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Abstract

Large Language Model (LLM) leaderboards001
based on benchmark rankings are regularly002
used to guide practitioners in model selection.003
Often, the published leaderboard rankings are004
taken at face value — we show this is a (poten-005
tially costly) mistake. Under existing leader-006
boards, the relative performance of LLMs is007
highly sensitive to (often minute) details. We008
show that for popular multiple-choice ques-009
tion benchmarks (e.g., MMLU), minor pertur-010
bations to the benchmark, such as changing011
the order of choices or the method of answer012
selection, result in changes in rankings up to013
8 positions. We explain this phenomenon by014
conducting systematic experiments over three015
broad categories of benchmark perturbations016
and identifying the sources of this behavior.017
Our analysis results in several best-practice rec-018
ommendations, including the advantage of a019
hybrid scoring method for answer selection.020
Our study highlights the dangers of relying on021
simple benchmark evaluations and charts the022
path for more robust evaluation schemes on the023
existing benchmarks.024

1 Introduction025

The advent of transformer-based Large Language026

Models (LLMs) (OpenAI, 2023; Deepmind, 2023;027

Anthropic, 2023; Anil et al., 2023; Touvron et al.,028

2023) has led to a generational leap in genera-029

tive models, enabling interaction with computing030

devices through natural language. This advance-031

ment encompasses improvements that have ren-032

dered many earlier benchmarks and leaderboards033

obsolete (Laskar et al., 2023; Shen et al., 2023),034

leading to the compilation of more challenging and035

comprehensive tests. However, the current genera-036

tion of leaderboards still does not satisfy many of037

the requirements of researchers and practitioners038

looking to build on LLMs (Ethayarajh and Juraf-039

sky, 2021; Dehghani et al., 2021). Since LLMs are040

extremely expensive to both train and inference,041

selecting the LLM (or LLM training recipe) is of- 042

ten the most costly decision for the entire project. 043

Stable leaderboards are critical to making the right 044

decision. 045

Leaderboards based on multiple choice ques- 046

tions (MCQ) for evaluation (Wang et al., 2018, 047

2019; Nie et al., 2019; Zhong et al., 2023; 048

Hendrycks et al., 2020) present both convenience 049

and significant limitations (Pezeshkpour and Hr- 050

uschka, 2023; Zheng et al., 2023). While MCQs 051

offer an automated and quantifiable means to as- 052

sess certain aspects of model ability (e.g., knowl- 053

edge), they fall short as a stable means to measure 054

performance. Figure 1 demonstrates the instability 055

of the leaderboard ranking of one popular bench- 056

mark, Massive Multitask Language Understanding 057

(MMLU) (Hendrycks et al., 2020), under small 058

perturbations. 059

Moreover, the reliance on MCQs raises concerns 060

about the models being overfit to these benchmarks, 061

potentially excelling in structured tests while lack- 062

ing real-world applicability. This discrepancy high- 063

lights the need for more holistic and diverse eval- 064

uation methods that transcend the simplicity of 065

MCQs (Liang et al., 2023). It also prompts critical 066

reflection on how these models might inadvertently 067

be trained to achieve high scores through spurious 068

correlations, pattern recognition, and optimization 069

for specific question formats rather than genuine 070

language comprehension or knowledge. As LLMs 071

continue to evolve, it is imperative to develop eval- 072

uation frameworks that can more accurately assess 073

their abilities in a way that mirrors the complexity 074

of real-world use. 075

Despite being widely used, benchmarking with 076

MCQs has turned out to be anything but simple. 077

It requires the full synchronization of evaluation 078

frameworks and results often vary wildly due to 079

nuanced differences. For example, minor changes 080

in prompting and scoring can produce invalid re- 081
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Figure 1: Minor perturbations cause major ranking shifts on MMLU (Hendrycks et al., 2020). Models can move up
or down up to eight positions on the leaderboard under small changes to the evaluation format. Columns (from left):
1) Original ranking given by MMLU using answer choice symbol scoring (a common default). 2) Ranking under an
altered prompt for the same questions, where answer choice symbols are replaced with a set of rare symbols. 3)
Setting where the correct answer choice is fixed to a certain position (in this case, B). 4) Using the cloze method for
scoring answer choices. Under each new ranking, we report Kendall’s τ (Kendall, 1938) with respect to the original
ranking (lower kτ indicates more disagreement between rankings)

sults for particular LLMs1. Two recent studies082

demonstrate that LLMs are susceptible to the or-083

dering of answer choices and bias towards specific084

tokens/symbols (Zheng et al., 2023; Pezeshkpour085

and Hruschka, 2023). In this work, we observe how086

minor perturbations to MCQ can disrupt model087

rankings on leaderboards based on MCQ bench-088

marks. We also take additional steps to precisely089

identify the limitations of LLMs on this measure-090

ment approach.091

The contributions of this paper can be summa-092

rized as follows:093

1. Existing model rankings on popular bench-094

marks break down under slight perturba-095

tions, particularly in the medium to small096

model sizes.097

2. This behavior can be explained by the suscep-098

tibility of all tested LLMs to various forms of099

bias in MCQ.100

1https://huggingface.co/blog/
evaluating-mmlu-leaderboard

3. Some families of LLMs have an over-reliance 101

on format, pointing to potential benchmark 102

leakage. 103

4. We find that LLMs also exhibit bias to the 104

scoring method for answer choices in MCQ. 105

5. Demonstrate that some categories of modifi- 106

cations do not affect the benchmark rankings. 107

2 LLM Evaluation with MCQs 108

Evaluating LLMs with MCQs has rapidly become 109

a standard for measuring the knowledge and reason- 110

ing capabilities of the model (OpenAI, 2023; Anil 111

et al., 2023; Deepmind, 2023; Jiang et al., 2023). 112

Many such MCQ benchmarks have been used to 113

measure LLMs, including Massive Multitask Lan- 114

guage Understanding (MMLU) (Hendrycks et al., 115

2020), Ai2 Reasoning Challenge (ARC) (Clark 116

et al., 2018a), and Common-sense Question An- 117

swers (CSQA) (Saha et al., 2018). 118

Mechanically, testing LLMs with MCQs is ac- 119

complished by presenting the question along with 120

the answer choices to the model and selecting the 121
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choice deemed most probable by the model. Al-122

though this setup appears straightforward, LLMs123

react in unpredictable ways to formatting and other124

minor changes to the questions or the answers.125

LLM performance on a MCQ test can change with126

the introduction of an extra space (e.g., between127

the question and answer) or adding an additional in-128

structional phrase (e.g., "Choices:"). In addition to129

this brittleness, Pezeshkpour and Hruschka (2023)130

found changes to the order in which answer choices131

are presented to GPT4 and instructGPT can change132

the model’s prediction.133

These findings lead us to take a deeper look at134

how MCQ-based benchmark results are affected135

by small perturbations to question formats, LLM136

prompts, presentation of few-shot examples, and137

other dimensions. In particular, we introduce varia-138

tions in three categories:139

• Answer choice format and ordering: testing140

the limits of LLM sensitivity to ordering and141

formatting (Section 3.1).142

• Prompt and scoring modifications: chang-143

ing text included in the prompt and analyzing144

different scoring schemes (Section 3.2).145

• In-context knowledge manipulation: in-146

serting relevant/irrelevant information in147

the prompt and/or few-shot examples (Sec-148

tion 3.3).149

Our main aim is to quantify how these small150

perturbations/variations change the rankings of151

a set of models on a particular benchmark. As152

MCQ benchmarks-based leaderboards are often153

used to compare models and guide model selection,154

we investigate the robustness of benchmarks for155

this purpose. Figure 1 demonstrates how existing156

benchmarks exhibit significant undesirable shifts157

in rankings under small perturbations.158

3 Methods159

In this section, we describe and justify the pertur-160

bations we apply in each of the categories. We161

note that some MCQ tests changes, like modify-162

ing the order of answer choices can change perfor-163

mance even for humans but the effect is typically164

not pronounced (Lions et al., 2021). In general, the165

modifications we make are designed to be small166

perturbations to the MCQ and prompts that should167

not affect performance. The exception to this are168

some of the in-context knowledge manipulations169

described in Section 3.3, which are designed to 170

drastically improve or degrade performance. 171

3.1 Answer choice format and ordering 172

In light of earlier findings related to selection 173

bias (Zheng et al., 2023; Pezeshkpour and Hr- 174

uschka, 2023), we investigate the effects of changes 175

to the presented order of answer choices and 176

changes to the symbols associated with answer 177

choices. 178

Random choice order Our first study aims to 179

uncover how dependent MCQ benchmark perfor- 180

mance and rankings are on the original ordering of 181

the answer choices. We apply two simple schemes 182

to randomly change the order of answer choices 183

presented to the model: (i) swapping choices using 184

a fix set of swaps for all questions and (ii) randomly 185

assigning new positions to each choice while en- 186

suring each choice is moved to a different position. 187

Biased choice order In this setting, the correct 188

answer choice is set to a fixed position across the 189

entire test to measure bias toward predicting an- 190

swers at particular positions. For zero-shot, we 191

simply set the correct answer choice to each of the 192

positions in turn. 193

In the few-shot case, we examine the influence 194

of biasing the correct answers in the examples to 195

the model’s inherent bias to particular positions. 196

For each question, we fix the correct answer of 197

the examples to each position in turn. We then 198

modify the test question in two ways: (i) unchanged 199

answer choices and (ii) correct choice fixed to the 200

same position as examples. This setup is shown in 201

Figure 2. 202

+

5-shots (Fixed to A)

   Q. ..........................
   ...............................
  (A) ....................  
  (B) ....................
  (C) ....................
  (D) ....................

   Q. ..........................
   ...............................
  (A) ....................  
  (B) ....................
  (C) ....................
  (D) ....................

   Q. ..........................
   ...............................
  (A) ....................  
  (B) ....................
  (C) ....................
  (D) ....................

   Q. ..........................
   ...............................
  (A) ....................  
  (B) ....................
  (C) ....................
  (D) ....................

unchanged

   Q. ..........................
   ...............................
  (A) ....................  
  (B) ....................
  (C) ....................
  (D) ....................

   Q. ..........................
   ...............................
  (A) ....................  
  (B) ....................
  (C) ....................
  (D) ....................

Original Question

   Q. ..........................
   ...............................
  (A) ....................  
  (B) ....................
  (C) ....................
  (D) ....................

fixed

Figure 2: Experiment setup for probing position bias
with few-shot examples.

Answer choice symbols The symbols used for 203

the answer choices (e.g. A, B, C, D) also play a 204

role in model bias (Zheng et al., 2023), thus we 205
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experiment with replacing the symbols with alter-206

native and less common tokens. The goal of this is207

to decouple the bias to particular positions from the208

bias to symbols or the relative ordering in natural209

symbols. We replace [’A’, ’B’,’ C’, ’D’] with the210

following two sets of symbols:211

• Set 1: ["$", "&", "#", "@"] compris-212

ing of common tokens that are language-213

independent.214

• Set 2: ["œ", "§", "Ze (Cyrillic)", "ü"] consist-215

ing of rare tokens in the vocabulary without216

any implicit relative order.217

In the few-shot setting, we test both assigning218

fixed ordering for the replaced symbols in the ex-219

amples as well as changing the ordering across220

examples.221

3.2 Prompt and scoring modifications222

LLMs exhibit high sensitivity to variations in223

prompt formatting (Sanh et al., 2021; Mishra224

et al., 2022), forcing benchmark developers to225

unify prompt templates within the same evaluation226

scheme. However, it remains unknown if certain227

models have an affinity towards any specific prompt228

templating style. It is unclear how benchmarking229

prompt choices advantage/disadvantage different230

models. In addition to that, the scoring style may231

change depending on how we are prompting the232

context of a query. We distinguish three major233

categories of scoring methods for MCQs.234

• Symbol scoring: Prompt template is struc-235

tured as question followed by answer choices.236

The model chooses the answer based on the237

likelihood scores for the answer choice sym-238

bol. Used in Hendrycks et al. (2020).239

• Hybrid scoring: Prompt template is struc-240

tured as a question followed by answer241

choices. The model chooses the answer based242

on the likelihood scores for the answer choice243

content normalized by length. Used in Raffel244

et al. (2020); Sanh et al. (2021); Chowdhery245

et al. (2022)246

• Cloze scoring: Prompt templates are struc-247

tured as a question followed by a single an-248

swer choice. Maximum normalized likelihood249

scores overall answer choices define the pre-250

diction. Used in Clark et al. (2018a).251

<initial prompt>

Question: <question>
A. <choice1> 
B. <choice2>
C. <choice3>
D. <choice4>
Answer: <answer
symbol>

<initial prompt>

Question: <question>
A. <choice 1> 
B. <choice 2>
C. <choice 3>
D. <choice 4>
Answer: <choice x>

Symbols Scoring Hybrid Scoring

<initial prompt>

Question: <question>
Answer: <choice x>

Cloze Scoring

Figure 3: Answer choice scoring methods for LLMs.
The symbols and hybrid scoring methods are most simi-
lar, sharing identical prompts. Cloze scoring does not
reflect a “true” MCQ style, as the model is not shown all
the options. However, due to its prevalence we compare
it to the other methods as a baseline.

Figure 3 gives an overview of each scoring 252

method. In addition, we also investigate further 253

modification of instruction and sentinel tokens in 254

the prompt template. 255

Prompt instructions To assess the impact of sub- 256

tle token alterations in prompt instructions, we con- 257

duct experiments on (i) removing question subject 258

information, and (ii) adding "Correct" alongside 259

the answer. These targeted changes aim to identify 260

the robustness in response to certain tokens, partic- 261

ularly when they carry crucial information, as well 262

as to evaluate the influence of contextual bias in- 263

troduced by minor modifications of the instruction 264

text. 265

3.3 In-context knowledge manipulation 266

Under this setting, we attempt to measure model 267

and benchmark robustness in the few-shot setting 268

by testing the entire spectrum of knowledge in- 269

jected in the few-shot examples. In particular, we 270

observe how performance changes under trivial set- 271

tings where the correct answer is provided in the 272

context, as well as when the examples are irrelevant 273

to the question. 274

Correct answer provided We provide the target 275

question and the correct answer in the prompt as 276

an example to the model. This corresponds to the 277

simplest setting for the model, where it only needs 278

to look up the answer in the context. 279

Incorrect answer provided This setting is the 280

opposite, the target question is provided with an 281

incorrect answer as an example. It is challenging 282

as the model must ignore the context and determine 283

the correct answer independently. 284

Trivial examples We replace few-shot examples 285

with simple questions the model is known to be able 286
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to answer (typically related to the language/text of287

the question itself). The only information conveyed288

by the examples is related to formatting (Soltan289

et al., 2022). We create three versions of these290

questions and answers using GPT-4 and ensure291

the model can answer them correctly (as shown in292

Figure A.1).293

Out of domain examples Instead of providing294

examples from the same subject as the target ques-295

tion, we add out of domain questions (from another296

subject) as the few-shot examples. This setting cor-297

responds to a difficulty level between the original298

format and providing trivial examples.299

4 Experiments300

In the bulk of our experiments, we focus on the301

MMLU benchmark due to the extensive nature of302

our experiments (11 models, 22+ settings), and ex-303

tend some experiments to ARC-challenge to show304

generalizability.305

MMLU (Hendrycks et al., 2020) is a commonly306

used benchmark for comparing LLMs, consisting307

of 57 subjects spanning four domains: humanities,308

STEM, social sciences, and others. Each subject309

includes at least 100 multiple choice questions with310

4 answer choices. The entire benchmark contains311

14,042 questions.312

Ai2 Reasoning Challenge (Clark et al., 2018b)313

is a benchmark consisting of 7787 grade school314

science questions. The benchmark is split into two315

sets: Easy and Challenge. We conduct experiments316

on the Challenge set (ARC-C) which is proven to317

contain harder questions for existing models. The318

questions in ARC-C have 3-5 answer choices.319

Unless otherwise stated, the reported score for320

each experiment/model combination on MMLU is321

the mean accuracy across all 14,042 questions. All322

tested model tokenizers encode the multiple choice323

answers as single tokens. Hence, the accuracy is324

equivalent to the normalized accuracy. All baseline325

and modified MMLU benchmarks were performed326

using the LM Evaluation Harness (Gao et al., 2023)327

library. Their implementation of MMLU measures328

the log-likelihood of each of the answer tokens [’A’,329

’B’, ’C’, ’D’] after the input prompt and chooses the330

letter with the highest probability as the model’s331

answer.332

Some of our experiments require permuting the333

answer choice order, however, this can be confus-334

ing for questions where the answer choices are335

dependent on their position, such as “D. All of336

the above.”, or reference other choices, such as 337

“C. Both A and B.”. To circumvent this depen- 338

dency, we manually inspected and modified the 339

questions from three subjects to ensure their an- 340

swers are permutation independent for a subset of 341

our experiments. The modified subjects are: col- 342

lege chemistry, college mathematics, and global 343

facts. 344

For each variation introduced to the MCQ bench- 345

marks, we calculate the change in accuracy (∆Acc) 346

and recall standard deviation (RStd) for each model. 347

RStd measures the bias of a model to a particu- 348

lar answer choice by computing the standard de- 349

viation of recalls for each answer choice (Zheng 350

et al., 2023). This metric quantifies how much the 351

model favors particular positions for the correct 352

answer choice. We typically observe whether RStd 353

changes (∆RStd) are significant across experimen- 354

tal settings. 355

To measure the change in ranking induced by an 356

applied perturbation to a benchmark, we measure 357

the normalized Kendall’s τ distance between two 358

rankings of n models (Kendall, 1938). Kendall’s 359

τ computes the number of swapped pairs between 360

two rankings normalized by the total number of 361

pairs n(n−1)
2 . We report kτ = 1− 2τ , where kτ = 362

1.0 indicates total agreement between rankings, and 363

kτ = −1.0 indicates complete disagreement by 364

reversing the original rankings. 365

5 Results & Analysis 366

In this section, we highlight the major findings 367

of our work and combine the results of multiple 368

lines of experimentation (detailed in Section 3) into 369

concise observations. Additional observations and 370

complete experimental results can be found in the 371

appendix (Section A.1). 372

5.1 MCQ benchmarks are not robust to 373

perturbations 374

As shown in Figure 1, there exist perturbations 375

which cause dramatic shifts in the order of models 376

with respect to commonly accepted leaderboard 377

rankings. We find a significant number of small 378

perturbations demonstrate this effect, while other 379

perturbations are more benign. 380

Sensitive perturbations Shuffling/changing the 381

presented order of the choices, swapping choice 382

symbols, and alternative scoring methods all cause 383

major shifts to the rankings (determined by thresh- 384

olding kτ ≤ 0.75). For example, in a controlled 385
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Figure 4: Change in accuracy and bias (RStd) on zero-
shot MMLU after swapping answer choice symbols with
two different sets of symbols (described in Section 3.1).
While accuracy always decreased, most models exhib-
ited even more selection bias with the new symbols. kτ
for Set1 and Set2 were 0.689 and 0.733 respectively

experiment where we randomly shuffle the answer386

choices presented to the models (Table 1). Five out387

of 11 models change in ranking after the pertur-388

bation and kτ drops to 0.564. A similar pattern is389

seen for perturbations like fixing the correct answer390

to a particular position (Table 2), replacing the de-391

fault choice symbols with other sets (Figure 4), and392

alternative scoring methods (Figure 7).393

Some models elicit this behavior much more394

strongly. For example, we observe that Yi-6b drops395

from third place to seventh or eighth place under396

some benchmark perturbations in the group of 11397

models we tested. Other models in the same size398

range are more stable (e.g., Mistral-7b, Llama2-7b),399

not shifting more than one or two ranks under all400

perturbations. The reasons for this are not clear, but401

could indicate overfitting to aspects of the bench-402

mark style. Since training data for these models is403

not public, it is difficult for us to verify this hypoth-404

esis.405

Unsensitive perturbations Changes that have406

little effect on the model rankings are discussed in407

Section 5.4.408

5.2 Revisiting selection bias: token bias vs.409

position bias410

Prior and concurrent work finds that LLMs answer-411

ing MCQs are highly sensitive to the order that412

choices are presented (Pezeshkpour and Hruschka,413

2023; Robinson et al., 2023) (position bias) as well414

as the symbols used as choice IDs (Zheng et al.,415

2023) (token bias). We find selection bias is appar-416

ent in all LLMs we test both in 0 and 5-shot setups,417

as shown in Tables 2 and A.6. This confirms earlier418

findings and highlights a major weakness of the419

current methods of evaluating LLMs on MCQs.420

To disentangle these two sources of bias, we first421

measure the change in bias (measured by RStd) as422

Model Rank Acc (∆Acc) RStd (∆RStd)

phi-2 (7→7) 34.6 (-3) 14.2 (7.4)
Yi-6b (3→9) 33.0 (-8.3) 11.9 (1.8)
Mistral-7b (4→3) 40.0 (1.0) 9.8 (0.7)
Mistral-7b-Instruct (8→8) 33.3 (-1.7) 16.7 (3.5)
Llama2-7b (11→11) 24.3 (-5.0) 13.2 (-0.4)
Llama2-7b-chat (9→10) 28.6 (-3.7) 27.7 (7.9)
Llama2-13b (6→6) 37.0 (0.7) 22.7 (5.7)
Llama2-13b-chat (9→5) 37.6 (6.0) 26.7 (0.0)
Yi-34b (1→1) 45.0 (-5.0) 9.2 (-2.3)
Llama2-70b (2→2) 40.3 (-1.7) 9.07 (-5.5)
Llama2-70b-chat (5→4) 37.6 (0.3) 13.4 (-6.2)

Table 1: We show that model rankings can shift under
shuffling of the order of answer choices. The largest
change in rank is 5 positions (Yi-6b) followed by 4 posi-
tions (Llama2-13b-chat). This experiment is done on a
subset of MMLU subjects which we manually verified
maintained correctness after shuffling answer choice
order (i.e. did not contain cross references between
answer choices). kτ = 0.564 for this experiment, indi-
cating a significant disagreement in rankings.
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Shuffling Choice IDs Alongside Content

 Accuracy
 RStds

Figure 5: Accuracy and RStd change after randomly
shuffling the order of the choices alongside their option
IDs. Although (Zheng et al., 2023) use this experiment
as evidence that position bias has minimal effect on
selection bias, we find it inconclusive as variance in
∆RStd is large.

we randomly shuffle the entire choice and symbols 423

together, as performed in (Zheng et al., 2023). We 424

find that simply shuffling entire choices is incon- 425

clusive in ruling out the effect of position bias (vs. 426

token bias) as there is a wide variance in the bias 427

change across LLMs (Figure 5, Table A.7 ). In light 428

of this, we opt to isolate token bias from position 429

bias by replacing the default symbols (A/B/C/D) 430

with new/rare symbols from the LLM’s vocabulary 431

(without an implicit relative ordering) and shuffling 432

them. This experiment, displayed in Figure 6 and 433

Table A.8, shows that (i) LLMs always bias toward 434

the symbols representing the choice IDs and (ii) 435

even after shuffling the symbols, bias changes in 436

unpredictable ways. 437
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Figure 6: Using a set of rare symbols (Set2) we test two
modes of shuffling answer choices: shuffling the sym-
bols only (blue bars) and shuffling the answer choice
text only (cyan bars). Even using rare symbols, model
selection bias changes unpredictably indicating token
and position bias are difficult to mitigate.

5.3 Another source of bias: scoring bias438

Beyond the ordering of choices and the symbols as-439

sociated with them, LLMs exhibit varying amounts440

of bias under the choice of scoring method for441

MCQs. We studied the three scoring methods de-442

scribed in Section 3.2: symbol scoring, cloze scor-443

ing, and hybrid scoring. Symbol scoring has be-444

come the dominant method for evaluating LLMs on445

MCQs, largely due to the high accuracy achieved446

by LLMs (Robinson et al., 2023). This, however,447

comes at the cost of high selection bias. Cloze scor-448

ing can essentially eliminate bias since the choices449

are never presented to the model but LLMs tend to450

score poorly using this method. This also does not451

reflect a true MCQ setting. Figure 7 and Table A.13452

detail the results of these experiments.453

Hybrid scoring, where cloze scoring is combined454

with a prompt that reveals all answer choices to455

the model, represents an acceptable balance be-456

tween the two, reducing bias over symbol scoring457

on MMLU and ARC-C, as shown in Figure 7. In458

light of this, we recommend practitioners to replace459

symbol scoring with hybrid scoring to mitigate the460

effects of bias on model rankings.461

5.4 Minor few-shot and prompt changes have462

little effect on benchmark rankings463

We ran several experiments to assess the effect of464

knowledge provided in-context on model perfor-465

mance and rankings. We find that changing the in-466

formativeness of in-context examples, e.g. provid-467

ing irrelevant/trivial examples (Tables A.17-A.19)468

Model Baseline A B C D

phi-2 54.47
52.31
(-2.16)

56.53
(+2.07)

56.30
(+1.83)

50.19
(-4.28)

Yi-6b 61.12
62.53

(+1.41)
64.44

(+3.32)
58.59
(-2.53)

63.13
(+2.02)

Mistral-7b 59.56
52.19
(-7.38)

60.98
(+1.42)

63.84
(+4.27)

60.43
(+0.86)

Mistral-7b-Instruct 53.48
49.77
(-3.71)

54.67
(+1.18)

49.99
(-3.49)

57.74
(+4.26)

Llama2-7b 41.81
66.36

(+24.55)
30.40

(-11.42)
36.28
(-5.53)

23.37
(-18.44)

Llama2-7b-chat 46.37
30.84

(-15.53)
69.41

(+23.04)
50.05

(+3.68)
28.23

(-18.14)

Llama2-13b 52.08
35.82

(-16.26)
57.24

(+5.16)
68.65

(+16.57)
44.08
(-8.00)

Llama2-13b-chat 53.12
36.73

(-16.39)
56.72

(+3.60)
71.81

(+18.69)
42.63

(-10.49)

Yi-34b 73.38
66.16
(-7.22)

75.22
(+1.84)

78.07
(+4.69)

73.88
(+0.50)

Llama2-70b 65.44
56.47
(-8.97)

67.38
(+1.95)

69.92
(+4.48)

66.47
(+1.03)

Llama2-70b-chat 61.11
41.78

(-19.34)
62.24

(+1.13)
75.07

(+13.96)
57.71
(-3.41)

kτ - 0.455 0.527 0.527 0.855

Table 2: Performance on zero-shot MMLU when plac-
ing the correct answer at each possible position. All
the LLMs tested showed a clear preference for specific
positions/answer choice symbols, although the position
varied among models and even in model families. These
results corroborate the findings in (Zheng et al., 2023).

or examples from subjects other than the target 469

subject (Figure A.4, Tables A.24- A.25), slightly 470

changes performance across models and reduces 471

bias compared to zero-shot settings but does not 472

change rankings drastically. This finding leads us 473

to conclude that adding few shot examples to bench- 474

mark evaluations can help reduce, but not eliminate, 475

leaderboard sensitivity. 476

We also experiment with removing subject infor- 477

mation from instructions (Figure A.3, Tables A.20- 478

A.23). We see little changes (kτ > 0.9) in these 479

prompt modification experiments. 480

5.5 LLMs readily reference knowledge 481

provided in-context (even if it is 482

misleading) 483

In our study of in-context knowledge injection we 484

find that LLMs can, expectedly, read off answers 485

to questions when the answer is provided in the 486

context (Table A.27). However, when the ques- 487

tion is answered incorrectly in the LLM’s context 488

(Table A.26), all models (regardless of size) are un- 489

able to reason correctly. This behavior is studied in 490

Wang et al. (2023); Xie et al. (2023) and indicates 491

answer leakage in this way could affect benchmark 492

results. 493

To test whether LLMs can infer subtler patterns 494

in the few-shots examples, we fix all answers in 495

the few-shot examples to each of the positions 496
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Figure 7: Comparing scoring method {symbol, cloze,
hybrid} across two tasks, MMLU and ARC-Challenge.
Note the baseline method for MMLU is symbol while
the baseline method for ARC-C is cloze. The general
trend for accuracy across models and tasks is symbol
scoring (highest accuracies) followed by hybrid scor-
ing/cloze depending on the model. The measured selec-
tion bias also follows this trend, with symbol scoring
resulting in the highest bias across models.

A/B/C/D. The results (Table 3) suggest that LLMs497

also bias their answers to these kinds of (potentially498

inadvertent) patterns in the context.499

While we have not observed these vulnerabilities500

in current benchmarks, we highlight them here as501

(potential) sources of benchmark instability.502

5-shot Baseline A B C D

phi-2 56.77
36.67

(-20.11)
41.33

(-15.44)
40.67

(-16.11)
41.67

(-15.11)

Yi-6B 63.22
36.67

(-26.56)
36.33

(-26.89)
37.67

(-25.56)
39.33

(-23.89)

Mistral-7B 62.36
34.67

(-27.70)
41.33

(-21.03)
43.00

(-19.36)
40.33

(-22.03)

Llama-2-7b 45.88
22.00

(-23.88)
31.00

(-14.88)
30.67

(-15.22)
34.33

(-11.55)

Table 3: Results of fixing the 5 few-shot example an-
swers to positions A/B/C/D on one model from each
family, averaged over 3 selected subjects. We can see
that performance drops across all cases/models, suggest-
ing that models refer to subtle patterns in the context
while answering. Full results are reported in Table A.28

6 Related Work503

Benchmarks for the evaluation of LLMs (Chang504

et al., 2023) such as MMLU (Hendrycks et al.,505

2020), HELM (Liang et al., 2023), and BigBench506

(Suzgun et al., 2022) have seen widespread adop-507

tion recently. Depending on the ability that is be-508

ing assessed (e.g., language generation, knowledge509

understanding, complex reasoning) some bench-510

marks are designed in the form of close-ended511

problems like MCQs. To facilitate comparisons 512

among LLMs, a number of leaderboards aggregat- 513

ing these benchmarks have been established, such 514

as the OpenLLM Leaderboard (Beeching et al., 515

2023) and OpenCompass (Contributors, 2023). 516

However issues with the leaderboards and the 517

underlying benchmarks have emerged. In a case 518

study, Deng et al. (2023) discovered contamina- 519

tion/leakage of the MMLU benchmark in the train- 520

ing sets of multiple models. A significant portion 521

of models memorized benchmark questions and 522

were able to perfectly reconstruct the removed part 523

of some benchmark questions or asnwers. For in- 524

stance, GPT-4 correctly completed the questions in 525

29% of the prompts with URL hinting. 526

Even under the assumption of uncontaminated 527

data, the performance of models on the underly- 528

ing benchmarks are not robust to minor perturba- 529

tions. Pezeshkpour and Hruschka (2023) showed 530

that specific orderings of MMLU answer choices 531

resulted in up to ±30% deviations in GPT-4 perfor- 532

mance on various subjects. Similarly, Zheng et al. 533

(2023) demonstrate that models are biased to cer- 534

tain answer letters. On llama-30B, they showed 535

a 27% difference in MMLU accuracy by forcing 536

all correct answers to either position A or D. As 537

well, (Robinson et al., 2023) find that the accuracy 538

of LLMs improve (without regards to bias) when 539

evaluating using a pure multiple choice question 540

style vs a cloze question answering style. 541

While prior work has highlighted weaknesses in 542

LLMs themselves (Zheng et al., 2023; Pezeshkpour 543

and Hruschka, 2023), evaluation method (Robinson 544

et al., 2023), or the contents of benchmarks (De- 545

hghani et al., 2021) in our work we thoroughly 546

study the effects these factors have on existing 547

leaderboards and demonstrate where leaderboards 548

lack robustness. 549

7 Conclusion 550

Building robust leaderboards is a major challenge 551

for the community, as leaderboards help practition- 552

ers select the best methods and models for contin- 553

ued research. Given this importance, it is critical 554

to address the breakdown of existing leaderboards 555

to the slight perturbations we demonstrated in our 556

work. In addition to building our understanding of 557

the causes of this sensitivity (e.g. bias in LLMs 558

and bias in scoring methods), future work should 559

be aimed at adopting and designing benchmark 560

practices that avoid these pitfalls. 561
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8 Limitations562

The limitations of our work fall into two main cate-563

gories: (i) understanding the causes of LLM bias564

and (ii) our limited success at overcoming leader-565

board sensitivity.566

To explain LLM bias, we attempted to design567

experiments that isolate each source of bias under568

MCQ but were unable to quantify the relative ef-569

fects of bias or conclude why they occur. This was570

further complicated by our inability to access the571

pretraining datasets of the LLMs to rule out bench-572

mark contamination. Future work in this direction573

will most likely require tools from interpretability574

research (e.g. mechanistic interpretability).575

One of our main contributions was to highlight576

where MCQ-based leaderboards fail to deliver sta-577

ble rankings. Although we succeeded in showing578

this, we were unable to demonstrate a robust solu-579

tion to this problem. Our recommendation to, for580

example, use hybrid scoring methods is still not581

completely robust to perturbations.582

9 Potential Risks583

In this work, we do not present a new leaderboard.584

Figure 1 should not be interpreted as a leaderboard585

or be used to make decisions about overall model586

quality.587
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A.1 Appendix820

We present a comprehensive collection of tables821

containing the results of all our experiments. The822

often complex nature of the observed behavior war-823

rants a closer look that may inspire novel interpre-824

tations for future studies. We believe providing825

these detailed results will help researchers conduct826

further analysis and generate hypotheses to help827

drive research in LLM-benchmarking robustness828

forward.829

A.1.1 Baselines830

This section lists the baselines referenced in differ-831

ent experiments throughout the paper.

Model Acc 0shot RStd 0shot Acc 5shot RStd 5shot

phi-2 54.47 4.01 56.77 2.65
Yi-6B 61.12 3.57 63.23 2.54
Mistral-7B 59.56 4.13 62.36 1.64
Mistral-7B-Instruct 53.48 4.58 53.95 4.78
Llama-2-7b 41.81 8.49 45.88 8.92
Llama-2-7b-chat 46.37 16.11 47.22 12.15
Llama-2-13b 52.08 12.04 55.06 4.42
Llama-2-13b-chat 53.12 12.80 53.53 8.32
Yi-34B 73.38 5.17 76.39 2.16
Llama-2-70b 65.44 3.20 68.78 1.56
Llama-2-70b-chat 61.11 10.95 63.17 8.06

Table A.1: The baseline accuracies and RStd values
for the original MMLU implementation which uses the
Symbols scoring style mentioned in section 3.2. All
the models performed better in five-shot settings; the
highest model was Yi-34B model in both settings.

Model Acc 0shot RStd 0shot Acc 5shot RStd 5shot

phi-2 54.096 2.558 58.874 2.509
Yi-6B 50.512 2.114 55.034 0.737
Mistral-7B 53.584 2.578 59.556 1.037
Mistral-7B-Instruct 52.048 1.443 54.778 2.022
Llama-2-7b 46.331 4.094 53.072 0.837
Llama-2-7b-hf 44.283 2.175 51.877 1.399
Llama-2-13b 48.976 2.923 56.997 0.799
Llama-2-13b-chat 50.256 1.841 57.594 2.991
Yi-34B 61.519 2.537 64.505 1.48
Llama-2-70b 57.253 2.657 66.126 1.926
Llama-2-70b-chat 54.266 1.505 64.078 2.084

Table A.2: The baseline accuracies and RStd values
for ARC-C using the Cloze scoring style mentioned in
section 3.2 which is considered as the original ARC-C
implementation. As the table shows, the RStd values are
relatively low in both settings. Yi-34B has the highest
values on zero-shot while Llama-2-70b was the highest
on five-shots

832

A.1.2 Answer choice format and ordering833

The following tables provide details on the choice834

formatting manipulation on the three selected835

MMLU subjects.836

Model Acc 0shot RStd 0shot Acc 5shot RStd 5shot

phi-2 37.67 6.78 41.00 5.02
Yi-6B 41.33 10.17 40.67 14.07
Mistral-7B 39.0 9.17 41.00 12.08
Mistral-7B-Instruct 35.0 13.31 36.00 15.75
Llama-2-7b 29.33 13.64 33.33 17.69
Llama-2-7b-chat 32.33 19.83 33.33 21.39
Llama-2-13b 36.33 17.05 35.67 13.85
Llama-2-13b-chat 31.67 26.78 32.67 24.69
Yi-34B 50.00 11.49 49.33 9.35
Llama-2-70b 42.00 14.58 44.67 6.21
Llama-2-70b-chat 37.33 19.63 41.00 18.46

Table A.3: The selected three domains baseline average
results on zero-shot and five-shot using Symbols scoring
style on MMLU. MMLU mostly uses this scoring style.
This baseline was utilized in most experiments to ana-
lyze and comprehend the influence of each experiment
compared with this baseline in the selected domains
subset (it was used in A.4, A.5 and 1).

Model Task Acc (∆Acc) Task RStd (∆RStd)

phi-2 26.33(-11.3) 41.85 (35.0)
Yi-6B 32.60 (-8.7) 22.80 (12.7)
Mistral-7B 35.30 (-3.7) 18.79 (9.6)
Mistral-7B-Instruct 34.00 (-1.0) 26.90 (13.7)
Llama-2-7b 29.60 (0.3) 25.80 (12.2)
Llama-2-7b-chat 31.30 (-1.0) 27.00 (7.2)
Llama-2-13b 34.30 (-2.0) 26.10 (9.1)
Llama-2-13b-chat 34.00 (2.3) 21.90 (-4.8)
Yi-34B 42.60 (-7.3) 22.7 (11.3)
Llama-2-70b 39.60 (-2.3) 15.10 (0.5)
Llama-2-70b-chat 36.00 (-1.3) 29.50 (10.0)

kτ = 0.527

Table A.4: The baseline average results for the se-
lected domains using symbols Set2 which replaced the
A/B/C/D choices symbols with œ/§/Ze (Cyrillic)/ü as
options as described in section 3.1 (it was used as a
baseline in A.9 and A.8). The deltas are calculated com-
pared with A.3. In this particular experiment, all models
encountered a decline in accuracy, coupled with a signif-
icant increase in RStds values, except Llama-13b-chat.

A.1.3 Prompt and scoring modifications 837

The following tables provide results on the effect of 838

different scoring styles of MCQs task on MMLU 839

and ARC-C. 840

A.2 In-context Knowledge Manipulation 841

This section provides the results from experimenta- 842

tion on in-context manipulation. 843
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Model Acc 0shot RStd 0shot Acc 5shot RStd 5shot
(∆Acc) (∆RStd) (∆Acc) (∆RStd)

phi-2 28.3 (-9.3) 6.0 (-0.7) 34.6 (-6.3) 5.7 (-1.04)
Yi-6B 35.0 (-6.3) 11.5 (1.4) 39.0 (-1.7) 13.5 (-0.6)
Mistral-7B 34.3 (-4.7) 10.7 (1.6) 44.0 (3.0) 16.3 (4.2)
Mistral-7B-Instruct 35.0 (0.0) 14.0 (0.7) 38 (2.0) 15.7 (0.0)
Llama-2-7b 31.3 (2.0) 12.6 (-1.0) 32.6 (-0.7) 16.9 (-0.7)
Llama-2-7b-chat 27.0 (-5.3) 12.5 (-7.3) 32.6 (-0.7) 13.3 (-8.0)
Llama-2-13b 37.0 (0.7) 14.0 (-3.0) 40.0 (4.3) 15.7 (1.9)
Llama-2-13b-chat 33.0 (1.3) 9.1 (-17.7) 37.6 (5.0) 17.33 (-7.4)
Yi-34B 46.6 (-3.3) 12.8 (1.4) 47.6 (-1.7) 10.1 (0.8)
Llama-2-70b 41.3 (-0.7) 10.5 (-4.0) 49.0 (4.3) 10.3 (4.2)
Llama-2-70b-chat 39.3 (2.0) 7.8 (-11.8) 42.6 (1.7) 11.9 (-6.5)

kτ 0.564 0.6

Table A.5: The average zero-shot results on the three
selected domains baseline using the Hybrid style men-
tioned in section 3.2. The deltas are compared with A.3
where the Rstd values exhibited a decrease and the ac-
curacies remained relatively stable, except phi-2, which
demonstrated the most significant decline in accuracy.

Model Baseline A B C D

phi-2 54.47
57.33

(+2.87)
44.00

(-10.47)
25.00

(-29.47)
32.33

(-22.13)

Yi-6B 61.12
49.67

(-11.45)
23.67

(-37.45)
18.33

(-42.78)
44.67

(-16.45)

Mistral-7B 59.56
77.00

(+17.44)
46.33

(-13.23)
48.33

(-11.23)
68.00

(+8.44)

Mistral-7B-Instruct 53.48
78.33

(+24.85)
42.33

(-11.15)
18.67

(-34.82)
49.33
(-4.15)

Llama-2-7b 41.81
79.00

(+37.19)
57.33

(+15.52)
24.67

(-17.14)
23.67

(-18.14)

Llama-2-7b-chat 46.37
16.67

(-29.70)
66.33

(+19.97)
38.67
(-7.70)

14.33
(-32.04)

Llama-2-13b 52.08
33.67

(-18.41)
37.33

(-14.75)
45.33
(-6.75)

39.33
(-12.75)

Llama-2-13b-chat 53.12
20.00

(-33.12)
23.00

(-30.12)
61.33

(+8.21)
15.67

(-37.45)

Yi-34B 73.38
59.00

(-14.38)
45.67

(-27.71)
53.67

(-19.71)
48.00

(-25.38)

Table A.6: Performance on five-shot MMLU when plac-
ing the correct answer at each possible position, for both
the examples and the question asked. Similar to the zero-
shot case mentioned in Section 5, all the LLMs tested
showed a clear preference for specific positions/answer
choice symbols, although the position varied among
models and even in model families.

Model Task acc ∆Acc Task RStd ∆RStd

phi-2 51.01 -3.45 8.82 4.82
Yi-6B 57.75 -3.37 6.29 2.72
Mistral-7B 55.63 -3.94 7.75 3.62
Mistral-7B-Instruct 52.09 -1.39 4.02 -0.57
Llama-2-7b 32.13 -9.68 23.72 15.23
Llama-2-7b-chat 42.52 -3.85 15.45 -0.66
Llama-2-13b 48.24 -3.84 8.29 -3.75
Llama-2-13b-chat 51.83 -1.29 5.24 -7.56
Yi-34B 69.56 -3.82 4.62 -0.55
Llama-2-70b 63.32 -2.12 3.33 0.13
Llama-2-70b-chat 58.80 -2.31 1.91 -9.04

Table A.7: Reproducing shuffling ablation experiment
from (Zheng et al., 2023). Randomly shuffling the order
in which the options are presented. Surprisingly, all
models demonstrated a decrease in accuracy, suggesting
a lack of decisiveness in the experiment. However, these
variations indicate a potential bias in the benchmark.

Model Task Acc (∆Acc) Task RStd (∆RStd)

phi-2 25.33 (-12.33) 42.35 (35.57)
Yi-6B 30.66 (-2.0) 26.68 (3.8)
Mistral-7B 34.00 (-1.3) 22.37 (3.6)
Mistral-7B-Instruct 30.33 (-3.7) 23.08 (-3.9)
Llama-2-7b 25.66 (-4.0) 24.98 (-0.9)
Llama-2-7b-chat 28.00 (-3.3) 28.49 (1.4)
Llama-2-13b 29.33 (-5.0) 26.75 (0.6)
Llama-2-13b-chat 29.66 (-4.3) 20.58 (-1.4)
Yi-34B 36.00 (-6.7) 19.48 (-3.3)
Llama-2-70b 37.33 (-2.3) 10.41 (-4.7)
Llama-2-70b-chat 31.66 (-4.3) 23.25 (-6.3)

kτ = 0.564

Table A.8: The average zero-shot results on the three
selected domains using Symbols Set2 (mentioned in
section 3.1 and shuffling the choices while fixing the
order of the choices symbols. The deltas are measured
compared with A.4. As displayed in the table, mostly all
the models faced a decrease in accuracy while the RStds
values were not decisive. The most affected model in
this experiment was phi-2.

Model Task Avg Acc (∆Acc) Task Avg RStd (∆RStd)

phi-2 29.00(-8.6) 12.4 (5.6)
Yi-6B 34.67 (2.0) 22.84 (0.0)
Mistral-7B 29.33 (-6.0) 16.52 (-2.3)
Mistral-7B-Instruct 28.33 (-5.7) 22.10 (-4.9)
Llama-2-7b 26.67 (-3.0) 28.62 (2.8)
Llama-2-7b-chat 32.00 (0.7) 15.64 (-11.4)
Llama-2-13b 26.33 (-8.0) 21.31 (-4.8)
Llama-2-13b-chat 34.00 (0.0) 16.97 (-5.0)
Yi-34B 41.00 (-1.7) 20.28 (-2.5)
Llama-2-70b 38.67 (-1.0) 7.65 (-7.5)
Llama-2-70b-chat 40.33 (4.3) 15.78 (-13.8)

kτ = 0.455

Table A.9: The average zero-shot results on the three
selected domains using Symbols Set2 mentioned in sec-
tion 3.1. This experiment focused on shuffling the sym-
bols while maintaining the original listing order of the
choices. Compared with A.4,Most of the models were
impacted in terms of accuracy and RStds, indicating that
randomization affects the models even after changing
the symbols.

Model Acc 0shot RStd 0shot Acc 5shot RStd 5shot
(∆Acc) (∆RStd) (∆Acc) (∆RStd)

phi-2 30.6 (2.3) 12.8 (6.8) 32.6(-2) 13.6 (7.8)
Yi-6B 30.3 (-4.7) 12.0 (0.5) 34.3 (-4.7) 11.4 (-2.1)
Mistral-7B 31.6 (-2.7) 12.5 (1.8) 39 (-5) 11.1 (-5.2)
Mistral-7B-Instruct 32.66 (-2.3) 11.18 (-2.9) 37 (-1) 7.94 (-7.8)
Llama-2-7b 28.6 (-2.7) 11.4 (-1.2) 33.3 (0.7) 15.1 (-1.8)
Llama-2-7b-chat 29.3 (2.3) 16.2 (3.7) 35 (2.3) 16.6 (3.3)
Llama-2-13b 35.3 (-1.7) 10.1 (-3.9) 37.6 (-2.3) 12.1 (-3.6)
Llama-2-13b-chat 29.6 (-3.3) 10.9 (1.9) 35.3 (-2.3) 17.0 (-0.3)
Yi-34B 43 (-3.7) 5.4 (-7.4) 48.3 (0.7) 11.7 (1.6)
Llama-2-70b 40 (-1.3) 9.0 (-1.5) 48 (-1) 10.5 (0.1)
Llama-2-70b-chat 35 (-4.3) 11.1 (3.4) 41.3 (-1.3) 6.8 (-5.1)

kτ 0.527 0.382

Table A.10: The selected domains results after random-
izing the choices using Hybrid style mentioned in sec-
tion 3.2, the deltas are calculated from this table A.5
where it showed more consistency compared to the re-
sults of other randomization settings (1,A.8, and A.9).
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Model Task acc ∆Acc Task RStd ∆RStd

phi-2 31.92 -22.55 20.23 16.22
Yi-6B 46.87 -14.25 15.24 11.67
Mistral-7B 42.68 -16.88 29.07 24.94
Mistral-7B-Instruct 47.90 -5.58 15.06 10.48
Llama-2-7b 26.23 -15.58 33.78 25.29
Llama-2-7b-chat 41.01 -5.36 14.17 -1.94
Llama-2-13b 41.05 -11.03 23.54 11.50
Llama-2-13b-chat 48.09 -5.03 20.82 8.02
Yi-34B 66.56 -6.82 10.13 4.96
Llama-2-70b 57.94 -7.50 16.52 13.32
Llama-2-70b-chat 59.00 -2.11 10.09 -0.86

kτ = 0.6

Table A.11: The zero-shot results of MMLU on Sym-
bols Set1 mentioned in section 3.1. All of the models
demonstrated reduced accuracies, while most of them
showed an increase in RStds values compared with A.1.

Model Task acc ∆Acc Task RStd ∆RStd

phi-2 29.85 -24.62 39.10 35.09
Yi-6B 47.58 -13.54 26.09 22.52
Mistral-7B 52.63 -6.94 15.87 11.74
Mistral-7B-Instruct 48.33 -5.15 18.70 14.12
Llama-2-7b 29.76 -12.05 32.09 23.60
Llama-2-7b-chat 43.34 -3.03 18.20 2.09
Llama-2-13b 42.06 -10.02 23.75 11.70
Llama-2-13b-chat 49.23 -3.89 14.07 1.28
Yi-34B 67.03 -6.35 12.48 7.31
Llama-2-70b 62.60 -2.84 3.21 0.01
Llama-2-70b-chat 57.01 -4.10 18.53 7.59

kτ = 0.636

Table A.12: The zero-shot results of MMLU on Sym-
bols Set2 mentioned in section 3.1. Compared with the
original MMLU implementation that used A/B/C/D as
symbols(A.1), the majority of models in this experiment
had notably lower accuracies while the RStd values
increased.

Model Task acc ∆Acc Task RStd ∆RStd

phi-2 40.714 -13.751 1.398 -2.607
Yi-6B 42.40 -18.72 1.49 -2.08
Mistral-7B 45.69 -13.87 1.26 -2.87
Mistral-7B-Instruct 43.51 -9.98 1.53 -3.05
Llama-2-7b 40.81 -1.00 1.19 -7.30
Llama-2-7b-chat 40.44 -5.93 1.79 -14.32
Llama-2-13b 44.09 -7.99 1.29 -10.75
Llama-2-13b-chat 43.87 -9.25 1.86 -10.93
Yi-34B 49.33 -24.05 3.76 -1.41
Llama-2-70b 48.74 -16.70 0.99 -2.21
Llama-2-70b-chat 46.34 -14.77 1.57 -9.38

kτ = 0.527

Table A.13: The zero-shot results of MMLU using the
Cloze style mentioned in 3.2. As anticipated, employing
this style led to significantly low RStd values compared
with the Symbols scoring style in table A.1, but it also
had a considerable impact on accuracy, resulting in a
noticeable decrease in most models.

Model Task acc ∆Acc Task RStd ∆RStd

phi-2 38.47 -16.01 2.55 -1.45
Yi-6B 44.90 -16.22 3.80 0.23
Mistral-7B 42.94 -16.62 5.09 0.96
Mistral-7B-Instruct 39.27 -14.21 3.46 -1.12
Llama-2-7b 37.79 -4.02 3.79 -4.70
Llama-2-7b-chat 37.68 -8.69 3.52 -12.58
Llama-2-13b 43.88 -8.20 5.14 -6.91
Llama-2-13b-chat 39.14 -13.98 4.82 -7.98
Yi-34B 59.52 -13.86 2.63 -2.54
Llama-2-70b 55.11 -10.33 2.00 -1.20
Llama-2-70b-chat 47.26 -13.85 3.35 -7.60

kτ = 0.709

Table A.14: The zero-shot results of MMLU using the
Hybrid style mentioned in 3.2. This style resulted in
decreased accuracy but demonstrated more stability and
lower RStd values when comparing it with the Symbols
scoring style A.1. This style may help reduce the selec-
tion and token bias seen in prior experiments.

Model Task Acc (∆Acc) Task RStd (∆RStd)

phi-2 76.8 (22.7) 4.2 (1.6)
Yi-6B 78.3 (27.8) 2.6 (0.5)
Mistral-7B 74.8 (21.2) 5.9 (3.3)
Mistral-7B-Instruct 69.3 (17.3) 4.3 (2.9)
Llama-2-7b 42.4 (-3.9) 14.1 (10.0)
Llama-2-7b-chat 57.6 (13.3) 13.8 (11.6)
Llama-2-13b 62.0 (13.0) 8.9 (6.0)
Llama-2-13b-chat 65.3 (15.1) 12.7 (10.9)
Yi-34B 90.7 (29.1) 0.5 (-1.9)
Llama-2-70b 81.9 (24.7) 2.6 (0.025)
Llama-2-70b-chat 78.4 (24.1) 6.8 (5.3)

kτ = 0.855

Table A.15: The table displays the results of zero-shot
on ARC-C with Symbols scoring style mentioned in 3.2.
Compared with A.2, all models, except Llama-2-7b,
showed higher accuracies. An increase in Rstds values
was observed, particularly in the Llama-2 7b, 7b-chat,
and 13b models. This proves that if we provide choices
in the prompt, models will perform better.

Model Task Acc (∆Acc) Task RStd (∆RStd)

phi-2 58.4 (4.3) 4.9 (2.4)
Yi-6B 59.9 (9.4) 8.4 (6.3)
Mistral-7B 52.6 (-0.9) 6.9 (4.3)
Mistral-7B-Instruct 54.1 (2.1) 4.3 (2.9)
Llama-2-7b 38.7 (-7.5) 7.8 (3.7)
Llama-2-7b-chat 46.6 (2.3) 2.7 (0.5)
Llama-2-13b 52.4 (3.4) 9.1 (6.1)
Llama-2-13b-chat 53.5 (3.3) 4.6 (2.7)
Yi-34B 83.0 (21.5) 3.8 (1.2)
Llama-2-70b 72.6 (15.4) 3.9 (1.3)
Llama-2-70b-chat 64.7 (10.4) 4.2 (2.7)

kτ = 0.782

Table A.16: The zero-shot results of ARC-C using the
Hybrid style discussed in 3.2. In some models, it ex-
hibits higher accuracy than the baseline (Table A.2) and
more stable RStd values (compared to A.15). The deltas
are calculated using this table A.2.
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Prompt
trivial_examples = ["Which language the previous sentence is
written in? A. Russian. B. English. C. Spanish. D. Japanese
Answer: B", ...]
"[trivial_examples][question][choices]Answer:"

Version 2

Prompt
trivial_examples = ["The first word in this sentence is A. The.
B. first. C. sentence. D. word Answer: A", ...]
"[trivial_examples][question][choices]Answer:"

Version 3

Prompt
trivial_examples = ["The capital of France is A. Paris. B. Berlin. C.
Madrid. D. Rome Answer: A", ...]
"[trivial_examples][question][choices]Answer:"

Version 1

 Instruction
"The following are multiple choice questions (with answers)"
Prompt
"[question][choices]Answer:"

Orignal prompt template

Figure A.1: Illustration of the three versions of the
trivial examples.

Figure A.2: Illustration of the prompt that was used to
generate the trivial examples version 1 using GPT4.

Model Task acc ∆Acc

phi-2 54.21 -0.26
Yi-6B 60.11 -1.00
Mistral-7B 58.45 -1.11
Mistral-7B-Instruct 51.14 -2.34
Llama-2-7b 42.77 0.96
Llama-2-7b-chat 46.35 -0.02
Llama-2-13b 51.72 -0.36
Llama-2-13b-chat 50.94 -2.18
Yi-34B 72.28 -1.10
Llama-2-70b 65.25 -0.18
Llama-2-70b-chat 59.79 -1.32

kτ = 0.927

Table A.17: Trivial examples few-shot results using the
version 1 examples with respect to zero-shot baseline
accuracy.

Model Task acc ∆Acc

phi-2 53.18 -1.28
Yi-6B 60.28 -0.84
Mistral-7B 59.41 -0.15
Mistral-7B-Instruct 50.95 -2.53
Llama-2-7b 43.52 1.71
Llama-2-7b-chat 46.82 0.46
Llama-2-13b 52.51 0.44
Llama-2-13b-chat 51.84 -1.27
Yi-34B 72.29 -1.09
Llama-2-70b 65.13 -0.31
Llama-2-70b-chat 60.28 -0.83

kτ = 0.891

Table A.18: Trivial examples few-shot results with ver-
sion 2 examples with respect to zero-shot baseline accu-
racy.

Model Task acc ∆Acc

phi-2 53.22 -1.25
Yi-6B 60.46 -0.66
Mistral-7B 59.27 -0.30
Mistral-7B-Instruct 50.58 -2.91
Llama-2-7b 44.47 2.66
Llama-2-7b-chat 46.90 0.53
Llama-2-13b 52.24 0.16
Llama-2-13b-chat 51.88 -1.24
Yi-34B 73.16 -0.22
Llama-2-70b 65.42 -0.02
Llama-2-70b-chat 60.02 -1.09

kτ = 0.891

Table A.19: Trivial examples few-shot results with ver-
sion 3 examples, with respect to zero-shot baseline ac-
curacy.
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 Instruction
"The following are multiple choice questions (with answers) about
[subject]"
Prompt
"[question][choices]Answer:"

Orignal prompt template

 Instruction
"The following are multiple choice questions (with answers) about
[subject]" 
Prompt
"[question][choices]Answer:"

Experiment 1: Removing subject name 

 Instruction
"The following are multiple choice questions (with answers)
about [subject]"
Prompt
"[question][choices]Correct Answer:"

Experiment 2: Prompt Modification 

Figure A.3: Illustration of minor prompt modifications.
Experiment 1 showcases the removal of the subject
name from the instruction. Experiment 2 shows the
prompt change by specifying "Correct Answer" instead
of "Answer". (results are in table A.20, A.22, A.23)

Model Task acc ∆Acc Task RStd ∆RStd

phi-2 53.92 -0.54 4.07 0.07
Yi-6B 60.80 -0.31 3.43 -0.14
Mistral-7B 59.02 -0.54 3.73 -0.40
Mistral-7B-Instruct 53.29 -0.19 4.74 0.16
Llama-2-7b 41.80 -0.01 4.51 -3.99
Llama-2-7b-chat 46.68 0.31 14.93 -1.17
Llama-2-13b 51.92 -0.16 12.05 0.00
Llama-2-13b-chat 53.27 0.15 12.83 0.03
Yi-34B 72.94 -0.44 5.52 0.35
Llama-2-70b 64.83 -0.60 2.81 -0.40
Llama-2-70b-chat 61.14 0.03 10.94 -0.00

kτ=0.964

Table A.20: Zero-shot results of removing the subject
name from the prompt. (experiment 1 from figure A.3).
There are minimal changes in performance when apply-
ing this perturbation.

Model Task acc ∆Acc Task RStd ∆RStd

phi-2 54.21 -0.26 4.21 0.20
Yi-6B 61.06 -0.06 2.33 -1.24
Mistral-7B 60.16 0.60 2.08 -2.06
Mistral-7B-Instruct 53.67 0.19 4.03 -0.56
Llama-2-7b 41.42 -0.39 15.05 6.56
Llama-2-7b-chat 47.22 0.85 14.22 -1.88
Llama-2-13b 53.46 1.38 10.46 -1.59
Llama-2-13b-chat 53.20 0.08 11.09 -1.71
Yi-34B 73.64 0.26 5.68 0.51
Llama-2-70b 65.48 0.04 3.51 0.30
Llama-2-70b-chat 61.20 0.09 10.31 -0.63

kτ=0.927

Table A.21: Zero-shot results on adding the “Correct"
token in the prompt. (experiment 2 from figure A.3).
There are minimal changes in performance when apply-
ing this perturbation.

Model Task acc ∆Acc Task RStd ∆RStd

phi-2 56.69 -0.08 2.57 -0.08
Yi-6B 63.69 0.46 3.22 0.68
Mistral-7B 62.60 0.23 2.98 1.33
Mistral-7B-Instruct 53.99 0.04 4.62 -0.16
Llama-2-7b 45.80 -0.09 8.75 -0.17
Llama-2-7b-chat 47.42 0.20 12.03 -0.11
Llama-2-13b 55.47 0.41 5.04 0.62
Llama-2-13b-chat 53.58 0.05 8.32 0.00
Yi-34B 76.36 -0.02 2.14 -0.02
Llama-2-70b 68.71 -0.07 1.63 0.06
Llama-2-70b-chat 63.14 -0.03 8.49 0.43

kτ=1.0

Table A.22: Few-shot results of removing the subject
name from the prompt. (experiment 1 from figure A.3).
There are minimal changes in performance when apply-
ing this perturbation.

Model Task acc ∆Acc Task RStd ∆RStd

phi-2 56.57 -0.21 3.95 1.30
Yi-6B 63.20 -0.03 4.01 1.47
Mistral-7B 62.79 0.43 3.51 1.87
Mistral-7B-Instruct 53.85 -0.10 5.51 0.73
Llama-2-7b 46.21 0.33 7.14 -1.78
Llama-2-7b-chat 47.48 0.26 10.42 -1.73
Llama-2-13b 55.18 0.11 4.79 0.37
Llama-2-13b-chat 53.75 0.23 6.58 -1.74
Yi-34B 75.98 -0.41 1.71 -0.46
Llama-2-70b 69.10 0.32 0.83 -0.73
Llama-2-70b-chat 62.86 -0.31 7.20 -0.86

kτ=1.0

Table A.23: Few-shot results on adding the “Correct"
token in the prompt. (experiment 2 from figure A.3).
There are minimal changes in performance when apply-
ing this perturbation.

 Instruction
The following are multiple choice questions (with answers)
about [subject].
{{ few shot examples from [subject] }}
Prompt
[question][choices]Answer:

Orignal prompt template

Instruction
The following are multiple choice questions (with
answers) about [subject].
{{ few shot examples from different subject }}
Prompt
[question][choices]Answer:

Modification 1: Remove subject name 

 
Instruction
"The following are 5 multiple choice questions (with answers) on
various subjects, followed by a question about [subject]."
{{ few shot examples from different subject }}
Prompt
[question][choices]Answer:

Modification 2: Mention various subjects

Figure A.4: Illustration of subject independent few-shot
prompting experiment. (results are in table A.24 &
A.25).
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Model Task acc ∆Acc

phi-2 54.94 -1.84
Yi-6B 61.51 -1.72
Mistral-7B 59.56 -2.80
Mistral-7B-Instruct 51.72 -2.24
Llama-2-7b 44.10 -1.79
Llama-2-7b-chat 46.92 -0.30
Llama-2-13b 52.61 -2.46
Llama-2-13b-chat 52.63 -0.90
Yi-34B 73.89 -2.50
Llama-2-70b 66.26 -2.52
Llama-2-70b-chat 60.85 -2.31

kτ = 0.927

Table A.24: Subject independent five-shots example
results with the first prompt. (follow Figure A.4 for
details). With few exceptions, most models exhibit a
2% drop from changing the few shots example domains.
For models that are not fine-tuned, we noticed a perfor-
mance that is halfway between the standard zero-shot
and five-shot. Indicating that these models utilize the
few shots for both formatting and knowledge domain
information.

Model Task acc ∆Acc

phi-2 55.25 -1.52
Yi-6B 61.15 -2.08
Mistral-7B 59.68 -2.69
Mistral-7B-Instruct 52.12 -1.84
Llama-2-7b 44.12 -1.76
Llama-2-7b-chat 46.74 -0.48
Llama-2-13b 52.91 -2.16
Llama-2-13b-chat 52.19 -1.33
Yi-34B 73.62 -2.76
Llama-2-70b 66.06 -2.72
Llama-2-70b-chat 60.64 -2.53

kτ = 0.964

Table A.25: Subject independent five-shot example re-
sults with the second prompt. (follow figure A.4 for
details). Changes in the initial prompt only result in neg-
ligible differences when compared to the first prompt in
Table A.24.

Model Task Acc Task Acc
1-shot 5-shot

phi-2 33.59 13.91
Yi-6B 36.13 17.97
Mistral-7B 19.51 13.20
Mistral-7B-Instruct 10.71 4.59
Llama-2-7b 24.25 23.63
Llama-2-7b-chat 16.24 28.11
Llama-2-13b 12.76 4.50
Llama-2-13b-chat 31.49 26.30
Yi-34B 32.08 37.42
Llama-2-70b 26.27 21.54
Llama-2-70b-chat 26.26 37.23

kτ 0.382 0.164

Table A.26: Providing the incorrect answer in-context.
Performance drastically drops across the board, indi-
cating that models are easily influenced by the answers
given in-context, even when they are incorrect.

Task Acc Task Acc
Model 1-shot 5-shot

phi-2 71.778 92.366
Yi-6B 90.91 97.09
Mistral-7B 97.45 98.99
Mistral-7B-Instruct 98.64 99.25
Llama-2-7b 61.00 63.82
Llama-2-7b-chat 87.77 80.15
Llama-2-13b 96.60 99.79
Llama-2-13b-chat 87.02 92.69
Yi-34B 99.10 98.50
Llama-2-70b 93.45 99.09
Llama-2-70b-chat 98.25 93.86

kτ 0.491 0.382

Table A.27: Results of the one-shot and five-shot
MMLU in-context cheating experiment. Performance
expectedly increases, indicating that models are readily
able to "cheat" from the given few-shot examples in
both five-shot and one-shot cases. However, no model
achieved 100% accuracy, so we encourage the investi-
gation of misclassified samples to validate their correct-
ness.
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5-shot Baseline A B C D

phi-2 56.77
36.67

(-20.11)
41.33

(-15.44)
40.67

(-16.11)
41.67

(-15.11)

Yi-6B 63.23
36.67

(-26.56)
36.33

(-26.89)
37.67

(-25.56)
39.33

(-23.89)

Mistral-7B 62.36
34.67

(-27.70)
41.33

(-21.03)
43.00

(-19.36)
40.33

(-22.03)

Mistral-7B-Instruct 53.95
32.67

(-21.29)
33.33

(-20.62)
30.67

(-23.29)
35.33

(-18.62)

Llama-2-7b 45.88
22.00

(-23.88)
31.00

(-14.88)
30.67

(-15.22)
34.33

(-11.55)

Llama-2-7b-chat 47.22
31.00

(-16.22)
30.67

(-16.56)
28.67

(-18.56)
31.00

(-16.22)

Llama-2-13b 55.06
35.33

(-19.73)
36.33

(-18.73)
37.67

(-17.40)
32.67

(-22.40)

Llama-2-13b-chat 53.53
31.67

(-21.86)
33.00

(-20.53)
34.67

(-18.86)
33.67

(-19.86)

Yi-34B 76.39
49.67

(-26.72)
49.33

(-27.05)
50.33

(-26.05)
48.67

(-27.72)

Llama-2-70b 68.78
42.67

(-26.11)
44.67

(-24.11)
43.33

(-25.45)
44.33

(-24.45)

Llama-2-70b-chat 63.17
40.33

(-22.84)
42.33

(-20.84)
42.00

(-21.17)
41.33

(-21.84)

kτ - 0.855 0.818 0.782 0.636

Table A.28: Results of fixing the five-shot example
answers to positions A/B/C/D, averaged over the three
selected subjects. We can see that performance drops
across the board, suggesting that models get confused
when there is a clear pattern in the correct answers of
the few-shot examples.
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