a conditional generative model or Generator. Given a description D, the
Generator produces samples X̂ ∼ p(X | D). If the Querier was used to encode D from a data point
X , then, an optimal system would generate X̂ such that the agreement between Q(X) and Q(X̂) is
maximized. Notably, at inference-time, D can also be hand-crafted by the user by providing their
desired answers to the queries sequentially asked by the Querier, as illustrated in Figs. 1c and 2d.

Given the recent success in conditional generation, we propose to leverage Diffusion models for our
generative module. In particular, we utilize the Denoising Diffusion Probabilistic Method (DDPM)
Ho et al. (2020), conditioned on arbitrary histories S. Next, we describe the optimization procedure
for training the Generator.

In generative modeling, we seek to maximize the marginal likelihood of the data Ex0∼p(X0) [p̂θ(X0)]
under our parametric model. This objective is often intractable. Instead, it is common to define and
optimize the variational lower bound (VLB) of that quantity. In DDPM, a simplified noise-matching
objective is used, which is derived from the VLB (see Sec. A.2) and simplified as:

min
θ

EX0,t[DKL(p(Xt−1 | Xt, X0) || p̂θ(Xt−1 | Xt)] ≈ min
θ

EX0,t

[
∥ϵt − ϵθ(Xt, t)∥2

]
(3)

Please see the Appendix for the intermediate steps. As in Sec. A.2, we refer to the noisy version of
X0 along the diffusion process as Xt, with t being the diffusion time and therefore the noise scale.

Here, we wish to sample from a distribution conditioned on elements of P(Q(X)), such as histories
S or descriptions D. We incorporate these conditions into our objective by using the conditional
distribution while preserving the objective function often used in DDPM:

min
θ

Et,X,SDKL[p(Xt−1 |Xt, X0) || p̂θ(Xt−1 |Xt, S)] ≈ min
θ

Et,X,S
[
∥ϵt − ϵθ(Xt, t, S)∥2

]
(4)

with t ∼ U(1, T ), X0 = X is the clean input data, and Xt is the noisy data after t forward diffusion
steps. Here, p̂θ(·) is the DDPM’s posterior and ϵθ the parameterized noise estimator.

Optimizing (4) is challenging: using query-answer pairs as conditions has not been explored before;
there is a combinatorial number of possible conditions; and not all possible histories S are independent
from each other since they may be selected by the Querier. Next, in Section 2.2 we provide
architectural and training details to address these challenges.

2.2 ARCHITECTURE DESIGN, TRAINING, AND SAMPLING

As noted above, the three main modules of InCoDe, the Querier, Query Answerer and Diffusion
Model, are parameterized as neural-networks. In this section, we discuss a specific design for when
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the attribute-based queries qa ask about whether ‘X has an attribute a’ and the answer is binary (yes
or no). We train the Querier with the objective function in Equation (2), and parameterize both the
Querier, and the Query Answerer as fully-connected networks, which are trained jointly. To answer
queries at training time, we either use the dataset ground-truth (if available) or the answers provided
by an off-the-shelf VQA model.
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Figure 4: Adapting pre-trained diffusion models to
query-based conditions. Proposed scheme to fine-tune
text-to-image diffusion models with LoRA Hu et al.
(2021). We introduce a small neural network (embedder
plus a MLP with zero-init for the last layer) that maps
queries into null-text token features. Then, we use a
mask to train the model with a subset of queries.

Conditioning the Generator with Queries.
Current text-to-image models struggle to accu-
rately generate images constrained by multiple
concepts (as shown in Fig. 2). Therefore, we
avoid relying on natural language for this task.
In our context, a Generator that can effectively
combine multiple concepts within a limited se-
mantic space is preferable to one that generalizes
for all possible text prompts.

Hence, we adapt the conditioning procedure of
our diffusion-based generator to a given query
set Q(X). We initially encode a query history
S into a set of feature vectors. We then employ
cross-attention layers between image features
and query set features at multiple hierarchies of
the denoiser (UNet), as usually done by text-to-
image diffusion models.

Our query-based setting is unusual in the litera-
ture. Hence, we lack access to large diffusion models pre-trained for this particular type of conditions.
Inspired by previous work Zhang & Agrawala (2023); Shi et al. (2023), we propose a novel fine-
tuning approach, illustrated in Fig. 4, to incorporate the domain knowledge encoded in pre-trained
text-to-image diffusion models such as Stable Diffusion Rombach et al. (2021). As shown in the
figure, our method uses a module with two main blocks: (i) A LoRA Hu et al. (2021) system with rank
32 set as a fine-tuning framework for the frozen large diffusion model, and (ii) A query embedder
network, consisting of a feature embedding and an MLP with a zero-initialized final projection.
During training, we embed each query q(X) ∈ Q(X) individually, into the dimensionality of a
single text token using the embedder network. Then, the embedded query is masked according to
the visibility of each query in S, summed to a null-text token and fed to the UNet. Note that at the
beginning of training, the UNet only sees null-text tokens and performs unconditional denoising.
As the training advances, the network learns to adapt to the given subset of data while utilizing the
conditional information in S.

Beyond Attribute-Based Queries. InCoDe is not restricted to attributed-based binary queries.
Our framework supports queries gathering different types of information about a datapoint, including
non-binary answers that may even be continuous or spatially-aware queries. For example, in the
Appendix we provide experiments conducted with location-based queries, where a query qi,j requests
an RGB image patch around the location (i, j) in X . Location-based queries are different from
attribute-based ones in two key aspects, leading to a different architecture design. Firstly, in this case,
we can have Q(X) = X , by allowing to ask enough queries to retrieve every image pixel. Secondly,
since these questions are directly associated with image coordinates, they implicitly carry spatial
structural information. Hence, in this case we can conveniently parameterize a set S of location-based
queries and their answers as an image, where only the patches corresponding to answered questions
are visible. Thus, for location-based queries we use a Querier consisting of convolutional blocks. A
detailed explanation and results can be found in Section A.1.1 of the Appendix.

Training. It is essential for all networks to generalize effectively across all possible histories.
Since optimizing for all query combinations is intractable, the networks must extrapolate from few
examples. To do so, we employ different query sampling strategies during training. At the initial
stages of training, we use a Random Strategy where we randomly sample a history of length M ,
with M ∼ U(0, |Q| − 1). Later, as the queried selections become more reliable we refine them by
employing a Biased Strategy, where we sample a history of size M sequentially using the Querier’s
outputs, while detaching its gradient.
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Image Generation. The procedure for image generation is straightforward. The input to the
Generator is a description of length L, either generated from a reference image (Fig. 1b), which can
be modified by the user (Fig. 1c), or entirely handcrafted by the user by answering questions from the
set Q selected by the Querier (Fig. 2d). The Querier, starting from an empty history S = ∅, selects
sequentially the most informative query q from the query set Q, along with an answer produced
by a VQA model, or the user. Next, q(X) is appended to S and the process is repeated L times
until obtaining a description D. Finally, image samples are generated by using the Diffusion Model,
conditioned on the description D through a classifier-free strategy Ho (2022).

3 EXPERIMENTS

In this section we describe experimets to evaluate the performance of InCoDe and provide analysis
of its capabilities. In particular, we study (i) its effectiveness capturing the semantic content of an
image by evaluating the Querier’s ability to select queries maximizing information gain, as well as
the faithfulness of the generated image to provided descriptions; (ii) its editing and compositional
capabilities by evaluating its ability to modify or generate an image consistent with a desired set of
attributes. Please refer to the Appendix for additional results, including location-based queries
and qualitative analyses that highlight the features and limitations of InCoDe.

Table 1: Descriptions of the image size and query-set for different datasets.

Dataset (Image size) Query Set Q Size |Q|

CLEVR Johnson et al. (2016) (3× 64× 64), Indicator of presence of N or more objects of a particular color 45

CelebA Face (3× 64× 64) Facial Attributes 40

LSUN Bedroom (3× 512× 512) Room descriptor attributes 58

LSUN Churches (3× 512× 512) Church and surroundings descriptor attributes 44

Datasets. We selected four datasets with increasing complexity to assess a range of scenarios, starting
from simple cases with predictable outcomes based on human intuition and progressing towards more
challenging ones. We include results for:

CLEVR (Johnson et al. (2016)): A synthetic dataset, where objects with different attributes are
placed randomly in a uniform background. For this set, we created an attribute-based query set with
questions of the form: "Are there n or more objects of color Y ?". This is asked for eight colors
(including any color) and n ∈ [1, 5] for a total of 45 queries.

CelebA: A dataset with celebrity face images and 40 facial attributes provided with the images.

LSUN Bedroom and LSUN Churches: with 58 queries about the room layout and 44 queries about
the elements around and belonging to each church, respectively. Both datasets were developed using
off-the-shelf models, with a large language model (LLM) assisting in the creation of the query sets
and a visual question answering (VQA) model (BLIP, Li et al. (2022)) generating the answers. These
datasets are a key contribution of this work, filling a gap where no existing datasets meet the specific
requirements of our task, and will be made publicly available.

The types and number of queries used for each of these datasets are listed in Table 1. More details
can be found in the Appendix.

Metrics. We evaluate the effectiveness of the information acquisition strategy by predicting answers
to the complete set of queries Q(X), using the descriptions D gathered by each strategy. The
set Q(X) is predicted with a Query Answerer, trained to classify Q(X) from random histories S.
Accuracy and F1 score are computed with a testset with 2k samples in all cases, comparing predicted
answers with the ground truth for each acquired query.

To evaluate compositional generation, we compute alignment to the query-answer set by running
BLIP to answer queries from Q on the generated images. We report accuracy and F1 score with
respect to the ground-truth conditional signal, for the 10 queries with highest entropy.

Baselines. We employ a (i) Random sampling baseline, where we sample queries from a uniform
distribution (without replacement). We also compare our results against a (ii) decision tree with
information gain by impurity criterion (DT-IC), where we choose the query with largest entropy in
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Figure 5: InCoDe offers users intuitive tools to adjust the semantic elements of generated images. InCoDe
describes an image in the query-answer space and generates a new, semantically aligned image. By changing the
answer to specific queries, we can modify semantic attributes of the new images.

our dataset, given the previous history of asked queries. This baseline is the gold standard, as it seeks
to maximize the entropy of the selected query given a history, which is our ultimate objective given
I(q(X);Q(X)|s) = H(q(X) | s)−H(q(X) | Q(X), s) = H(q(X) | s). However, it suffers from
data fragmentation and long computation times for large data corpi. We also compare against (iii) a
top K with impurity criterion (TopK-IC), where we select queries by order of their answer’s entropy
in the training set.

Finally, for compositional generation experiments we compare against (i) Stable Diffusion V1-4
baseline text-to-image model; and (ii) Structured Diffusion Feng et al. (2022), a method to improve
multi-concept conditioning in text-to-image models, specifically more accurate attribute binding and
better image compositions. All methods are conditioned by text, and thus we provide the attribute list
as concatenated descriptions (e.g. “Photo of a bedroom that does not have white walls, has a window,
...”). Note that given the restricted length of text tokens accepted by the baselines (77 tokens) this
experiment is performed with only 10 attributes from the query-set, selected by descending order
of entropy in the dataset. All generative models (including ours) in our experiments have SD V1-4
as the base model for fair comparison. Note that our fine-tuning method can be plugged into other
text-to-image diffusion models, yet this is not central to this work. More details are given in the
Appendix.

3.1 QUALITATIVE EXPERIMENTAL RESULTS

1. Are there 4 or more objects? --> no 
2. Are there 1 or more gray objects? --> yes 
3. Are there 1 or more cyan objects? --> no 
4. Are there 1 or more red objects? --> no 
5. Are there 1 or more green objects? --> yes 
6. Are there 1 or more brown objects? --> no 
7. Are there 1 or more purple objects? --> no 
8. Are there 1 or more blue objects? --> no 
9. Are there 1 or more yellow objects? --> no 
10. Are there 3 or more objects? --> no 
… (All needed information)

X

X̂

Random Strategy

Learned Querier

X̂

L = |D | 5 10 20 30 44 Querier output:
Generated Samples with

Figure 6: Representation of InCoDe’s performance in CLEVR dataset. We illustrate one example of
generated samples by utilizing our model’s Querier and the random baseline. InCoDe generates a sequence of
sensible queries and the Generator guesses after asking few queries the true answer.

Semantic Auto-Encoding and Concept Manipulation. Figs. 1 and 2 illustrate qualitative results for
the LSUN Bedroom dataset. In these examples, Figure 1(b) shows four images generated using the
complete description with L = 58 query-answer pairs, while Figure 1(c) shows examples generated
by (left) changing one, and (right) two attributes. In Fig. 2, our method successfully generates
samples based solely on a sequence of query-answers, while other methods fail.

Similarly, Fig. 5 presents an example for LSUN Churches, where InCoDe regenerates a reference
image by first representing it in Q(X), and then adjusts the answers to specific attributes.

In all cases InCoDe results preserve quality while showcasing correct behavior. To appreciate
similarity between regenerated and reference images, refer to the list of attributes for Bedroom and
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Figure 7: InCoDe behaves correctly in corner cases. Left: In case of generating concepts underrepresented
in the training set, images still can capture them. Right: For apparently contradictory answers to queries, the
Generator tries to accomplish both at the same time, in some situations with creative solutions.

Churches found in Dataset details (Sec. A.3 of the Appendix). More qualitative results can also be
found in Section A.1.

Querier trajectory. In Fig. 6, we see a simple yet illustrative example of a trajectory generated by
InCoDe, as well as one generated by a random baseline, with the corresponding generated images.
The CLEVR Colors dataset is useful since it is easy for a human to see whether the output of the
querier is correct or not. In the depicted case, for instance, the Querier begins by asking a question
about the number of objects. In this case, 4. After this question, it proceeds to ask about the colors
one by one and it finds that there are 1 or more objects of gray color and green color. Therefore, there
is a minimum of 2 objects. After asking if there are 3 or more objects, it receives a negative response,
which means that there are at most 2 objects, one gray and one green. Thus, the following queries are
uninformative. Hence, after asking 10 queries, the Generator knows the true answer and does a good
job generating images that respect the description.

Corner Cases. Figure 7 illustrates the behavior of InCoDe when generating concepts that are
underrepresented in the training set, demonstrating that these concepts are successfully captured
through the proposed fine-tuning process. Additionally, the figure showcases examples of InCoDe’s
output when faced with seemingly contradictory answers to different queries. While the model
attempts creative solutions, no outcome could possibly be satisfactory.

3.2 QUANTITATIVE EXPERIMENTAL RESULTS

Information acquisition strategy effectiveness. The results for these experiments are illustrated
in Figure 8, where we plot Accuracy and F1 Score against description length, where higher values
indicate better performance. Both DT-IC and TopK-IC compute the entropy hierarchically and
select the query that maximizes it. The key difference is that DT-IC takes into consideration each
query-answer and fragments the data accordingly. Eventually, the method runs out of data points in
the training set over which computing the entropy and thus it stops selecting queries (visible by the
flattening of the curve). In other words, it suffers from data fragmentation. TopK-IC does not have
this issue, but it is suboptimal as it does not account for history.

This experiment shows that InCoDe consistently selects queries that yield a better information
acquisition strategy than the baselines. This happens especially for more complex scenarios such as
the LSUN datasets. In contrast, the CLEVR dataset is simple and contains a high degree of redundancy
in Q(X). The latter favors entropy-based methods while explaining the poor performance shown by
the random strategy.

Composable generation.
Table 2: Our method generates images that respect the
attributes more often than baselines do. Quantitative evalu-
ation in terms of Accuracy and F1 for 10 queries, chosen by
order of entropy, in generated images.

LSUN Bedroom LSUN Churches
Acc. F1 Acc. F1

SD V1 0.61 0.62 0.57 0.55
SD XL 0.58 0.64 0.59 0.61
Stru. D 0.52 0.54 0.51 0.50
InCoDe 0.85 0.84 0.75 0.72

We report Accuracy and F1 Score in Tbl. 2
for the LSUN datasets. These results show
the capacity of InCoDe to combine multi-
ple concepts (represented as queries) into
the same generated sample. Note that the
chosen metrics introduce a new source of
error as BLIP can produce bad predictions.

We can observe that our method performs
significantly better than Stable Diffusion
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Ours DT-IC TopK-IC Random

LSUN Bedroom

Clevr Colors CelebA

LSUN Churches

Figure 8: Performance evaluation of InCoDe using attribute-based queries. We report the Test Accuracy
and F1 score of an attribute classifier on the predicted descriptions. InCoDe outperforms the baselines in all
cases, with increasing gains as the datasets become more complex. DT-IC shows similar performance initially,
but it suffers from data fragmentation, as well as long computation time.

(SD V1), which is the base method upon which InCoDe is built. It also outperforms SD XL, which
is a bigger, enhanced version of SD V1. Structured Diffusion Feng et al. (2022) is also based on SD;
however, the modifications they propose for text representations and the sampling strategy negatively
impact performance when dealing with the conjunction of numerous concepts.

4 RELATED WORK

Interpretability in Machine Learning.

A large number of papers in this area are devoted to post-hoc interpretability. However, recent
research has focused on developing more principled frameworks where interpretability is part of the
model’s design (Wu et al., 2021; Bohle et al., 2021; Alvarez Melis & Jaakkola, 2018). Another line
of work tries to learn latent semantic concepts or prototypes from data (Sarkar et al., 2022; Nauta
et al., 2021; Donnelly et al., 2022; Li et al., 2018; Yeh et al., 2020) and produces predictions by
leveraging those concepts. However, once again, the learned concepts could not be interpretable
to a user. Instead, (Chattopadhyay et al., 2022) introduced IP (with subsequent work in Gadgil
et al. (2023)) which produces predictions explained by interpretable query-chains. This framwork
allows the user to define intermediate representations in the form of a query-set. This guarantees by
construction that the resulting query-chain explanations will be interpretable.

Conditioning, Control and Interpretability In Diffusion Models

Diffusion models have been used for conditional generation with great success. While conditioning
was initially studied in the context of class-conditional generation Dhariwal & Nichol (2021); Ho
(2022), there has been a spotlight on text-to-image generation, with high-quality results Rombach
et al. (2021); Saharia et al. (2022); Ramesh et al. (2022); Nichol et al. (2021).

Hence, many works on controllability rely on the direct intervention of embedded text representations
Kawar et al. (2023); Ramesh et al. (2022); Avrahami et al. (2022); Kim et al. (2022); Feng et al.
(2022). In this case, image manipulation still relies on the ability of text-to-image models to compose
multiple concepts, which often fail (Fig. 2, Tbl. 2). Alternative methods, such as those in Mokady
et al. (2022); Hertz et al. (2022); Epstein et al. (2023), leverage the analysis and manipulation of

9
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cross-attention maps between text tokens and U-Net features for control. Regardless of the text-
based method, when control does not directly involve text prompts, interpretability and subsequent
manipulation typically rely on post hoc analysis of the network’s features.

Beyond text-based conditioning, several efforts have focused on using alternative control signals to
guide the generative process. Works such as Zhang & Agrawala (2023); Zheng et al. (2023); Du et al.
(2023); Meng et al. (2022); Li et al. (2023); Yang et al. (2023); Huang et al. (2023) are representative
examples of approaches for controlling image generation by means of spatially grounded inputs.
These signals include contours, bounding boxes, masked images, depth maps, and sketches, often
integrated with textual inputs. Interpretability relies on the user’s ability to understand these control
signals, which is not guaranteed.

Control of the generated outputs has also been engineered directly on U-net features such as in
Kwon et al. (2022), or on abstract latent codes Preechakul et al. (2022), both requiring post hoc
interpretation.

Our work presents a principled framework reminiscent of model inversion Ramesh et al. (2022); Gal
et al. (2022); Mokady et al. (2022); Kwon et al. (2022) or semantic compression Preechakul et al.
(2022); Koh et al. (2020); Kodirov et al. (2017). However, while these works find representations of
the semantic content of a data point, they are often not interpretable by design, and when they are
Koh et al. (2020); Kodirov et al. (2017), they are not compressed (they have no measure of relevance)
or principled. We propose a generalistic method that greedily selects elements of an interpretable-
by-design query-answer set that are most informative, and generates new data conditioned on these
representations while allowing for targeted semantic modifications.

5 CONCLUSION

This work introduces Interpretable Compressed Descriptions for Image Generation (InCoDe), a
novel framework that leverages Information Pursuit (IP) to effectively represent data and guide
image generation based on user preferences. InCoDe generates images consistent with a succinct
and meaningful description D, which is composed by a sequence of user-defined questions and
answers, chosen sequentially to maximize mutual information between D and the complete Query-
Answer set Q(X). In this way, InCoDe prioritizes the most relevant queries and provides an
intuitive, interactive interface for generating customized images, while addressing challenges of
current generative models by building upon them. Through validation across multiple scenarios,
InCoDe demonstrates superior performance over existing methods, offering an efficient solution
for domain-specific applications such as bedroom decoration. This work paves the way for more
personalized and interpretable-by-design generative models, enhancing both user experience and
practical utility.

The proposed framework requires having a query set. This can be perceived as both a strength and
a limitation. It is a strength, since the designer is free to select the set of semantic concepts that
are important for the intended generation task. Yet, building this set can be tedious. Modern large
language models can alleviate this task. We have used this approach to create the queries for the
LSUN Bedroom and Churches datasets. However, human supervision and prompting is still necessary.
This raises the research question of designing a framework that allows users to define the semantic
domain of a query set without the need for direct supervision of the query set itself.
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A APPENDIX

In this appendix, we will provide additional information to complement the main paper. We structure
it as follows: After a brief summary of the notation, in Section A.1 we provide and analyse additional
results for all datasets. In particular, in Section A.1.1, we discuss results on a different type of queries
that are location-centered. In A.1.2, we present results that compliment those in the main body of the
paper. Next, in SectionA.2 we summarize background material on Information Pursuit and Diffusion
Denoising Models. In Section A.3 we provide additional details for each of our experiments; Section
A.4 is used to proof Proposition 2.1 of the location-based experiments described in Sec. A.1 of this
appendix and a justification of the training objective. Finally, in Section A.5, we discuss the broader
impact of our work.

Notation We summarize the notation for the main concepts used along this appendix.

• p(X0): Real data distribution
• p̂(X0): Our model of the data distribution.
• X0: Data-point sampled from a real data distribution.
• t: Time step in our forward diffusion process. It represents the noise level. I.e. we add small

amount of Gaussian noise to the sample in T steps. This produces a set of noisy samples
(X1, . . . XT )

• Xt: Noisy sample at noise level t.
• p(Xt | Xt−1): Forward diffusion process distribution.
• p(Xt−1 | Xt, X0, s): Reverse diffusion process true posterior distribution.
• p̂(Xt−1 | Xt, s): Our model of the reverse diffusion process posterior distribution. p̂ is also

used as the denoising mapping function. The subscript θ is used to indicate the optimizable
parameters of the model.

• βt: Variance schedule.
• c: Arbitrary condition
• {q, q(X0)}: Query and query answer respectively.
• S: Query-Answer history random variable. With s as a Query-Answer history realization.
• ϵt: Gaussian noise term added to the clean sample X0 in order to obtain Xt.
• ϵθ(Xt, t, c): Estimated noise at step t. Output of one forward pass in our diffusion model

(with parameters θ). The network is conditioned to the current noisy image Xt, the current
noise level t, and potentially another condition c, that should steer our generative model
towards p(X0|c).
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A.1 MORE RESULTS

In this section we analyse additional results from the remaining datasets, including those with
location-based query sets.

A.1.1 LOCATION-BASED EXPERIMENTS

As noted in the main body, InCoDe is not restricted to textual queries. A query can gather different
types of information about a datapoint, such as location-based queries, where a query qi,j requests an
RGB image patch around the location (i, j) in X . In this case, we can have Q(X) = X by allowing
to ask enough queries to retrieve every image pixel. Since these questions carry spatial structural
information, we can parameterize a set S as an image where only the patches corresponding to
answered questions are visible and we use a Querier consisting of a set of convolutional blocks.

In the case of Q(X) = X , where the answers to queries are portions of the image itself, the denoising
objective of DDPM can be used to optimize our Querier, avoiding the need for a Query Answerer,
jointly training the Querier and Generator in an end-to-end fashion.

Equation (4) can be rewritten as:

min
g,f

Et,X0,SDKL[p(Xt−1 | Xt, X0) || p̂θ(Xt−1 | Xt, q(X0), S)]

where q = g(S) ∈ Q, p̂θ(Xt−1 | Xt, q(X0), S) = f(q(X) ∪ S)
(A1)

We formalize the above procedure as follows:
Proposition A.1. Let (f∗, g∗) be an optimal solution to (A1). We define the optimization problem as:

max
p̂∈PX ,q∈Q

I(q(X0);X1 | s)− Et,X0,sDKL[p(Xt−1 | Xt, q(X0), s) || p̂(Xt−1 | Xt, q(X0), s)].

(A2)
Then, there exists an optimal solution (p̂∗s, q

∗
s ) to the above objective for any realization S = s such

that p(S = s) > 0 such that q∗s = g∗(s) and p̂∗s = f∗(Xt, {q∗s , q∗s (X0)} ∪ s).

The proof of proposition A.1 can be found in A.4, and it draws inspiration from Chattopadhyay
et al. (2022). Note that for an optimal solution (p̂∗s, q

∗
s ), the KL divergence term would be 0, and the

Querier would choose the query that maximizes the mutual information term between the first latent
variable X1 of the diffusion process and any given subset S = s of Q(X). While the objective is to
maximize I(q(X);X | s), this quantity is undefined for a continuous X . A common strategy to make
mutual information well defined is to add a small Gaussian noise to X0 Saxe et al. (2018). Hence, we
seek to maximize I(q(X0);X1 | s) instead. In section 2.2 we provide a practical methodology to
solving the presented optimization problems, by means of neural-network architectures.

Datasets. We selected datasets with increasing complexity to assess a range of scenarios, starting
from simple cases with predictable outcomes based on human intuition and progressing towards more
challenging scenarios. We include results for MNIST (LeCun et al., 1998): A database of images of
hand-written digits; CLEVR Johnson et al. (2016): A synthetic dataset, where objects with different
attributes are placed randomly in a uniform background. For CLEVR, we create an attribute set that
answers the following query-set format: "Are there n or more objects of color Y ?". This is asked for
eight colors (including any color) and n ∈ [1, 5] for a total of 45 queries; CelebA: A dataset with
celebrity face images and 40 facial attributes; and LSUN Bedroom Attributes, a large dataset with
bedroom images and their descriptions as a set of 58 binary attributes consisting on answers provided
by BLIP Li et al. (2022) to human-crafted queries. The latter is a contribution of this work, given
the lack of existing datasets that meet our task’s requirements, and it will be released for public use.
More details can be found in the Appendix. The types of queries used for each of these datasets are
listed in Table 3.

Metrics. We assess performance using different metrics, depending on the type of queries utilized.
For location-based queries, aiming to impute missing values in an image, we employ MSE and LPIPS
Zhang et al. (2018) (measuring perceptual similarity through VGG network features), computed
between the ground-truth and 200 generated samples, one per test example, for description lengths
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Table 3: Descriptions of the image size and location-based query-set for different datasets.

Dataset (Image size) Query Set Q Size |Q|

MNIST (LeCun et al., 1998) (1× 32× 32), pixel intensities in 3× 3 stride 1 900

CelebA Face (3× 64× 64) pixel intensities in 8× 8 patches with stride 4 225

Clevr Johnson et al. (2016) (3× 64× 64), pixel intensities in 8× 8 patches with stride 4 225

of |D| = {0, 1, 2, 5, 10, 20, 40, 60} (for CLEVR and CelebA) and |D| = {0, 2, 5, 10, 20} (MNIST).
The Generator used for evaluation was trained on random histories S for fairness across baselines.

For experiments using attribute-based queries, we predict answers to the full set of queries Q(X)
with a Query Answerer, trained to classify Q(X) from random histories S. Accuracy and F1 score are
computed with a testset with 2k samples in all cases, comparing predicted answers with the ground
truth.

Baselines For location-based query sets, where answers are not binary and impurity computation
is intractable, we employ two hand-crafted patterns that emulate human intuition, as introduced in
Rangrej et al. (2022): (iv) Spiral, where patches are selected in spiral starting from the center of the
image, and (v) Cross, with patches selected with a cross pattern. Baselines are described in higher
detail in the Appendix.

Figure 9: Performance evaluation of InCoDe using
location-based queries. We measure the reconstruction
error and perceptual similarity (LPIPS). InCoDe out-
performs the baselines in both datasets.

Quantiative results: In Fig. 9, For these ex-
periments we report reconstruction metrics in
Figure 9, where smaller values indicate bet-
ter performance. The horizontal axes indicate
the number of asked queries. InCoDe clearly
outperforms the baselines in both MNIST and
CLEVR datasets, where there is abundant re-
dundancy to be exploited. For instance, both
datasets have uniform backgrounds. As the main
content is located in the center of the image,
spiral and cross baselines have relatively good
performance in the initial steps. However, explo-
ration is needed to disambiguate the remaining
appearance and thus the random baseline gets
better as more queries are asked. In the case of
CelebA, we observe that the random baseline
slightly surpasses InCoDe for fewer than 20
queries. We attribute this behavior to two main
factors. First, this baseline selects queries with
the same random strategy that was used to pre-
train the Generator. Second, CelebA samples
contain useful information in most of the image,
and thus a highly exploratory method can be
especially effective.

Qualitative results: We can see in the side
(a) of Fig. 10 a sequence of patch queries se-
lected by our Querier for a sample of Clevr. The
images in this dataset consist of a uniform back-
ground with a set of objects of different sizes
located around the center. We can see how the
Querier initially selects a patch in the center of

the image and then explores around it as more objects are glimpsed. It is interesting to see that for
L = 5, the Querier has seen the 3 objects. However, the generator creates a 4th object, which is does
not exist. This example illustrates the potential of the Generator to create diverse samples, while
respecting the semantic content of description D, and the overall data distribution. In the right side
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(b) of the figure, we the same illustration for a CelebA example. Here, the Querier selects patches in
the main features of the face, the clothes and the contour of the head, which defines the shape and
provides information about both the subject and the background.

Figure 10: InCoDe selects meaningful patches according to the data distribution Illustrated in the left side
(a) we see a sequence of patch queries selected by our Querier with their associated generated samples (same
color border). The Querier initially selects a patch in the center of the image and then explores around it as more
objects are glimpsed. In the right side (b) of the figure, we show an example for a CelebA. Here, the Querier
selects patches in the main features of the face, the clothes and the contour of the head.

Figure 11: InCoDe selects the most informative im-
age patches towards reconstructing a reference. Sam-
ples generated using descriptions with location-based
queries of length 0, 2, 5, 10 and 20, with the MNIST
dataset. The Querier selects highly informative patches
according to the previous history, quickly predicts the
digit’s identity, and refines its appearance.

Fig.11 illustrates InCoDe’s performance when
using location-based queries. The querier se-
lects patches that contain most information
about the digit. The identity of the digit is
quickly captured after |D| = 5 patches, and
further steps refine the appearance to match the
reference image.

A.1.2 ATTRIBUTE-BASED EXPERIMENTS

The following results illustrate qualitatively the
behavior of our model, including corner cases.

LSUN Bedrom more generated samples: In
Fig. 17, we display two examples of a given
set of attributes (query-answer pairs) and their
corresponding image examples in the dataset. For visualization purposes we choose combinations of
attributes that have exactly 4 corresponding examples in the dataset. Note that in most cases samples
have a unique combination of attributes. We observe how the generated samples by our dataset are
semantically similar, while appearance at the pixel level varies widely.

Fig. 12 showcases how generated samples of LSUN Bedroom dataset using attribute-based queries
align to the reference as the number of selected queries increases. After 30 queries, the generated
sample resembles image the reference just as much as when asking all queries in the query set.

LSUN Bedrom more editing results: We provide additional editing results in Fig. 16. We can
see how modifying one attribute does not change the overall structure of the generated sample, while
it does add or subtract that particular attribute from the image.

Trajectories: In Fig. 13 we present a trajectory generated by our Querier, along with the
corresponding InCoDe outputs at description lengths of 5, 10, and 15. The results demonstrate
alignment with the majority of answers while producing images of high quality.

Contradictory Answers: in Fig. 15, we illustrate one particular case. How does the model
interpret the condition in case two queries have contradictory answers. This should rarely happen
when answers represent a real datapoint. However, a user could input contradictory answers, or
the VQA model could have a defective output. If contradiction occurs, one or the other attribute is
disregarded. This is made obvious in the figure, for queries “Is a window present in the image? No”
and “Are plants visible from the window? Yes”.
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5Reference 10

20 30 All (58)

Figure 12: InCoDe generates samples according to a semantic description given at different levels of detail.
This figure illustrates how the descriptions chosen by our model generate samples that increasingly mirror the
reference (top-left).

Figure 13: InCoDe Example of a trajectory created by our Querier. The corresponding images generated
with different description lengths respect most attributes.

Underrepresented attributes: Fig. 14 illustrates the behavior of InCoDe when individually
asked about queries with an underrepresented answer in the dataset. We observe that our approach
can still capture them. However, this experiment also brings to light the limitations of our pipeline.
First, we observe that the presence of a Hunting trophy is rare and disregarded by our model. If we
look deeper, we conclude that the BLIP model used to answer the queries hallucinates this particular
attribute, and thus the model cannot properly capture it. We also observes that the image quality
suffers when only one or two queries are visible to the generative model.

CelebA with Facial attributes: We illustrate in Fig. 18 the performance of InCoDe for the
CelebA dataset. Similarly to the previous example, we display the list of queries selected by our
trained Querier. In this case, it is harder to judge the correctness of the sequence intuitively. However,
the first three questions likely have very high entropy in the dataset. Moreover, we see that the
generated images using our strategy resemble the reference at a faster pace than when using a random
selection strategy.
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Figure 14: Attributes in the dataset may be respected even when unfrequent in the dataset, however in
some cases they are disregarded. We illustrate this behavior with the following examples: (a) Generated
images with active attributes indicating the presence of "red courtains are present in the room", (b) "Image is a
collage" and (c) "hunting trophy is present in the room". All of them with rare presence in the training set. We
observe that in some cases the attribute may be respected, with the presence of failure cases. For instance, in (c)
Hunting trophys are not seen in the scene. We argue that this can also be an effect of (d), where the BLIP model
used to answer the queries may sometimes hallucinate attributes and give wrong responses, as seen by retrieving
examples for "hunting trophy". We also observe that the quality of the generated images suffers slightly
when the Generator is conditioned on one or two attributes only, with the rest masked out.. Human figures
also have bad quality but this is a common problem with the version of Stable-Diffusion that we are using as
base model.

Figure 15: Contradictory attributes lead to valid images, but either one attribute or the other are disre-
garded. In this particular case, we see how we indicate that no window should be visible, while plants should
appear through a window. The result often shows plants in an environment without windows, but obviously the
conjunction of both attributes is not exactly present, as it is impossible. Note that none of the training examples
(assuming VQA method being flawless) should not have such combination present.
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Figure 16: Examples of targeted modifications. (left) We show two samples generated from the same set of
query-answers. (middle) We edit the answer of "Is there a nightstand light in the table?" to "No". (right) We edit
the answer of "Can you see plants from the window?" to "Yes".

Figure 17: Our method generates high-quality samples, substantially different from the training examples.
We show all examples in our training and testing set for a particular set of attribute responses. We then use
these attributes to generate samples and we conclude that they are semantically similar while varying widely in
appearance. We include one failure case (right figure, bottom-left).
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Learned 
Querier

1. Male --> yes    

2. Smiling --> yes 

3. Young --> yes 

4. No_Beard --> no        

5. Black_Hair --> no

6. Mouth_Slightly_Open --> yes

7. Wearing_Hat --> no

8. Wearing_Necktie --> no

9. Bushy_Eyebrows --> no

10. Brown_Hair --> no

11. Attractive --> yes                                                     

12. Eyeglasses --> no                                                   

13. Blurry --> no            

14. Wavy_Hair --> no            

15. Bangs --> no       

16. High_Cheekbones --> yes                                               

17. Heavy_Makeup --> no                                            

18. Arched_Eyebrows --> no                                                

19. Straight_Hair --> yes        

20. Narrow_Eyes --> no 

21. Bags_Under_Eyes --> yes    

22. Rosy_Cheeks --> no                                                                                                                              

23. Big_Nose --> no                                                                                                                                

24. Chubby --> no                                                        

25. Wearing_Earrings --> no                                           

26. 5_o_Clock_Shadow --> no                                                                                                                        

27. Receding_Hairline --> no                                                                                                                         

28. Blond_Hair --> no                                                   

29. Oval_Face --> no                                                                                                                                

30. Goatee --> no                                                                                                                                   

31. Big_Lips --> no                                                                                                                               

32. Pointy_Nose --> yes       

33. Sideburns --> no            

34. Pale_Skin --> no

35. Wearing_Lipstick --> no      

36. Wearing_Necklace --> no  

37. Double_Chin --> no                                                                                                                              

38. Mustache --> no                                                                                                                                 

39. Gray_Hair --> no                                                    

40. Bald --> no 

Random  
Strategy

Selected 
Queries:

5

10

20

30

All

GT X

L

Samples

X̂

Figure 18: InCoDe selects meaningful queries to reconstruct an image in terms of the query set. On the
right, we see a list of queries selected by our trained Querier. The first three questions likely have very high
entropy in the dataset. The generated images (center) using our strategy converge faster towards the reference
appearance (left) than the random selection strategy.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

A.2 BACKGROUND

A.2.1 INFORMATION PURSUIT AND ITS VARIATIONAL CHARACTERIZATION

Information Pursuit (IP) was proposed as a framework for explainable prediction by choosing
explainable queries Chattopadhyay et al. (2022). Its main idea is to make a prediction of a target
variable Y from input data X ∈ X , by sequentially asking and answering queries about X .

In practice, only a small number of question-answer pairs might be enough to make a prediction.
Thus, IP aims to construct the shortest sequence of questions that is most informative to predict Y , by
selecting the next query to maximize the mutual information with X , building on the information
gained from previous queries. Given a set of possible queries Q, and an observation X = xobs, the IP
algorithm is as follows:

q1 = IP(∅) = argmax
q∈Q

I(q(X);Y );

qk+1 = IP(q1:k(xobs)

= argmax
q∈Q

I(q(X);Y | q1:k(xobs)).

(A3)

where q(x), with a slight abuse of notation, denotes that the answer to query q for the data X = x is
q(x), and qk+1 ∈ Q refers to the new query selected by IP at step k + 1, based on the query history
(denoted as q1:k(xobs)), and I denotes mutual information.

IP can be carried out by learning the distribution p(Q(X), Y ) from the data by using generative
models and MCMC sampling to estimate the mutual information terms Chattopadhyay et al. (2022).
However, MCMC sampling is computationally expensive. To overcome this challenge, Chattopadhyay
et al. (2023) proposed a variational characterization of IP, noting that generative models are only a
means to an end. Thus, they introduced a function called querier, mapping the observed histories,
q1:k(x

obs), to the most informative next query qk+1 ∈ Q. They showed that this most informative
query is exactly the query q∗ whose answer will minimize the KL divergence between the conditional
label distribution p(Y | X) and the posterior p(Y | q∗(X), q1:k(x

obs)).

Based on this insight, an optimization problem is designed to perform IP as follows. Let
Q(x) = {q(x) | q ∈ Q} be the query-answer set containing all inquiries about the data x and
their corresponding answers. Let K(x) = P(Q(x)), be the power set2 of Q(x) with all possible query
histories. Define K̄ := ∪x∈XK(x); let a classifier f : K̄ → PY be a function mapping arbitrary
query-answer sequences to a distribution over Y and the querier g : K̄ → Q be a function mapping
arbitrary query-answer sequences to a query q ∈ Q. Then, the variational objective for IP is given by
the optimization problem:

min
θ,ϕ

EX,S [DKL (p(Y | X) ∥ p′θ(Y | q(X), S))]

subject to q = gϕ(S) ∈ Q

P̂ (Y | q(X), S) = f(q(X) ∪ S),

(A4)

where DKL indicates the Kullback–Leibler divergence between two probability functions and S is a
random set of query-answer pairs taking values in K̄, and conditioning on q(X) should be read as
conditioning on {x ∈ X | q(x) = q(X)}. Given S = s and X = xobs, the querier gϕ(·) chooses a
query q ∈ Q, evaluates it on xobs and passes q(xobs) to the classifier. Then, the classifier makes a
prediction based on s appended with this additional query-answer q(xobs). This is implemented by
parameterizing the querier and classifier by neural networks, with parameters θ and ϕ, respectively,
and a random set of query-answer pairs S. For futher details refer to Chattopadhyay et al. (2023).

A.2.2 DIFFUSION DENOISING MODELS

Here, we provide a detailed overview of the formulation of Gaussian diffusion models from Ho et al.
(2020).

There are two main stages in diffusion-based generative modeling. The first stage is the forward
diffusion process. It gradually adds a small amount of Gaussian noise to a clean sample from the

2A power set of a set Q is the set of all subsets of Q, including the empty set and Q itself.
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source distribution X0 ∼ p(X) to create a sequence of noisy samples X0, . . . , Xt, . . . XT . The
amount of added Gaussian noise is defined by a variance schedule noted by βt:

p(Xt|Xt−1) := N (Xt;
√
1− βtXt−1, βtI) (A5)

As seen the transition probability is parametrized as a Gaussian distribution. The Gaussian Markov
proces has good properties. We can easily obtain a noisy sample at an arbitrary step t of the diffusion
process given a clean sample X0. Instead of repeatedly applying p until the desired t, we simply need
to accumulate the noise scales given our schedule:

p(Xt|X0) = N (Xt;
√
ᾱtX0, (1− ᾱt)I) (A6)

=
√
ᾱtX0 + ϵ

√
1− ᾱt, ϵ ∼ N (0, I) (A7)

with αt := 1− βt and ᾱt :=

t∏
s=0

αs (A8)

with 1− ᾱt indicating the noise variance at an arbitrary step t.

This is followed by the reverse diffusion process, which starts with a sample from isotropic Gaussian
noise, XT , and incrementally removes noise towards generating a true sample from the source
distribution, thus reversing the forward process. We are thus interested in approximating the true
posterior of the reverse diffusion process. By means of the Bayes theorem, we find that the true
posterior conditioned on X0 is also Gaussian with mean µ̃t(Xt, X0) and variance β̃t:

µ̃t(Xt, X0) :=

√
ᾱt−1βt
1− ᾱt

X0 +

√
αt(1− ᾱt−1)

1− ᾱt
Xt (A9)

β̃t :=
1− ᾱt−1

1− ᾱt
βt (A10)

p(Xt−1|Xt, X0) = N (Xt−1; µ̃(Xt, X0), β̃tI) (A11)

However, we wish to approximate the posterior p(Xt−1|Xt), without access to the sample X0. This
term cannot be computed exactly but it is assumed to have a Gaussian form when the step-size βt is
sufficiently small. We approximate the posterior with a model p̂θ(Xt−1|Xt) parametrized by a neural
network with parameters θ. In particular, the model estimates the mean µθ and a diagonal covariance
matrix Σθ of a Gaussian distribution:

p̂θ(Xt−1|Xt) := N (Xt−1;µθ(Xt, t),Σθ(Xt, t)) (A12)

In order to learn the true distribution p(X0), we can optimize the following variational lower-bound
Lvlb for p̂θ(X0), instead of directly approximating p(X0):

− log p̂θ(X0) ≤ − log p̂θ(X0) +DKL(p(X1:T |X0)∥p̂θ(X1:T |X0)) (A13)

= − log p̂θ(X0) + EX1:T∼p(X1:T |X0)

[
log

p(X1:T |X0)

p̂θ(X0:T )/p̂θ(X0)

]
(A14)

= − log p̂θ(X0) + Ep
[
log

p(X1:T |X0)

p̂θ(X0:T )
+ log p̂θ(X0)

]
(A15)

= Ep
[
log

p(X1:T |X0)

p̂θ(X0:T )

]
(A16)

Let LVLB = Ep(X0:T )

[
log

p(X1:T |X0)

p̂θ(X0:T )

]
≥ −Ep(X0) log p̂θ(X0) (A17)
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Lvlb can be decomposed into three main terms:

LVLB = Ep(X0:T )

[
log

p(X1:T |X0)

p̂θ(X0:T )

]
(A18)

= Ep
[
log

∏T
t=1 p(Xt|Xt−1)

p̂θ(XT )
∏T
t=1 p̂θ(Xt−1|Xt)

]
(A19)

= Ep
[
− log p̂θ(XT ) +

T∑
t=1

log
p(Xt|Xt−1)

p̂θ(Xt−1|Xt)

]
(A20)

= Ep
[
− log p̂θ(XT ) +

T∑
t=2

log
p(Xt|Xt−1)

p̂θ(Xt−1|Xt)
+ log

p(X1|X0)

p̂θ(X0|X1)

]
(A21)

= Ep
[
− log p̂θ(XT ) +

T∑
t=2

log
(p(Xt−1|Xt, X0)

p̂θ(Xt−1|Xt)
· p(Xt|X0)

p(Xt−1|X0)

)
+ log

p(X1|X0)

p̂θ(X0|X1)

]
(A22)

= Ep
[
− log p̂θ(XT ) +

T∑
t=2

log
p(Xt−1|Xt, X0)

p̂θ(Xt−1|Xt)
+

T∑
t=2

log
p(Xt|X0)

p(Xt−1|X0)
+ log

p(X1|X0)

p̂θ(X0|X1)

]
(A23)

= Ep
[
− log p̂θ(XT ) +

T∑
t=2

log
p(Xt−1|Xt, X0)

p̂θ(Xt−1|Xt)
+ log

p(XT |X0)

p(X1|X0)
+ log

p(X1|X0)

p̂θ(X0|X1)

]
(A24)

= Ep
[
log

p(XT |X0)

p̂θ(XT )
+

T∑
t=2

log
p(Xt−1|Xt, X0)

p̂θ(Xt−1|Xt)
− log p̂θ(X0|X1)

]
(A25)

= Ep[DKL(p(XT |X0) ∥ p̂θ(XT ))︸ ︷︷ ︸
LT

+

T∑
t=2

DKL(p(Xt−1|Xt, X0) ∥ p̂θ(Xt−1|Xt))︸ ︷︷ ︸
Lt−1

− log p̂θ(X0|X1)︸ ︷︷ ︸
L0

] (A26)

From this point on, it suffices with optimizing the intermediate term Lt−1 for all values of t. Note
that we have an analytical expression for p(Xt−1 | Xt, X0) which has a Gaussian form. Given that
our model p̂θ(Xt−1 | Xt) also parametrizes a Gaussian, we can exploit the closed-form solution
for the KL divergence between Gaussian distributions, and leverage a simple change of variables
(described in Ho et al. (2020)) in order to optimize a simpler expression:

Lsimple = := Et∼[1,T ],X0∼p(X0),ϵt)[||ϵt − ϵθ(Xt, t)||2] (A27)

Here ϵt is the added noise at time t, and we train a model ϵθ(Xt, t) to predict ϵt from Equation A7.

Lsimple does not provide any learning signal for Σθ(Xt, t). This happens because instead of learning
Σθ(Xt, t), it is fixed to a constant βtI as proposed by Ho et al. (2020).

µθ(Xt, t) can be derived from ϵθ(Xt, t) as follows:

µθ(Xt, t) =
1

√
αt

(
Xt −

1− αt√
1− ᾱt

ϵθ(Xt, t)

)
(A28)

This sustitution is used both to derive Equation A27 and to sample. The sampling algorithm can be
found in Ho et al. (2020). It is not the only possible sampler that has been proposed, but we use it for
our method.
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A.3 EXPERIMENTAL DETAILS

In this section we describe the details for different aspects of the experiments: the overall set-
ting and architecture, the datasets, details for LAION-400M, the sampling procedure and training
regularizations.

Architecture and Setting Details. We design different architectures for different query-set types.
Tables 4, 5 depict the designs for the Querier, and Table 6 for the Query Answerer. For different
datasets, The blocks may have different depths. For the patch-based querier, the number of channels is
the sum of channels for the ground-truth reference image (if any), channels of the history and an extra
channel that is a binary mask indicating what regions of the image are visible C = Cgt + CS + CM .
The input is thus the naive concatenation of these three sources. For attribute-based query-sets,
the input data is formatted differently. We have a two-channel one-dimensional vector that is the
concatenation of an indicator of the answers to the visible attributes with values {−1, 0, 1} and a
binary mask indicating visibility.

We use Imagen Saharia et al. (2022) as the main generative pipeline. We slightly modify the
conditioning methodology to adapt to our requirements. We describe the main modifications:

• Remove LayerNorm from fully connected layers that process attribute-like conditions.

• Attribute query-sets condition the U-Net through masked cross-attention in all layers, an-
nulling the effect of queries that have yet to be asked. Diffusion time t interacts with the
U-Net solely through feature-wise modulation.

• Image-like conditions are concatenated to the noisy input image of the U-Net.

Next, we describe the main hyperparameters used for Imagen’s U-Net. Learning rate: LR = 1e− 4
with a cosine decay; Base dimension: 32; Dimensionality multiplyers: (1, 2, 4, 8), Self-attention
at resolutions: (× 1

4 , × 1
8 ); Query embedding size: 16 × 2; Condition size: 256; Number of steps

for training and sampling: 256; Condition drop probability: p = 0.1. The reference code-base
and other details can be found in https://github.com/lucidrains/imagen-pytorch.
More details can be found in our codebase.

Table 4: Architecture for the
querier used for the patch-based
experiments.

ConvBlock (C → 512)

DeConvBlock (512 → 32)

Dense (32 → 1): Attention logits
Hard Softmax: Selected Query

Table 5: Architecture for the
querier used for the attribute-
based experiments.

LinearBlock (|Q| → 2000)

LinearBlock (2000 → 500)

Channel-concat
Dense (1000 → |Q|): Attention logits

Hard Softmax: Selected Query

Table 6: Architecture for classi-
fier used for the attribute-based
experiments.

LinearBlock (|Q| → 2000)

LinearBlock (2000 → 500)

Channel-concat
Dense (1000 → |Q|): Attribute logits

Our method for LSUN Bedroom experiments has been trained as a wraper to Stable Diffusion V1-4:
huggingface.co/CompVis/stable-diffusion-v1-4. We use the same version for the results displayed in
Fig. 2.

When showing results for Stable Diffusion XL, we use the model in huggingface.co/stabilityai/stable-
diffusion-xl-base-1.0.

Quantitative experiments for the generative approach compositionality capability. We choose
as baselines the Stable Diffusion V1-4 baseline text-to-image model and Structured Diffusion Feng
et al. (2022), a method to improve multi-concept conditioning in text-to-image models, specifically
more accurate attribute binding and better image compositions. Both methods are conditioned by
text, and thus we provide the attributes in the following format:

“Photo of a bedroom with curtains that are light-colored, with white walls, with floor made of wood,
with visible door, without an ensuite bathroom, with white bedsheets, and without a watermark.”

Note that we select 10 attributes from the query set of length 58. They correspond to the attributes
with top entropy in the training dataset.
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The reason why we do not provide the full list of attributes for the LSUN Bedroom dataset is that the
baselines only accept prompts with a maximum length of 77 tokens, and thus we cannot concatenate
all attributes in natural language.

Datasets details. Here, we describe the dataset details.

• MNIST: Training corpus consists of 60k 1×32×32 greyscale images of handwritten single
digits. In inference time we generate 5 samples for each example of the test set, consisting of
120 images. We generate samples for multiple description lengths, in order to generate the
curves in Fig. 9. The test setting is the same for all experiments, except indicated otherwise.

• CelebA: It consists of 50k 3 × 64 × 64 images of celebrity faces, divided into 34-1k-
15k for training, validation and testing. The publicly released dataset can be found in
https://www.tensorflow.org/datasets/catalog/celeb_a.

• Clevr: It consists of 8k (partitioned as 7k-1k-1k for training), validation and test. 3 ×
128× 128 images generated by randomly placing objects in a flat background with different
lightings. The objects have different controllable discrete attributes such as color, shape and
material, as well as continuous attributes such as rotation or size. We choose color for our
attribute-based experiments.

• LSUN Bedroom and Churches with Queries: Given the lack of existing datasets that met
our task’s requirements - adequate number of samples, high image quality, binary attribute
descriptions and images belonging to a concrete and well-defined distribution, we created
our own dataset. To do so, we selected a set of descriptive binary queries, some of which
redundant with others, to categorize a certain image distribution. Bedroom dataset consists
of 316k images, filtered to 60k and resized to 3×512×512 belonging to LSUN (Large-scale
Scene Understanding) dataset Yu et al. (2016) under the category ’bedroom’. Churches
dataset consists of 70k images, filtered to 11k and split as 90% − 10%, for training and
validation, reserving 2k images for test. They belong to category ’churches’ of LSUN and
are also resized to 3× 512× 512.
Filtering includes discarding images with width/length ratios exceeding 1.3 or falling
below 0.7, with additional rule-based filtering. The images were then passed through
BLIP Li et al. (2022), a visual question-answering engine with a set of queries designed
to describe the scene with binary answers. The official LSUN dataset can be found in:
https://www.tensorflow.org/datasets/catalog/lsun.
The list of binary attributes were the following (asterisk marks some level of redundancy):
Bedroom:

– Presence of curtains
– Presence of red curtains*
– Presence of brown curtains*
– Presence of blue curtains*
– Presence of light colored curtains*
– Presence of a luggage
– Presence of at least one person
– Presence of an adult*
– Presence of a child*
– Presence of two children*
– Presence of a blue wall
– Presence of a red wall
– Presence of a white wall
– Presence of a dark wall
– Presence of a window
– Presence of sunlight coming out from a window*
– Presence of plants visible from a window*
– Presence of city buildings visible from a window*
– Visible floor
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– Presence of a carpet*
– Wooden floor visible*
– Presence of a door
– Presence of an open door*
– Presence of door to an en-suite bathroom*
– Visible ceiling
– Presence of hanging lights from the visible ceiling*
– Presence of more than one bed
– Whether all beds are from the same size*
– Presence of bunk beds
– Whether the bed is big enough for two people
– Presence of a mosquito net
– Presence of a TV monitor
– Presence of a radio
– Presence of a radiator
– Presence of a bedside table
– Presence of a nightstand light in the bedside table*
– Presence of more than one bedside tables*
– Presence of photo frames in the bedside table*
– Presence of white bedsheets
– Presence of dark bedsheets
– Presence of blue bedsheets
– Presence of red bedsheets
– Presence of green bedsheets
– Whether the image is a collage
– Presence of an animal
– Presence of a dog*
– Presence of a cat*
– Presence of a bird*
– Presence of a hunting trophy in a wall*
– Presence of a telephone
– Presence of plants inside the room
– Whether the image is from a hotel room
– Presence of paintings in a wall
– Whether the lights are on
– Whether the bed is made
– Presence of a closet
– Presence of a wooden closet*
– Presence of an image watermark

Churches:
– Building made of stone
– If building is made of stone, is it a light-colored stone*
– Presence ofgreen grass in the image
– Presence of trees in the image
– If trees in the image, are they large trees*
– Presence of person in the image
– If person appears in the image, are they standing near the building*
– Presence of a chimney on the roof of the building
– Presence of windows in the building
– If building has windows, are they large windows*
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– Wall of the building made of visible bricks
– If wall of the building is made of visible bricks, are the bricks red*
– Sky clear
– If sky is clear, is the sun visible in the image*
– Clouds in the sky
– Presence of more than one building in the image
– Is asphalt visible in the image
– Does the image have a watermark
– Does the building have a bell on the roof
– Presence of garden in the building
– Building in a rural area
– Presence of a mountain in the image
– Nighttime
– Building in the image from the Romanesque architectural style
– Building in the image from the Gothic architectural style
– Building in the image from the Renaissance architectural style
– Building in the image from the Baroque architectural style
– Building located near a body of water
– Presence of a path leading to the building
– Presence of a bell tower in the building
– Presence of a bench near the building
– Building surrounded by a fence
– Building made of wood
– Presence of columns in the building
– Presence of a large rose window in the building
– Does the building have a cross on the roof
– Presence of a bell tower separate from the main building
– Building adorned with sculptures
– If building is adorned with sculptures, are they religious figures*
– Presence of arches or vaulted ceilings inside the building
– Roof of the building tiled
– If the roof is tiled, are the tiles red*
– Presence of a statue of a saint or angel on the building
– Building painted

Image Sampling. Image sampling is done with the same algorithm as described in Saharia et al.
(2022), the main difference being that the diffusion model is conditioned on the selected description
D.

Hardware InCoDe has been trained in two NVIDIA GeForce RTX 2080 Ti GPUs. For images of
resolution 64× 64, it takes ∼ 1 day to train. There are slight fluctuations due to model variations.
The binary attribute image classifier has been trained in two NVIDIA RTX A6000 GPUs during ∼ 3
days.

A.4 CONDITIONAL DIFFUSION FROM THE PERSPECTIVE OF INFORMATION THEORY: PROOF
OF PROPOSITION 2.1

Initial remarks. We wish to approximate p(X0) with our generative model p̂(X0). Next, we
provide derivation of the diffusion objective by means of the variational lower bound. Steps are
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skipped for brevity. An expansion can be found in Ho et al. (2020) and Section A.2.2 of this appendix.

Ep(X0)[− log p̂(X0)] ≤ Ep(X0)[− log p̂(X0) +DKL(p(X1:T | X0) || p̂(X1:T | X0))]

=Ep(X0:T )

[
log

p(X1:T | X0)

p̂(X0:T )

]
=Ep(X0:T )[DKL(p(XT | X0) || p̂(XT ))

+

T∑
t=2

DKL(p(Xt−1 | X0, Xt) || p̂(Xt−1 | Xt))

− log p̂(X0 | X1)]

(A29)

Effectively we optimize the following objective, which is simplified.

min
p̂∈PX

Ep(X0),t∈[1,T ][DKL(p(Xt−1 | X0, Xt) || p̂(Xt−1 | Xt))] + C

≡ min
p̂∈PX

EX0,ϵ,t∼[1,T ]

[
∥ϵt − ϵθ(Xt, t)∥2

]
= Lsimple,

(A30)

where C is a constant not depending on the parameters θ of p̂ and ϵθ(Xt, t) as our noise estimation
model. Instead of a summation we take the expectation for t ∈ [1, T ]. Minimizing Lsimple is
empirically shown to also minimize the KL divergence term in Equation A29 (Ho et al. (2020)). Here,
we are interested in generating X conditioned to a set of conditions c ∈ {c1, . . . , cN}. Ho (2022)
makes the following connection:

min
p̂∈PX

Ep(X0|c)[p̂(X0 | c)]

≤ min
p̂∈PX

Ep(X0|c),t∈[1,T ][DKL(p(Xt−1) | X0, Xt, c) || p̂(Xt−1 | Xt, c)] + C

≡ min
p̂∈PX

Ep(X0|c),ϵ,t∼[1,T ]

[
∥ϵt − ϵθ(Xt, t, c)∥2

] (A31)

Ho et al. (2020) only considers the unconditional distribution. The above is true if we consider
p(X0 | c) as being a separate distribution, and our model p̂(X0 | c) equivalent to having a family of
unconditional models with different θ for each condition c. Therefore: p(X0 | c) ≡ pc(X0) and
p̂θ(X0 | c) ≡ p̂θ,c(X0).

Next, we prove the following lemma:

Lemma A.2. Let Q be a user-defined query set and P(Xt) all possible distributions on Xt with t
being an arbitrary noise level of the diffusion process. Then, for any realization S = s, the following
holds true:

min
p̂∈PX ,q∈Q

Ep(X0|Xt,s)

T∑
t=2

[DKL(p(Xt−1 | X0, Xt, q(X0), s) || p̂(Xt−1 | Xt, q(X0), s)]

≡ max
p̂∈PX ,q∈Q

I(q(X0);X1 | s) (A32)

− Ep(X0|Xt,s)

T∑
t=2

[DKL(p(Xt−1 | Xt, q(X0), s) || p̂(Xt−1 | Xt, q(X0), s))] (A33)
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Proof of Lemma A.2: With c = {q(X0), s}, we express our objective in Equation (A1) in terms of
mutual information.

min
p̂∈PX ,q∈Q

Ep(X0|Xt,s)

T∑
t=2

[DKL(p(Xt−1 | X0, Xt, q(X0), s) || p̂(Xt−1 | Xt, q(X0), s)]

= min
p̂∈PX ,q∈Q

Ep(X0|Xt,s)

T∑
t=2

∑
Xt−1

p(Xt−1 | X0, Xt, q(X0), s) log
p(Xt−1 | X0, Xt, q(X0), s)

p̂(Xt−1 | Xt, q(X0), s)


= min
p̂∈PX ,q∈Q

Ep(X0|Xt,s)

T∑
t=2

∑
Xt−1

p(Xt−1 | X0, Xt, q(X0), s) log
p(X0, Xt−1 | Xt, q(X0), s)

p̂(Xt−1 | Xt, q(X0), s)p(X0 | Xt, q(X0), s)


= min
p̂∈PX ,q∈Q

Ep(X0,Xt−1|Xt,s)

T∑
t=2

[
log

p(X0, Xt−1 | Xt, q(X0), s)

p(Xt−1 | Xt, q(X0), s)p(X0 | Xt, q(X0), s)

]

+ Ep(X0,Xt−1|Xt,s)

T∑
t=2

[
log

p(Xt−1 | Xt, q(X0), s)

p̂(Xt−1 | Xt, q(X0), s)

]

= min
p̂∈PX ,q∈Q

T∑
t=2

[I(X0;Xt−1 | Xt, q(X0), s)]

+ Ep(X0|Xt,s)

T∑
t=2

[DKL(p(Xt−1 | Xt, q(X0), s) || p̂(Xt−1 | Xt, q(X0), s))]

(A34)
with X = X0. Now observe that for any fixed S = s and any q ∈ Q,

I(X0, q(X0);Xt−1 | Xt, s) = I(X0;Xt−1 | Xt, s) + I(q(X0);Xt−1 | X0, Xt, s)

= I(X0;Xt−1 | Xt, s)
(A35)

Decomposing I(X0, q(X0);Xt−1 | Xt, s),

I(X0, q(X0);Xt−1 | Xt, s) = I(q(X0);Xt−1 | Xt, s) + I(X;Xt−1 | Xt, q(X0), s) (A36)

We find that:

min
q∈Q

I(Xt−1;X0 | Xt, q(X0), s) ≡ min
q∈Q

−I(q(X0);Xt−1 | Xt, s). (A37)

Then, we apply the equality in A37 to the first term of the last expression in Equation in A34:

T∑
t=2

I(q(X0);Xt−1 | Xt, s) =

T∑
t=2

I(q(X0);Xt−1 | {Xt, . . . , XT }, s) =

= I({X1, . . . , XT }; q(X0) | s) = I(X1; q(X0) | s)

(A38)

We easily see that Lemma A.2 is proven by applying the resulting expression in the mutual information
term of Equation A34.

Proof of Proposition 2.1 Once again, we restate the proposed objective in Equation A1 (ommitting
the parameters subscript for simplicity):

min
θ,ψ

Et∼[1,T ],p(X0|S)DKL (p(Xt−1 | Xt, X0) || p̂(Xt−1 | Xt, q(X0), S) (A39)

where q = g(S) ∈ Q
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We then proceed as follows:

min
θ,ψ

Ep(X0|s)

T∑
t=2

[DKL (p(Xt−1 | Xt, X0) || p̂(Xt−1 | Xt, q(X0), s))] (A40)

=Ep(X0|s)

T∑
t=2

[DKL (p(Xt−1 | Xt, X0) || p̂∗s(Xt−1 | Xt, q
∗
s (X0), s))]

=Ep(X0|s)

T∑
t=2

[DKL (p(Xt−1 | Xt, X0) || p̂(Xt−1 | Xt, q̂(X0), s))]

+ Ep(X0|s)

T∑
t=2

[ ∑
Xt−1

p(Xt−1 | Xt, X0) log
p̂(Xt−1 | Xt, q̂(X0), s)

p̂∗s(Xt−1 | Xt, q∗s (X0), s)

]

=Ep(X0|s)

T∑
t=2

[DKL (p(Xt−1 | Xt, X0) || p̂(Xt−1 | Xt, q̂(X0), s)]

− Ep(X0|s)

T∑
t=2

[ ∑
Xt−1

p(Xt−1 | Xt, X0) log
p̂∗s(Xt−1 | Xt, q

∗
s (X0), s)

p̂(Xt−1 | Xt, q̂(X0), s)

]

=Ep(X0|s)

T∑
t=2

[DKL (p(Xt−1 | Xt, X0) || p̂(Xt−1 | Xt, q̂(X0), s)]

− Ep(X0|s)

T∑
t=2

[DKL (p̂
∗
s(Xt−1 | Xt, q

∗
s (X0), s) || p̂(Xt−1 | Xt, q̂(X0), s))]

≤Ep(X0|s)

T∑
t=2

[DKL (p(Xt−1 | Xt, X0) || p̂(Xt−1 | Xt, q̂(X0), s))] , (A41)

for any realization S = s with p(S = s) > 0. The optimal denoiser p̂∗s and query q∗s are the
solution to the minimzation problem. We denote any denoiser as p̂s, and q̂ = g(s) is the output of
any querier. We make use of Lemma A.2 in the fourth equality. We appeal to the KL divergence
non-negativity for the inequality. This inequality holds for ∀S = s. We conclude that q∗s = g∗(s)
and p̂∗s = p̂∗(Xt, {q∗s , q∗s (x0)} ∪ s) for any given s. Note than in a slight abuse of notation we denote
both the denoising mapping and the posterior probability as p̂. The Theorem A2 is proved by using
Lemma A.2 to characterize q∗s and p̂∗s .

Note that parts of this proof are structurally equivalent to that of Chattopadhyay et al. (2023). However,
we apply it to our particular case of image generation by denoising.

Training Objective Function. Finally, applying the empirical equivalency in A30, we can substitute
the KL divergence term in our objective function, obtaining the following expression:

min
θ,ϕ

Et∼[1,T ],X0|S,ϵt
[
∥ϵt − ϵθ(Xt, t, S ∪ {q, q(X0)})∥2

]
(A42)

where q = gϕ(S) ∈ Q

with ϵθ as the noise estimation model with parameters θ and gϕ as the querier, with trainable
parameters ϕ.

A.5 BROADER IMPACT

This paper presents work whose goal is to advance the field of Machine Learning and provide useful
tools for artists to create and edit image content. The ethics of creating realistic images involve a
complex interplay of factors such as intent, consent, impact, and cultural sensitivity. While realistic
images can serve legitimate purposes, responsible creation and use, transparency, and respect for
individuals’ rights are essential to navigate the ethical considerations involved.
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