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Abstract

Existing ultra image segmentation methods suffer from two major challenges,
namely the scalability issue (i.e. they lack the stability and generality of standard
segmentation models, as they are tailored to specific datasets), and the architec-
tural issue (i.e. they are incompatible with real-world ultra image scenes, as they
compromise between image size and computing resources). To tackle these issues,
we revisit the classic sliding inference framework, upon which we propose a Sur-
rounding Guided Segmentation framework (SGNet) for ultra image segmentation.
The SGNet leverages a larger area around each image patch to refine the general
segmentation results of local patches. Specifically, we propose a surrounding
context integration module to absorb surrounding context information and extract
specific features that are beneficial to local patches. Note that, SGNet can be seam-
lessly integrated to any general segmentation model. Extensive experiments on five
datasets demonstrate that SGNet achieves competitive performance and consistent
improvements across a variety of general segmentation models, surpassing the
traditional ultra image segmentation methods by a large margin.

1 Introduction

With the rapid development of computing and imaging equipment, ultra-high resolution images
with millions or even billions of pixels emerge in endlessly and driving the need for more advanced
analytical techniques. Accurate understanding of information conveyed by images [1, 47, 43] has
become imperative in diverse fields such as remote sensing [29, 48, 44, 50] and medical analysis [37,
36, 31], and ultra image segmentation has emerged as an essential tool for achieving this goal.

To achieve ultra image segmentation, most of the methods adhere to the concept of integrating
global and local information, utilizing the global context clues to aid local region refinement [6, 20].
Typically, these networks have two branches: one receives the down-sampled ultra image and extracts
global context information of whole image, while the other extracts local information from sliced
patches or the complete image, as shown in Fig. 1(a). The final result is generated by fusing the
global and local features. Despite numerous improvements made to ultra image segmentation, we
observe that it still suffer from issues in both their scalability and architecture:

(1) Scalability Issue. The existing ultra image segmentation methods (UIS) often rely on dataset-
specific parameters, which limit their model capacity and scalability. The UIS methods struggle to
scale up to larger image sizes, with performance significantly degrading as image resolution increases.
Moreover, UIS has complex training procedures that need multi-stage parameter tuning [8, 24]. In
contrast, general semantic segmentation (GSS) methods are more effective and demonstrate greater
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Figure 1: Comparison with specific (a) and (b). The
previous architecture all suffered from Scalability Issue
and Architectural Issue due to specific designs and a
lack of tailored context, whereas ours is designed to
leverage any general segmentation model to address
ultra image segmentation.
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Figure 2: Directly adapting the general segmentation
model to ultra image scene will cause fragmentation
phenomenon (a): the prediction results of the edge
areas between adjacent patches (even in overlapped
patches) are inconsistent.

scalability compared to UIS. With a straightforward training process, GSS can be adaptable to various
ultra image datasets.

(2) Architectural Issue. The architecture of existing UIS is not suitable for processing ultra image
scenes in real-world scenarios, as it compromises between dataset size and computing resources. Most
methods utilize either the entire image or the downsampled version to capture global information.
However, the two strategies are both constrained by the size of input image. When the input image
is excessively large, the former strategy cannot process it directly, while the later will suffer great
information loss during compression.

Building upon the above discussions, a simple solution is to introduce general segmentation
model [27, 12, 18, 39] into the ultra image segmentation task using the sliding window approach,
which takes only isolated patches as input due to memory limitations. However, directly adapting GSS
to ultra image scenes also raises two challenges: (1) Information bottleneck. Using isolated patches
as input prevents the model from capturing the correlations between patches, which blocks the infor-
mation flow and affects the model’s perception of the surrounding information. (2) Fragmentation
phenomenon. With isolated patch input, even if overlapped patches are used, the prediction results
of each patch are independent. This leads to inconsistent prediction between patches, especially at
the edges of adjacent patches, as shown in Fig. 2.

Based on above considerations, we propose an end-to-end framework called Surrounding Guided
Segmentation Framework (SGNet), which takes advantage of the general segmentation method and
utilizes surrounding information near the local patch to guide the model. As shown in Fig. 1(b),
SGNet includes two decoupled parts: a general segmentation module and a surrounding context-
guided branch. Specifically, SGNet takes both the local patch and the corresponding surrounding
patch as input. The surrounding patch covers a larger area around the local patch and provides more
context information. In the surrounding context-guided branch, we model the context information
required to segment the local patch from a larger perspective to drive the flow of information between
regions of whole image. Besides, to alleviate the fragmentation phenomenon, we propose a boundary
consistency loss to improve the consistency of the prediction results of adjacent patches, thereby
alleviating the inconsistent predictions. Note that, unlike existing tightly coupled ultra images
segmentation methods, our method can be seamlessly incorporated into any general segmentation
models, and brings stable performance improvements.

Our contributions are summarized as follows:

• We excavate two essential but largely overlooked issues in UIS, which hold great value for
the community. In addressing these challenges, we are the first to tackle the ultra image
segmentation task from the general segmentation model perspective.

• We present a novel end-to-end ultra image segmentation framework named SGNet, which
leverage surrounding context information to guide patch-based model segmentation. Our
method is flexible to be added to any general segmentation model.
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• Experiments show that our method achieves competitive performance and consistently
improves over different general segmentation models on five public datasets, outperforming
previous methods by a large margin.

2 Related Work

2.1 General Semantic Segmentation

With the development of deep learning [33, 32], the two mainstream methods based on convolution
neural network [52, 35, 34, 2] and Transformer [42, 17, 51, 28] have achieved excellent performance.
FCN [27] is the first fully convolutional architecture and a lot of work has been extended, such as
DeeplabV3 [3] and HRNet [38]. Compared with CNN-based methods, representative Transformer-
based works include SegFormer [46], Mask2Foremr [7] and SAM [22]. BiSeNetV1 [49] and
STDC [12] are designed for real-time segmentation to reduce the computational overhead. The
general segmentation model shows excellent stability and scalability, and we aim to leverage its
strengths to address both the Scalability and Architectural issues in existing UIS methods.

2.2 Ultra Image Semantic Segmentation

GLNet [6] introduces a novel global-local architecture. PPN [45] builds on the top of GLNet by inte-
grating a classification network to distinguish valuable patches. Furthermore, Magnet [16] employs
a multi-stage pipeline where each stage corresponds to a specific magnification level. FCtL [24]
exploits locality-aware contextual correlation to effectively integrate and associate contextual informa-
tion of local patches. Compared to previous methods, ISDNet [14] proposes a novel framework that
combines shallow and deep networks, enabling directly whole-image inference, thereby improving
the segmentation effect while increasing the speed. ElegantSeg [5] proposes a end-to-end holistic
learning framework from the perspective of engineering optimization. Recently, WSDNet [20]
follows the architecture of ISDNet, using DWT-IWT to preserve spatial details. GPWFormer [19]
also employs the global-local architecture, and propose the wavelet transformer to model semantic
relations. However, the aforementioned methods all suffer from inherent framework flaws, and cannot
be applied to ultra images of extremely large scale. On the contrary, our simple yet generalized
solution is more adaptable and applicable than specific UIS methods in real-world scenarios.

3 Methodology

3.1 Overview

In this section, we present SGNet, a novel framework that enables existing general segmentation
models for ultra image segmentation. As shown in Fig. 3, SGNet consists of two major components,
the general segmentation module and surrounding context-guided branch (SCB). The two branches
take the local patch and its surrounding larger area as inputs, respectively and extract their features
(Section Architecture). In the surrounding context-guided branch, we introduce a surrounding
context integration module (Section Surrounding Context Integration Module) to enable interaction
between local and surrounding features, and selectively learn contextual information that is helpful for
patch segmentation. Furthermore, we propose a boundary consistency loss to maintain the consistency
of prediction results across adjacent patches in Section Loss Function.

3.2 Architecture

The general segmentation approaches include global inference and slide inference. The former
approaches could result in a significant quality drop during the image resolution compression.
Therefore, we attempt to adapt the slide inference based methods into ultra image segmentation
tasks. Given an ultra image I ∈ RH×W×C , we divide it into N non-overlapping local patches
Ilocal ∈ Rh×w×c and feed them into general segmentation module for prediction as our target. Next,
we start from a random position within the local patch as the center and obtain a surrounding patch
that is α(α > 1) times larger than its side length. The surrounding patch includes more contextual
details, which is helpful to guide the local patch training.
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Figure 3: The Architecture of SGNet. An ultra image I is randomly cropped to obtain a local patch Ilocal
and a surrounding patch Iglobal containing more context information of any size, which are respectively
sent to the general segmentation module and the surrounding context-guided branch to extract features. The
resulting features are aggregated through simple concatenation and used to generate high-quality predictions.
General segmentation module can be applied to any segmentation model, and surrounding context-guided
branch consistently achieves stable improvements on it. LN, W-MSA, and GAP stand for layer normalization,
window-based multi-head self-attention, and global average pooling, respectively.

Afterward, the general segmentation module receives the local patch to extract features. Meanwhile,
the surrounding context-guided branch (SCB) receives the surrounding patch to extract the surround-
ing information to guide the segmentation of local patch. In order to boost the processing speed
of the SCB, a lightweight backbone is employed for feature extraction. The resulting feature map
are subsequently transmitted to the surrounding context integration module for further relationship
modeling and focused acquisition of contextual information essential for local patch prediction.

The output feature map is aligned using coordinate relative relationships, retaining only the portion
corresponding to the local patch. This portion is then combined with the feature map generated by
the general segmentation module to obtain the final prediction through a standard segmentation head.
To achieve a more complete optimization of the SCB, we add an extra auxiliary segmentation head to
predict the result of the surrounding patch. This helps us to further calculate the boundary consistency
loss between the local and surrounding patches based on this prediction.

Compared to previous ultra image segmentation methods [6, 45, 24, 14, 19] that cannot handle
extremely large images well, our architecture is more flexible and integrated, as it can handle an ANY
size large image, equip with ANY general segmentation model, thereby well-suited for real-world
scenarios.

3.3 Surrounding Context Integration Module

The information contained in the surrounding patch can serve as an extension of the local patch,
providing it with more abundant decision-making guidance. Therefore, we introduce the Surrounding
Context Integration Module (SCI), from the perspective of absorbing the information contained in
each region, and integrating context across all the windows of surrounding patch. The structure of
SCI is shown in Fig. 3.

Following [26, 25, 13], the feature map F ∈ RH×W×C is partitioned into a set of R × R non-
overlapping regions as Fregion ∈ RH

R ×W
R ×R2×C , with each region being subsequently subdivided

into w × w non-overlapping windows as Fw ∈ R H
Rw× W

Rw×R2×w2×C .

To facilitate information exchange within the region as well as absorb the contextual information
that is helpful for segmentation, we perform layer normalization and window-based multi-head
self-attention (W-MSA) on all patch tokens within Fw as follows:

F
′

w = W-MSA(LN(Fw)) + Fw. (1)
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Currently, the information of all patch tokens within the region have been fully incorporated into F
′

w.
Subsequently, we apply global average pooling (GAP) to acquire the global feature representation
F global
w ∈ R H

Rw× W
Rw×R2×1×C for each window, so as to facilitate the information exchange among

the windows in later stage:

F global
w = GAP (F

′

w). (2)

This process enables the absorption and integration of information from every position within the
window into a unified vector representation that encapsulates the overall information of the window.

To leverage the complementarity of information and encourage information sharing among windows
within the surrounding patch, we utilize self-attention (SA) mechanism to capture the interdependence
among the global feature representations F global

w of each window:

F global′

w = SA(F global
w ). (3)

Upon completion of the information exchange, the global feature representation of the current
window incorporates the information of other windows. Subsequently, the global feature represen-
tation F global′

w is added to F
′

w by broadcasting, while the information of the remaining windows is
transferred to F

′

w:

Fglobal = F
′

w + F global′

w . (4)

To enhance the compatibility and generalization for subsequent operation, we apply feed forward
layer (FFN) to further refine Fglobal:

F
′

global = FFN(Fglobal) + Fglobal. (5)

At this time, F
′

global integrates the context information of the surrounding patch, which can strengthen
the features of the local patch region as a complement and solve the challenge of information
bottleneck.

3.4 Loss Function

3.4.1 Boundary Consistency Loss

Despite the incorporation of local patch features and surrounding contextual information, there are
still inconsistent prediction results between adjacent patches due to the lack of explicit constraints.
Therefore, we propose a boundary consistency loss LConsistency to improve the consistency of
prediction results in neighboring regions and alleviate the fragmentation phenomenon. LConsistency

compels the prediction results of both the general segmentation module and SCB to be as similar
as possible, thus promoting consistency in results of neighboring regions across different patches.
This helps create a smoother transition between predictions of adjacent patches, harmonizing the
prediction of the entire ultra image.

Concretely, we crop the predicted mask P
′

global corresponding to the local patch from the prediction
of the surrounding patch Pglobal. Then, we apply L1 constraints on both P

′

global and the prediction
result of local patch Plocal to encourage similarity between them, even when different contexts are
utilized. The loss function is defined as follows:

LConsistency = ||P
′

global − Plocal||. (6)

3.4.2 Overall Loss

The cross-entropy loss is used for both the general segmentation module (LCE) and SCB (LSCB).
The overall loss L is a weighted sum of all the losses mentioned above:

L = λ1LCE + λ2LSCB + λ3LConsistency. (7)
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Table 1: Comparison with baseline on five datasets. The “Mode” column denotes the specific inference modes
associated with each method. The “Test size” column relates to the DeepGlobe dataset.

Method Mode Backbone Test DeepGlobe FBP Aerial Inria Gleason Cityscapes
size 2448×2448 6800×7200 5000×5000 5120×5120 2048×1024

Ultra Image Segmentation Methods
GLNet [6] Slide+Whole R50 508 71.60 42.05 71.20 - -
PPN [45] Slide+Whole R50 512 71.90 - - - 75.20
MagNet [16] Slide+Whole R50 508 72.96 44.20 - - 67.57
FCtL [24] Slide VGG16 508 72.76 48.28 72.87 - -
ISDNet [14] Whole R18 2448 73.30 21.98 74.23 59.97 76.02
ElegantSeg [5] Whole W48 2448 74.32 61.62 - - -
WSDNet [20] Whole R50 2448 74.10 - 75.20 - -
GPWFormer [19] Slide+Whole R50 500 75.80 - 76.50 - 78.10
General Semantic Segmentation Methods
FCN [27] Slide R50 512 72.38 59.97 80.35 52.65 72.39

+ SGNet Slide R50 512 75.28 (+2.90) 61.85 (+1.88) 80.81 (+0.46) 58.46 (+5.81) 75.84 (+3.45)
DeepLabV3Plus [4] Slide R50 512 73.22 61.85 80.88 55.45 75.24

+ SGNet Slide R50 512 75.44 (+2.22) 63.18 (+1.33) 81.21 (+0.33) 61.21 (+5.76) 76.72 (+1.48)
HRNet [38] Slide W18 512 72.87 58.55 79.17 54.31 71.20

+ SGNet Slide W18 512 75.25 (+2.38) 61.49 (+2.94) 80.08 (+0.91) 60.50 (+6.19) 73.06 (+1.86)
SegFormer [46] Slide Mit-b0 512 72.96 57.56 76.26 49.62 67.08

+ SGNet Slide Mit-b0 512 74.65 (+1.69) 60.35 (+2.79) 78.80 (+2.54) 54.86 (+5.24) 70.42 (+3.34)
STDC [12] Slide R50 512 72.59 54.38 75.20 54.51 66.24

+ SGNet Slide R50 512 74.51 (+1.92) 59.40 (+5.02) 77.25 (+2.05) 60.36 (+5.85) 69.36 (+3.12)

4 Experiments

4.1 Datasets

To comprehensively evaluate our method, we conduct experiments on five public ultra image datasets
involving general, medical and remote sensing scenarios: Cityscapes [10], DeepGlobe [11], Inria
Aerial [30], Five-Billion-Pixels [40], and Gleason [21]. Since we do not have data partition details
from [16], we randomly split the Gleason dataset into a training set of 195 images and a testing set of
49 images, and retrained the relevant models. All other datasets followed the official division.

4.2 Implementation Details

In both training and testing, the local patch has a size of 512×512 in all datasets, while the surrounding
patch is twice as large without any resizing. During sliding inference process, we do not preserve
any overlapping regions and the center of local patch and surrounding patch are the same. The first
four stages of STDC, used as the lightweight backbone following [14], are initialized with ImageNet
weights. For all experiments, we set λ1 = 1, λ2 = 0.4, λ3 = 0.1. For the DeepGlobe dataset, the
"unknown" category is ignored during training as it is not included in the evaluation [11]. We also
exclude "unlabeled" category in the FBP dataset following [5].

We adopt MMSegmentation [9] as our toolbox and use AdamW optimizer, which initial learning rate
is set to 2× 10−4. All the models are trained on 4 Tesla V100 GPUs with batch size of 8, except for
the Inria Aerial and Gleason dataset, which are trained for 10k iterations while the rest are trained for
30k iterations. Apart from regular operations such as multi-scale training, flipping, and rotating, we
do not do any special data augmentation, and the final result does not use any test time augmentation.

4.3 Comparison Results

We classify our comparison methods into two groups: general semantic segmentation and ultra image
segmentation. To perform a comprehensive evaluation, we select semantic segmentation methods
that rely on CNN (FCN, DeepLabV3Plus, HRNet), Transformer (SegFormer), and lightweight
architecture (STDC) for comparison. In addition, we verify the performance of classic ultra image
segmentation methods, including GLNet, ISDNet, GPWFoermer, etc. For fair comparison, we adopt
ResNet-50 [15] or its equivalent parameter amount as the backbone for all the methods we compared.

4.3.1 General VS Ultra Image Segmentation Methods

According to the results presented in Table 1, UIS methods only work well on specific datasets,
while GSS methods achieve relatively satisfying performance on all datasets. This confirms the
aforementioned scalability issue. The existing UIS methods show a noticeable performance decrease
when transitioning from handling images in DeepGlobe dataset (2448×2448) to larger ultra images
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(a) Image (b) Ground Truth (c) FCtL (d) ISDNet (e) Ours

Figure 4: The visualization of different methods in DeepGlobe (top row, 2448×2448) and Inria Aerial (bottom
row, 5000×5000). We use DeepLabV3Plus as our general segmentation model and add SCB on top of it. We
apply red color to mark regions where the background is misclassified as foreground and green color to denote
regions where foreground is misclassified as background.

Table 2: Efficacy of proposed module. Align, SCI,
Aux, Loss respectively correspond to the feature align-
ment operation, surrounding context integration mod-
ule, auxiliary head and boundary consistency loss.

Group Backbone Align SCI Aux Loss mIoU
A - - - - - 73.22
B ✓ - - - - 73.76
C ✓ ✓ - - - 73.88
D ✓ ✓ ✓ - - 74.76
E ✓ ✓ ✓ ✓ - 75.23
F ✓ ✓ ✓ ✓ ✓ 75.44

Table 3: Analysis of Surrounding Context Integration.
Attention Global Interaction

Naive SA W-MSA Conv GAP mIoU
- - - - 74.40
✓ - - - 74.86
- ✓ - - 74.72
- ✓ ✓ - 75.17
- ✓ - ✓ 75.44

like FBP (6800×7200), particularly for those utilizing whole images as input, such as ISDNet. This
demonstrates that the current UIS architecture lacks flexibility and faces a trade-off between models
and datasets. This reveals the aforementioned architectural issue.

4.3.2 Improvement over General Segmentation Model

Compared with above methods, our method obtains consistent gains upon all general segmentation
methods. Since our method can seamlessly be incorporated into GSS and utilizes the sliding inference
strategy for prediction, it can handle ultra images of any scale while leveraging the advantages of
scalability from GSS. This perfectly resolves the scalability issue and architectural issue. Taking
the DeepGlobe dataset as an example, our method yields a minimum improvement of 1.69% across
all general models, and a maximum of 75.44% mIoU, which is 2.22% higher than using only
DeepLabV3Plus. This demonstrates that our method can make full use of the contextual information
in the surrounding patch to guide local patch segmentation. It is worth emphasizing that our method
is flexible and applicable to any general segmentation models. It also should be noted that all the
methods reported in Table 1 are sliding window without overlap. A sliding window with overlap is
essentially a test time augmentation method, where multiple predictions on overlapping regions are
averaged to enhance the model’s performance. By using overlapping regions that cover half of the
input patch for predictions, our method can further improve the performance by 0.24% to 75.68%
mIoU on DeepGlobe dataset.

Qualitative results of representative works are shown in Fig. 4, while the results of WSDNet and
GPWFormer are not available due to no public code. Since we leverage the contextual clues around
the current patch as a guide, our method exhibits fewer false positives and delivers more precise
segmentation results than other methods.
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Figure 5: Comparison of adding SCB on different mod-
els (from top to bottom are DeeplabV3Plus, HRNet
and FCN in 5(a) and 5(b)) in Cityscapes (2048×1024).
The mIoU values are calculated on each shown images.
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Figure 6: Comparison of adding SCB on different mod-
els in Gleason (5120×5120). The predicted patches of
model are divided by the white line, while the red box
indicates the area where the model failed to predict.

Table 4: Analysis of feature fusion scheme.
Early Fusion Late Fusion ADD CONCAT mIoU

✓ - ✓ - 74.68
✓ - - ✓ 74.87
- ✓ ✓ - 74.93
- ✓ - ✓ 75.44

Table 5: Analysis of surrounding patch size.
Scale (α) Surrounding Patch Size mIoU

1 512 74.75
2 1024 75.44
3 1536 74.96
4 2048 74.78

4.4 Ablation Study

4.4.1 Effectiveness of Proposed Module

To thoroughly confirm the efficacy of each module, we substitute SGNet (DeepLabV3Plus version)
with six variations denoted as Group ABCDEF. As shown in Table 2, we employ only a lightweight
backbone to individually extract features from surrounding patch, and then concatenated them on last
features in group B. Group B achieves a mIoU of 73.76%, which exceeds group A that only used
general segmentation module by 0.54%. In group C, we utilize the crop operation to align features,
resulting in an improvement of 0.12% compared to B. By applying the surrounding context integration
module to model the context information, and the auxiliary head to enhance the convergence of SCB
in groups D and E, we are able to improve performance by 0.88% and 1.35% compared to group C.
Finally, group F incorporates the boundary consistency loss from group E, and we can conclude that
this loss can effectively enhance the consistency between the bordering regions of adjacent patches,
up to 75.44% mIoU. Additionally, when combining the logits maps from the surrounding branch
and the local branch, the performance is further improved to 75.59% mIoU. The improvement in
results essentially belongs to a model ensembling method. This indicates that our surrounding branch
has learned effective and complementary information to the local branch, further demonstrating the
validity of our approach.

Other than analyzing the effectiveness of individual components within the module, we also demon-
strate its generality across different methods, as shown in Fig. 5. As observed, on the general dataset
such as Cityscapes, our method still lead to significant and consistent improvements upon various
models. In addition, we select objects whose area is less than 900 pixels (0.0036% of the whole
image) from Inria Aerial dataset to verify the effect on small objects. Adding SCB improved the
mIoU from 57.12% to 57.73%, which shows SCB also improve the tiny objects.

4.4.2 Efficacy of Surrounding Context Integration Module

To explore how the attention mechanism and global interaction affect the performance, we conduct
ablation studies on surrounding context integration module in Table 3. We first analyze the difference
between the naive self-attention (Naive SA) and the window self-attention (W-MSA) in modeling
the attention information of the surrounding patch. We apply six residual layers to replace attention
module as the baseline, achieving 74.40% mIoU. Building on this, we further utilize Naive SA and
W-MSA, which improve the mIoU by 0.46% and 0.32%, respectively. This indicates that the attention
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mechanism can capture the correlation between different positions, promoting the flow of surrounding
information within the feature map. As naive self-attention operates on every pixel of the feature
map, it inherently incorporates surrounding interaction operation. We further analyze the impact
of incorporating surrounding information into the W-MSA mechanism, and we utilize convolution
and GAP operations to extract surrounding information from the windows. After adopting either
convolution or GAP, we can get consistent improvement, indicating that introducing surrounding
context is essential for W-MSA, which enables the current window to acquire information of other
regions. In comparison to the convolution, using GAP to extract the surrounding representation of
the window is more suitable for W-MSA, which can reach up to 75.44% mIoU.

4.4.3 Efficacy of Feature Fusion

We perform experiments to analyze the scheme of feature fusion of SCB and general segmentation
module, as shown in Table 4. The fusion position including before the decoder head (early fusion) and
after the decoder head (late fusion). The fusion method including ADD and CONCAT. We observe
that the performance of late fusion is better than early fusion. We believe that late fusion is more
flexible, shielding the complex processing of different models in the input part of the decoder head.
Both ADD and CONCAT operations yield satisfactory outcomes, where the latter have a leading of
0.51%. We believe that the segmentation head captures a greater amount of information, allowing it
to dynamically select the optimal feature for prediction. Hence, modifying the segmentation head
of GSS can further enhance the performance of model, but it deviates from our starting point of
simplicity and is outside the scope of our method.

4.4.4 Comparison of Surrounding Patch Size

We perform ablation studies on the surrounding patch size in Table 5. We observe that, as the
surrounding size increases, the performance initially improves and then gradually decreases. This is
attributed to the fact that only those close nearby area could provide valuable contextual guidance. Too
far-away pixels in the entire images are not relevant to the local patch and may introduce additional
noise. This confirms the motivation that contextual information around the local patch is beneficial.

4.4.5 Efficiency Study

Table 6: Comparison of speed on DeepGlobe. We mea-
sure GPU memory using the command line tool “gpus-
tat”. “∗” represents results we reproduced in our setting.
“-” indicates that there is no publicly available result or
code.

Method mIoU FPS Memory(MB)
GLNet [6] 71.60 0.17 1865
CascadePSP [8] 68.50 0.11 3236
PPN [45] 71.90 12.90 1193
PointRend [23] 71.78 6.25 1593
MagNet [16] 72.96 0.80 1559
MagNet-Fast [16] 71.85 3.40 1559
FCtL [24] 72.76 0.13 4332
ISDNet [14] 73.30 22.67∗ 1948
GPWFormer [19] 75.80 - 2380
DeepLabV3Plus [4] 73.22 1.14 1279
DeepLabV3Plus + SGNet 75.44 0.66 2187
SGNet (ISDNet-Style) 74.28 25.59 2043

Table 7: Comparison of normal image and JPEG com-
pressed image.

Normal JPEG compression
DeepLabV3Plus 73.22 60.24

+ SGNet 75.44 (+2.22) 64.16 (+3.92)

We conduct experiments to examine the speed
of different methods. Frames-per-second (FPS)
and Memory are measured on a Tesla V100
GPU with a batch size of 1. The variation
in FPS among different methods is primarily
attributed to the inference framework, that is,
whole inference and slide inference. Without
considering the overlap, the latter theoretically
requires

⌈
W
w

⌉
×
⌈
H
h

⌉
more operations than the

former. Methods such as ISDNet primarily fo-
cus on model efficiency and achieve higher FPS,
based on a shallow-deep architecture that di-
rectly employs the whole image for inference.
Consequently, we also develop a fast version
named SGNet (ISDNet-Style) by incorporating
a modified SCB for a fair comparison. SGNet
(ISDNet-Style) applies a single surrounding con-
text integration module to the output feature map
of the last stage of STDC to model global infor-
mation. To maintain consistency with ISDNet
and exclude speed differences caused by infer-
ence frameworks, we set our local patch size as
same as ISDNet to simulate the whole inference.
As shown in Table 6, the fast version not only

surpasses the mIoU of ISDNet but also achieves a higher FPS of up to 25.59.
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4.4.6 Robustness Study

We compressed the DeepGlobe dataset to 10% of its original image quality using JPEG compression
and retrained SGNet and DeepLabV3Plus on it. As shown in Table 7, the results show that SGNet
significantly outperforms DeepLabV3Plus by 3.92% (from 64.16% mIoU versus 60.24% mIoU), and
this improvement is almost twice that of normal images (from 73.22% mIoU to 75.44% mIoU). This
indicates that our method is relatively insensitive to noise compared to baseline models and can use
surrounding information to infer damaged pixel information within the object. It also demonstrates
that our method is particularly robust in scenarios involving image degradation.

4.4.7 Fragmentation Phenomenon Study

To show our advantage to alleviate the fragmentation phenomenon, we compare our module against
GSS in Fig. 6. We simulate all predicted patches (non-overlapping) generated during slide inference
process with white lines. It is evident that GSS result in a steep change in the boundary between
adjacent patches, and the predicted results of each patch are relatively independent, lacking coherence.
Our method is capable of modeling the correlation between patches, leading to smoother prediction
results for adjacent patches.

5 Conclusion

In this paper, we propose the Surrounding Guided Segmentation Framework (SGNet) to address the
scalability and architectural issues in existing UIS methods. SGNet leverages surrounding context to
guide local patch segmentation and can be incorporated into any general segmentation model. Our
method consistently improves performance across five datasets and demonstrates greater adaptability
and applicability than existing methods in real-world scenarios. This work not only contributes a
novel solution to the UIS domain but also emphasizes the potential of integrating general segmentation
techniques to advance the field. We hope that SGNet inspires further exploration in ultra image
segmentation, fostering innovations that enhance model performance and scalability.

Limitations. Noise and artifacts in ultra-high-resolution images can hinder segmentation accuracy,
necessitating further research to address these challenges.

Social Impact. The proposed method has the potential to advance various fields, including medical
image analysis and remote sensing image processing.
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A Existing Architecture Analysis

In Figure 7, we show the detail architectures of existing ultra image segmentation methods. Whole
inference 7(a) and slide inference 7(b) are the two most fundamental ultra image segmentation
architectures. While whole inference can be applied directly to general segmentation models [27,
4, 38, 46, 12, 49], it utilizes the down-sampled image as input, which results in a loss of essential
information. The latter divides the image into multiple patches by means of sliding window, and
predicts the patches one by one, aggregating the results together. However, due to the isolated
prediction of patches and the lack of global information, it is prone to cause information bottleneck
and fragmentation phenomenon.

(a) Whole Inference (b) Slide Inference

(c) Global & Local (d) Shallow & Deep (e) Ours

Figure 7: Comparison of existing architectures of ultra image segmentation.

To address the issues above and leverage the benefits of both whole inference and slice inference, some
studies [6, 45, 24, 16, 19] have introduced the Global & Local architecture 7(c). This architecture
involves one branch that takes in the down-sampled ultra image as the global cue, while the other
branch extracts local information from sliced patches. However, these tasks usually require sequential
processing of each patch and complex integration strategies to combine global information, resulting
in poor scalability of the architecture. Alternatively, some study[14, 20] have introduced the Shallow
& Deep architecture 7(d), which inputs the original image and the resized image into different
branches for processing. Despite its fast speed, it is essentially a trade-off in dataset size and
computing resources, and cannot be used for real ultra image segmentation scenarios.

The architectures depicted in Figure 7(c) and Figure 7(d) both use the original image after resize in
an input branch, which may limit the capability of the architecture to process ultra images. On the
one hand, when the image is extremely large, the resized image will inevitably lose a lot of detail
information to fit the GPU memory. On the other hand, the resized ultra image cannot guarantee to
provide specific global information that is helpful for local patch segmentation. To address these
issues, we designed a novel and effective ultra image segmentation architecture 7(e) based on slide
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window. Our architecture can handle ultra images of any scale and provide surrounding information
that aids in local patch segmentation. Furthermore, our architecture is highly flexible, not restricted by
computing resources, and can be seamlessly integrated to any encoder-decoder based segmentation
model.

B Dataset Details

To comprehensively evaluate our method, we conduct experiments on five public ultra image datasets
involving general, medical and remote sensing scenarios:

Cityscapes [10]. The Cityscapes dataset is a popular street scene dataset for generic semantic
segmentation. It contains 3475 images with the resolution of 1024×2048 and a total of 19 categories.
We use 2975 images for training and 500 images for testing.

Gleason [21]. The Gleason dataset is a high resolution medical image dataset with the resolution of
5120×5120. It contains 244 H&E-stained histopathology images for automatic Gleason grading of
prostate cancer. Since we do not have data partition details from [16], we randomly split dataset into
training and testing set with 195 and 49 images.

DeepGlobe [11]. DeepGlobe is a satellite image dataset that contains 803 ultra-high resolution images
(2448×2448 pixels). It contains 7 categories, of which the class named "unknown" is excluded.
Following [6], we divide the training, validation, and testing sets into 454, 207, and 142 images,
respectively.

Inria Aerial [30]. The Inria Aerial dataset comprises 180 images, each with a resolution of
5000×5000 pixels. Following [6], we divide the training, validation, and testing sets into 126,
27, and 27 images, respectively.

Five-Billion-Pixels [40]. The FBP dataset includes 150 high-resolution images, each with a size of
7200×6800 pixels and labeled with 24 categories. We use the same test set as in [40], and randomly
divide the remaining images into training set and validation set, including 90 and 30 images.

C Comparative Analysis of SCB Branch

In order to demonstrate the proposed SCB Branch’s efficacy, we used sixteen conventional convolution
layers followed by four transformer blocks to form a trivial replacement branch for extracting
surrounding image feature. It serving as a functionally analogous replacement for the proposed SCB
branch. As shown in Table 8, we added this trivial replacement branch to all general segmentation
models in Table 1 and conducted experiments on the DeepGlobe dataset using the same settings. The
results show that our proposed SCB branch significantly outperforms this branch, proving the efficacy
of our proposed component.

Table 8: Comparison of SCB Branch with it trivial replacement.
Original + Trivial Branch + SGNet

FCN 72.38 72.56 (+0.28) 75.28 (+2.90)
DeepLabV3Plus 73.22 73.77 (+0.55) 75.44 (+2.22)
HRNet 72.87 73.24 (+0.37) 75.25 (+2.38)
SegFormer 72.96 73.56 (+0.60) 74.65 (+1.69)
STDC 72.59 72.88 (+0.29) 74.51 (+1.92)

D Large Scale Human Subject Segmentation Study

We conducted experiments on the well-known CelebAMask-HQ dataset to further verify the effec-
tiveness of our method in large scale human subject segmentation. Due to the lack of extremely
high-resolution human datasets, we simulate ultra-high resolution by resizing the images from the
CelebAMask-HQ dataset from 1024 to 2448 pixels. We compared our SGNet with DeepLabV3Plus,
which is a highly popular and widely used image segmentation model across various domains. The
performance of our method significantly outperformed DeepLabV3Plus by 1.61% (from 62.93%
mIoU to 64.54% mIoU). We provide more examples of qualitative results in Figure 8.
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Figure 8: The visualization of different methods in CelebAMask-HQ. We resized the images from 1024 to 2448
pixels to simulate ultra-high resolution and used sliding window of size 512 without overlap for inference.

E More Qualitative Result

In Figure 9, we provide more examples of qualitative results between our method and existing ultra
image segmentation methods like FCtL [24] and ISDNet [14]. These results indicate that our method
is capable of achieving satisfactory quality on various challenging datasets [11, 30]. Figure 10 and
Figure 11 illustrate the effectiveness of SCB by comparing it to general segmentation models such as
DeepLabV3Plus and HRNet on Cityscapes [10] and Gleason [41].
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(a) Image (b) Ground Truth (c) FCtL (d) ISDNet (e) Ours

Figure 9: The qualitative results of different methods in DeepGlobe (top row, 2448×2448) and Inria Aerial
(bottom row, 5000×5000).

(a) Image (b) Ground Truth (c) DeepLab

(d) DeepLab + SCB (e) HRNet (f) HRNet + SCB

Figure 10: The comparison of adding SCB on different models in Cityscapes (2048×1024).

(a) Image (b) HRNet (c) DeepLabV3Plus

(d) Ground Truth (e) HRNet + SCB (f) DeepLab + SCB

Figure 11: The comparison of adding SCB on different models in Gleason (5120×5120).
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims accurately summarize the our contributions.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In Conclusion, we discuss the limitations of the proposed method.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification:
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the necessary information required to replicate the main experi-
mental results, including the model architecture and experimental settings.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We have included our core code in an anonymized zip as part of the supple-
mentary, and will release the complete code upon acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The training and test details are provided in Sec. 4.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Not applicable.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In Section 4.2, we provided detailed information about the specific computer
resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have conducted.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the societal impacts in conclusion.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite all the original papers that provided the code and dataset.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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